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1 Introduction

The goal of this paper is to construct some new governing fields. Classically, governing fields were
used to control the 4 and 8-torsion of quadratic fields of the form Fp = Q(

√
Np) where N is a fixed

integer, and p runs over primes in a congruence class mod 4. The basic idea of the theory is to play
Kummer theory off of class field theory. There are explicit descriptions of cl(Fp)[2] and cl(Fp)/2,
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as well as a usable description of cl(Fp)/4 that let one compute the map from cl(Fp)[2]→ cl(Fp)/2
or cl(Fp)/4 and then determine what the 4 or 8-torsion of cl(Fp) is.

This project started when two of the authors realized that the core idea, where one plays Kummer
theory off of class field theory, should also work when one considers cyclic cubic extensions of
K = Q(ζ3). In this case, we still have a rather quite explicit understanding of the class field theory
of K and so there is hope. The initial goal (which has since been realized) is to show, using only
the Cheboratev density theorm, that there are infinitely many number fields F with Z/9Z ⊂ cl(F ).
Having said that the goal is similar to the 2-power case, the theory for cyclic cubic extensions of
K gets significantly more intricate than the theory for quadratic extensions of Q.

To fix notation, F/K will be a cyclic cubic extension, and 〈σ〉 = Gal(F/K). One has that cl(F )
admits an action of σ. Additionally, (σ2 + σ+ 1)[I] = [N(I)] = [(1)], as K is a PID. Thus, cl(F ) is
an Rσ := Z[σ]/σ2 + σ + 1-module. A point for clarity is in order here: abstractly, Rσ ∼= OK , but
we find it clearer to think of these rings as being distinct, as they serve very different purposes in
the calculations. Since genus theory describes cl(F )[1− σ] and cl(F )/(1− σ), the hope is that we
can control cl(F )[(1− σ)2] or cl(F )[(1− σ)3].

To make a setup along the lines of the quadratic case, we need to say a few things about the
aritmatic of OK . There is a unique prime dividing 3, namely λ = 1− ζ3, and this prime will play
a key role in the setup of the fields. Every other prime ideal p admits a unique generator π such
that π ≡ 1 (mod λ2) (this convention is not quite the typical convention where π is chosen to be 2
(mod λ2), but since we will only worry about whether numbers are cubes modulo other numbers,
this distinction is not relevant for us). The choice of whether π ≡ 1, 4, or 7 (mod λ3) will play
the role of choosing whether p ≡ 1 or 3 (mod 4) in the quadratic case. Additionally, one has that
π ≡ 1 (mod λ3) (resp. 4 or 7) if and only if N(π) ≡ 1 (mod 9) (resp. 7 or 4). Also of note with
this setup is that K( 3

√
β) is unramified at λ if and only if β ≡ ±1 (mod λ3), which highlights the

role that this congruence condition plays.

With all that in mind, the goal now becomes the following: fix a congruence class a (mod λ3), and
choose an element α ∈ OK . Let Fπ = K( 3

√
απ) for π ≡ a (mod λ3), and let 〈σπ〉 = Gal(Fπ/K)

(concretely, σπ( 3
√
απ) = ζ3 3

√
απ). Then we want to describe cl(Fπ)[(1 − σπ)2] or cl(Fπ)[(1 − σπ)3]

as a module over Rσπ , based on splitting conditions of π in various fields. This paper will focus on
some of the simplest cases, where cl(Fπ)[(1− σπ)] = Rσπ/(1− σπ) and so the only question is how
much 1− σπ-power torsion is there. Nevertheless, this case will still provide several intricacies.

The main cases we study are summarized in the following theorems.

Theorem 1.1. Let α = ζ3, and π ≡ 1 (mod λ3). Define Fπ = K( 3
√
απ), and keep notation as

above. Then one has the following:

• π splits in K(ζ9,
3
√

3) if and only if cl(Fπ)[(1− σπ)2] ∼= Rσπ/(1− σπ)2.

• π splits in K

(
ζ9,

3
√

3, 3

√
1−ζ49
1−ζ9

)
and H2(〈σπ〉,O×Fπ) = 1 implies that cl(Fπ)[(1 − σπ)3] =

Rσπ/(1− σπ)3.

Theorem 1.2. Choose α ∼ λ or λ2. Define Fπ = K( 3
√
αλ), and keep notation as above. Then one

has the following:
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• π splits in K

(
ζ9,

3
√

3, 3

√
1−ζ49
1−ζ9

)
) if and only if cl(Fπ)[(1− σπ)2] ∼= Rσπ/(1− σπ)2.

• π splits in K

(
ζ9,

3
√

3, 3

√
1−ζ49
1−ζ9

)
and H2(〈σπ〉,O×Fπ) = 1 implies that cl(Fπ)[(1 − σπ)3] =

Rσπ/(1− σπ)3.

These two theorems are not enough to show that Z/9Z occurs as a class group infinitely often:
while calculations seem to suggest that H2(〈σπ〉,O×Fπ) = 1 should occur infintely often among the
relevant conjugacy classes, we currently cannot prove that. However there is another source of
examples that will get out from this difficulty.

Theorem 1.3. Let α = 10, and π ≡ 1 (mod λ3). Define Fπ = K( 3
√
απ) and keep notation as

above. Then one has the following:

• π splits in K( 3
√

2, 3
√

5) if and only if cl(Fπ)[(1− σπ)2] ∼= Rσπ/(1− σπ)2.

• π splits in K

(
3
√

2, 3
√

5, ζ9,
3

√
ζ3

3√10−2
3√10−2

)
if and only if cl(Fπ)[(1− σπ)3] = Rσπ/(1− σπ)3.

Theorem 1.4. Let α = 20, and π ≡ 4 (mod λ3). Define Fπ = K( 3
√
απ) and keep notation as

above. Then one has the following:

• π splits in K( 3
√

2, 3
√

5) if and only if cl(Fπ)[(1− σπ)2] ∼= Rσπ/(1− σπ)2.

• cl(Fπ)[(1− σπ)3] 6= Rσπ/(1− σπ)3 for any π.

Theorem 1.3 realizes the goal of showing that Z/9Z occurs infintely often in the class groups of num-
ber fields. The key difference here is that in both of these cases, we know that H2(〈σπ〉,O×Fπ) 6= 1.
This may seem counterproductive, but it turns out that it wasn’t the vanishing of this cohomology
group that was the issue but the fact that either could or couldnt vansh that was the issue. Addi-
tionally, one may view the second point of theorem 1.4 as the same as the second point of theorem
1.3: since ζ9 is in that big field, it is impossible for a prime that is 4 (mod λ3) to split in it!

2 Genus Theory

Here we will recall some results from genus theory in a form advantageous for our applications. In
this section and this section only, F/K will be an arbitrary cyclic extension of number fields of
degree d, with Gal(F/K) = 〈σ〉. The ultimate goal of genus theory is to determine what cl(F )[σ−1]
is (or rather, determine as much information as you can in this very general setup). To fix some
more notation, S will be the set of primes in K that are ramified in F , IF will be the group of
fractional ideals in F , and PrinF will be the group of principal ideals in F .

There are short exact sequences of σ-modules:

0→ O×F → F× → PrinF → 0, and
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0→ PrinF → IF → cl(F )→ 0.

Hilbert’s satz 90 says that H1(〈σ〉, F×) = 0. Additionally, IF is the direct sum of modules isomor-
phic to Z[〈σ〉/H], which are all projective as Z[〈σ〉]-modules, so H1(〈σ〉, IF ) = 0. Consequently,
taking cohomology gives the following long exact sequences:

0→ O×K → K× → PrinF [σ − 1]→ H1(〈σ〉,O×F )→ 0

0→ H1(〈σ〉,PrinF )→ H2(〈σ〉,O×F )→ H2(〈σ〉, F×)

0→ PrinF [σ − 1]→ IF [σ − 1]→ cl(F )[σ − 1]→ H1(〈σ〉,PrinF )→ 0.

Letting N be the norm from F to K, one has that H2(〈σ〉,O×F ) = O×K/N(OF ) and similarly for
H2(〈σ〉, F×). Thus, we can convert the second exact sequence to:

0→ H1(〈σ〉,PrinF )→ H2(〈σ〉,O×F )→ O×K/(O
×
K ∩N(F×))→ 0.

Since K×/O×K = PrinK , we get that PrinF [σ − 1]/PrinK = H1(〈σ〉,O×F ). This gives the following
exact sequence:

0→ H1(〈σ〉,O×F )→ IF [σ − 1]/PrinK → cl(F )[σ − 1]→ H2(〈σ〉,O×F )→ O×K/(O
×
K ∩N(F×))→ 0.

There is another short exact sequence to compute IF [σ − 1]/PrinK :

0→ cl(K)→ IF [σ − 1]/PrinK → IF [σ − 1]/IK .

One clearly has that if [I] ∈ IF [σ − 1], then N(I) = Id ∈ IK , and thus one gets that IF [σ −
1]/IK =

∏
p∈S p

(1/ep)Z/Z. Finally, a standard calculation in class field theory gives that h2/1(O×F ) =
(
∏
v|∞ ev)/d and so putting it all together, one gets the “ambigious class number formula:”

#(cl(F )[σ − 1]) =
#(cl(K))

∏
v ev

d#(O×K/(O
×
K ∩N(F×))

.

Some remarks about how these exact sequences will be used. Since we will always be assuming
that K = Q(ζ3), we will get to ignore all of the contributions that arise from cl(K). In these cases,
the term #(O×K/(O

×
K ∩N(F×))) is supposed to measure local obstructions to ζ3 being a norm from

F and its easy to show that this is non-zero when you expect it to be. Typically, we can easily
construct enough unramified extensions in the cases that there are no local obstructions to ζ3 being
a norm to force cl(F )[σ − 1] to be large enough to force #(O×K/(O

×
K ∩N(F×))) = 1.

Finally, while this doesn’t technically lie in the realm of genus theory, we would be remiss to not
explain the notion of Reidi matricies. Genus theory (hopefully) tells you what cl(F )[σ − 1] is
generated by. As above, you can typically construct enough unramified extensions of the right
type, and this tells you what cl(F )/σ − 1 is. Thus, if you can compute what the map from
cl(F )[σ − 1] → cl(F )/σ − 1 is, then you can determine the structure of cl(F )[(σ − 1)2]. This map
is called the first Reidi map and we will be leveraging this concept throughout this paper.

3 The α ∈ 〈ζ3, λ〉 cases

This section will be dedicated to studying fields of the form Fπ = K( 3
√
απ) where α is a non cube

in 〈ζ3, λ〉 and π ≡ 1 (mod λ3). For the rest of this section, α will be viewed as a fixed element so as
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to not cause a mess of notation. These fields are only ramified at λ and π, so one gets that the size
of cl(K( 3

√
απ)[σπ−1] is either 3 or 1 depending on whether ζ3 is or isn’t a norm from F×π . However,

the extension Fπ( 3
√
π) = Fπ( 3

√
α) is unramified everywhere and invariant under the action of σπ,

so one must have that #(cl(K( 3
√
απ))[σπ − 1]) = 3 and ζ3 ∈ NFπ/K(F×π ). Consequently, we must

have that cl(Fπ)σπ−1 = Rσπ/(σπ − 1)d for some d.

Now looking at the long exact sequence above, this says that either cl(Fπ) is generated by the
primes that are ramified in Fπ or H2(〈σπ〉,O×Fπ) 6= 0. Let pπ and pλ be the primes dividing π and
λ in Fπ. Moreover, one has that ( 3

√
απ) is a principal ideal, so one can write [pπ] in terms of [pλ]

in cl(Fπ). Thus, we get that either pλ generates cl(Fπ)[σπ − 1] or H2(〈σπ〉,O×Fπ) 6= 0. Finally, since

H2 for a cyclic group is invariants mod norms, the statement H2(〈σπ〉,O×Fπ) 6= 0 is the same as

ζ3 ∈ NFπ/K(O×Fπ).

Now, let Eα = K( 3
√
α), and 〈τ〉 = Gal(Eα/K). Additionally, for i ≤ d, let Fπ,i/F be the unramified

extension of Fπ whose Galois group is isomorphic to cl(Fπ)/(σπ)i. Then these fields fit into the
following diagram:

. .
.

Fπ,2

Fπ,1

Fπ Eα

K

〈τ〉
〈σ
π 〉

The prime over λ in Eα is given by 1− ζ9 if α = ζ3 or ζ23 , 3
√
α if vλ(α) = 1, and

3
√
α2/λ if vλ(α) = 2.

In all cases, I will denote this element by βλ.

3.1 Results conditional on H2 = 0

In this section, we will make the following assumption:

Assumption 3.1. H2(〈σπ〉,O×Fπ) = 0.

Theorem 3.2. Assume that α = ζ3 or ζ23 and that assumption 3.1 is true. Then one has the
following:
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• π splits in K(ζ9,
3
√

3) if and only if cl(Fπ)[(σπ − 1)2] ∼= Rσπ/(σπ − 1)2.

• π splits in K

(
ζ9,

3
√

3, 3

√
1−ζ49
1−ζ9

)
if and only if cl(Fπ)[(σπ − 1)3] ∼= Rσπ/(σπ − 1)3.

Just to remark: the first condition is equivalent to the condition that π ≡ 1 (mod λ4).

Proof. Since cl(Fπ)[σπ−1] is generated by [pλ], asking that cl(Fπ)[(σπ−1)2] ∼= Rσπ/(σπ−1)2 is the
same thing as asking that pλ splits in Fπ,1. But Fπ,1 = Fπ[ 3

√
π], so this is equivalent to asking that

λ splits in K( 3
√
π). However, class field theory says that Gal(K( 3

√
π)/K) = (OK/π)×⊗ZZ/3Z, and

so this is equivalent to λ being a cube modulo π. But since π ≡ 1 (mod ()λ3), we know that ζ3 is
a cube modulo π. Moreover, λ2 = −ζ233, so λ being a cube mod π is the same as 3 being a cube
mod π and the first part follows.

Now, assume that π splits in K(ζ9,
3
√

3). Then we have that Fπ,2/Eα is a (Z/3Z)2-extension,
ramified only at π, and Galois over K. Thus, there is a surjection from Vπ := (OEα/π)× ⊗Z Z/3Z
onto Gal(Fπ,2/Eα). Now, Vπ = F3[τ ]/(τ3 − 1) as a Z[〈τ〉]-module, so the only way that the kernel
of this surjection has the right size and is 〈τ〉-equivariant is if the kernel is Vπ[τ − 1]. Thus, we
have that Gal(Fπ,2/Eα) = Vπ/Vπ[τ − 1]. Now, in order for the prime over λ to split in this field,
we need only to check that its image in Vπ lies in Vπ[τ − 1]. But the prime over 1 − ζ3 in Eα is

1 − ζ9, so we need only check that
1−ζ49
1−ζ9 is a cube modulo π. But that is equivalent to π splitting

in K

(
ζ9,

3
√

3, 3

√
1−ζ49
1−ζ9

)
.

1−ζ9 splitting in Fπ,2 is equivalent to pλ splitting in Fπ,2, which in turn is equivalent to cl(Fπ)[(σπ−
1)3] ∼= Rσπ/(σπ − 1)3. Thus, we get the second part of the theorem.

Theorem 3.3. Assume that α is not ζ3 or ζ23 and that assumption 3.1 is true. Then the following
are equivalent:

1. π splits in K(ζ9,
3
√

3),

2. cl(Fπ)[(σπ − 1)2] ∼= Rσπ/(σπ − 1)2, and

3. cl(Fπ)[(σπ − 1)3] ∼= Rσπ/(σπ − 1)3.

Proof. Clearly, 3 implies 2. We thus need to show that 2 implies 1 and that 1 implies 3.

To that end, assume that cl(Fπ)[(σπ−1)2] ∼= Rσπ/(σπ−1)2. We know that pπ generates cl(Fπ)[σπ−
1]. Thus, we must have that pπ is trivial in cl(Fπ)/(σπ− 1)cl(Fπ). This means that pπ splits in Eα.
But we know that π splits in K(ζ9), and Eα(ζ9) = K(ζ9,

3
√

3). Indeed, this argument is an if and
only if, which will be useful in the next part.

Now, assume that π splits in K(ζ9,
3
√

3). Then we have Fπ,2 exists. Considerations similar to the
ones above show that, if we let Vπ = (OEα/π)× ⊗Z Z/3Z, then Gal(Fπ,2/Eα) = Vπ/Vπ[τ − 1]. To
get Fπ,3 to exist, we need that βλ ∈ Vπ[τ − 1]. But τ(βλ)/βλ = ζ3, which is a cube in (OEα/π)×
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since π splits in K(ζ9). Thus, we get that Fπ,3 exists, or equivalently that cl(Fπ)[(σπ − 1)3] ∼=
Rσπ/(σπ − 1)3.

3.2 Unconditional Results

Now, we get to results that don’t depend on assuming assumption 3.1.

Theorem 3.4. The following are equivalent:

• π splits in Eα

(
3

√(
O×Eα

)τ−1)
, and

• cl(Fπ)[(σπ − 1)2] ∼= Rσπ/(σπ − 1)2.

Remark 3.5. It is a simple caluculation with cyclotomic units to show that, if α = ζ3 or ζ23 ,

Eα

(
3

√(
O×Eα

)τ−1)
= K(ζ3,

3
√

3). Additionally, it is also a fact that, in the other six cases,

Eα

(
3

√(
O×Eα

)τ−1)
= K

(
ζ9,

3
√

3, 3

√
1−ζ49
1−ζ9

)
. However, as of yet, we are unable to come up with

a proof of that fact that isn’t just “sage says so” in some form.

This theorem also gives the following corollary that controls H2(〈σπ〉,O×Fπ) in some cases.

Corollary 3.6. Assume that π splits in K(ζ9,
3
√

3) but not K

(
ζ9,

3
√

3, 3

√
1−ζ49
1−ζ9

)
.

• If α = ζ3 or ζ23 , then H2(〈σπ〉,O×Fπ) = 0.

• In the other six cases for α, one has that H2(〈σπ〉,O×Fπ) 6= 0.

Proof of Corollary. In the first case, we have that Fπ,2 exists by theorem 3.4. Because π doesn’t

split in K

(
ζ9,

3
√

3, 3

√
1−ζ49
1−ζ9

)
, we have that βλ 6= 0 in Vπ/Vπ[τ − 1]. Thus, we get that pλ doesn’t

split in Fπ,2. But this means that [pλ] 6= 0 in cl(Fπ), which forces H2(〈σπ〉,O×Fπ) = 0.

In the second case, if H2(〈σπ〉,O×Fπ) = 0, we would have cl(Fπ)[(σπ−1)2] ∼= Rσπ/(σπ−1)2. But that

is equivalent to π splitting in K

(
ζ9,

3
√

3, 3

√
1−ζ49
1−ζ9

)
, which is a contradiction. Thus H2(〈σπ〉,O×Fπ) 6=

0.

Proof of Theorem 3.4. Looking at the diagram above, we need to ask whether the field Fπ,2 exists.
It is an abelian extension of Eα, unramified outside of π, with Gal(Fπ,2/Eα) ∼= (Z/3Z)2. This
implies that there is a surjection from Vπ onto Gal(Fπ,2/Eα). Since Fπ,2/K is Galois, we must have
that the kernel of this surjection is Gal(Eα/K)-stable.
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If π does not split in Eα, then dim(Vπ) = 1, so there is no way for Fπ,2 to exist. Thus, we will
assume that π splits in Eα from now on. We then have as before that Vπ = F3[τ ]/(τ3 − 1) as an
F3-vector space with an action of τ , and the only Gal(Eα/K)-stable subspace of dimension 1 is
Vπ[τ − 1]. Class field theory says that the maximal abelian extension of Eα unramified outside of π
with Galois group being entirely 3-torsion will have Galois group Vπ/O×Eα . Thus, for Fπ,2 to exist,

one must have O×Eα ⊂ Vπ[τ − 1], which is equivalent to π splitting in Eα

(
3

√(
O×Eα

)τ−1)
.

Conversely, if π splits in Eα

(
3

√(
O×Eα

)τ−1)
, then the above process can be reversed to construct

the field Fπ,2, showing that cl(Fπ)[(σπ − 1)2] = Rσπ/(σπ − 1)2.

4 The α = 10 case

Before stating the main theorem of this section, we need some setup. We will let π ∈ OK be a prime
with π ≡ 1 (mod λ3). Additionally, we will let Fπ = K( 3

√
10π), 〈σπ〉 = Gal(Fπ/K), p2 ⊂ OFπ be

the prime dividing 2 (similarly for p5 and pπ).

The exact sequence from genus theory gives

〈[p2], [p5], [pπ]〉 → cl(Fπ)[1− σπ]→ H2(〈σπ〉,O×Fπ)→ O×K/(O
×
K ∩ F

×
π )→ 0.

Because ζ3 isn’t a norm locally at 2 or 5, one gets that #(O×K/(O
×
K ∩ F×π )) = 3, and hence

#(H2(〈σπ〉,O×Fπ)) = 3 and the map between them is an isomorphism. Consequently, one has that

p2, p5, and pπ generate cl(Fπ)[1 − σπ]. However, p2p5pπ = ( 3
√

10π), we get that cl(Fπ)[1 − σπ] is
generated by p2 and p5. The ambigious class number formula says that #(cl(Fπ)[1 − σπ]) = 3, so
one has that cl(Fπ)1−σπ = Rσπ/(1− σπ)d for some d.

Some important fields need to be named now. If d ≥ i, let Fπ,i be the unramified abelian extension
of Fπ whose Galois group is cl(Fπ)/(1− σπ)i. Since d ≥ 1 always, one has that Fπ,1 always exists,
and indeed Fπ,1 = Fπ( 3

√
10) = Fπ( 3

√
π). Also, let E = K( 3

√
10) and Gal(E/K) = 〈τ〉. It is a simple

check that cl(E)[τ−1] is trivial, and so there are elements β2 and β5 such that (β32) = (2), β35 = (5),
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and β2β5 = 3
√

10. These fields fit into the following incredibly reminiscent diagram:

. .
.

Fπ,2

Fπ,1

Fπ E

K

〈τ〉
〈σ
π 〉

The aim of this section is to prove the following theorem:

Theorem 4.1. Keeping notation as above, one has the following:

• cl(Fπ)[(1− σπ)2] = Rσπ/(1− σπ)2 if and only if π splits in K
(

3
√

2, 3
√

5
)

= E

(
3

√(
O×E
)τ−1)

.

• cl(Fπ)[(1− σπ)3] = Rσπ/(1− σπ)3 if and only if π splits in E

(
3

√(
O×E
)τ−1

, 3

√
τ(β2)
β2

, 3

√
τ(β5)
β5

)
.

A few remarks are in order. First off, part of the first part of Theorem 4.1 is that the two
presentations of the field are equal. Secondly, one can check that one can choose 2− 3

√
10 for β2 and

hence 3
√

10/(2 − 3
√

10) for β5. Thirdly, it is of note that τ(β2β5)
β2β5

= τ( 3√10)
3√10

= ζ3, which shows that

ζ9 is in the field in the second part of the theorem. Finally, there is nothing special about 2 and
5, and all of the arguments work if you look at fields of the form K( 3

√
απ) where α ≡ 1 (mod λ3),

cubefree, and divisible by exactly two primes neither of which are equivalent to 1 (mod λ3).

Proof. First, as noted, one has that cl(Fπ)[1 − σπ] is generated by p2 and p5. Additionally, one
has that cl(Fπ)/(1− σπ) ∼= Gal(Fπ,1/Fπ) ∼= Gal(K( 3

√
π)/K). Additionally, p2 (or p5) splits in Fπ,1

if and only if 2 (respectively, 5) splits in K( 3
√
π). That happens if and only if

(
π
2

)
3

= 1 (resp.(
π
5

)
3

= 1), which by cubic reciprocity is equvalent to
(
2
π

)
3

= 1 (resp.
(
5
π

)
3

= 1). Thus, the natural
map from cl(Fπ)[1 − σπ] → cl(Fπ)/(1 − σπ) is the zero map if and only if p2 and p5 split in Fπ,1,
which, as noted, is equivalent to π splitting in K( 3

√
2, 3
√

5).

Now, consider the extension Fπ,2/E. If this extension exists, we know that its ramified only at π,
has Galois group isomorphic to (Z/3Z)2, and is Galois over K. Letting Vπ = (OE/π)× ⊗Z Z/3Z,
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one then has first off that dimF3(Vπ) = 3, which is equivalent to π splitting in E. Additionally,
as a F3[τ ]-module, Vπ is a free rank one module, so Gal(Fπ,2/E) ∼= Vπ/Vπ[τ − 1]: class field
theory provides a surjection from Vπ onto Gal(Fπ,2/E) and there is a unique τ -stable 1-dimensional
subspace of Vπ. However, one must also have O×E in the kernel of the surjection, so the image of

O×E in Vπ is contained in Vπ[τ − 1]. But that is equivalent to π splitting in E

(
3

√(
O×E
)τ−1)

.

Conversely, if π splits in E

(
3

√(
O×E
)τ−1)

, then one gets that there is an extension of E that is

unramified outside of π, Galois over K, and whose Galois group is (Z/3Z)2. This extension is Galois
over Fπ of degree 9, and hence abelian, so one gets that Fπ,2 exists and thus cl(Fπ)[(1 − σπ)2] =
Rπ/(1− σπ)2.

This shows that the two fields K
(

3
√

2, 3
√

5
)

and E

(
3

√(
O×E
)τ−1)

have the same primes in K that

split in them, so they must be the same field. This concludes the proof of the first part of Theorem
4.1.

We will now assume that π splits in E

(
3

√(
O×E
)τ−1)

. Again, one is interested in whether the map

from cl(Fπ)[1 − σπ] → cl(Fπ)/(1 − σπ)2 is the 0 map. This happens if and only if p2 and p5 split
in Fπ,2, which is equivalent to (β2) and β5 splitting in Fπ,2. Now, Gal(Fπ,2/E) = Vπ/Vπ[τ − 1], so

this is equivalent to β2 and β5 being in Vπ[τ − 1], which is the same as τ(β2)
β2

and τ(β5)
β5

being cubes

mod π, which is the same as π splitting in E

(
3

√(
O×E
)τ−1

, 3

√
τ(β2)
β2

, 3

√
τ(β5)
β5

)
. This concludes the

proof of the second part of Theorem 4.1.

5 The α = 20 case

Now, we will let π ≡ 4 (mod λ3). Let Fπ = K( 3
√

20π) and 〈σπ〉 = Gal(Fπ/K). As in the previous
section, one has that #(cl(Fπ)[1 − σπ]) = 3 and is generated by p2, p5, and pπ with the relation
[p22p5pπ] = [(1)], and thus just generated by p2 and p5. Now, we have the following theorem:

Theorem 5.1. Keeping notation as above, one has the following:

• cl(Fπ)[(1− σπ)2] = Rσπ/(1− σπ)2 if and only if π splits in K( 3
√

2, 3
√

5).

• cl(Fπ)[(1− σπ)3] = cl(Fπ)[(1− σπ)2]; i.e. there is no primative (1− σπ)3-torsion.

Proof. The proof of the first part is similar to the proof of the first part in theorem 4.1. Since p2
and p5 generate cl(Fπ) and Fπ,1 is given by Fπ( 3

√
25π) = Fπ( 3

√
2π), we get that p2 (resp. p5) splits

if and only if 25π (resp. 2π) is a cube mod 2 (resp. 5). But 25 is a cube mod 2 (resp. 2 is a cube
mod 5), so this happens if and only if π is a cube mod 2 (resp. 5), which is equivalent to 2 (resp.
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5) being a cube mod π by cubic reciprocity. Thus, p2 and p5 split in Fπ,1 if and only if π splits in
K( 3
√

2, 3
√

5).

As before, we assume that Fπ,2 exists. In this case, one has that the extension Fπ,2/E is given by
the same formula as in the proof of theorem 4.1. Thus, in order for p2 to split in Fπ,2, one needs
that τ(β2)/β2 to be a cube mod π. Similarly for p5 to split, one needs that τ(β5)/β5 to be a cube
mod π. If both of them split, then you get that τ( 3

√
10)/ 3
√

10 = ζ3 is a cube mod π, which means
that π ≡ 1 (mod λ3), a contradiction. Thus, we can’t have p2 and p5 both splitting in Fπ,2 and so
there can be no primative (1− σπ)3-torsion.

A similar proof gives the following theorem:

Theorem 5.2. Let π1, π2, and π3 all be congruent to 4 (mod λ3), F = K( 3
√
π1π2π3), and 〈σ〉 =

Gal(F/K). Then cl(F )1−σ = Rσ/(1 − σ) unless
(
π1
π2

)
3

=
(
π2
π3

)
3

=
(
π3
π1

)
3
, in which case one gets

that cl(F )1−σ = Rσ/(1− σ)2.

This is not the most general theorem of this type that can be proven (and in particular, it does
not imply theorem 5.1) but stating it when one allows all of the πis to be 4 or 7 (mod λ3) is more
hassle than is worth.

6 A few notes about fields over Q

Finally, we will discuss some results about cyclic cubic fields over Q. These results are somewhat
similar in nature to those in section 3 although they are much weaker.

Let p ∈ Z be a prime such that p ≡ 1 (mod 3). Then there are two fields Fp,i/Q such that
Gal(Fp,i/Q) ∼= Z/3Z and Fp,i is ramified exactly at 3 and p. For most of the remainder of the
section, these two fields will behave similarly and we will abuse notation and use Fp to stand in for
one of them. As before, we will write σp as a generator of Gal(Fp/Q), and Rp = Z[σp]/(1+σp+σ2p).
Since one again has that cl(Fp)[σp − 1] = Rp/(σp − 1), we are interested in how deep this goes. To
that end, we have the following theorem:

Theorem 6.1. One has that cl(Fp)[(σp − 1)2] ∼= Rp/(σp − 1)2 if and only if p splits in Q(ζ9,
3
√

3).

Proof. The first step in this proof is to compute H2(〈σp〉,O×Fp). As before, this is (O×Q/NFp/Q(O×Fp),
but unlike before, O×Q = Z× = {±1}, so one has that H2(〈σp〉,O×Fp) = 0 for much simpler reasons.
Thus, letting p3 and pp denote the primes in Fp lying over 3 and p respectively, we have that
〈[p3], [pp]〉 = cl(Fp)[σp − 1].

Now, there is an explicit description of the field that corresponds to cl(Fp)/(σp − 1): letting Kp be
the cyclic cubic extension of Q ramified only at p and K3 be the cyclic cubic extension ramified
only at 3, we have that the compositum KpK3/Fp is the field that corresponds to cl(Fp)/(σp − 1).
Additionally, asking whether p3 splits in KpK3 is the same thing as asking whether 3 splits in Kp,
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which is equivalent to 3 being a cube modulo p. Similarly, asking whether pp splits in KpK3 is the
same thing as asking whether p splits in K3, which is the same thing as asking that p ≡ 1 (mod 9).
Thus, one has that both p3 and pp split in KpK3 if and only if p splits in Q(ζ9,

3
√

3). But that
happens if and only if the first Reidi map cl(Fp)[σp − 1] → cl(Fp)/(σp − 1) is the 0 map, and the
theorem follows.

We were completely unable to find a governing field for the (σp − 1)3-torsion in this case. Indeed,
some numerical calculations showed that the probability that there was (σp − 1)3-torsion given
that there was (σp − 1)2-torsion tended to 1/9 from above, which as pointed out to us by Hendrik
Lenstra, was weakly inconsistent with there being a governing field. (The reason that this is
incosnsitent with there being a field is the following: L-function techniques to count primes say
that you aren’t supposed to give p weight 1 and everything else weight 0, but instead pn weight
log(p) and everything else weight 0. Generalizing to counting primes whose forbenius is a given
conjugacy class in a field, you are supposed to give pn weight log(p) if (Frobp)

n is in that class for
some (equivalently any) prime p lying over p. The most consistent source of error in passing from
the naieve count to the correct one is that the trivial class gets more log(p) terms than any other
class, and so you expect there to be slightly fewer actual primes (instead of prime powers) who
split in the field. This is the underlying reason that there are more primes that are 3 (mod 4) than
primes that are 1 (mod 4) up to some constant x for small values of x.)
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