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Abstract. We conjecture an exact formula for the Kontsevich integral of the unknot, and also
conjecture a formula (also conjectured independently by Deligne [De]) for the relation between the
two natural products on the space of uni-trivalent diagrams. The two formulas use the related
notions of “Wheels” and “Wheeling”. We prove these formulas ‘on the level of Lie algebras’ using
standard techniques from the theory of Vassiliev invariants and the theory of Lie algebras. In a
brief epilogue we report on recent proofs of our full conjectures, by Kontsevich [Ko2] and by DBN,
DPT, and T. Q. T. Le, [BLT].
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1. Introduction

1.1. The conjectures. Let us start with the statements of our conjectures; the rest of the paper
is concerned with motivating and justifying them. We assume some familiarity with the theory of
Vassiliev invariants. See e.g. [B-N1, Bi, BL, Go1, Go2, Ko1, Vas1, Vas2] and [B-N2].

Very briefly, recall that any complex-valued knot invariant V can be extended to an invariant of
knots with double points (singular knots) via the formula V ( ) = V ( )−V ( ). An invariant
of knots (or framed knots) is called a Vassiliev invariant, or a finite type invariant of type

m, if its extension to singular knots vanishes whenever evaluated on a singular knot that has more
than m double points. Vassiliev invariants are in some senses analogues to polynomials (on the
space of all knots), and one may hope that they separate knots. While this is an open problem

Date: This edition: February 10, 2000; First edition: Mar. 13, 1997.
This paper is available electronically at http://www.ma.huji.ac.il/~drorbn, at http://

jacobi.math.brown.edu/~stavrosg, and at http://xxx.lanl.gov/abs/q-alg/9703025.

1



2 BAR-NATAN, GAROUFALIDIS, ROZANSKY, AND THURSTON

and the precise power of the Vassiliev theory is yet unknown, it is known (see [Vo]) that Vassiliev
invariants are strictly stronger than the Reshetikhin-Turaev invariants ([RT]), and in particular
they are strictly stronger than the Alexander-Conway, Jones, HOMFLY, and Kauffman invariants.
Hence one is interested in a detailed understanding of the theory of Vassiliev invariants.

The set V of all Vassiliev invariants of framed knots is a linear space, filtered by the type of an
invariant. The fundamental theorem of Vassiliev invariants, due to Kontsevich [Ko1], says that the
associated graded space grV of V can be identified with the graded dual A⋆ of a certain completed
graded space A of formal linear combinations of certain diagrams, modulo certain linear relations.
The diagrams in A are connected graphs made of a single distinguished directed line (the skeleton),
some number of undirected internal edges, some number of trivalent external vertices in which
an internal edge ends on the skeleton, and some number of trivalent internal vertices in which
three internal edges meet. It is further assumed that the internal vertices are oriented: that for
each internal vertices one of the two possible cyclic orderings of the edges emanating from it is
specified. An example of a diagram in A is in Figure 1. The linear relations in the definition of A
are the well-known AS, IHX, and STU relations, also shown in Figure 1. The space A is graded
by half the total number of trivalent vertices in a given diagram.

degree=3 degree=7

AS:

IHX:

STU: =

=

=0+

−

−

Figure 1. A diagram in A, a diagram in B (a uni-trivalent diagram), and the AS, IHX , and STU

relations. All internal vertices shown are oriented counterclockwise.

The most difficult part of the currently known proofs of the isomorphism A⋆ ∼= grV is the con-
struction of a universal Vassiliev invariant: an A-valued framed-knot invariant ζ that satisfies a
certain universality property which implies that its adjoint ζ⋆ : A⋆ → V is well defined and induces
an isomorphism A⋆ ∼= grV, as required (see e.g. [BS]). Such a universal Vassiliev invariant is not
unique; the set of universal Vassiliev invariants is in a bijective correspondence with the set of all
filtration-respecting maps V → grV that induce the identity map grV → grV. But it is a note-
worthy and not terribly well understood fact that all known constructions of a universal Vassiliev
invariant are either known to give the same answer or are conjectured to give the same answer
as the framed Kontsevich integral Z (see Section 2.2), the first universal Vassiliev invariant
ever constructed. Furthermore, the Kontsevich integral is well behaved in several senses, as shown
in [B-N1, BG, Kas, Ko1, LMMO, LM1, LM2].

Thus it seems that Z is a canonical and not an accidental object. It is therefore surprising how
little we know about it. While there are several formulas for computing Z, they are all of limited
use beyond the first few degrees. Before this paper was written, no explicit formula for the value
of Z on any knot was known, not even the unknot!

Our first conjecture is about the value of the Kontsevich integral of the unknot. We conjecture a
completely explicit formula, written in terms of an alternative realization of the space A, the space
B of uni-trivalent diagrams (“Chinese characters”, in the language of [B-N1]). The space B is
also a completed graded space of formal linear combinations of diagrams modulo linear relations:
the diagrams are the so-called uni-trivalent diagrams, which are the same as the diagrams in A
except that a skeleton is not present, and instead a certain number of univalent vertices are allowed
(the original connectivity requirement is dropped, but one insists that every connected component
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of a uni-trivalent diagram would have at least one univalent vertex). An example of a uni-trivalent
diagram is in Figure 1. The relations are the AS and IHX relations that appear in the same figure
(but not the STU relation, which involves the skeleton). The degree of a uni-trivalent diagram is
half the total number of its vertices. There is a natural isomorphism χ : B → A which maps every
uni-trivalent diagram to the average of all possible ways of placing its univalent vertices along a
skeleton line (see [B-N1], but notice that a sum is used there instead of an average). In a sense that
we will recall below, the fact that χ is an isomorphism is an analog of the Poincare-Birkhoff-Witt
(PBW) theorem. We note that the inverse map σ of χ is more difficult to construct and manipulate.

Conjecture 1. (Wheels) The framed Kontsevich integral of the unknot, Z(©), expressed in terms
of uni-trivalent diagrams, is equal to

Ω = exp ·∪

∞∑

n=1

b2nω2n.(1)

The notation in (1) means:

• The ‘modified Bernoulli numbers’ b2n are defined by the power series expansion

∞∑

n=0

b2nx
2n =

1

2
log

sinhx/2

x/2
.(2)

These numbers are related to the usual Bernoulli numbers B2n and to the values of the Riemann
ζ-function on the even integers via (see e.g. [Ap, Section 12.12])

b2n =
B2n

4n(2n)!
=

(−1)n+1

2n(2π)2n
ζ(2n).

The first three modified Bernoulli numbers are b2 = 1/48, b4 = −1/5760, and b6 = 1/362880.
• The ‘2n-wheel’ ω2n is the degree 2n uni-trivalent diagram made of a 2n-gon with 2n legs:

ω2 = , ω4 = , ω6 = , . . . ,

(with all vertices oriented counterclockwise).1 We note that the AS relation implies that odd-
legged wheels vanish in B, and hence we do not consider them.

• exp ·∪ means ‘exponential in the disjoint union sense’; that is, it is the formal-sum exponential
of a linear combination of uni-trivalent diagrams, with the product being the disjoint union
product.

Let us explain why we believe the Wheels Conjecture (Conjecture 1). Recall ([B-N1]) that there
is a parallelism between the space A (and various variations thereof) and a certain part of the
theory of Lie algebras. Specifically, given a metrized Lie algebra g, there exists a commutative

1Wheels have appeared in several noteworthy places before: [Ch, CV, KSA, Vai]. Similar but slightly different
objects appear in Ng’s beautiful work on ribbon knots [Ng].
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square: (a refined version is in Theorem 3 below)

χ

Tg

Tg
B

βg

A Ug(g)

Sg(g)

(
the g-invariant part of the com-
pleted universal enveloping alge-
bra of g

)

(
the g-invariant part of the com-
pleted symmetric algebra of g

)

(3)

In this square the left column is the above mentioned formal PBW isomorphism χ, and the right
column is the symmetrization map βg : S(g) → U(g), sending an unordered word of length n to the
average of the n! ways of ordering its letters and reading them as a product in U(g). The map βg is
a vector space isomorphism by the honest PBW theorem. The left-to-right maps Tg are defined as
in [B-N1] by contracting copies of the structure constants tensor, one for each vertex of any given
diagram, using the standard invariant form (·, ·) on g (see citations in section 2.2 below). The maps
Tg seem to ‘forget’ some information (some high-degree elements on the left get mapped to 0 on
the right no matter what the algebra g is, see [Vo]), but at least up to degree 12 they are faithful
(for some Lie algebras); see [Kn].

Theorem 1. Conjecture 1 is “true on the level of semi-simple Lie algebras”. Namely,

TgΩ = Tgχ
−1Z(©).

We now formulate our second conjecture. Let B′ = span
{ }

/(AS, IHX) be the same as B,

only dropping the remaining connectivity requirement so that we also allow connected components
that have no univalent vertices (but each with at least one trivalent vertex). The space B′ has two
different products, and thus is an algebra in two different ways:

• The disjoint union C1 ·∪C2 of two uni-trivalent diagrams C1,2 is again a uni-trivalent diagram.
The obvious bilinear extension of ·∪ is a well defined product B′ ×B′ → B′, which turns B′ into
an algebra. For emphasis we will call this algebra B′

·∪.
• B′ is isomorphic (as a vector space) to the space A′ = span

{ }
/(AS, IHX,STU) of

diagrams whose skeleton is a single oriented interval (like A, only that here we also allow non-
connected diagrams). The isomorphism is the map χ : B′ → A′ that maps a uni-trivalent
diagram with k “legs” (univalent vertices) to the average of the k! ways of arranging them along
an oriented interval (in [B-N1] the sum was used instead of the average). A′ has a well known
“juxtaposition” product ×, related to the “connect sum” operation on knots:

× = .(4)

The algebra structure on A′ defines another algebra structure on B′. For emphasis we will call
this algebra B′

×.

As before, A′ is graded by half the number of trivalent vertices in a diagram, B′ is graded by
half the total number of vertices in a diagram, and the isomorphism χ as well as the two products
respect these gradings.
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Definition 1.1. If C is a uni-trivalent diagram without struts (components like ), let Ĉ :
B′ → B′ be the operator defined by

Ĉ(C ′) =






0
if C has more legs
than C ′,

the sum of all ways of gluing
all the legs of C to some (or
all) legs of C ′

otherwise.

For example,

ω̂4(ω2) = 0; ω̂2(ω4) = 8 + 4 .

If C has k legs and total degree m, then Ĉ is an operator of degree m− k. By linear extension, we
find that every C ∈ B′ without struts defines an operator Ĉ : B′ → B′. (We restrict to diagrams
without struts to avoid circles arising from the pairing of two struts and to guarantee convergence.)

As Ω is made of wheels, we call the action of the (degree 0) operator Ω̂ “wheeling”. As Ω begins

with 1, the wheeling map is invertible. We argue below that Ω̂ is a diagrammatic analog of the
Duflo isomorphism Sg(g) → Sg(g) (see [Du] and see below). The Duflo isomorphism intertwines
the two algebra structures that Sg(g) has: the structure it inherits from the symmetric algebra

and the structure it inherits from Ug(g) via the PBW isomorphism. One may hope that Ω̂ has the
parallel property:

Conjecture 2. (Wheeling2) Wheeling intertwines the two products on uni-trivalent diagrams. More

precisely, the map Ω̂ : B′
·∪ → B′

× is an algebra isomorphism.

There are several good reasons to hope that Conjecture 2 is true. If it is true, one would be able to
use it along with Conjecture 1 and known properties of the Kontsevich integral (such as its behavior
under the operations of change of framing, connected sum, and taking the parallel of a component
as in [LM2]) to get explicit formulas for the Kontsevich integral of several other knots and links.
Note that change of framing and connect sum act on the Kontsevich integral multiplicatively using
the product in A, but the conjectured formula we have for the Kontsevich integral of the unknot
is in B. Using Conjecture 2 it should be possible to perform all operations in B. Likewise, using
Conjectures 1 and 2 and the hitherto known or conjectured values of the Kontsevich integral, one
would be able to compute some values of the LMO 3-manifold invariant [LMO], using the “Århus
integral” formula of [Å-I, Å-II, Å-III].

Perhaps a more important reason is that in essence, A and B capture that part of the information
about U(g) and S(g) that can be described entirely in terms of the bracket and the structure
constants. Thus a proof of Conjecture 2 would yield an elementary proof of the intertwining
property of the Duflo isomorphism, whose current proofs use representation theory and are quite
involved. We feel that the knowledge missing to give an elementary proof of the intertwining
property of the Duflo isomorphism is the same knowledge that is missing to give a proof of the
Kashiwara-Vergne conjecture ([KV]).

Theorem 2. Conjecture 2 is “true on the level of semi-simple Lie algebras”. A precise statement
is in Proposition 2.1 and the remark following it.

Remark 1.2. As semi-simple Lie algebras “see” all of the Vassiliev theory at least up to degree 12
[B-N1, Kn], Theorems 1 and 2 imply Conjectures 1 and 2 up to that degree. It should be noted
that semi-simple Lie algebras do not “see” the whole Vassiliev theory at high degrees, see [Vo].

2Conjectured independently by Deligne [De].
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Remark 1.3. We’ve chosen to work over the complex numbers to allow for some analytical ar-
guments below. The rationality of the Kontsevich integral [LM1] and the uniform classification
of semi-simple Lie algebras over fields of characteristic 0 implies that Conjectures 1 and 2 and
Theorems 1 and 2 are independent of the (characteristic 0) ground field.

1.2. The plan. Theorem 1 and Theorem 2 both follow from a delicate assembly of widely known
facts about Lie algebras and related objects; the main novelty in this paper is the realization
that these known facts can be brought together and used to prove Theorems 1 and 2 and make
Conjectures 1 and 2. The facts we use about Lie-algebras amount to the commutativity of a certain
monstrous diagram. In Section 2 below we will explain everything that appears in that diagram,
prove its commutativity, and prove Theorem 2. In Section 3 we will show how that commutativity
implies Theorem 1 as well. We conclude this introductory section with a picture of the monster
itself:

Theorem 3. (definitions and proof in Section 2) The following monster diagram is commutative:

KF

χ

A′
T ~

g

T ~
g

T ~
g

Z

Ω̂ Sg

1

2 3

4 5

B′
×

B′
·∪

U(g)g[[~]]

S(g)g×[[~]]

S(g)g·∪[[~]]

P (g⋆)g[[~]]

P (g⋆)g[[~]]

P (h⋆)W [[~]]
ψg

βg

ιg

D(j
1/2
g )

RTg

Remark 1.4. Our two conjectures ought to be related—one talks about Ω, and another is about an

operator Ω̂ made out of Ω, and the proofs of Theorems 1 and 2 both use the Duflo map (D(j
1/2
g )

in the above diagram). But looking more closely at the proofs below, the relationship seems to

disappear. The proof of Theorem 2 uses only the commutativity of the face labeled 4 , while

the proof of Theorem 1 uses the commutativity of all faces but 4 . No further relations
between the conjectures are seen in the proofs of our theorems. Why is it that the same strange
combination of uni-trivalent diagrams Ω plays a role in these two seemingly unrelated affairs? See
the epilogue (Section 4) for a partial answer.

1.3. Acknowledgement. Much of this work was done when the four of us were visiting Århus,
Denmark, for a special semester on geometry and physics, in August 1995. We wish to thank the
organizers, J. Dupont, H. Pedersen, A. Swann and especially J. Andersen for their hospitality and
for the stimulating atmosphere they created. We wish to thank the Institute for Advanced Studies
for their hospitality, and P. Deligne for listening to our thoughts and sharing his. His letter [De]
introduced us to the Duflo isomorphism; initially our proofs relied more heavily on the Kirillov
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character formula. A. Others and A. Referee made some very valuable suggestions; we thank
them and also thank J. Birman, V. A. Ginzburg, A. Haviv, A. Joseph, G. Perets, J. D. Rogawski,
J. D. Stasheff, M. Vergne and S. Willerton for additional remarks and suggestions.

2. The monster diagram

2.1. The vertices. Let gR be the (semi-simple) Lie-algebra of some compact Lie group G, let
g = gR ⊗ C, let h ⊂ igR be a Cartan subalgebra of g, and let W be the Weyl group of h in g. Let
∆+ ⊂ h⋆ be a set of positive roots of g, and let ρ ∈ ig⋆

R
be half the sum of the positive roots. Let

~ be an indeterminate, and let C[[~]] be the ring of formal power series in ~ with coefficients in C.

• KF is the set of all framed knots in R3.
• A′ is the algebra of not-necessarily-connected chord diagrams, as in page 2.
• B′

× and B′
·∪ denote the space of uni-trivalent diagrams (allowing connected components that

have no univalent vertices), as in page 4, taken with its two algebra structures.
• U(g)g[[~]] is the g-invariant part of the universal enveloping algebra U(g) of g, with the coefficient

ring extended to be C[[~]].
• S(g)g×[[~]] and S(g)g·∪[[~]] denote the g-invariant part of the symmetric algebra S(g) of g, with

the coefficient ring extended to be C[[~]]. In S(g)g·∪[[~]] we take the algebra structure induced
from the natural algebra structure of the symmetric algebra. In S(g)g×[[~]] we take the algebra
structure induced from the algebra structure of U(g)g[[~]] by the symmetrization map βg :
S(g)g×[[~]] → U(g)g[[~]], which is a linear isomorphism by the Poincare-Birkhoff-Witt theorem.

• P (h⋆)W [[~]] is the space of Weyl-invariant polynomial functions on h⋆, with coefficients in C[[~]].
• P (g⋆)g[[~]] is the space of ad-invariant polynomial functions on g⋆, with coefficients in C[[~]].

2.2. The edges.

• Z is the framed version of the Kontsevich integral for knots as defined in [LM1]. A simpler (and
equal) definition for a framed knot K is

Z(K) = eΘ·writhe(K)/2 · S
(
Z̃(K)

)
∈ A ⊂ A′,

where Θ is the chord diagram , S is the standard algebra map Ar = A/ < Θ >→ A

defined by mapping Θ to 0 and leaving all other primitives of A in place, and Z̃ is the Kontsevich
integral as in [Ko1].

• χ is the symmetrization map B′
× → A′, as on page 3. It is an algebra isomorphism by [B-N1]

and the definition of ×.
• Ω̂ is the wheeling map as in page 5. We argue that it should be an algebra (iso-)morphism

(Conjecture 2).
• RTg denotes the Reshetikhin-Turaev knot invariant associated with the Lie algebra g [Re1, Re2,

RT, Tu].
• T ~

g
(in all three instances) is the usual “diagrams to Lie algebras” map, as in [B-N1, Section 2.4

and exercise 5.1]. The only variation we make is that we multiply the image of a degree m
element of A′ (or B′

× or B′
·∪) by ~m. In the construction of T ~

g
an invariant bilinear form on g

is needed. We use the standard form (·, ·) used in [RT] and in [CP, Appendix]. See also [Kac,
Chapter 2].

• The isomorphism βg was already discussed when S(g)g×[[~]] was defined on page 7.

• The definition of the “Duflo map” D(j
1/2
g ) requires some preliminaries. If V is a vector space,

there is an algebra map D : P (V ) → Diff(V ⋆) between the algebra P (V ) of polynomial functions
on V and the algebra Diff(V ⋆) of constant coefficients differential operators on the symmetric
algebra S(V ). The map D is defined on generators as follows: If α ∈ V ⋆ is a degree 1 polynomial
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on V , set D(α)(v) = α(v) for v ∈ V ⊂ S(V ), and extend D(α) to be a derivation on S(V ), using
the Leibnitz law. A different (but less precise) way of defining D is via the Fourier transform:
Think of S(V ) as a space of functions on V ⋆. A polynomial function on V becomes a differential
operator on V ⋆ after taking the Fourier transform, and this defines our map D. Either way, if
j ∈ P (V ) is homogeneous of degree k, the differential operator D(j) lowers degrees by k and
thus vanishes on the low degrees of S(V ). Hence D(j) makes sense even when j is a power series
instead of a polynomial. This definition has a natural extension to the case when the spaces
involved are extended by C[[~]], or even C((~)), the algebra of Laurent polynomials in ~.

Now use this definition of D with V = g to define the Duflo map D(j
1/2
g ), where jg(X) is

defined for X ∈ g by

jg(X) = det

(
sinh adX/2

adX/2

)
.

The square root j
1/2
g of jg is defined as in [Du] or [BGV, Section 8.2], and is a power series

in X that begins with 1. We note that by Kirillov’s formula for the character of the trivial

representation (see e.g. [BGV, Theorem 8.4 with λ = iρ]), j
1/2
g is the Fourier transform of

the symplectic measure on Miρ, where Miρ is the co-adjoint orbit of iρ in g⋆
R

(see e.g. [BGV,
Section 7.5]):

j
1/2
g (X) =

∫

r∈Miρ

eir(X)dr.(5)

(We consider the symplectic measure as a measure on g⋆
R

, whose support is the subset Miρ of
g⋆
R

. Its Fourier transform is a function on gR that can be computed via integration on the
support Miρ ⊂ g⋆

R
of the symplectic measure.) Duflo [Du, théorème V.2] (see also [Gi]) proved

that D(j
1/2
g ) is an algebra isomorphism.

• ψg is the Harish-Chandra isomorphism U(g)g → P (h⋆)W extended by ~. Using the representa-
tion theory of g, it is defined as follows. If z is in U(g)g and λ ∈ h⋆ is a positive integral weight,
we set ψg(z)(λ) to be the scalar by which z acts on the irreducible representation of g whose
highest weight is λ− ρ. It is well known (see e.g. [Hu, Section 23.3]) that this partial definition
of ψg(z) extends uniquely to a Weyl-invariant polynomial (also denoted ψg(z)) on h⋆, and that
the resulting map ψg : U(g)g → P (h⋆)W is an isomorphism.

• The two equalities at the lower right quarter of the monster diagram need no explanation. We
note though that if the space of polynomials P (g⋆)g[[~]] is endowed with its obvious algebra
structure, only the lower equality is in fact an equality of algebras.

• ιg is the restriction map induced by the identification of h⋆ with a subspace of g⋆ defined
using the form (·, ·) of g. The map ιg is an isomorphism by Chevalley’s theorem (see e.g. [Hu,
Section 23.1] and [BtD, Section VI-2]).

• Sg is the extension by ~ of an integral operator. If p(λ) is an invariant polynomial of λ ∈ g⋆,
then

Sg(p)(λ) =

∫

r∈Miρ

p(λ− ir)dr.

Sg can also be viewed as a convolution operator (with a measure concentrated on Mρ), and like
all convolution operators, it maps polynomials to polynomials.

2.3. The faces.



WHEELS, WHEELING, AND THE UNKNOT 9

• The commutativity of the face labeled 1 was proven by Kassel [Kas] and Le and Mu-

rakami [LM1] following Drinfel’d [Dr1, Dr2]. We comment that it is this commutativity that
makes the notion of “canonical Vassiliev invariants” [BG] interesting.

• The commutativity of the face labeled 2 is immediate from the definitions, and was already

noted in [B-N1].

• The commutativity of the face labeled 3 (notice that this face fully encloses the one labeled

5 ) is due to Duflo [Du, théorème V.1].

Proposition 2.1. The face labeled 4 is commutative.

Remark 2.2. Recalling thatD(j
1/2
g ) is an algebra isomorphism, this proposition becomes the precise

formulation of Theorem 2.

Proof of Proposition 2.1. Follows immediately from the following two lemmas, taking C = Ω in

(6).

Lemma 2.3. Let κ : g → g⋆ be the identification induced by the standard bilinear form (·, ·) of
g. Extend κ to all symmetric powers of g, and let κ~ : S(g)g[[~]] → S(g⋆)((~)) be defined for a
homogeneous s ∈ S(g)g[[~]] (relative to the grading of S(g)) by κ~(s) = ~− deg sκ(s). If C ∈ B′ is

a uni-trivalent diagram, Ĉ : B′ → B′ is the operator corresponding to C as in Definition 1.1, and
C ′ ∈ B′ is another uni-trivalent diagram, then

T ~

g
Ĉ(C ′) = D(κ~T ~

g
C)T ~

g
C ′.(6)

Proof. If κj is a tensor in Sk(g⋆) ⊂ g⋆⊗k, the k’th symmetric tensor power of g⋆, and j′ is a tensor

in Sk′

(g) ⊂ g⊗k′

, then

D(κj)(j′) =






0 if k > k′,
the sum of all ways of contracting all
the tensor components of j with some
(or all) tensor components of j′

otherwise.
(7)

By definition, the “diagrams to Lie algebras” map carries gluing to contraction, and hence carries
the operation in Definition 1.1 to the operation in (7), namely, to D. Counting powers of ~, this

proves (6).

Lemma 2.4. κ~T ~
g

Ω = j
1/2
g .

Proof. It follows easily from the definition of T ~
g

and of κh that (κ~T ~
g
ωn)(X) = tr(adX)n for any

X ∈ g. Hence, using the fact that κ~ ◦ T ~
g

is an algebra morphism if B′ is taken with the disjoint
union product,

(κ~T ~

g Ω)(X) = exp

∞∑

n=1

b2n(κ~T ~

g ω2n)(X) = exp

∞∑

n=1

b2n tr(adX)2n = det exp

∞∑

n=1

b2n(adX)2n.

By the definition of the modified Bernoulli numbers (2), this is

det exp
1

2
log

sinh adX/2

adX/2
= det

(
sinh adX/2

adX/2

)1/2

= j
1/2
g (X).

Proposition 2.5. The face labeled 5 is commutative.
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Proof. According to M. Vergne (private communication), this is a well known fact, but we could
only find it in [Gi], where the language is somewhat different. For completeness, we present a short
proof here, albeit with some analytical details omitted. We first modify the statement in three
minor ways:

• We ignore the extension of all spaces involved by ~. This extension, needed in some other
parts of this paper, makes no difference when it comes to 5 .

• We strengthen the statement slightly by dropping the g invariance restriction from all spaces
involved.

• Instead of working with the symmetric algebra S(g) of g and the (equivalent) algebra P (g⋆)
of polynomials on g⋆, we switch to working with the space Fǫ(g

⋆
R

) of polynomials in α ∈ g⋆
R

multiplied by the Gaussian e−ǫ|α|2.

It is clear that both Sg and D(j
1/2
g ) are defined on Fǫ(g

⋆
R

), and that the equality D(j
1/2
g ) = Sg

on Fǫ(g
⋆
R

) would imply the commutativity of 5 after taking the ǫ → 0 limit. On the other

hand, the functions in Fǫ(g
⋆
R

) are smooth and rapidly decreasing, and hence the tools of Fourier
analysis are available.

We now prove the equality D(j
1/2
g ) = Sg on Fǫ(g

⋆
R

). Conjugating by the Fourier transform (over

g⋆
R

), the differential operator D(j
1/2
g ) becomes the operator of multiplication by j

1/2
g (iX) on the

space of rapidly decreasing smooth functions on gR (recall that in general the Fourier transform
takes ∂/∂x to multiplication by ix). Conjugating by the inverse Fourier transform, we see that

D(j
1/2
g ) is the operator of convolution with the inverse Fourier transform of j

1/2
g (iX) (recall that

the Fourier transform intertwines between multiplication and convolution), which is the symplectic

measure on Mρ (see (5)). So D(j
1/2
g ) is convolution with that measure, as required.

3. Proof of Theorem 1

We prove the slightly stronger equality

T ~

g
Ω = T ~

g
χ−1Z(©).(8)

Proof. We compute the right hand side of (8) by first computing Sgιg
−1ψgRTg(©) and then using

the commutativity of the monster diagram. It is known (see e.g. [CP, example 11.3.10]) that if
λ− ρ ∈ h⋆ is the highest weight of some irreducible representation Rλ−ρ of g, then

(ψgRTg(©))(λ) =
1

dimRλ−ρ

∏

α∈∆+

sinh ~(λ, α)/2

sinh ~(ρ, α)/2
,

where ∆+ is the set of positive roots of g and (·, ·) is the standard invariant bilinear form on g. By
the Weyl dimension formula and some minor arithmetic, we get (see also [LM2, section 7])

(ψgRTg(©))(λ) =
∏

α∈∆+

~(ρ, α)/2

sinh ~(ρ, α)/2
·
sinh ~(λ, α)/2

~(λ, α)/2
.(9)

We can identify g and g⋆ using the form (·, ·), and then expressions like ‘ad λ’ make sense. By
definition, if gα is the weight space of the root α, then adλ acts as multiplication by (λ, α) on gα,
while acting trivially on h. From this and (9) we get

(ψgRTg(©))(λ) = det

(
ad ~ρ/2

sinh ad ~ρ/2

)1/2

· det

(
sinh ad ~λ/2

ad ~λ/2

)1/2

= j
−1/2
g (~ρ) · j

1/2
g (~λ).



WHEELS, WHEELING, AND THE UNKNOT 11

The above expression (call it Z(λ)) makes sense for all λ ∈ g⋆, and hence it is also ιg
−1ψgRTg(©).

So we’re only left with computing SgZ(λ):

SgZ(λ) =

∫

r∈Miρ

dr Z(λ− ir) = j
−1/2
g (~ρ)

∫

r∈Miρ

dr j
1/2
g (~(λ− ir)).

By (5), this is

j
−1/2
g (~ρ)

∫

r∈Miρ

dr

∫

r′∈Miρ

dr′ ei~(r′,λ−ir) = j
−1/2
g (~ρ)

∫

r′∈Miρ

dr′ ei~(r′,λ)

∫

r∈Miρ

dr ei~(−ir′,r).

Using (5) again, we find that the inner-most integral is equal to j
1/2
g (~ρ) independently of r′, and

hence

SgZ(λ) =

∫

r′∈Miρ

dr′ ei~(r′,λ),

and using (5) one last time we find that

SgZ(λ) = j
1/2
g (~λ).(10)

The left hand side of (8) was already computed (up to duality and powers of ~) in Lemma 2.4.

Undoing the effect of κ~ there, we get the same answer as in (10).

4. Epilogue

After the first version of this paper was circulating, Kontsevich [Ko2] proved the Wheeling
Conjecture (Conjecture 2) using the 2-dimensional configuration-space techniques he developed for
the proof of his celebrated “Formality Conjecture”. At that time it was already known to DPT and
T. Q. T. Le (see [BLT]) that the Wheeling Conjecture implies the Wheels Conjecture (Conjecture 1),
and thus both conjectures were known to be true, though the proof of the implication Wheeling
⇒ Wheels did not shed light on the fundamental relationship that ought to exist between the two
conjectures (see Remark 1.4).

In the summer of 1998, DBN and DPT found a knot-theoretic proof of the Wheeling Conjecture,
which also sheds some more light on the relationship between it and the Wheels Conjecture. We
sketch these results here; the details will appear in [BLT]. We only present an idealized picture, in
which a single theorem, Theorem 4 below, implies both conjectures. We admit that the truth is
somewhat less clean: the proof of Theorem 4 in [BLT] involves a bootstrap procedure that uses some
results from this paper (at least implicitly) and in which the conclusions, Wheels and Wheeling,
are proven first.

Let denote the long Hopf link: the usual Hopf link, with one component, labeled

z, “opened up”, and with the other component, labeled x, presented by a round circle, so that
the result looks precisely like its symbol. As well known, the framed Kontsevich integral has an

extension to links, and when evaluated on , it is valued in a space of diagrams A′ similar to

A, only that each diagram in A′ has two skeleton components: a line labeled z and a circle labeled
x. We then use a diagrammatic PBW theorem, similar to the one in (3), to map A′ to a space A′′

in which the x part of the skeleton is replaced by an unordered set of x-marked univalent vertices.

Theorem 4. (See [BLT]) In A′′,

Z
( )

= Ωx ·∪ exp♯

( x

z

)
:= Ωx ·∪

(
x

z

x x x

z

x x

z
∅ + +1

2 +1
6 + . . .

)
,
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where Ωx denotes Ω with all univalent vertices marked x, and ∅ denotes the empty (unit) diagram.

It is clear that Theorem 4 and the simple behavior of the Kontsevich integral with respect to
dropping a link component implies the Wheels Conjecture. Simply drop the component labeled z
from the left hand side of (4), and the skeleton component labeled z from the right hand side of
that equation. What remains is precisely the Wheels Conjecture.

The proof of the Wheeling Conjecture from Theorem 4 is elegant but a bit more involved. We
start from the following 1 + 1 = 2 equality of links,

z z

x y

z

x y

♯ ,

which says that the connected sum of two copies of is equal to the same with

the x-component doubled. The Kontsevich integral behaves nicely with respect to the operations
of connected sum [B-N1, Ko1] and of doubling [LM2], and hence by computing the Kontsevich
integral of both sides of (4), one can translate that equation to an equality between two sums of
diagrams, presented schematically as

[
Ωx ·∪ exp♯

( x

z

)]
♯
[
Ωy ·∪ exp♯

( y

z

)]
= Ωx+y ·∪ exp♯

( x+y

z

)

As explained in [BLT], this equality is combinatorially equivalent to the Wheeling Conjecture.

References

[Ap] T. M. Apostol, Introduction to analytic number theory, Springer-Verlag New York 1976.
[B-N1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 423–472 (1995).
[B-N2] , Bibliography of Vassiliev Invariants, http://www.ma.huji.ac.il/~drorbn.
[BG] and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103–133.
[BLT] , T. Q. T. Le, and D. P. Thurston, in preparation.
[BS] and A. Stoimenow, The fundamental theorem of Vassiliev invariants, in Proc. of the Århus Conf.
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