
THE NEGATIVE PELL EQUATION

ERICK KNIGHT AND STANLEY YAO XIAO

Abstract. By applying methods developed by A. Smith in [6], we show that

the density of square-free integers d in [1, N ] for which the negative Pell equa-
tion x2−dy2 = −1 has a solution is as predicted by the model of Stevenhagen.
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1. Introduction

It is a well known fact that for any square-free positive integerD > 1 the equation

(1.1) x2 −Dy2 = 1,

misattributed by Leonhard Euler to John Pell, has infinitely many integer solutions.
Moreover, as is now easy to see from algebraic number theory, that the solutions
are naturally generated by a single fundamental solution.

The analogous equation, the negative Pell equation

(1.2) x2 −Dy2 = −1,

is much more mysterious. If p|D, then reducing modulo p reveals that the congru-
ence x2 ≡ −1 (mod p) must be soluble, whence p ≡ 1 (mod 4) or p = 2. Therefore
one must conclude that D is a sum of two squares, by a theorem of Fermat. However
not all such D has the property that (1.2) is soluble: the smallest counterexample
is D = 34.

A well-known criterion for the solubility of (1.2) has to do with continued frac-
tions. Indeed, (1.2) is soluble if and only if the period of the continued fraction

expansion of
√
D is odd. However, the period of the continued fraction of

√
D as
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a function of D appears to be extremely mysterious, and it is not clear how to use
this criterion to understand (1.2). In [9], C. Tsang and the second author proved
an alternative criterion for the solubility (1.2) in terms of the reduction theory of
indefinite, irreducible integral binary quadratic forms, but like the continued frac-
tions criterion, this does not appear to shed further light.

For a positive number N put

S(N) = #{n ≤ N : n square-free,∃x, y ∈ Z s.t. x2 + y2 = n}
for the counting function of square-free integers which are sums-of-two-squares up
to N . It is well-known that there exists a positive number c0 such that

S(B) ∼ c0N(logN)−1/2,

a fact already known to Landau.

In view of the fact that D being a sum of two squares is a necessary condition
for the solubility of (1.2), it is natural to compare the number of D ≤ N for which
(1.2) is soluble to S(N). Put

(1.3) S(N) = #{D ≤ N : D square-free, (1.2) is soluble}.
A natural question is to ask whether or not S(N) is the same order of magnitude
as S(N), namely whether there exist positive numbers c1, c2, c3 such that

(1.4) c1S(N) < S(N) < c2S(N) whenever N > c3.

This was answered by E. Fouvry and J. Klüners in [3]. They proved that, for any
ε > 0, that (1.4) holds with c1 = α− ε and c2 = 2/3 + ε, where

(1.5) α =

∞∏
j=1

(1 + 2−j)−1.

In this paper, we prove the following theorem:

Theorem 1. The function S(X) satisfies the asymptotic relation

(1.6) S(N) ∼ (1− α)S(N).

In the paper [7], Stevenhagen made the following conjecture, which is evidently
equivalent to Theorem 1:

Conjecture 2. One has that

lim
X→∞

|S(X)|
S(X)

= 1− α.

The number 1 − α is approximately equal to 58.1%, and is also the probability
that a large random symmetric matrix over F2 is singular. The previous best known
result towards this conjecture is in [3] where they show the lim inf is at least α and
at most 2/3.

The principal new ingredient is the breakthrough made by A. Smith [6], on the
2∞-rank of class groups of imaginary quadratic fields and 2∞-Selmer rank of elliptic
curves. In particular, Smith proved in [6] that for a given elliptic curve E/Q with
full rational 2-torsion, for 100% of quadratic twists Ed of E, the Mordell-Weil rank
of Ed is at most one. This, in addition to the so-called parity conjecture for elliptic
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curves, confirms a well-known conjecture of Goldfeld for such curves. Recently it
has been announced by Smith that such a conclusion also applies, for example, to
elliptic curves E/Q where the splitting field of 2-torsion has Galois group isomor-
phic to the symmetric group S3, thereby confirming Goldfeld’s conjecture for 100%
of elliptic curves.

The remainder of this introduction will be an outline of the argument for the
proof of Theorem 1.

1.1. An outline of Smith’s work in [6]. In [6], Smith introduced radical new
ideas extending the classical idea of controlling the behaviour of class groups using
so-called governing fields. Roughly speaking, genus theory gives a canonical basis
of the 2-part of the narrow class group of quadratic fields (since we are focusing on
narrow class groups, it does not matter if the quadratic field is real or imaginary),
and in some cases, namely those primes corresponding to the 4-part or the 8-part of
the narrow class group, these primes can be identified by their splitting behaviour
in an auxiliary field, called the governing field.

Unfortunately, in this rigid sense governing fields for the 2k-part of the narrow
class group, k > 3, conjecturally do not exist. Smith’s key idea is that one can
still make use of the idea of governing fields, by showing that they exist “on aver-
age”. Since splitting behaviour of primes in fields can be shown to behave randomly
thanks to theorems in analytic number theory such as Chebotarev’s density theo-
rem and the large sieve inequality, one can then use this idea to demonstrate that
F2-matrices of Legendre symbols behaves randomly.

Indeed, the strategy of Smith, extending earlier observations due to Reidi, Steven-
hagen, and Swinnerton-Dyer [8], is to show that the 2k-rank of a narrow class group
behaves like a Markov chain: that is, the distribution of the 2k-rank of narrow class
groups given the 2`-ranks for all ` < k is the same as the distribution given only
the 2k−1-rank.

In order to realize this strategy, Smith introduces three key constructs: governing
expansions, sets of raw cocycles, and additive-restrictive systems. Roughly speak-
ing, governing expansions consist of collections of functions from GQ = Gal(Q/Q) to
F2, whose fields of definition give analogues of governing fields. Sets of raw cocycles
correspond to elements of C1(GQ, N [2k]) where N is some GQ-module, which mod-
els the behaviour of class groups. Finally, additive-restrictive systems are auxiliary
systems that can be attached to governing expansions or sets of raw cocycles, that,
when well-defined, simplify the arithmetic complexity of these objects by replacing
them with essentially purely combinatorial constructs. After doing this, then our
arithmetic statements essentially become probabilistic.

1.2. Understanding the difference between the class group and narrow
class group of real quadratic fields. In this subsection, we explain how to
translate Smith’s machinery to deal with the negative Pell equation (1.2). The
main obstacle is that Smith’s machinery heavily relies on the fact that there is a
basis for Cl(K)[2], with K an imaginary quadratic field, which is given by a set of
primes. This is only valid for imaginary quadratic fields, but is no longer true for



4 ERICK KNIGHT AND STANLEY YAO XIAO

real quadratic fields.

Indeed, the difference between the class group Cl(K) and the narrow class group
cl(K) of a real quadratic field lies at the heart of the matter for us. Indeed, one
has that there is a solution to the negative Pell equation for n0 if and only if the
Frobenius at infinity in cl(Q(

√
n0)) is trivial1. This motivates us to look at the

structure of the 2-power torsion inside cl(Q(
√
n0)).

Letting n1, . . . , nm be a sequence of nonnegative non-increasing integers. Put

Sn1,...,nm(N) = {D ∈ S(N)|dim 2k−1cl(Q(
√
D))/2kcl(Q(

√
D)) = nk, k = 1, . . . ,m}.

Additionally, define

Sn1,...,nm,−(N) = {D ∈ Sn1,...,nm(N)|Frob∞ ∈ 2mcl(Q(
√
D))}

and

Sn1,...,nm,+(N) = {D ∈ Sa2,...,an(N)|0 6= Frob∞ ∈ 2n−1cl(Q(
√
D))}.

Further, define

Sn1,...,nm,±(N) = Sn1,...,nm,−(N)∪Sn1,...,nm,+(N) = Sn1,...,nm−1,−(N)∩Sn1,...,nm(N).

The choice of + and − may seem strange but it is meant to align with whether or
not there may be a solution to the negative Pell equation.

For positive integers k1, k2 and a ring R, put Matk1×k2(R) for the set of k1 × k2

matrices over R. Then put
(1.7)
P (a; k1, k2) = Probability that an element M ∈ Matk1×k2(F2) has dim kerM = a,

where each entry of M is sampled with respect to a uniform distribution. Simi-
larly, we denote by P Sym(k1; k2) to denote the probability that a random k2 × k2

symmetric matrix, with each entry is an i.i.d Bernoulli random variable, has kernel
having rank k1. Then the main result here is the following:

Theorem 3. Let n1, . . . , nm be a nonnegative, non-increasing sequence of integers.
Then

lim
N→∞

|Sn1,...,nm,±(N)|
|Sn1,...,nm−1,−(N)|

= P (nm, nm−1, nm−1 + 1),

and

lim
N→∞

|Sn1,...,nm,−(N)|
|Sn1,...,nm,±(N)|

= 2−nm .

Section 2 explains how theorem 3 implies theorem 1. This argument is essentially
due to Stevenhagen in [7]. The remainder of the paper will be dedicated to prov-
ing theorem 3. This argument will be very similar to the arguement by Smith in
[6] where he proves a similar result for the class groups of imaginary quadratic fields.

1The Frobenius at infinty is trivial if and only if the narrow class group is equal to the class

group. That happens if and only if the fundamental unit in Q(
√
D) has norm −1. If D is even,

then that is exactly what the negative Pell equation is looking for. If D is odd, then one has that

(Z[ 1+
√
D

2
]×)/(Z[

√
D]×) injects into (Z[ 1+

√
D

2
]/2)× which is a group of size 1 or 3, which shows

the equivalence of looking in Z[ 1+
√
D

2
] or Z[

√
D].
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Finally, we note that the standard way to index this problem is not by the value
of D but rather by the discriminant of the field Q(

√
D); that is one looks at the

set of all quadratic fields of the form Q(
√
D) whose discriminant is less than X and

such that no prime congruent to 3 (mod 4) divides D. However, the strategy of
proof will actually prove that we get the correct ratio when we look at the set of
all D that are of the form {ND′} where N is a fixed integer not divisible by any
prime that is 3 (mod 4) and D′ is a varying integer that is the product of primes
that are all 1 (mod 4). Applying this result to N = 1 and N = 2, one gets theorem
1 for both that ordering as well as the more standard ordering.

Acknowledgements: We would like to thank Arul Shankar for many insightful
conversations and helping us get started on this project, and Alex Smith for an-
swering some questions by the first author as well as developing the ideas in [6]
which made this paper possible.

2. The narrow Reidi data and the negative Pell equation

Let K = Q(
√
p1 · · · pn). Define V to be the free vector space over F2 with ba-

sis vectors e1, . . . , en. There is a natural map from V → cl(K) given by sending
ei 7→ [(pi,

√
p1 · · · pn)]. This map is two-to-one, and we will call the generator of

the kernel of this map r. The map is surjective onto cl(K)[2] by genus theory. The
element e1 + · · ·+ en maps to the Frobenius at infinity. Consequently, one has that
the negative Pell equation has a solution if and only if Cl(K) = cl(K) if and only
if r = e1 + · · ·+ en.

Now, define V1 = V , and consider the map r1 : V1 → cl(K)/2cl(K). Define
V2 = ker(r1), and observe that the image of the map from V2 → cl(K)/4cl(K)
lands inside 2cl(K)/4cl(K). This map will be denoted r2, and then this process
iterates to give Vk = ker(rk−1) and rk : Vk → 2k−1cl(K)/2kcl(K) for all n. The
data of Vk and rk for all n will be called the narrow Reidi data. The finiteness of
the class group shows that ∩Vn = 〈r〉, and so one gets the following two criteria
surrounding for the negative Pell equation:

Theorem 2.0.1. One has the following two criteria:

(1) If Vk = 〈e1 + · · · + en〉 for some k, then the negative Pell equation has a
solution.

(2) If e1 + · · · + en 6∈ Vk for some k, then the negative Pell equation has no
solution.

Moreover, there exists a value of k for which one of these two must happen.

We also will present an alternative way to view Reidi maps. Write V ′ for the
free vector space over F2 with basis e′1, . . . , e

′
n. Then V ′ → cl∨(K)[2] by sending e′i

to the function that sends p to
(
N(p)
pi

)
for p unramified in K. This map is two-

to-one again, but this time the kernel is just 〈e′1 + · · · + e′n〉. Now, the map from
cl(K)[2] → cl(K)/2cl(K) is the same data as a pairing cl(K)[2] × cl∨(K)[2] → F2.
Defining V ′1 = V ′ as before, we will write R1 : V1 × V ′1 → F2 to be the pullback of
the pairing above.

To proceed inductively, write V ′k to be the preimage of 2k−1(cl∨(K)[2k]) ⊂
cl∨(K)[2] in V . One sees that the map rk : Vk → 2k−1cl(K)/2kcl(K) is again
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the same data as a pairing Vk × 2k−1(cl∨(K)[2k])→ F2, and as before, we will pull
this back to V ′k to get a pairing Rk : Vk × V ′k → F2. The definitions of these spaces
imply that the left kernel of Rk is Vk+1 and the right kernel is Vk+1. This set of
data (the Vk’s, the Vk’s, and the Rk’s) are the same as the narrow Reidi data, and
this data is in some ways easier to control.

Since cl(K)/2cl(K) corresponds to the extension K(
√
p1, . . . ,

√
pn−1), one has

that e1+· · ·+en ∈ V2. The conjecture of Stevenhagen for the negative Pell equation
comes from two predictions that R1 is a random symmetric pairing (identifying the
basis ei with e′i; symmetric comes from quadratic reciprocity) over F2 (which gives
a distribution on the dimensions of the various V2s as K varies), and that r is a
random non-zero element of V2 as K varies. The paper [3] shows that the moments
of the size of V2 are consistent with the first fact. Theorem 3’s goal is to show that
the matricies Ri for i > 1 are random matricies such that Ri(·, e′1 + · · · e′n) = 0 (no
longer symmetric as we no longer have anything like quadratic reciprocity) over F2.

One can then imagine a Markov process where at stage i one is looking at
Vi, and the releveant information is the pair dim(Vi) and whether Frob∞ = 0
in Vi; we will denote such a pair by (d,±) with + corresponding to Frob∞ 6= 0
in Vi and − corresponding to Frob∞ = 0 in Vi. If Frob∞ is nonzero in Vi, it
is never 0 in any future Vi (indeed it doesn’t lie in any future Vi). Under the
process where Ri is a random matrix as above, one gets that Pr((a,−), (b,−)) =

P (b, a − 1, a) × 2b−1
2a−1 , Pr((a,−), (b,+)) = P (b, a, a − 1) × 2a−2b

2b−1
, and the terminal

states are (a,+) where the negative Pell equation doesn’t have a solution, and (0,−)
where it does. However, this Markov process is clearly ultimately choosing a random
nonzero element in V2, and it will end at (0,−) with probability 1

2dim(V2)−1
, which

is exactly Stevenhagen’s prediction. Finally, his paper contains the calculations to
show that this implies theorem 1.

3. Governing expansions and sets of raw cocycles

A classical governing field for an integer d is a finite extension L/Q with the
property that the splitting behaviour of a prime p in OL determines the rank of
some piece of the class group of the quadratic field Q(

√
dp).

In this section, we wish to generalize the concept of a governing field. In fact
we will give two different constructions of (a set of) these fields, which do not nec-
essarily coincide. The existence and uniqueness of classical governing fields should
then be interpreted as a small-dimensional phenomenon, where there is simply not
enough degrees of freedom for differing objects to exist. While in general this is
not true, we can give conditions that guarantee these constructions coincide.

We develop the following formalism, in line with [6]. Suppose we have a pairwise
disjoint sets of odd primes X1, · · · , Xd. We write X for their Cartesian product.

To formalize the behaviour where we wish to fix some set of primes while allowing
others to vary, we consider, for each subset S ⊂ {1, · · · , d}, the product

XS =

(∏
i∈S

Xi ×Xi

)
×
∏
j 6∈S

Xj .
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Put ρ1, ρ2 for the projection maps from a Cartesian product T × T to the first
and second coordinates, respectively. Then for each such x, we put

(3.1) K(x) =
∏
i∈S

Q
(√

ρ1(πi(x)) · ρ2(πi(x))
)
.

This field has the right shape as the one that we wish to model.

We shall see eventually that in order to construct governing fields consistently
the various sets of primes indexed by x need to satisfy some intricate compatibility
conditions, which necessitates references to a larger index set.

To construct our governing fields, we actually construct certain functions φ :
GQ → F2, where GQ = Gal(Q/Q), and our governing fields will simply be the fields
of definition of these functions.

To exercise the most amount of control and to enable us to actually perform
calculations, we would require the set of functions to be relatively simple and well-
behaved. We thus start with a rather nice collection of functions that are mul-
tiplicative products of characters. Fix S ⊂ {1, · · · , d} and x ∈ XS . Define, for
T ⊂ S,
(3.2)

χT,x(σ) =

{
1 if σ

(√
ρ1(πi(x)) · ρ2(πi(x))

)
= −

√
ρ1(πi(x)) · ρ2(πi(x)) for i ∈ T

0 otherwise.

The function χT,x has the product decomposition

(3.3) χT,x(σ) =
∏
i∈T

χ{i},x(σ),

which shows that indeed they are a product of characters.

We record a rather trivial observation, which will be used repeatedly later:

Lemma 3.0.1. Let χT,x be as in (3.2). Then χT,x is supported on a finite abelian
extension of Q.

Proof. It is clear from definition that χT,x is supported on the field

L =
∏
i∈T

Q
(√

ρ1(πi(x)) · ρ2(πi(x))
)
,

which is abelian over Q of finite degree since it is the compositum of finitely many
quadratic fields. �

Moreover, we see that χT,x satisfies the equation

(3.4) χT,x(στ) =
∏
i∈T

(
χ{i},x(σ) + χ{i},x(τ)

)
=
∑
U⊂T

χU,x(σ)χT−U,x(τ).

Moreover, from group cohomology, we have

dχT,x(σ, τ) = χT,x(στ)− χT,x(σ)− χT,x(τ)(3.5)

=
∑
∅6=U⊂T

χU,x(σ)χT−U,x(τ).
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(3.4) and (3.5) are properties that we want our functions φ to satisfy in general.
However, since (3.5) involves the condition that T 6= ∅, we must take care to address
the case when T = ∅. Indeed, suppose we have a function φ∅ : GQ → F2 which
satisfies (3.5). The right hand side is then an empty sum, which is necessarily zero.
Thus we must have

0 = φ∅,x(στ)− φ∅,x(σ)− φ∅,x(τ),

which implies that φ∅ is a homomorphism from GQ to F2. Therefore, it makes sense
for our formalism to accept φ∅ as a given homomorphism.

We now make the following definition which, roughly speaking, given a subset
S ⊂ {1, · · · , d} and an element x ∈ XS , a collection of functions φS′ = φS′,x,S
which satisfies properties (3.4) and (3.5).

Definition 3.0.2. Let φ∅ : GQ → F2 be a homomorphism. Let S ⊂ {1, · · · , d} and

x ∈ XS be given. For each subset S′ ⊂ S, let φS′ = φS′,x,S be a function from GQ
to F2. Suppose that φS′ satisfies

(3.6) dφS′(σ, τ) =
∑
∅6=T⊂S′

χT,x(σ) · φS′−T,x(τ).

We then say that φS′ is a (S′, x, S)-expansion of φ∅.

We remark that we can drop the dependence on S in the definition above, since
x necessarily determines S.

The next proposition is very important, in that it demonstrates how one uses
class field theory to build expansions of larger subsets of S from smaller ones.

Proposition 3.0.3. Let X1, · · · , Xd be pairwise disjoint sets of odd primes, and
let S be a subset of {1, · · · , d}. Let x ∈ XS and φ∅ be a homomorphism from GQ
to F2. Suppose that we have (S−{i}, x)-expansions of φ∅ for all i ∈ S. Put Mi for
the field of definition of φS−{i} and

M = K(x)
∏
i∈S

Mi.

Suppose that for all i ∈ S we have

(1) ρ1(πi(x)), ρ2(πi(x)) split completely in Mi/Q; and
(2) ρ1(πi(x))ρ2(πi(x)) is a square at 2 and at all primes where Mi/Q is rami-

fied.

Then φ∅ has an (S, x)-expansion φS whose field of definition is unramified above
M at all finite places.

Proof. Put

ψ =
∑
∅6=T⊂S

χT,x(σ) · φS−T (τ).

We wish to confirm that the image of ψ in H2(GQ,F2) is zero. We identify F2 with
±1, and obtain the exact sequence

1→ {±1} → Q× 2→ Q× → 1,
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where we derive the exact sequence

0 = H1
(
GQ,Q

×)→ H2(GQ,F2)→ H2
(
GQ,Q

×)
.

The left equality follows from Hilbert’s Theorem 90. We know that the map

H2
(
GQ,Q

×)→∏
v

H2
(
GQv ,Q

×
v

)
is injective, where the product is over all places of Q. Furthermore, the hypotheses
of the proposition imply that the invariant invv(ψ) = 0 for all places v. Therefore,
ψ is the image of a 1-cochain. This cochain corresponds to a F2 central extension
of M .

Write this extension as M(
√
α)/M . This extension is Galois over Q, so if

M(
√
α)/Q is ramified at some place p other than 2 or∞ where M/Q is unramified,

we can clear the ramification by simply multiplying α by p. Now suppose that
M/Q is also ramified at p. We see that the local conditions force ψ to be trivial on
GQp , so Mp(

√
α)/Qp = (M(

√
α)⊗Q Qp)/Qp has Galois group

(Z/2Z)×Gal(Mp/Qp)

if Mp(
√
α) 6= Mp. But the inertia group cannot contain (Z/2Z)2 for p 6= 2, so

Mp(
√
α)/Mp is unramified. At p = 2, we can avoid ramification by multiplying α

by ±2 or −1. �

3.1. Governing expansions. In this section, we define governing expansions,
which give rise to the generalized governing fields alluded to earlier. Here we diverge
from the exposition of [6] slightly.

Definition 3.1.1. Let X1, · · · , Xd be a pairwise disjoint collection of odd primes,
and put X for their product. For ia ≤ d and Y ∅ ⊂ X, an

(
ia, Y ∅

)
-data set is a

collection of objects:

(1) A subset Y S ⊆ XS for each S ⊆ {1, · · · , d} containing ia; and
(2) A continuous function φx : GQ → F2 for each set S containing ia and

x ∈ Y S .

For each function φx as in Definition 3.1.1 we let M(x) denote the field of defi-
nition of φx. These will eventually be our governing fields.

Given an element x ∈ XS and a subset T of S, we write U = S − T and we
define
(3.7)
x̂(T ) = {y ∈ XT : πi(y) ∈ πi(x) for i ∈ U and π{1,··· ,d}−U (y) = π{1,··· ,d}−U (x)}.

We then have:

Definition 3.1.2. Suppose we are given a (ia, Y ∅)-data set. Let G(ia, Y ∅) be the
functions φx contained therein. We say that G is a pre-governing expansion if it
satisfies the following:

(1) φx = χ{ia},x whenever x ∈ Y {ia}.
(2) If S contains ia and x ∈ Y S , then

x̂(T ) ⊂ Y T for ia ∈ T ⊂ S or for T = ∅.



10 ERICK KNIGHT AND STANLEY YAO XIAO

(3) For any x ∈ Y S , we have that

dφx(σ, τ) =
∑

ia 6∈T⊂S

χT,x(σ) · φxS−T (τ)

holds for all xS−T ∈ x̂(S − T ).
(4) If x1, x2 ∈ XS satisfy

{ρ1(πi(x1)), ρ2(πi(x1))} = {ρ1(πi(x2)), ρ2(πi(x2))}

and

x̂1(∅) ∪ x̂2(∅) ⊆ Y ∅,
then x1 ∈ Y S if and only if x2 ∈ Y S . Moreover, when both are in Y S , then
φx1

= φx2
.

One should interpret Definition 3.1.2 as demanding that the functions φx sat-
isfy certain necessary compatibility conditions in order for the corresponding fields
M(x) to interact appropriately, in a well-defined manner.

While it seems that our choice of functions φx can be quite arbitrary, it so
happens that the conditions we have imposed are quite restrictive. This is revealed
by taking iterated commutators. For each S containing ia and x we define an
operator β|S|,x on the space of |S|-tuples (σ1, · · · , σk), σi ∈ GQ for i = 1 · · · , k,
with |S| = k, by

(3.8) β|S|φx (σ1, · · · , σk) = φx ([σ1, [σ2, [· · · , [σk−1, σk] · · · ]]]) .

The operators βk can be evaluated in a nice way, provided that the functions φx
satisfy (3.6).

Lemma 3.1.3. Let βk be given as in (3.8). Suppose that the functions φx satisfy
(3.6). Then

βkφx (σ1, · · · , σk) =
∑
g

∏
i≤k

χg(i),x (σi) ,

where the sum runs over bijections g : {1, · · · , k} → S satisfying g(k) = ia or
g(k − 1) = ia.

Proof. By the definition of group cohomology, we have for any function φ : GQ → F2

dφ(σ, τ) = φ(στ)− φ(σ)− σ(τ).

Since the target group is F2, the sign is immaterial. Therefore

dφx([σ, τ ], τσ) = φx([σ, τ ]τσ)− φx([σ, τ ])− φx(τσ)

= φx(στ)− φx([σ, τ ])− φx(τσ).

By (3.6), we have by Lemma 3.0.1 that it vanishes on every commutator, whence
dφx([σ, τ ], τσ) = 0. It thus follows that

φx([σ, τ ]) = φx(στ) + φx(τσ).

From the fact that our target group is F2, we see that

dφx(σ, τ) + dφx(τ, σ) = φx(στ)− φx(σ)− φx(τ) + φx(τσ)− φx(τ)− φx(σ)(3.9)

= φx(στ) + φx(τσ).
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We now use again the property that the functions φx = φS,x satisfy the cobound-
ary condition (3.6). We further recall that φ∅ is a given homomorphism.

We calculate β3φx(σ1, σ2, σ3), from which the general phenomenon should be
clear. We have

β3φx(σ1, σ2, σ3) = φx([σ1, [σ2, σ3]])

= φx(σ1[σ2, σ3]) + φx([σ2, σ3]σ1)

= dφx(σ1, [σ2, σ3]) + dφx([σ2, σ3], σ1).

Observe that the very last term vanishes, since χT,x is supported on an abelian
extension. We then have

dφx(σ1, [σ2, σ3]) =
∑
∅6=T⊂S

χT,x(σ1) · φS−T,x([σ2, σ3])

=
∑
∅6=T⊂S

χT,x(σ1) (dφS−T,x(σ2, σ3) + dφS−T,x(σ3, σ2)) .

Since |S| = 3, we write S = {i1, i2, i3}. The decomposition above will then depend
on whether |T | = 1 or |T | = 2. We treat the first case, say T = {i1}. First we note
that

dφ{i2,i3},x(σ2, σ3) = χ{i2},x(σ2) · φ{i3},x(σ3) + χ{i3},x(σ2) · φ{i2},x(σ3)

= χ{i2},x(σ2)χ{i3},x(σ3) + χ{i3},x(σ2)χ{i2},x(σ3).

It thus follows that

χ{i1},x(σ1)
(
dφ{i2,i3},x(σ2, σ3) + dφ{i2,i3},x(σ3, σ2)

)
=
∑
g

∏
j≤k

χ{g(j)},x(σj),

where the sum runs over all bijections from {1, 2, 3} to {i1, i2, i3} which sends either
i2 or i3 to i1. The calculations above readily generalize to give

βkφx (σ1, · · · , σk) =
∑
g

∏
i≤k

χg(i),x (σi) ,

where g runs over all bijections from {1, · · · , |S|} to S with the property that
g(|S| − 1) or g(|S|) is equal to ia, as desired. �

The following definition will be convenient:

Definition 3.1.4. We say x1, x2, x3 ∈ Y S are 3-cyclic if for all i ∈ S, we have

πS−{i}(x1) = πS−{i}(x2) = πS−{i}(x3)

and

πi(x1) = (p1, p2), πi(x2) = (p2, p3), πi(x3) = (p1, p3).

This has the following consequence:

Lemma 3.1.5. Suppose x1, x2, x3 ∈ Y S are 3-cyclic. Then

βkφx1 + βkφx2 = βkφx3 .

To see this, it suffices to understand what happens when |S| = 1. In this case
we need to verify that

χ{i},x1
(σ) + χ{i},x2

(σ) = χ{i},x(σ)
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for all σ ∈ GQ. This follows from considering the cases. For example, suppose that
σ(
√
p1p2) = −√p1p2 and σ(

√
p2p3) = −√p2p3. Then the LHS above vanishes, and

σ(
√
p1p3) = σ(p2

√
p1p3) = σ(

√
p1p2 ·

√
p2p3) =

√
p1p3,

so the RHS also vanishes.

We make one further definition:

Definition 3.1.6. We say that a pre-governing expansion G with initial data ia
and Y ∅ is quadratically consistent if for S containing ia and for all x ∈ XS , we have
x ∈ Y S whenever the following are satisfied:

• x̂(∅) ⊆ Y ∅,
• For all i ∈ S − {ia} we have x̂(S − {i}) ⊆ Y S−{i},
• For each i ∈ S and xi ∈ x̂(S − {i}), we have ρ1(πi(x)) and ρ2(πi(x)) split

completely in M(x) and

ρ1(πi(x))ρ2(πi(x))

is a quadratic residue at 2 and at all primes ramifying in K(xi)/Q.

Proposition 3.1.7. Let X1, · · · , Xd be a pairwise disjoint collection of odd primes.
For any ia ∈ {1, · · · , d} and Y ∅ ⊆ X, there is a set G of pre-governing expansions
with initial data ia, Y ∅ which satisfy:

(1) For any S containing ia and x1, x2, x3 ∈ Y S 3-cyclic, we have φx1
+ φx2

=
φx3

.
(2) For all x ∈ Y S, the extension M(x)K(x)/K(x) is unramified at all finite

places.
(3) G is quadratically consistent.

Proof. For each S ⊇ {ia}, take WS to be the F2-vector space generated by φx, x ∈
Y S . We note that to confirm the first property it suffices to show that the φx
can be chosen so that β|S| is injective on WS , since by Lemma 3.1.5 we have
β|S|φx1

+ β|S|φx2
= β|S|φx3

. Therefore, if β|S| is injective, then this would imply
the desired relation.

This is clear for S = {ia} because β1 is the identity. Now suppose by induction
that we have found φy satisfying this property for all y ∈ Y T and proper subsets
T of S which contain ia, and we wish to prove the result for S. Proposition 3.0.3
shows that we can certainly find expansions φx for each x ∈ Y S . The only question
is whether we can make the map from WS injective.

Take M to be the Hilbert class field of K(X) =
∏
x∈X{1,··· ,d} K(x). For each

prime p that ramifies in K(X)/Q, choose P to be a prime of M lying above p,
and take σp to be the nontrivial inertia element corresponding to P. By twisting
φx by the quadratic characters χ±p if necessary, we can assume φx(σp) = 0. Note
that by construction 2 does not ramify in K(X)/Q, so p is odd; whence one of p or
−p is congruent to 1 (mod 4), whence we can choose the sign so that φx remains
unramified at 2.

We may now assume that φx vanishes at σp for each rational prime p which
ramifies in K(X)/Q. We shall see, together with our coboundary conditions, that
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this is enough to guarantee that β|S| is injective on WS .

Let k = |S|. Suppose that βkφ = 0, where

φ =
∑
j

cjφxj

for some constants cj ∈ F2. Let τ be the iterated commutator of σ2, · · · , σk. Then
we have

(3.10) 0 = βkφ(σ1, · · · , σk) = dφ(σ1, τ) + dφ(τ, σ1),

linearity and repeated application of (3.9).

We now suppose that k > 2. We then see that dφ(τ, σ1) = 0, by Lemma 3.0.1.
Therefore

βkφ = dφ(σ1, τ) =
∑
j

∑
i∈S−{ia}

cjχ{i}xj (σ1) · φxj ,S−{i}(τ).

Using the independence of the sets of characters corresponding to each i, we get
that ∑

j

cjχi,xj (σ1) · φxj ,S−{i} ([σ2, [· · · , [σk−1, σk] · · · ]]) = 0

for all i ∈ S − {ia}. This can be rewritten as∑
j

cjχ{i},xj (σ1) · βk−1φxj ,S−{i}(σ2, · · · , σk) = 0.

By the induction hypothesis, we have∑
j

cjχi,xj (σ) · φxj ,S−{i}(τ) = 0

for all σ, τ ∈ GQ. Taking coboundaries then gives∑
j

∑
i∈T⊆S−{ia}

χT,xj (σ) · φxj ,S−T (τ) = 0.

Again by the independence of characters, we see that∑
j

cjχT,xj (σ) · φxj ,S−T (τ) = 0

for any T ⊆ S − {ia}. Adding these together then gives that dφ = 0.

When k = 2 we have τ = σ2, and thus (3.10) turns int

0 = dφ(σ1, σ2) + dφ(σ2, σ1).

This asserts that dφ(σ1, σ2) = dφ(σ2, σ1), since both are valued in F2. By linearity,
it suffices to perform the calculation with a single φx. By our coboundary condition,
we have

dφx(σ1, σ2) = χ{i1}(σ1)χ{i2}(σ2) + χ{i2}(σ1)χ{i1}(σ2)

= 0.

We thus conclude again that dφ = 0.
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Therefore, we see that φ is a Galois cocycle and hence corresponds to a quadratic
extension of Q. But, from the hypothesis that φ(σp) = 0 for all primes which ramify
in K(X), we see that this quadratic extension is necessarily unramified at all finite
primes, which means it is the trivial extension and φ = 0. Therefore, β|S| is injective
on WS , as claimed. �

Definition 3.1.8. A set G(ia, Y ∅) of pre-governing expansions which satisfies the
properties of Proposition 3.1.7 is called a set of governing expansions.

One final result needed for sets of governing expansions is to show that the fields
M(x), corresponding to the functions φx in the expansion, are sufficiently distinct.

Proposition 3.1.9. Let X1, · · · , Xd be a pairwise disjoint collection of odd primes,
and let X be their Cartesian product. Let ia ∈ S ⊆ {1, · · · , d} be a fixed set. Put
MS(X) for the Hilbert class field of K(X), given in Proposition 3.1.7. For i ∈ S,
let Ti = (Xi, Zi) be an ordered tree, where Zi ⊆ Xi ×Xi is the edge set.

Suppose we have a set of governing expansions on X such that

πS
(
Y S
)
⊇ Z =

∏
i∈S

Zi.

For z ∈ Z, put x(z) for a preimage of z under πS. Then for any z0 ∈ Z we have
that

MS(X)
∏
z 6=z0

M(x(z))

does not contain the field M(x(z0)).

Proof. To ease notation, we put z = x(z) for z ∈ Zi. It suffices to check that dφz1
cannot be written as a F2-linear combination of the other dφz insideH2 (Gal(MS(X)/Q),F2).
Since Gal(MS(X)/Q) has nilpotence degree |S| − 1, we see that the map

β(ψ)(σ1, · · · , σk) = ψ(σ1, τ) + ψ(τ, σ1),

where τ is the iterated commutator of σ2, · · · , σk, k = |S|, is trivial on any 2-
coboundary.

It suffices to check that β(dφz1) = βkφz1 is not in the span of the other βkφz.
Put

Ki(X) =
∏

x∈X{1,··· ,d}−{i}

K(x),

we define Vi to be the associated F2-vector space Gal(K(X)/Ki(X)). With this
notation, we consider βkφz restricted to the product

Vi1 × · · · × Vik−1
× Via ,

where S = {i1, · · · , ik−1, ia}. We then find that we can express βkφz as a tensor
product, namely

βkφz = χi1,z ⊗ · · · ⊗ χik−1,z ⊗ χ{ia},z,
valid for any z ∈ Z. Since we assumed that Z is the edge set of a tree, it follows
that there are no 3-cycles, whence the set

{χi,z : z ∈ Z}



THE NEGATIVE PELL EQUATION 15

is a linearly independent set; that is, once all duplicate entries are removed, the re-
maining characters are linearly independent. Since each z corresponds to a distinct
tuple of characters, the tensor product structure implies that φz1 is independent of
the other φz. This completes the proof. �

3.2. Raw cocycles. In this subsection, we describe Smith’s notion of sets of raw
cocycles. Unlike the governing expansions described in the previous subsection, raw
cocycles are objects that model the behaviour of narrow class groups very precisely.
Indeed, by showing that governing expansions can be related to sets of raw cocycles,
we obtain control over narrow class groups with sets of number fields, fulfilling the
governing field philosophy.

In this subsection we consider a GQ-module N which is isomorphic to some
power of Q2/Z2, if the GQ-structure is forgotten. Take X1, · · · , Xd to be pairwise
disjoint sets of odd primes such that N is not ramified, and let X be their Cartesian
product. For x ∈ X we put N(x) for the quadratic twist of N by the quadratic
character of the field

Q
(√

π1(x) · · ·πd(x)
)
/Q.

Note that 2-torsion is preserved: that is, for all x ∈ X we have N(x)[2] = N [2].

For x, x′ ∈ X put Υ(x, x′) for the isomorphism N(x) → N(x′) defined over the
smallest possible number field. That is, it is the isomorphism which preserves the
Galois structure above

K(x, x′) = Q
(√

π1(x)π1(x′) · · ·πd(x)πd(x′)
)
.

We denote the associated multiplicative quadratic character by χ(x, x′).

It is well-known from genus theory that 2-torsion of narrow class groups of qua-
dratic fields (real or imaginary) is never trivial; in fact it can easily be seen from
the same theory that 2-torsion can be arbitrarily large, namely roughly equal to
the number of distinct odd prime divisors of the discriminant. Therefore our set-up
should take this into consideration. We therefore assume that our Galois module
N has non-trivial 2-torsion.

Definition 3.2.1. Given a GQ-module N , X = X1 × · · · ×Xd, and a function

rk : X → N ∪ {0} ∪ {∞},

we define for each x ∈ X and k ≤ rk(x) an element

ψk(x) ∈ C1
(
GQ, N(x)[2k]

)
,

where C1 denotes the set of 1-cocycles of GQ in N(x)[2k]. The collection of objects
(rk, ψk(x)) will be called a set of raw cocycles onX if whenever x ∈ X and k < rk(x),
we have

2ψk+1(x) = ψk(x).

One should interpret the objects in Definition 3.2.1 as basic models for elements
of the 2k-part of a narrow class group. We introduce some further refinements to
improve the model.
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Definition 3.2.2. Let R = (rk, ψk(x)) be a set of raw cocycles. For a subset
S ⊂ {1, · · · , d}, we say that R is consistent over S if

ψ1(x) = ψ1(x′) whenever x, x′ ∈ X satisfy π{1,··· ,d}−S(x) = π{1,··· ,d}−S(x′).

For ia ∈ S, we say R is ia-consistent (over S) if there is some injection of Galois
modules ι : F2 → N [2] such that

ψ1(x)− ψ1(x′) = ι ◦ χπ{ia}(x)π{ia}(x
′).

Further, we write rk(R) and ψk(R, x) to denote the function and 1-cocycles at-
tached to R. Similarly, ia(R) and ι(R) denote the given index and the injection
for an ia-consistent R.

As the notation suggests, we are interested in the situation when

(3.11) ia(R) = ia(G),

where R is an ia-consistent set of raw cocycles and G a governing expansion with
data ia.

The next definition is intended to capture the phenomenon where the 2k-part of
narrow class groups tend to be trivial for most such groups.

Definition 3.2.3. Let R be a set of raw cocycles on X and let S be a non-empty
subset of {1, · · · , d} such that for all x ∈ XS we have rk(R)(x) ≥ |S| for all x ∈ x̂(∅).
Fix x0 ∈ x̂(∅). Put

ψ(R, x) =
∑
x∈x̂(∅)

Υ(x, x0) ◦ ψ|S|(R, x).

If in addition R is consistent over S, we say that R is minimal at x if ψ(R, x) = 0.

Throughout, we take x0 to be a fixed element of x̂(∅).
Proposition 3.2.4. Take R to be a set of raw cocycles on X. Let S ⊂ {1, · · · , d}
be a non-empty subset and such that R is consistent over S and there exists x ∈ XS

such that ψ(x) = ψ(R, x) is defined.

Suppose that for all proper subsets T ⊂ S and x1 ∈ x̂(T ), R is minimal at x1.
Then ψ(x) maps into N [2] and its coboundary is zero.

In particular, ψ(x) corresponds to an element of C1(GQ, N [2]).

Proof. By our minimality assumption for x1, we see that for all sets Sj = S − {j}
and x1 ∈ Sj we have

ψ(R, x1) =
∑

x∈x̂1(∅)

Υ(x, x0) ◦ ψ|S|−1(R, x) = 0.

By the definition of x1, x̂1(∅), and ψ(R, x) we see that

2ψ(R, x) =
∑
x∈x̂(∅)

Υ(x, x0) ◦ ψ|S|−1(R, x)

=
∑

1≤j≤d

∑
x1∈XSj

∑
x∈x̂1(∅)

Υ(x, x0) ◦ ψ|S|−1(R, x)

= 0,
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since the inner sum is always zero by assumption. To show that it is also a cobound-
ary, we calculate

d
(
Υ(x, x0) ◦ ψ|S|(x)

)
(σ, τ) = (σΥ(x, x0)−Υ(x, x0)σ) ◦ ψ|S|(x)(τ)

=

{
σΥ(x, x0) ◦ ψ|S|−1(x)(τ) if χ(x, x0) = −1

0 otherwise.

By linearity, we see that

dψ(x)(σ, τ) =
∑

χ(x,x0)(σ)=−1

σΥ(x, x0) ◦ ψ|S|−1(x)(τ).

For i ∈ S, let Hi be the subset of x ∈ x̂(∅) such that πi(x0) 6= πi(x). For a subset
T ⊆ S, put

HT =
⋂
i∈T

Hi.

Any element σ ∈ Gal(K(x)/Q) can be expressed in the form

(3.12) σ =
∑
i∈Tσ

σi,

where σi is the unique non-trivial element of Gal(K(x)/Q) that fixes
√
ρ1(πj(x)ρ2(πj(x)

for all j 6= i in S, and where Tσ is a subset of S. We claim that, for x ∈ x̂(∅), the
identity

(3.13)
∑

∅6=T⊆Tσ
HT3x

(−2)|T |−1 =

{
1 if χ(x, x0)(σ) = −1

0 otherwise.

For a given x ∈ x̂(∅), put Tx for the largest subset T of S for which x ∈ HT . Then
the right hand side of (3.13) is equal to one if |Tx ∩ Tσ| = m is odd. The left hand
side of (3.13) is then∑

∅6=T⊆Tσ∩Tx

(−2)|T |−1 =

m∑
k=1

(
m

k

)
(−2)k−1 = (1− (−1)m) /2

by the binomial theorem, and this is readily equal to the right hand side of (3.13).
It thus follows that

dψ(x)(σ, τ) =
∑

∅6=T⊆Tσ
HT3x

(−2)|T |−1σΥ(x, x0) ◦ ψ|S|−1(x)(τ)(3.14)

=
∑

∅6=T⊆Tσ

(−2)|T |−1σ

( ∑
x∈HT

Υ (x, x0) ◦ ψ|S|−|T |(x)(τ)

)
,

but the inner sum vanishes due to our minimality hypotheses, whence the cobound-
ary vanishes as desired. �

An immediate consequence of Proposition 3.2.4 is that if ψ is minimal at x ∈ XS ,
it is minimal at y for all y ∈ X(T ) and T ⊆ S.

Next, we need to establish the language to compare sets of raw cocycles and
governing expansions.
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Definition 3.2.5. Let R be a set of raw cocycles on X and G a set of governing
expansions on X. Let S be a given subset of {1, · · · , d} and x ∈ XS a fixed element.

If ia ∈ S and R is ia(G)-consistent over S, we say that R agrees with G at x if
ψ(R, x) and φx(G) exist

ψ(R, x)− ι ◦ φx(G) = 0.

If S does not contain ia(G) and if R is consistent over S, we say that R agrees with
G at x if it is minimal at x.

The next proposition gives conditions for when a set of raw cocycles R and a set
of governing expansions G to agree at x, provided that they agree on elements of
x̂(T ) for proper subsets T ⊂ S.

Proposition 3.2.6. Let R be a set of raw cocycles on X and G a set of governing
expansions on X. Suppose that for some S ⊆ {1, · · · , d}, we have R is ia(G)-
consistent over S and that there exists x ∈ XS such that ψ(R, x) and φx(G) both
exist. Then

ψ(x)− ι ◦ φx ∈ C1 (GQ, N [2])

whenever R agrees with G at x1, for all x1 ∈ x̂(T ) and proper subsets T ⊂ S.

Proof. We have shown that the minimality hypotheses imply that 2ψ(x) = 0.
Therefore, we only need to check the cocycle condition. We can unpack (3.14)
as

dψ(x)(σ, τ) =
∑
∅6=T⊆S

χT,x(σ) ·

( ∑
x∈HT

Υ(x, x0) ◦ ψ|S|−|T |(x)(τ)

)
.

By hypothesis, we have that for any proper subset T ⊂ S containing ia and x1 ∈
x̂(T ) that

ψ(R, x1)− ι ◦ φx1
(G) = 0.

Now choose x1 ∈ x̂(S − T ) such that πi(x1) 6= πi(x0) for i ∈ T . It is then clear
from definition that∑

x∈HT

Υ(x, x0) ◦ ψ|S|−|T |(x) =
∑

x∈x̂1(∅)

Υ(x, x0) ◦ ψ|S|−|T |(x),

and the right hand side is manifestly equal to ψ(R, x1). Since for ia 6∈ S − T we
have that ψ(R, x1) is minimal, it thus follows that

∑
∅6=T⊆S

χT,x(σ) ·

( ∑
x∈HT

Υ(x, x0) ◦ ψ|S|−|T |(x)(τ)

)

= ι ◦
∑

ia 6∈T⊆S

χT,x(σ) · φxS−T (τ) = ι ◦ dφx(σ, τ).

By (3.14), it follows that d(ψ(x)− ι ◦ φx) = 0, as desired. �
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4. Raw cocycles for narrow class groups of real quadratic fields

In this section, we emulate Smith’s construction of raw cocycles for class groups
([6], Section 2.3), with the necessary change that we discuss narrow class groups.
Indeed, our key insight is the observation that Smith’s arguments essentially trans-
late verbatim to the narrow class group setting for real quadratic fields.

Let K/Q be a real quadratic field, say K = Q(
√
n0) with n0 ∈ N a non-square.

Suppose, as before, that X1, · · · , Xd are pairwise disjoint sets of odd primes that
are unramified in K. We then define

K(x) = Q

√n0

∏
i≤d

πi(x)


for x ∈ X. We shall assume, as we must for our application to the negative Pell
equation, that for each i ≤ d and p ∈ Xi we have that p ≡ 1 (mod 4). We will take
N(x) to be the module Q2/Z2 twisted by the quadratic character corresponding to
the extension K(x)/Q.

Let Ta ⊆ {1, · · · , d} and let ∆a be a square-free integer dividing 2n0. Define the
character ψ1(x) : GQ → N [2] by

(4.1) ψ1(x) = χ∆a
+
∑
i∈Ta

χπi(x).

We assume that the field of definition of ψ1(x) is unramified above K(x) for all
x ∈ X. We then see that ψ1(x) corresponds to an element of the dual narrow class
group cl∨K(x)[2].

Proposition 4.0.1. Take ψ1(x) as in (4.1), and let K(x)ur be the maximal exten-
sion of K(x) which is unramified at all finite primes . Then for k > 0 we have

ψ1(x)|Gal(Q/K(x)) ∈ 2k−1cl∨K(x)[2k]

if and only if, for some

ψk(x) ∈ C1
(
Gal (K(x)ur/Q) , N(x)[2k]

)
,

we have

ψ1(x) = 2k−1ψk(x).

Proof. We see that ψk(x), when restricted to GK(x), is in cl∨K(x)[2k], whence the
sufficiency of finding such a ψk(x) is clear. Conversely, given a map

ψk(x)′ ∈ cl∨K(x)[2k],

we know that the field of definition L of ψk(x)′ is dihedral over Q, with its unique
order 2k-cyclic subgroup corresponding to the intermediate field K(x). To continue,
we need to extend the character ψk(x)′ from Gal(L/K(x)) to a cocycle ψk(x) on
Gal(L/Q). Choosing some τ ∈ Gal(L/Q) so that we have a coset decomposition

Gal(L/Q) = Gal(L/K(x)) + τ ·Gal(L/K(x)),

and choosing some α ∈ N(x) with 2k−1α = ψ1(τ), we can find such a ψk(x) by
setting

ψk(x)(σ) = ψk(x)′(σ) and ψk(x)(τ · σ) = α− ψk(x)′
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for all σ ∈ Gal(L/K(x)). Note that for σ1, σ2 ∈ GK(x) we have

dψk(x)(σ1, τσ2) = ψk(x)(σ1σ2)− ψk(x)(σ1)− ψk(x)(τσ2)

= ψk(x)(τ(τ−1σ1τ)σ2)− ψk(x)(σ1)− α+ ψk(x)(σ2)

= α− ψk(x)(τ−1σ1τ)− ψk(x)(σ2)− ψk(x)(σ1)− α+ ψk(x)(σ2)

= −ψk(x)(τ−1σ1τ)− ψk(x)(σ1),

and the last line vanishes because the dihedral group law shows that ψk(x)(τ−1σ1τ) =
−ψk(x)(σ1). Next we check

dψk(x)(τσ1, σ2) = ψk(x)(τσ1σ2)− ψk(x)(τσ1)− (τσ1) ◦ ψk(x)(σ2)

= α− ψk(σ1σ2)− α+ ψk(x)(σ1) + ψk(x)(σ2)

= −ψk(x)(σ1)− ψk(x)(σ2) + ψk(x)(σ1) + ψk(x)(σ2)

= 0.

Finally, we see that

dψk(x)((τσ1), (τσ2)) = ψk((τσ1)(τσ2)− ψk(x)(τσ1)− ψk(x)(τσ2)

= ψk(x)(τ2(τ−1σ1τ)σ2)− α+ ψk(x)(σ1) + α− ψk(x)(σ2)

= −ψk(x)(σ1) + ψk(x)(σ2) + ψk(x)(σ1)− ψk(x)(σ2)

= 0.

We thus checked that ψk(x) obeys the cocycle condition, completing the proof. �

We may therefore define

(4.2) cl
∨
K(x)[2k] = C1

(
Gal(K(x))ur/Q), N(x)[2k]

)
.

Note that we always have

cl
∨
K(x)[2k] ∼= cl∨K(x)[2k]⊕ (Z/2kZ).

We denote by wa = (Ta,∆a) corresponding to the element of cl
∨
K(x)[2], given by

the function ψ1(x) in (4.1). We then make the following definition:

Definition 4.0.2. For wa = (Ta,∆a) corresponding to the element of cl
∨
K(x)[2]

given by the function ψ1(x). Denote by R(wa) for a set of raw cocycles on X so
that, for all x ∈ X, we have

ψ1(R, x) = ψ1(x).

Let rk(R)(x) be the largest integer k such that ψ1(x) corresponds to an element of

2k−1cl
∨
K(x)[2k], with

ψk(R|x) ∈ cl
∨
K(x)[2k].

For a given wb = (Tb,∆b), where Tb is any subset of [d] and ∆b is a positive
square-free divisor of 2n0. For any x ∈ X, define the ideal

(4.3) wb(x) =
∏
p|∆b

P(p) ·
∏
i∈Tb

P(πi(x)),

where P(p) is the unique prime above p in K(x). Taking clK(x)[2] to be the set
of ideals with square-free norm dividing the discriminant of K(x)/Q, we see that
there is a natural surjective map

clK(x)[2]→ clK(x)[2]
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which has kernel isomorphic to Z/2Z. We write 2k−1clK(x)[2k] for the preimage of
2k−1clK(x)[2k] under this map.

For a cocycle ψk, let L(ψk) be the definition of ψk over K(x). If ψk(x) exists,
then the Artin symbol [

L(ψk)/K(x)

P

]
lies in the order 2 subgroup of Gal(L(ψk)/K(x)) at any P dividing the discriminant
of K(x)/Q. We identify this subgroup with Z/2Z.

We note that the Artin symbol induces a pairing on the set of wb’s, by simply
defining

(4.4) 〈wa, wb〉 =

[
L(ψwak )/K(x)

wb(x)

]
.

Theorem 4.0.3. Let X = X1 × · · · × Xd, with {Xi} a pairwise disjoint collec-
tion of odd primes. Let n0 be a fixed positive integer. For x ∈ X, suppose that

wa = (Ta,∆a) correspond to an element of cl
∨
K(x)[2]. Let G be a set of governing

expansions on X and R(wa) a set of raw cocycles. Let S ⊂ {1, · · · , d} be a subset
of cardinality at least three containing ia(G).

Suppose that wb = (Tb,∆b) is such that wb(x) ∈ 2|S|−2clK(x)[2|S|−1] for all
x ∈ x̂(∅) and that there exists ib ∈ S, ib 6= ia such that

(4.5) S ∩ Tb ⊆ {ib} and S ∩ Ta ⊆ {ia}.

(1) If S ∩ Ta = ∅ or S ∩ Tb = ∅, and for each i ∈ S, i 6= ia, ib, zi ∈ x̂(S − {i}),
and y ∈ ẑi(S − {i, ia, ib}), R is minimal at y. Then ψ|S|−1(R, x) exists for
all x ∈ x̂(∅) and∑

x∈x̂(∅)

[
L(ψ|S|−1(R, x))/K(x)

wb(x)

]
= 0.

(2) Suppose that S ∩ Ta = {ia} and S ∩ Tb = {ib}. Suppose that there exists
z ∈ x̂(S−{ib}) such that φz(G) exists. Suppose further that for every i ∈ S
different than ib, each zi ∈ x̂(S − {i}), and y ∈ ẑi(S − {i, ib}), we have R
agrees with G at y. Then ψ|S|−1(R, x) exists for all x ∈ x̂(∅) and∑

x∈x̂(∅)

[
L(ψ|S|−1(R, x))/K(x)

wb(x)

]
= φz(G) (Frob(ρ1(πib(x))) · Frob(ρ2(πib(x)))) .

For a function φ : GQ → F2 supported on a finite Galois extension L/Q and a
rational prime p which is not inert in L, put

invp(φ) = invp(L),

where

invp(L) =

{
0 if p splits over L

1/2 if p ramifies over L.
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Proof. Let z ∈ x̂(S−{ia, ib}). For x ∈ ẑ(∅), our choice of wb implies that the Artin
symbol [

L(ψ|S|−1(R, x))/K(x)

wb(x)

]
depends only on wa, wb and x, but not on the choice of raw cocycles R.

Write b(x) for the norm of the ideal wb(x) for x ∈ ẑ(∅). Our restrictions on Tb
implies that b(x) does not depend on x; we shall simply denote it by b. Let p be
a prime divisor of b, and let P be the prime above p in K(x). Put ∆(x) for the
discriminant of K(x)/Q. If ψ|S|−1(R, x) exists, then we can write it locally at p as
χ or χ+ χ∆(x), where χ is an unramified character. Therefore[

L(ψ|S|−1(R, x))/K(x)

P

]
= invp(χ ∪ χb).

Further we see that invp(χ∆(x) ∪ χb) = 0 from our assumptions on wb, whence

(4.6)

[
L(ψ|S|−1(R, x))/K(x)

P

]
= invp

(
ψ|S|−1(x) ∪ χb

)
.

Take x0 to be the element of ẑ(∅) outside of all ẑi(∅), and write yi for the element
in ẑ(S − {i, ia, ib}) ∩ ẑi(S − {i, ia, ib}).

To prove the first assertion, consider

ψ = −
∑

x∈ẑ(∅)−{x0}

Υ(x, x0) ◦ ψ|S|−1(R, x).

By Proposition 3.2.4, we see that ψ is a cocycle mapping to N(x0), and we then
see that

2|S|−2ψ = ψ1(x0).

From our minimality assumption we find that

2ψ = −
∑

x∈ẑ(∅)−ŷi(∅)−{x0}

Υ(x, x0) ◦ ψ|S|−2(R, x)

for each i ∈ S − {ia, ib}. We see that the field of definition of 2ψ is unramified at
each πi(zi) for i ∈ S − {ia, ib}, whence 2ψ must have field of definition unramified
above K(x0), so some quadratic twist of ψ is unramified above K(x0). This shows
that ψ|S|−1(R, x0) exists, and via (4.6), we have∑

x∈ẑ(∅)

[
L(ψ|S|−1(R, x)/K(x)

wb(x)

]
=
∑
p|b

invp (ψ(z) ∪ χb) .

The assumption on wb implies that the choice of ψ|S|−1(R, x0) does not affect the
value of this sum, so we can take ψ(z) to be a quadratic character. By Hilbert
reciprocity, this equals ∑

p|b

invp (ψ(z) ∪ χb) .

However, χb is locally trivial at all primes ramifying in any K(x) that do not di-
vide b, so this sum is zero. This completes the proof of the first part of the theorem.
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For the second part, we instead consider

ψ = ι ◦ φz −
∑

x∈ẑ(∅)−{x0}

Υ(x, x0) ◦ ψ|S|−1(R, x).

By Proposition 3.2.6 we see that this is a cocycle mapping to N(x0), and we again
find that 2|S|−2ψ = ψ1(x0). Furthermore, we have

2ψ = ι ◦ φyi −
∑

x∈ẑ(∅)−ŷi(∅)−{x0}

Υ(x, x0) ◦ ψ|S|−2(R, x)

for each i ∈ S−{ia, ib}, where we are taking φyia = 0. Then then field of definition

of 2ψ must be unramified above K(x0). Thus ψ|S|−1(R, x0) exists and can be taken
to be a quadratic twist of ψ. Following the same argument as in the proof of the
first part, we can ignore this quadratic twist, and we find∑

x∈ẑ(∅)

[
L(ψ|S|−1(R, x))/K(x)

wb(x)

]
=
∑
p|b

invp (φz ∪ χb) .

Applying the same argument to all z ∈ x̂(S − {ib}), we find∑
x∈x̂(∅)

[
L(ψ|S|−1(R, x))/K(x)

wb(x)

]
= invp1b (φz + ∪χp1b) + invp2b (φz ∪ χp2b) ,

where pib = ρi(πib(x)) for i = 1, 2. This is equivalent to the desired conclusion. �

5. Additive restrictive systems

We now introduce the notion of an additive-restrictive system, a construction
that allows us to gain additional control over sets of governing expansions and raw
cocycles.

Definition 5.0.1. Let X1, · · · , Xd be pairwise disjoint sets of odd primes. An
additive restrictive system on this collection is a sequence of tuples(

(Y S , FS , AS) : S ⊆ {1, · · · , d}
)

where for each S, AS is an abelian group and FS : Y S → AS a function, such that:

• If S 6= ∅, then

Y S = {x ∈ XS : x̂(T ) ⊂ kerFT for all T a proper subset of S}.

• Whenever x1, x2, x3 ∈ Y S is a 3-cycle, we have

FS(x1) + FS(x2) = FS(x3).

We will denote by Y
◦
S = kerFS , and the letter A to denote an additive-restrictive

system. We shall write Y S(A), FS(A), etc. to denote the associated data of A.

The key property of additive restrictive systems is that we can bound how quickly

the sets Y
◦
S shrink as S increases through additive combinatorics.

Proposition 5.0.2. Suppose X = X1 × · · · ×Xd is a product of finite sets of odd
primes, and suppose (

(Y S , FS , AS) : S ⊆ {1, · · · , d}
)
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is an additive restrictive system on X. Write δ for the density |Y ◦∅|/|X| and write A
for the maximum size of a group AS in the sequence. Then for any S ⊆ {1, · · · , d},
the density of Y

◦
S in XS is at least

δ2|S|A−3|S| .

Proof. Write δS for the density of Y
◦
S in XS . Our goal is to compare the density

of Y
◦
S in XS with that of Y

◦
S−{s} in XS−{s}, say. To that end, we put, for s ∈ S

and x0 ∈ XS ,

m(x0) = π−1
{1,··· ,d}−{s}

(
π{1,··· ,d}−{s}(x0)

)
,

Vx0
= Y

◦
S−{s} ∩m(x0),

and

Wx0
= Y

◦
S ∩m(x0).

We see that W naturally injects into V × V . Note that two elements in Y S−{s} ×
Y S−{s} which differ only at the s-th coordinate can be glued together to give an

element of XS . By definition, elements of V only differ at the s-th coordinate. It
thus follows that there is a map from V × V into XS ∩m(x0), say νx0

.

We now define the relation x1 ∼ x2 if and only if νx0
(x1, x2) ∈ Wx0

. We claim
that ∼ is an equivalence relation. First, by using additivity, we see that for an
element x ∈ Y S with the property that π{s}(x) = (p, p), then (x, x, x) forms a
3-cycle, whence

FS(x) + FS(x) = FS(x),

which implies that FS(x) = 0. This shows that ∼ is reflexive. Symmetry follows
similarly, since if π{s}(x1) = (p1, p2) and π{s}(x2) = (p2, p1). Now put x ∈ Y S ∩
m(x0) be such that π{s}(x) = (p2, p2). Then (x1, x, x2) is a 3-cycle, whence

FS(x1) + FS(x) = FS(x2)

FS(x1) + 0 = FS(x2),

which shows that ∼ is symmetric. Finally, for any x1, x2, x3 ∈ V we have

y1 = νx0
(x1, x2), y2 = νx0

(x2, x3), y3 = νx0
(x3, x1)

forms a 3-cycle. If x1 ∼ x2 and x2 ∼ x3, then additivity implies that

FS(y1) + FS(y2) = FS(y3).

Our hypothesis implies that the left hand side is zero, hence FS(y3), whence
y3 ∈ Wx0

and thus x1 ∼ x3. This confirms transitivity and thus shows that ∼
is an equivalence relation on V × V .

Recall that all coordinates of an element x1 ∈ V are fixed (and equal to that of
x0) other than the s-th coordinate. Therefore, an equivalence class is determined by
assigning coordinates corresponding to T ⊂ S, with T containing s, to 0 ∈ AS and
then assigning the remaining coordinates to arbitrary elements in AS . It follows
that the number of such equivalence classes satisfy

(5.1)
∏

s∈T⊆S

|AS |2
|S|−|T |

≤
|S|−1∏
i=0

A(|S|−1
i )2i = A3|S|−1

.
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Write δx0
for the density of V in XS−{s} ∩m(x0). Then the density of V × V in

XS ∩m(x0) is δ2
x0

, and by (5.1), the density of W inside XS ∩m(x0) satisfies

|W |
|XS ∩m(x0)|

=
|W |
|V × V |

· |V × V |
XS ∩m(x0)

≥ A−3|S|−1

δ2
x0
.

The average of the δx0 is δS−{s}, and Y
◦
S is given by the union of Wx0 over all x0,

whence

δS ≥ A−3|S|−1

· δ2
S−{s}.

Applying this repeatedly we see that

δS ≥ A−3|S|−1(1+ 2
3 + 4

9 +··· ) · δ2|S|

∅ = δ2|S|A−3|S| .

�

5.1. Additive restrictive systems for governing expansions. We now con-
struct additive restrictive systems attached to governing expansions.

Proposition 5.1.1. Let G be a set of governing expansions on X = X1×· · ·×Xd,
and let Smax be a subset of {1, · · · , d} which contains ia = ia(G). Then there is an
additive-restrictive system A on X satisfying the property that for all ia ∈ S ⊆ Smax,
we have

Y S(A) = Y S(G).

Furthermore, for all S ⊆ {1, · · · , d}, the abelian group AS attached to S in A
satisfies

|AS(A)| ≤ 2|Smax|+1.

Proof. Given G, we will construct abelian groups AS(A) and functions FS(A) :
Y S(G)→ AS(A) which satisfies the conditions of the Proposition for all S ⊆ Smax.
We start with the case when S = {j} is a singleton. We then take FS(x) = 0 if and
only if

ρ1(πj(x))ρ2(πj(x))

is a quadratic residue at 2 and at all primes in πSmax−{j}(x). First observe that
(Z/8Z)∗/{�} ∼= (Z/2Z)× (Z/2Z) and for any odd prime p we have (Z/pZ)∗/{�} ∼=
Z/2Z. Therefore, the target group for FS can be chosen to be AS = (Z/2Z)|Smax|+1.

Suppose now that |S| > 1 and ia ∈ S. Then we want to choose FS so that
FS(x) = 0 if and only if φx(G) is trivial at πi(x) for all i ∈ Smax−S. By definition,
φx is an unramified quadratic character at each such prime, so for each i ∈ Smax−S,
φx takes on one of two possible values at πi(x). Therefore we may choose the target
group to be

AS = (Z/2Z)|Smax−S|.

If S is not a subset of Smax, or if S does not contain ia and |S| > 1, then we let AS
be the trivial group.

We now claim that this defines an additive-restrictive system A which satisfies
Y S(A) = Y S(G) for all S ⊆ Smax. We first check that

A = {(Y S(G), FS , AS) : S ⊆ {1, · · · , d}}
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does in fact define an additive-restrictive system.

First consider the case when S = {j}. We check that both of the conditions for
an additive-restrictive system are satisfied in this case. Note that F∅ maps into the

trivial group, and hence is identically zero, whence Y
◦
∅ = Y∅. Therefore, condition

(2) in Definition 3.1.2 implies the first condition of additive-restrictive systems.
Next, we must check additivity. Suppose x1, x2, x3 ∈ Y S is a 3-cycle. The second
condition follows from the fact that (p1p2)(p2p3) and p1p3 have the same residue
modulo squares for every prime in πSmax−{j}(x).

Now suppose that ia ∈ S and |S| > 1. We must check that

Y S(G) = {x ∈ XS : x̂(T ) ⊆ Y ◦T for all T ( S}.

Observe that Y
◦
T = Y T whenever ia 6∈ T and |T | > 1, so this condition is vacuous by

the definition of a governing expansion in these cases. For the singletons T = {j},
note that Y T (G) is not defined, so again the condition is vacuous. Therefore, it
remains only to check the condition for proper subsets T ⊂ S which contain ia.

We demonstrate this in the case when |S| = 2. Suppose that x ∈ Y S . By
the definition of a governing expansion, it follows that x̂({ia}) ⊆ Y {ia}. Then the
first condition follows from the fact that G is square residue compatible (Definition
3.1.6). Additivity follows similarly. �

5.2. Additive restrictive systems for raw cocycles. It takes considerably more
effort to attach an additive-restrictive system to a set of raw cocycles. Put

(5.2) D∨(2) = {wa = (Ta,∆a) : ∃x0 ∈ X s.t. ψ1(x0) ∈ 2cl
∨
K(x0)[4]}

and

(5.3) D(2) = {wb = (Tb,∆b) : ∃x0 ∈ X s.t. wb(x0) ∈ 2clK(x0)[4]}.
For each w ∈ D∨(2), attach a set of raw cocycles R(w) as in Definition 4.0.2.

We then make the definitions:

Definition 5.2.1. Let X1, · · · , Xd be pairwise disjoint sets of odd primes, and put
X for their Cartesian product. Let ia ∈ {1, · · · , d} and S ⊆ {1, · · · , d}, and G(ia)
a set of governing expansions. For w ∈ D∨(2), let R(w) be a set of raw cocycles.

Suppose that x ∈ XS satisfies

rk(R(w))(x) ≥ |S|+ 1 for all x ∈ x̂(∅).
If R(w) is consistent over S, we say R(w) is acceptably ramified at (x, i), where
i ∈ {1, · · · , d} − S, if∑

x∈x̂(∅)

Υ(x, x0) ◦ ψ|S|+1 (R(w), x) (σπi(x)) = 0.

If ia ∈ S and R(w) is ia-consistent over S, then we say R(w) is acceptably ramified
at (x, i) for i ∈ {1, · · · , d} − S if there exists z ∈ XS∪{i} satisfying x ∈ z(S),
φz(G(ia)) is defined and satisfies ρ1(πia(z)) 6= ρ2(πia(z)), and∑

x∈x̂(∅)

Υ(x, x0) ◦ ψ|S|+1(R(w), x)(σπi(x)) = φz(σπi(x)).
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For j1, j2 ≤ n0, we define an additive-restrictive system A(j1, j2), attached to
both a set of governing expansions and a set of raw cocycles, as follows. First choose
a positive integer m ≥ 2, and choose a set S(j1, j2) ⊆ {1, · · · , d} having cardinal-
ity m + 1. For S ⊆ {1, · · · , d}, let AS be the trivial group if S is not a subset of
S(j1, j2) or if |S| > |S(j1, j2)|−2. In particular, we have kerFS = Y S in such cases.

We attach a set of governing expansions to A(j1, j2) as follows. First choose an
index ia(j1, j2) such that ia ∈ S(j1, j2). Let G(ia) be a set of governing expansions
such that for every S with |S| = |S(j1, j2)| − 2 and ia ∈ S, and for every x ∈ XS ,
the expansion

φx(G(ia(j1, j2))

exists. Further, we assume that it is trivial at 2 and ∞, as well as at all primes in
π{1,··· ,d}−S(x), and at all primes dividing n0.

Choose filtrations of F2-vector spaces

D∨(2) ⊇ D
∨
(3) ⊇ · · · ⊇ D

∨
(m)

and

D(2) ⊇ D(3) ⊇ · · · ⊇ D(m),

where D∨(m) contains the non-trivial element of the kernel of the map

(5.4) D∨(2) → cl∨(K(x0))[4]

respectively. Choosing a pairing Art(k) on D∨(k) × D(k) with the property that for

each k, the left kernel of Art(k) is D∨(k+1) and the right kernel is D(k+1).

For each 2 ≤ k ≤ m, put nk = dimD∨(k). Further, we choose bases

(5.5) wa,1, · · · , wa,n2
∈ D∨(2)

and

(5.6) wb,1, · · · , wb,n2
∈ D(2)

so that in each case, the first nk vectors are a basis for D∨(2),D(2) respectively for

2 ≤ k ≤ m. Moreover, we shall assume that there is an index ib ∈ S(j1, j2) such
that T (wa,i), T (wb,j) do not contain ib for i, j = 1, · · · , n2.

Now for each j ≤ n2, we attach a set of raw cocycles R(wa,j) in accordance to
Definition 4.0.2. We have the following lemma:

Lemma 5.2.2. Let S(j1, j2) ⊆ {1, · · · , d} be such that |S(j1, j2)| = m + 1. Then
for each S ⊆ {1, · · · , d}, one can choose sets Y S ⊆ XS, abelian groups AS, and
functions FS : Y S → AS which satisfy:

(1) AS = {1} if S 6⊂ S(j1, j2) or |S| > |S(j1, j2)| − 2;
(2) AS = (Z/2Z)n2(n2+m=2) if S ⊂ S(j1, j2) and |S| ≤ |S(j1, j2) − 2, and for

each x ∈ kerFS, we have R(wa,j) is minimal at x if j 6= j1, R(wa,j) agrees
with G(ia(j1, j2)) at x, and R(wa,j) is acceptably ramified at (x, i) for all
i ∈ S(j1, j2)− S.
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Proof. Suppose x ∈ Y S(j1, j2) for some subset S ⊂ S(j1, j2) having cardinality at
most |S(j1, j2)| − 2. Then Propositions 3.2.4 and 3.2.6 imply that ψ(R(w), x) or
ψ(R(w), x)+φx(G(ia)) is a cocycle for each w ∈ D∨(2). We denote this cocycle by ψ.

Note that ψ is a quadratic character. The acceptable ramification conditions
prevent ψ from being ramified at any prime in ψS(x), so it is an unramified character
over any K(x) with x ∈ x̂(∅). Since rk(R(w)) > |S| for each x ∈ x̂(∅), and from
the local triviality assumptions we made for our governing expansions G(ia(j1, j2)),
we find that ψ is trivial over any K(x) at all primes where K(x)/Q ramified, aside
those in πS(x). If ψ is trivial over K(x) at all primes in πS(x), we then see that
ψ corresponds to an element of D∨(2). Observe that there are 2|S| possibilities for

the behaviour at primes in πS(x) and 2n2+1 elements in D∨(2). The acceptable

ramification are given by one of 2|S(j1,j2)−S| possibilities. These conditions are
additive, and we have one set of such conditions for each of the n2 vectors wa,j ,
whence we may choose

AS = (Z/2Z)n2(n2+1+m+1−|S|+|S|) = (Z/2Z)n2(n2+m+1)

as desired. Finally, fixing a particular behaviour in each of these cases is tantamount
to choosing a function FS mapping to the identity of AS . This completes the
proof. �

Finally, we may state and prove our main result on additive-restrictive systems:

Proposition 5.2.3. Let K = Q(
√
n0) be a real quadratic field, and let A(j1, j2) be

an additive-restrictive system arising from Lemma 5.2.2. Put S = S(j1, j2) and let
x ∈ XS. Suppose that for each i ∈ S there exists zi ∈ x̂(S − {i}) so that

zi ∈ Y
◦
S−{i} (A(j1, j2)) .

Then we have that x̂(∅) ⊆ Y ◦∅.

Furthermore, writing (p1,b, p2,b) = πib(x) and ia = ia(j1, j2), we have∑
x∈x̂(∅)

[
L(ψm(R(wa,j3), x))/K(x)

wb,j4(x)

]

=

{
φzib (G(ia)) (Frob(p1,b) · Frob(p2,b)) if (j3, j4) = (j1, j2),

0 otherwise.

Proof. Take an arbitrary x0 ∈ x̂(∅) such that x0 6∈ zi for any i. We need to check
that the Artin pairings corresponding to x0 is given by Art(k) for k < m. We do
this by considering the value of the pairing on (wa,j3 , wb,j4) or (wa,j3 , tb + wb,j2)
when j2 = j4. Recall that tb is the generator of the kernel of the map

D(2) → clK(x0)[4].

The value of the pairing at these tuples determines the pairing everywhere by bilin-
earity. However, due to the minimality restrictions on R(w), Theorem 4.0.3 implies
that the Arting pairings for k < m at x0 is equal to the sum of the Artin pairings
at all other vertices in x̂(∅). This shows that x0 ∈ Y ◦∅ .
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The pairings at k = m follow similarly except at (wa,j1 , tb+wb,j2). At this tuple,
the second part of Theorem 4.0.3 applies, and the claimed result follows. �

For future use, we define variable indices associated to A(j1, j2) as:

Definition 5.2.4. For ib ≤ d and j1, j2 ≤ n0, a set of variable indices consists of a
tuple (ib, ia(j1, j2), S(j1, j2)) where S(j1, j2) is as in Lemma 5.2.2 and in addition
contains both ib and ia(j1, j2). Further, we insist that for all j ≤ n T (wa,j), T (wb,j)
do not contain ib, and S(j1, j2) is disjoint from T (wa,j) and T (wb,j) for all j ≤ n
except for j1, j2. Moreover, we shall insist that

T (wb,j1) ∩ S(j1, j2) = T (wa,j2) ∩ S(j1, j2) = ∅,

T (wa,j1 ∩ S(j1, j2) = {ia(j1, j2)},
and

S(j1, j2) ⊆ T (wb,j2) ∪ {ib}.

6. Ramsey theory

In Proposition 5.2.3 we found a condition on x ∈ XS so that the sum∑
x∈x̂(∅)

[
L(ψm(R(wa,j3 , x))/K(x)

wb,j4(x)

]
∈ F2

was determined by an Artin symbol in the field of definition of some governing
expansion φzib . This is not sufficient to determine the value of the pairing at any

particular x ∈ x̂(∅). However, if we have enough choices of x where we can evaluate
this sum, we can still prove that the value of the pairing is forced to be 1 on about

half of the vertices of Y
◦
∅.

The first task is to check that there exists x whose vertices lie in Y
◦
∅. This is a

question in Ramsey theory : we can prove that such x exists provided that Y
◦
∅ is

large enough.

Proposition 6.0.1. Let d ≥ 2 be an integer, and let δ be a positive number satis-
fying 0 < δ < 2−d−1. Let X1, · · · , Xd be finite sets with cardinality at least n > 0.
Suppose that Y is a subset of X = X1×· · ·×Xd of cardinality at least δ|X|. Then,
for any positive integer r satisfying

r ≤
(

log n

5 log δ−1

)1/(d−1)

,

there exists a choice of subsets Zi ⊆ Xi, i = 1, · · · , d each of cardinality r such that

Z1 × · · · × Zd ⊆ Y.

Proof. We can find subsets X ′i ⊂ Xi, so that |X ′i| = n and Y has density at least δ
in X ′i × · · · ×X ′d. We may therefore assume that |Xi| = n for i = 1, · · · , d.

Write N(r, Y ) for the number of ways of choosing subsets Zi ⊂ Xi for all i ≤ d,
each of cardinality r, so that Z1 × · · · ×Zd ⊂ Y . Write N(n, r, δ) for the minimum
of N(r, Y ) over all Y of cardinality at least δ|X|. To prove the proposition, we will
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prove the stronger claim that whenever n, d, δ, r are positive numbers satisfying
n ≥ r ≥ 2 and

(6.1)
(
2−d−1δ

)2rd−1

· nr−1 ≥ 1,

we have

(6.2) Nd(n, r, δ) ≥
(
2−d−1δ

) rd+1−r
r−1

nrd

(r!)d
.

We prove this by induction. Suppose that d = 1. Then

N1(n, r, δ) ≥ (δn− r)r

r!
.

For r ≤ δn/2, this gives

N1(n, r, δ) ≥
(
δ

2

)r
nr

r!
.

This is the base case for (6.2).

Now consider the case d > 1, and choose Y with N(r, Y ) minimal. Take Xthick

to be the subset of x ∈ X1 so that

Yx = Y ∩ ({x} ×X2 × · · · ×Xd)

has density at least δ/2 in {x}×X2×· · ·×Xd. Xthick has denisty at least δ/2 in X1.

Take L to be the set of choices of subsets Z2, · · · , Zd, Zi ⊆ Xi, such that each
Zi has cardinality r. We have

|L| ≤ nr(d−1)

(r!)d−1
.

For

z = (Z2, · · · , Zd) ∈ L,
put nz for the number of x ∈ Xthick such that Y contains

{x} × Z2 × · · · × Zd.
Then

Nd(n, r, δ) = N(r, Y ) ≥
∑
z∈L
nz≥r

(nz − r)r

r!
≥
∑
z∈L

nrz
2rr!

− rr

r!
.

We thus have∑
z∈L

nz ≥ |Xthick| ·Nd−1(n, r, δ/2) ≥ δn

2

(
2−d−1δ

) rd−r
r−1

nr(d−1)

(r!)d−1
,

whence ∑
z∈L nz∑
z∈L 1

≥ δn

2

(
2−d−1δ

) rd−r
r−1 ≥ 4n

(
2−d−1δ

) rd−1
r−1 .

Applying Cauchy-Schwarz, we then get

Nd(n, r, δ) ≥
nr(d−1)

(r!)d−1

−rr
r!

+
(4n)r(2−d−1δ)

rd+1−r
r−1

2rr!

 .
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But, for r ≥ 2, we have

rd+1 − r
r − 1

≤ 2rd,

so (6.1) implies

Nd(n, r, δ) ≥ (2−d−1δ)
rd+1−r
r−1

nrd

(r!)d
,

as claimed. �

We now define a generic differential on XS for S ⊆ {1, · · · , d}.

Definition 6.0.2. Let X1, · · · , Xd be pairwise disjoint finite, non-empty set and
let X be their Cartesian product. Choose a subset S ⊂ {1, · · · , d} of cardinality
at least two, and some subset Z ⊆ X such that π{1,··· ,d}−S(Z) is a point. For a
function F : Z → F2, define

dF : {x ∈ XS : x̂(∅) ⊆ Z} → F2

by

dF (x) =

{∑
x∈x̂(∅) F (x) if |x̂(∅)| = 2|S|

0 otherwise.

Write CS(Z) for the image of this map d(·). In addition, for ε > 0, put CS(ε, Z)
for the set of g ∈ CS(Z) expressible in the form g = dF for some F that equals 1
on more than (1/2 + ε)|Z| or fewer than (1/2− ε)|Z| points in Z.

Proposition 6.0.3. For X and Z as in Definition 6.0.2, choose δ > 0 so that

|Z| ≥ δ · |πS(X)|.

Suppose that |Xi| ≥ n for each i ∈ S. Then, for all ε > 0, we have

|CS(ε, Z)|
|CS(Z)|

≤ exp
(
|πS(X)| ·

(
−δε2 + 2|S|+2 · n−1/2|S|

))
.

Proof. Take Z ′ to be a maximal subset of Z so that there is no z ∈ XS satisfying
|ẑ(∅)| = 2|S| and ẑ(∅) ⊆ Z ′. We see that the kernel of the map d : FZ2 → CS(Z)

then has size at most 2|Z
′|. By applying (6.1) with r = 2, we then have

|Z ′| ≤ |πS(X)| · 2|S|+2 ·N−1/2|S| .

We then have

|CS(Z)| ≥ 2|Z| · exp
(
−|πS(X)| · 2|S|+2 ·N−1/2|S|

)
.

On the other hand, from Hoeffding’s inequality, the number of F equalling 1 on
more than (1/2 + ε)|Z| or fewer than (1/2− ε)|Z| points in Z is bounded by

2|Z|+1 exp
(
−2ε2|Z|

)
.

Then CS(ε, Z) is bounded by

|CS(ε, Z)| ≤ 2|Z| exp
(
−2ε2|Z|

)
.

Taking ratios of these estimates then gives the result. �
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There are two issues to be addressed when attempting to apply Proposition 6.0.3.

First is that we do not necessarily have control over Y
◦
∅. Second, it is not enough

that x̂(∅) lie in Y
◦
∅ to conclude that dF (x) = g(x) for some relevant F, g; we must

insist that x̂(T ) meet Y
◦
T for each proper subset T of S.

However, the robustness of the structure of additive-restrictive systems both of
these issues can be circumvented. First, Proposition 5.2.3 gives a criterion for x0

to be in Y
◦
∅ provided there is a nice cube x ∈ XS with all over vertices in Y

◦
∅.

Therefore, we do not need to consider all possible Z = Y
◦
∅ but only those that

satisfies this regularity condition. Second, by Proposition 5.0.2 we can bound the

density of Y
◦
S in Y S from below in terms of the density of Y

◦
∅ in Y ∅. This is enough

to get around the second issue.

We make the following definition:

Definition 6.0.4. Let X1, · · · , Xd and S as in Definition 6.0.2. For a ≥ 2 and
ε > 0, we say that a triple (Z,F,A) where Z ⊆ XS , F : Z → F2, and A an
additive-restrictive system on X is (ε, a)-acceptable if the following holds:

(1) The image of Z under π{1,··· ,d}−S is a point;
(2) For each T ⊆ S, we have |AT (A)| ≤ a;
(3) The equalities

ZS =
⋂
T(S
{x ∈ XS : x̂(T ) ∩ Y ◦T (A) 6= ∅}

and

Z = Y
◦
∅(A)

hold; and
(4) The function F is equal to 1 on more than |Z|/2 + ε|πS(X)| or fewer than
|Z|/2− ε|πS(X)| of the points in Z.

Put CS(ε, a,X) for the subset of CS(πS(XS)) consisting of those g for which there
is some (ε, a)-acceptable (Z,F,A) such that x̂(∅) ⊆ Z and

dF (x) = g(x)

whenever x ∈ ZS .

This is summarized in the following proposition:

Proposition 6.0.5. Let X1, · · · , Xd and S as in Definition 6.0.2 and put n =
mini∈S |Xi|. For a ≥ 2 and ε > 0, let CS(ε, a,X) be as in Definition 6.0.4. Then
there exists an absolute constant A such that whenever ε < a−1 and

(6.3) A · 6|S| log ε−1 ≥ log n,

we have
CS(ε, a,X)|
|CS(πS(X))|

≤ exp
(
−|πS(X)| · n−1/2

)
.

Proof. Let g ∈ CS(ε, a,X). For x0 ∈ Z, define Z(x0) to be the set of x ∈ Z for
which there exists some x ∈ XS with x, x0 ∈ x̂(∅) such that, whenever T is a

proper subset of S and y ∈ x̂(T ) that contains the vertex x0, then y is in Y
◦
T . From
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Proposition 5.0.2 we see that there is some sequence x1, · · · , xr of points in Z so
that

(6.4) Z ′(xj) = Z(xj)− Z(xj−1)− · · · − Z(x1)

has density at least (a−1ε/2)3|S| ≥ ε3|S|+1

for j ≥ 1. Each Z(xj) is determined by
the sequence of structures

Z(xj) ∩ π−1
S−{i}(xj)

as i varies through S. The number of unspecified positions is at most

|πS(X)| ·
∑
i∈S
|Xi|−1 ≤ |πS(X)| · |S| · n−1

by the definition of n. There are at most ε−3|S|+1

elements xj , so with x1, · · · , xr
given the Z(xj)’s can be specified with at most

ε−3|S|+1

|πS(X)| · |S| · n−1

bits. We find that there must be a j so that F equals 1 on at least

|Z ′(xj)|(1 + ε)/2

vertices in Z ′(xj).

The conditions on Z ′(xj) imply that, whenever x ∈ Z ′(xj), there is a cube

x ∈ XS with x, xj ∈ x̂(∅) such that dF (x) = g(x). Using the additivity of dF and

g we find that, whenever x ∈ XS has x̂(∅) contained in Z ′(xj), then dF (x) = g(x).
Proposition 6.0.3 then implies that the number of g ∈ CS(ε, a,X) corresponding to
this choice of Z ′(xj) is bounded by

|CS(πS(X))| · exp
(
|πS(X))| ·

(
−ε4+3|S|+1

+ 2|S|+2 · n−1/2|S|
))

.

For sufficiently large A, (6.3) implies that

|CS(πS(X))| · exp
(
−|πS(X))| · ε5+3|S|+1

)
.

Summing over all possible choices of (x1, · · · , xr), associated choices of Z(xi), and
over all choices of j, we find that the ratio being estimated in the proposition is
bounded by

r|πS(X)|r exp
(
|πS(X)| ·

(
−ε5+3|S|+1

+ ε−3|S|+1

n−1|S|
))

.

Observe that for any positive number y ≥ 1 and any ε′ > 0, we have

ryr �ε′ exp(ε′y).

Thus, by choosing A sufficiently large and taking ε′ = 1 say, we find the bound

exp
(
−|πS(X)| · ε7+3|S|+1

)
,

which is enough to prove the proposition. �
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7. Analytic tools

7.1. Distribution of integers with fixed number of prime factors. In this
section, we wish to describe the properties of square-free integers n having exactly
r prime factors. For given positive numbers N,D, put

(7.1) Sr(D;N) = {n = p1 · · · pr ≤ N, pi > D for i = 1, · · · , r, }.
Sr(D;N) is a familiar object in sieve theory, where we have eliminated those num-
bers with “small” prime factors. We wish to consider “typical” sets Sr(D;N), and
we make the following definition.

Definition 7.1.1. Let N > 30, D > 3 be real numbers and r a positive integer.
We say that Sr(D;N) is archetypal if D < exp

(
(logN)1/4

)
and r satisfies

(7.2) |r − log logN + log logD| ≤ 2

3
(log logN − log logD) .

In our application, we will in fact be taking D = log log logN , so the hypothesis
that D < exp((logN)1/4) will be immaterial. One should also recognize that (7.2)
is the assertion that Sr(D;N) contains numbers which have close to the average
number of prime factors.

Our next definition is to capture the phenomenon that, except for a negligible
number of circumstances, an archetypal Sr(D;N) will satisfy one of a few nice
properties, listed below:

Definition 7.1.2. Let Sr(D;N) be an archetypal set of numbers. Let D1 > D.
For n ∈ Sr(D;N), let p1 < · · · < pr be the prime factors of n.

We say that n ∈ Sr(D;N) is comfortably spaced above D1 if, for all i < r with
pi > D1, we have

4D1 < 2pi < pi+1.

For C0 > 1, we say n is C0-regular if for all i ≤ r/3, we have

|log log pi − log logD − i| < C
1/5
0 ·max{i, C0}4/5.

Finally, we say n is extravagantly spaced if there exists m ∈ (r1/2/2, r/2) such that

(7.3) log pm ≥ log

(
log pm
logD

)
· (log log logN)1/2 ·

m−1∑
i=1

log pi.

The following result demonstrates that most integers n ∈ Sr(N ;D) are comfort-
ably spaced above D1, C0-regular, or extravagantly spaced, provided that D1, C0

are chosen appropriately as functions of N .

One necessary modification to Sr(D;N) for our application to the negative Pell
equation is that we must demand that the numbers n ∈ Sr(D;N) satisfy the
property that p|n⇒ p ≡ 1 (mod 4) (note that since the prime factors of n exceed
D > 3, n is necessarily odd). We thus put

S∗r (D;N) = {n ∈ Sr(D;N) : p|n⇒ p ≡ 1 (mod 4)}.

Proposition 7.1.3. Let S∗r (D;N) be an archetypal set of numbers. Consider the
uniform distribution on S∗r (D;N). Then there is an absolute constant c > 0 such
that:
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(1) The probability that n is not comfortably spaced above D1 is

O
(

(logD1)−1 + (logN)−1/2
)
,

where the implied constant is absolute;
(2) For all C0 > 0 the probability that n is not C0-regular is

O
(

exp(−c · C0) + exp(−c(log logN)1/2)
)
,

where the implied constant is absolute; and
(3) The probability that n is not extravagantly spaced is

O
(

exp(−c(log log logN)1/2)
)
,

with absolute implied constant.

We note that in our application we will take D = log log logN , D1 = D(log logN)c
′

and C0 = c′′ log log logN , so that all of the probabilities in Proposition 7.1.3 will
tend to zero.

For x > 0, put

F (x) =
∑
p≤x

p≡1 (mod 4)

1

p
.

Using Dirichlet’s theorem applied to the non-trivial character mod 4, we see that
there are absolute constants A, c > 0 such that whenever x� 1, we have

(7.4)

∣∣∣∣F (x)− log log x

2
−B1

∣∣∣∣ ≤ A exp
(
−c(log x)1/2

)
,

where B1 is an absolute constant.

The proof of Proposition 7.1.3 will depend on the following three lemmas, where
the first lemma is exactly claim (1) in Proposition 7.1.3.

Lemma 7.1.4. Let S∗r (D;N) be an archetypal set of numbers. Sampling with
respect to the uniform distribution, the probability that n is not comfortably spaced
above D1 is O

(
(logD1)−1 + (logN)−1/2

)
.

Proof. We note that the number of uncomfortably spaced elements in S∗r (D;N) is
bounded by ∑

D1<p<N
p≡1 (mod 4)

∑
p<q<2p

∣∣S∗r−2(D;N/pq)
∣∣ .

We divide the range for p int p < (logN)1/4 and p ≥ (logN)1/4. In the first case
we have the bound

O

|S∗r−2(D;N)|
∑

D1<p<N
p≡1 (mod 4)

∑
p<q<2p

(pq)−1

 = O
(
|S∗r (D;N)|(logD1)−1

)
.
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For the second case, note that the sum over p ≥ (logN)1/4 can be bounded by
O(N(logN)−1), so we are done since

(log logN − F (D) +B1)r−1

(r − 1)!
≥ (logN)1/2

for all sufficiently large N , by our restriction on r. �

Lemma 7.1.5. Let S∗r (D;N) be an archetypal set of numbers. Put

u =
logN

exp(F (D)−B1)
.

Then for all N sufficiently large, we have

(7.5)
c1N

logN

(log u)r−1

2r(r − 1)!
< |S∗r (D;N)| < c2N

logN

(log u)r−1

2r(r − 1)!

provided that r satisfies (7.2).

To prove Lemma 7.1.5 and to state our final lemma, we require some terminology.
Suppose that T is a collection of r-tuples of odd primes congruent to 1 modulo 4.
Define G(T ) ⊂ Rr to be the union

(7.6) G(T ) =
⋃

(p1,··· ,pr)∈T

∏
i≤r

[
F (pi)−

1

pi
−B1, F (pi)−B1

]
.

Suppose V ⊆ Rr

L(T ) = {((log log p1)/2, · · · , (log log pr)/2) : (p1, · · · , pr) ∈ T}.
For x = (x1, · · · , xr) ∈ Rr, define

τ(x) =
∏
i≤r

[
xi −A exp

(
−c · exi/2

)
, xi +A exp

(
−c · exi/2

)]
.

Now define

V † =
⋃
x∈V

τ(x), V †† = {x ∈ Rr : xi ≥ −B1 for i = 1, · · · , r, τ(x) ⊆ V }.

For appropriate choices of A, c, we see that whenever T is the maximal set of prime
tuples of primes congruent to 1 mod 4 such that L(T ) ⊆ T , we have

(7.7) V †† ⊆ G(T ) ⊆ V †.
Observe that

Vol(G(T )) =
∑

(p1,··· ,pr)∈T

1

p1 · · · pr
.

Put
Vr(u) =

{
(x1, · · · , xr) ∈ Rr : e2x1 + · · ·+ e2xr ≤ u

}
.

We then see that

exp
(
x+A exp(−c · ex/2)

)
− exp(x) ≤ κ

for some κ depending on A, c but not x. Then Vr(u)† is contained in Vr(u + rκ),
while Vr(u)†† contains

Vr(u− rκ) ∩ (−B1,∞)r.

At the same time, we see that for B ∈ R,

Vol (Vr(u) ∩ (B,∞)r) = 2−rIr(e
−Bu),
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where

(7.8) Ir(u) =
1

2πi

∫ b+i∞

b−i∞

es

s

(∫ ∞
1

e−ts/u

t
dt

)k
ds, b > 0.

It is known that Ir(u) satisfies the estimate

(7.9) Ir(u) =
e−γα

Γ(1 + α)
(log u)k +O

(
(α+ 1)(log u)k−1(log log u)3

)
,

where α = k/ log u, γ is the Euler-Mascheroni constant, and the implied constant
is absolute; see Lemma 5.1 in [6].

Proof of Lemma 7.1.5. Let

Fr(D;N) =
∑

D,p1<··· ,pr
p1···pr≤N

pi≡1 (mod 4),1≤i≤r

1

p1 · · · pr
.

Then for D,N > 0 and r ∈ N we have

Ir

(
logN − rκ

exp (F (D)−B1)

)
≤ 2rFr(D;N) ≤ Ir

(
logN + rκ

exp (F (D)−B1)

)
.

If r2 < A logN and log logN − F (D) +B1 > 1, we have

2rFr(D;N) = Ir

(
logN

exp(F (D)−B1)

)
+O

(
r2

logN
· (log logN − F (D) +B1)r−1

)
.

We restrict to the case when log logN > 2 log logD, so that the ratio

u =
logN

exp(F (D)−B1)

is at least 3, and that
r

3
< log u <

5r

3
by (7.2). Put

(7.10) Gr(D;N) =
∑

D<p1,··· ,pr
p1···pr≤N

pi≡1 (mod 4),1≤i≤r

log(p1 · · · pr)

and

(7.11) Hr(D;N) =
∑

D<p1,··· ,pr
p1···pr≤N

pi≡1 (mod 4),1≤i≤r

1.

We claim that

(7.12) Gr(D;N) = r2−rIr−1(u) +Oε

(
N

logN
(log u)r+3

)
and

(7.13) Hr(D;N) =
r2−rN

logN
Ir−1(u) +Oε

(
N

log2N
(log u)r+3

)
.
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To see (7.12), we first note that, upon rearranging the sum and observing that
log(p1 · · · pr) = log(p1) + · · ·+ log(pr), we have

Gr(D;N) =
∑

D<p1,··· ,pr
p1···pr≤N

pi≡1 (mod 4),1≤i≤r

(log p1 + · · · log pr)

= r
∑

D<p1,··· ,pr
p1···pr≤N

pi≡1 (mod 4),1≤i≤r

log p1.

To ameliorate notation, we shall denote by
∑]

for the condition that pi ≡ 1

(mod 4). We then observe that∑]

D<p1,··· ,pr
p1···pr≤N

log p1 =
∑]

D<p1,··· ,pr−1

p1···pr−1≤N/P

N/P∑
p>D

p≡1 (mod 4)

log p,

where P = p1 · · · pr−1. By Dirichlet’s theorem for primes congruent to 1 mod 4
with an explicit zero-free region estimate, we have

N/P∑
p>D

p≡1 (mod 4)

log p =
N

2P

(
1 +O

(
exp

(
−c
√
NP−1

)))
−

∑
p<D

p≡1 (mod 4)

log p.

It thus follows that

Gr(D;N) =
rN

2
Fr−1(D;N/D)− r

2
Hr(D;N/D)

∑
p<D

p≡1 (mod 4)

log p+

O
(
rNe−c

√
logD (Fr−1(D;N)− Fr(D;N0)) + rNe−c

√
logN/N0Fr(D;N0)

)
for any N > N0 > D. We choose N0 = N exp

((
c−1 log logN

)2)
, we see that this

is an acceptable error term for the purpose of (7.12). To see (7.13), we do partial
summation applied to (7.12).

Note that Hr(D;N) and S∗r (D;N) are virtually the same set: indeed, S∗r (D;N)
have the extra stipulation that ordering of the prime factors matters and that each
element is square-free. One easily checks that the density of square-free elements
among numbers of the form {n = p1 · · · pr ≤ N : D < p1, · · · , pr, pi ≡ 1 (mod 4)}
is at least 1/2, whence

(7.14)
|Hr(D;N)|

2 · r!
≤ |S∗r (D;N)| ≤ |Hr(D;N)|

r!
.

From this and (7.13) we conclude that there exist positive numbers c1, c2 such that
(7.5) holds for N sufficiently large. �

To proceed, we put

(7.15) Sr,k(D;N) = {p1 · · · pr ∈ S∗r (D;N) : pi < N ′, 1 ≤ i ≤ k, pi > N ′, i > k},
where

N ′ = exp
(√

logN exp (F (D)−B1)
)
.
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We now state the next lemma we need:

Lemma 7.1.6. Let D,N, r be as in Definition 7.1.1, and S∗r (D;N) be an archetypal
set of numbers. Let Sr,k(D;N) be as in (7.15). Then the density of the set⋃

|r−k/2|>r2/3
Sr,k(D;N)

in S∗r (D;N) is bounded by

O
(

exp(−c(log logN)1/2)
)
.

If |r − k/2| ≤ r2/3, then for any two sets T1, T2 of k-tuples of primes with size
bounded by N1 in increasing order, we have

|Sr,k(D;N,T1)|
|Sr,k(D;N,T2)|

= O

(
Vol(G(T1))

Vol(G(T2))

)
,

where Sr,k(D;N,Ti) is the subset of Sr,k(D;N) consisting of those numbers whose
k smallest prime factors form a vector (p1, · · · , pk) ∈ Ti, i = 1, 2.

Proof. By definition, we have

|Sr,k(D;N)| =
∑

D<p1<···<pk<N1

pi≡1 (mod 4),1≤i≤k

∣∣∣∣Sr−k (N1;
N

p1 · · · pk

)∣∣∣∣ .
Note that by definition N1 = Oε (Nε) for any ε > 0. Therefore, we can certainly
assume that N is large enough so that Nk

1 < N1/2. This implies that

(log logN − F (N1) +B1)r−1

(log log(N/P )− F (N1) +B1)r−1
≤ C

for some absolute constant C for any choice of P = p1 · · · pk. The same is true of
the ratio (logN)/(logN − logP ). Thus we may find positive numbers c1, c2 such
that

(7.16)
c1
P
|Sr−k(N1;N)| < |Sr−k(N1, N/P )| < c2

P
|Sr−k(N1, N)|

for sufficiently large N . We then see that

|Sr,k(D;N)| = O

(
N

logN

(log logN − F (N1) +B1)r−1

22r(r − k + 1)!k!

)
for r > k. Hoeffding’s inequality gives the first part of the proposition if we remove
the case r = k from the union. The case r = k is insignificant as its contribution is
bounded byNr

1 , which we know isOε (Nε) for any ε > 0. The first part of the lemma
then follows. The second part follows from (7.16) in terms of the corresponding
statements for Sr,k(D;N), and we are done. �

7.2. Proof of Proposition 7.1.3. We first consider Sr,k(D;N) with |k − r/2| ≤
r2/3. The remaining k will contribute only to the error term.

Let T2 be the set of k-tuples of distinct primes from the interval (D,N1) con-
gruent to 1 mod 4. We then find that

Vol(G(T2)) ≥ c(log logN1 − log logD)k.
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Take T1 to be the set of non-C0-regular prime tuples in T2. The majorization
of the grid of T1 consists of elements that are not C0 − κ regular for some κ > 0,
independent of C0. We can estimate the volume of this majorization to be bounded
by

O
(
exp(−c · C0) · (log logN1 − log logD)k

)
.

The result then follows from Lemma 7.1.6.

For (3), take T1 to be the set of prime tuples which, for m > k1/2, we have

log pm ≤ log

(
log pm
logD

)
· (log log logN)1/2 ·

(
m−1∑
i=1

log pi

)
.

The majorization of this grid consists of tuples (x1, · · · , xk) so, for m > k1/2, we
have

exm ≤ Axm · (log log logN)1/2 ·

(
m−1∑
i=1

exi

)
for some A > 0. The volume of this majorization is

O
(

exp(−c · (log log logN)1/2) · (log logN1 − log logD)k
)
.

We are again done by Lemma 7.1.6.

7.3. Chebotarev’s density theorem and the large sieve. There are two main

tools to predict the distribution of the Legendre symbol
(
d
p

)
over a given set of

primes p. If d is small relative to the primes [, then we can use Chebotarev’s
density theorem (a refinement of the Siegel-Walfisz theorem) to predict the distri-
bution. On the other hand, if d is similar in size to the primes p, we can use the
large sieve results due to Jutila to predict the distribution of these symbols on aver-
age, over a large range of d [5]. This is a standard set-up in analytic number theory.

We start with the form of the Chebotarev density theorem that we will be using.

Proposition 7.3.1. Suppose M/Q is a Galois extension and Gal(M/Q) is a 2-
group. Suppose M = KE, where E/Q is Galois of degree d and K/Q is an el-
ementary abelian extension. Suppose that the discriminants ∆E = ∆(E/Q) and
∆K = ∆(K/Q) are co-prime. Let K0 be a subfield of K so that ∆K0 is maximal
among all subfields of K.

Put G = Gal(M/Q) and let F : G→ [−1, 1] be a class function of G with average
zero. Then there is an absolute constant c > 0 such that∑

p≤x

F

([
M/Q
p

])
log p =

O

(
xβ |G|+ x|G| exp

(
−cd−4 log x√

log x+ 3d log |∆K0
∆E |

)
(d2 log |x∆K0

∆E |)4

)
for x ≥ 3, where β is the maximal real zero of an Artin L-function defined for G,
where we ignore the term if no such zero exists.
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Proof. Since G is a 2-group, it is nilpotent and hence supersolvable, whence the
Artin conjecture is true for any non-trivial irreducible representation ρ of G. In
particular, the Artin L-function L(ρ, s) is entire. The representations ρ ⊗ ρ and
ρ⊗ ρ also satisfy the Artin conjecture, hence

L(ρ⊗ ρ, s)

is entire except for a simple pole at s = 1 and

L(ρ⊗ ρ, s)

is entire unless ρ is isomorphic to ρ.

The bounds are then consequences of well-known zero-free regions of L-functions.
For example, Theorem 5.10 of [4] shows that L(ρ, s) has no zeroes in the region

<(s) ≥ 1− c

d4 log(q(ρ)(|=(s)|+ 3))
,

where q(ρ) is the so-called analytic conductor of L (see (5.7) in [4]). In the case of
Artin L-functions, we have the inequality

q(ρ) ≤ q(ρ)4d,

where q(ρ) is the (usual) conductor of L. Theorem 5.13 of [4] then gives

(7.17)
∑
p≤x

χρ

([
M/Q
p

])
log p =

O

(
xβ + x exp

(
−cd−4 log x√

log x+ 3 log q(ρ)

)
(d log xq(ρ))

4

)
.

Now observe that ρ is defined on Gal(K0E/Q) for some quadratic extension K0/Q
inside K, whence its degree is bounded by 2d and the conductor of L is bounded
by the discriminant of K0L/Q, which is then bounded by

∆d
K0

∆2
E .

Then the upper bound in (7.17) may be replaced by

O

(
xβ + x exp

(
−cd−4 log x√

log x+ 3d log |∆K0
∆E |

)(
d2 log x|∆K0

∆E |
)4)

.

Now we may write F =
∑
ρ aρχρ, the sum running over irreducible representations

of G. Then∑
ρ

|aρ| =
∑
ρ

∣∣∣∣∣∣ 1

|G|
∑
g∈G

F (g) · χρ(g)

∣∣∣∣∣∣
≤
∑
ρ

 1

|G|
∑
g∈G

F (g) · F (g)

1/2

·

 1

|G|
∑
g∈G

χρ(g)χρ(g)

1/2

≤
∑
ρ

1 ≤ |G|.

This completes the proof. �

Next we give the form of the large sieve inequality that we will use:
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Proposition 7.3.2. Let X1, X2 be disjoint sets of odd primes such that for all
p ∈ Xi, we have p ≤ ti, for i = 1, 2. Then, for any ε > 0, we have∑

x1∈X1

∣∣∣∣∣ ∑
x2∈X2

(
x1

x2

)∣∣∣∣∣ = Oε

(
t1t

3/4+ε
2 + t2t

3/4+ε
1

)
.

Proof. See, for example, the proof of Lemma 15 in [2]. �

7.4. Boxes of integers. In this section, we give the definitions and results that
enable us to move from a set of positive integers less than a certain bound to a
product space of primes. As before, S∗r (D;N) denotes the square-free integers less
than N with exactly r prime factors, all of which are congruent to 1 mod 4 and
greater than D.

Let 3 ≤ D ≤ D1 ≤ N be real numbers, and r an integer satisfying (7.2). Let W
be a subset of elements in S∗r (D;N) that is comfortably spaced above D1.

Let k ≤ r be a non-negative integer, and choose an increasing sequence of primes
congruent to 1 mod 4 satisfying

D < p1 < · · · < pk < D1.

Take

D1 < tk+1 < tk+2 < · · · < tr

to be an increasing sequence of real numbers. For i > k, put

t′i =

(
1 +

1

ei−k logD1

)
ti.

Take Xi = {pi} for i ≤ k and Xi to be the set of primes in the interval (ti, t
′
i)

congruent to 1 mod 4 for i > k.

If t′i < ti+1 for all r > i > k, then there is a bijection from X to a subset of
S∗r (D;N) when N is sufficiently large, by simply taking a prime pi from each Xi and
then multiplying. By abuse of notation, we denote this subset of S∗r (D;N) by X
as well. For a subset W ⊂ S∗r (D;N), we say that X meets W if X∩W is non-empty.

The restriction to comfortably spaced W means that, if X ∩W is non-empty,
then the Xi’s are automatically disjoint sets and none of them contain any prime
below D1.

Proposition 7.4.1. Let 3 ≤ D ≤ D1 ≤ N be positive number satisfying 2 log logD1 ≤
log logN and r a positive integer satisfying (7.2). Take W to be a subset of
S∗r (D;N) that is comfortably spaced above D1. Suppose V is any other subset
of S∗r (D;N), and that there are numbers δ, ε > 0 such that

|W | > (1− ε) · |S∗r (D;N)|

and for any box X meeting W , we have

(δ − ε)|X| < |V ∩X| < (δ + ε)|X|.

Then

|V | = δ|S∗r (D;N)|+O
(
(ε+ (logD1)−1) · |S∗r (D;N)|

)
.
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Proof. Let Dk to be the space of tuples

t = (p1, · · · , pk, tk+1, · · · , tr)
corresponding to boxes meeting W ; we write the corresponding box as X(t). Con-
sider ∫

Dk

|V ∩X(t)| · dp1 · · · dpkdtk+1 · · · dtr
tk+1 · · · tr

,

where the measure corresponding to dp1, · · · , dpk is the indicator function on primes
congruent to 1 mod 4, and the measure corresponding to dtj is Lebesgue measure.
If n ∈ W has exactly r prime factors less than N1 and corresponds to the triple
(q1, · · · , qr), then n is in X(t) if

(q1, · · · , qk) = (p1, · · · , pk)

and for i > k we have

ti ≤ pi ≤ ti
(

1 +
1

ei−k logD1

)
.

Then, whenever

(7.18)

r∏
i=k+1

(
1 +

1

ei−k logD1

)
n < N,

we have that the measure of the subset of Dk corresponding to boxes containing n
is

r∏
i=k+1

log

(
1 +

1

ei−k logD1

)
.

If n is outside W but in S∗r (D;N) with exactly k prime factors below N1, or if n
is in W but does not satisfy (7.18), then the measure of boxes containing n is still
bounded by this product. Any n not satisfying (7.18) is in the range

N
(
1−A(logD1)−1

)
≤ n ≤ N

where A is some positive number.

Taking Hr(D;N) as in (7.11) and using (7.13), together with Lemma 7.1.5, we
find that for c ∈ (0, 1)(

c+O

(
(log logN)4

logN

))
|S∗r (D;N)| � Hr(D;N)−Hr(D; (1− c)N)

2rr!

�
(
c+O

(
(log logN)4

logN

))
|S∗r (D;N)|,

where the implied constants are absolute. From here we see that the number of n
not satisfying (7.18) is O (|S∗r (D;N)|/ logD1).

Next we see that∑
k≥0

r∏
i=k+1

log

(
1 +

1

ei−k logD1

)−1 ∫
Dk

|V ∩B(t)| · dp1 · · · dpkdtk+1 · · · dtr
tk+1 · · · tr

is at least as large as

|V ∩W | −O
(
(logD1)−1 · |S∗r (D;N)|

)
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and is no larger than |V |. The estimates on |V ∩X(t)| relative to |X(t)| then give
the desired conclusion. �

In applications, the W in Proposition 7.4.1 should be interpreted as being some
“nice” set, which includes the notions of comfortable spacing, regularity, and ex-
travagant spacing. We would need to include one more condition on controlling
Siegel zeroes in order to make our results fully unconditional.

Proposition 7.4.2. Take d1, d2, · · · be a potentially infinite sequence of distinct
square-free integer satisfying

d2
i < |di+1|

for all i ≥ 1. Let 3 ≤ D ≤ D1 ≤ N be real numbers satisfying 2 log logD1 ≤
log logN , D1 = D(log logN)1/10 , and r satisfying (7.2).

For each i ∈ N, put d′i for the product of primes dividing di which exceed D, and
d′ to be the subset of the d′i for which |di| is greater than D1. Put

(7.19) V =
⋃

X∩d′·Z6=∅

X

where the union is over all boxes X in S∗r (D;N) that contain some element n
divisible by an element of d′. We further assume that 2D logD < logD1. Then

|V | = O

(
|S∗r (D;N)|

logD1

)
.

Proof. For d′i ∈ S∗r (D;N), write it as d′i = p1 · · · pr. Suppose that some element in
X is divisible by d′i. Taking n ∈ X, we see that there are prime factors q1, · · · , qr
of n such that

qi = pi if pi < D1

and
qi
2
< pi < 2qi otherwise.

If d′i < N2/3, there is then an absolute constant A so that the number of n sharing
a box with a multiple of d′i is bounded by

Ar ·
∏

pi≤D1

p−1
i

∏
pi>D1

(log pi)
−1|S∗r (D;N)| = O

(
|S∗r (D;N)|

log d′i

)
.

We can also bound the contribution from d′i ≥ N2/3 by O
(
N(logN)−1

)
.

Removing finitely many terms and renumbering, we may assume that |d1| < D1.

We then get |di| > D2i−1

i for i ≥ 1, so |d′i| > D2i−1

1 ; since∏
p≤D

p < e2D �ε D
ε
1

for all ε > 0. Therefore the contribution from d′i < N2/3 is

O

(
|S∗r (D;N)| ·

∑
)i ≥ 1

1

2i logD1

)
= O

(
|S∗r (D;N)|

logD1

)
,

as desired. �

We say that a box X is Siegel-free above D1 if it is not contained in the set V
in (7.19) with respect to the sequence {dk} in Definition 8.0.2 and satisfying (8.1).
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8. Equidistribution of Legendre symbols: the seed distribution

Definition 8.0.1. Let P be an arbitrary set of prime numbers congruent to. For
r > 0, let M be a subset of

{{i, j} : i, j ∈ {1, · · · , r}}.

and let MP be some subset of {1, · · · , r} × VP , where VP is the set of square-
free numbers whose prime divisors are in P. Let a be an arbitrary function from
M∪MP to {±1}.

LetX1, · · · , Xr be pairwise disjoint sets of odd primes which are also disjoint with
P, and put X for their Cartesian product. We put X(a) for the set of (x1, · · · , xr) ∈
X satisfying (

xi
xj

)
= a({i, j}) for all i < j with {i, j} ∈ M

and (
d

xj

)
= a((i, d)) for all (i, d) ∈MP .

Our goal is to find situations where |X(a)| is well approximated by 2−|MP∪M||X|.
To do this unconditionally, we need to account for the possibility of Siegel zeroes
in the L-functions of the associated quadratic characters. We use the following
definition of Siegel zeroes:

Definition 8.0.2. Let c be a positive real number. Put Sieg(c) for the set of

square-free integers d so that the quadratic character χd associated with Q(
√
d)/Q

has Dirichlet L-function having a real root s satisfying

1 ≥ s ≥ 1− c(log 2d)−1.

We can order Sieg(c) by increasing magnitude, getting a sequence d1, d2, · · ·
(of course, since we expect that there are no L-functions with Siegel zeroes, this
sequence is likely empty). By Landau’s theorem (Theorem 5.28 in [4]), we can
choose c sufficiently small so that

(8.1) d2
i < |di+1|

for all i ≥ 1. We say an integer d is Siegel-less if d 6= di for all i ≥ 1.

Let c1, · · · , c8 be positive numbers which satisfy

(8.2)
1

c1
+
c2c4

4
+
c7 log 2

2
+ c8 <

1

8
, c3 > 1, c5 > 3.

LetA be a positive number which depends on the numbers ci in (8.2), and t, t1, t
′
1, · · · , tr, t′r

positive real numbers satisfying

(8.3) A < t < t1 < t′1 < · · · < tr < t′r.

Let X1, · · · , Xr, a, and P be as in Definition 8.0.1, and suppose that the Xi’s satisfy
the property that

(8.4) Xi ⊂ (ti, t
′
i) for i ≤ r.
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Suppose that there is an index 1 ≤ k ≤ r such that whenever MP contains an
element of the form (i, d), then i > k. When i > k, we assume that

(8.5) Xi =

{
ti < p < t′i :

(
d

p

)
= a((i, d)) for all (i, d) ∈MP

}
.

We shall also make the following assumption:

(8.6)

Suppose that D1 is a product of primes in P and D2 a square-free number such
that each prime divisor of D2 is in Xi for some i, and at most one prime factor of
D2 is in Xi for each i. We assume that D1D2 is Siegel-less whenever |D1D2| > t.

We then have the following:

Proposition 8.0.3. Let c1, · · · , c8 be as in (8.2), A, t, t1, t
′
1, · · · , tr, t′r be as in

(8.3), and X1, · · · , Xr, a, and P as in (8.4) and (8.5). Suppose further that the
following holds:

(1) p < t′1 for all p ∈ P;
(2) t′1 > rc1 and t′k < exp ((t′1)c2);
(3) For 1 ≤ i ≤ r, we have

|Xi| ≥
2ic3 · t′i
(log t′i)

4
and |P | ≤ log t′i − i;

(4) If k 6= r, then

t′k+1 > exp ((log t′1)c5) , exp(tc6);

(5) k < c7 log t′1 and that, for any i ≤ r and j satisfying r ≥ j ≥ i−2+c7 log t′i,
we have

exp ((log t′i)
c5) < t′j .

Then the inequality ∣∣∣|X(a)| − 2−|M||X|
∣∣∣ ≤ (t′1)−c8 · 2−|M||X|.

Proof. We will show that, subject to the hypotheses of the proposition, that∣∣∣|X(a)− 2−|M||X|
∣∣∣ ≤ r · (t′1)−c8−c

−1
1 · 2−|M|A|X|.

The bound on t′1 shows that this implies the desired conclusion.

We proceed by induction on r. The statement is obvious for r = 1, where M is
empty. Now suppose we now know the result for every product of length r− 1, and
we wish to show the result for X = X1 × · · · ×Xr. To this end, for x1 ∈ X1, put
Xi(a, x1) for the subset of xi ∈ Xi satisfying(

x1

xi

)
= a({1, i})

whenever {1, i} ∈ M.

If {1, i} ∈ M for i ≤ k, we apply Proposition 7.3.2 to obtain∑
x1∈X1

∣∣∣∣∣ ∑
xi∈Xi

(
x1

xi

)∣∣∣∣∣ = Oε

(
t′i · (t′1)3/4+ε

)
.
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Then, for any ε > 0, the assumptions on the size of Xi’s then gives∑
x1∈X1

∣∣∣∣∣ ∑
xi∈Xi

(
x1

xi

)∣∣∣∣∣ < (t′1)−1/4+c2c4+ε · |X1| · |Xi|

for sufficiently large A. Choosing ca, cb > 0 with

ca + cb <
1

4
− c2c4,

we expect that, for all x1 ∈ X1, we have

||Xi(a, x1)| − |Xi|/2| < (t′i)
−cb · |Xi| for all {1, i} ∈ M

with at most k · (t′1)−ca · |X1| exceptions. Write Xbad
1 for the set of exceptional x1.

We choose

ca > c7 log 2 + c8 + c−1
1

and

cb > c8 + c−1
1 .

One checks that (8.2) means that it is possible to choose such ca, cb.

Suppose {1, i} ∈ M is such that i > k. We apply Proposition 7.3.1 to the field
M generated by

√
x1 and by

√
p with p ∈ P . Take F : Gal(M/Q) → [−1, 1] to

equal 1 − 2−|P |−1 for σ corresponding to the Frobenius class of the elements of
Xi(a, x1), and otherwise equal to −2−|P |−1. We are interested in bounding∑

p≤t′i

F

([
M/Q
p

])
log p.

For any c > 0, Theorem 5.28 of [4] shows that we can choose A large enough so
that

β < 1− t−c

whenever β is a Siegel zero of the L-function corresponding to some χD with |D| < t.
Applying Proposition 7.3.1, we find that

xβ < t′i exp
(
−(log t′i)

1−cc−1
6

)
.

Since log |∆K0
| = O

(
(log t′1)2

)
, we as obtain the bound

exp

(
−cd−4 log x√

log x+ 3d log |∆K0
∆E |

)
≤ exp

(
−(log t′i)

1/3+ε
)

for some ε > 0. From |G| ≤ t′1 we then find the upper bound∑
p≤t′i

F

([
M/Q
p

])
log p ≤ t′i exp

(
−(log t′i)

1/3+ε
)

for sufficiently large A. For i ≥ k, we can always find

|Xi(a, x1)| − |Xi|/2| < |Xi|/t′1.

Write Xbad(a) for the subset of X(a) with x1 ∈ Xbad
1 . Choose x1 ∈ Xbad(a), and

add it to P, shifting its conditions from M to MP . Then consider the product

X2 × · · · ×Xk ×Xk+1(a, x1)× · · · ×Xr(a, x1).



48 ERICK KNIGHT AND STANLEY YAO XIAO

This product now has length r−1, so the inductive hypothesis holds. Once we shift
up k, it obeys the hypotheses of the proposition, hence the inductive step tells us
that the subset of X(a) starting with x′1 has size at most

2−|M|+k+1 |X|
|X1|

.

Then Xbad(a) has size bounded by

2k+1 · (t′1)−ca · 2−|M||X|.
On the other hand, we look at the product

X2(a, x1)× · · · ×Xr(a, x1)

and find that the subset of X(a) starting with a good x1 has size at most

2−|M|
|X|
|X1|

·
(

1 + (r − 1)(t′1)−c8−c
−1
1

)
·
(
1 + (t′1)−cb

)k · (1 + (t′1)−1
)r

and at least

2−|M|
|X|
|X1|

·
(

1− (r − 1)(t′1)−c8−c
−1
1

)
·
(
1− (t′1)−cb

)k · (1− (t′1)−1
)r
.

We have k < c7 log t′1, whence (1 + (t′1)−cb)
k

is an error term from our lower bound

on cb. Similarly, the term
(
1 + (t′1)−1

)r
gives an error term whenever 1 > c8 +2c−1

1 ,
which is always satisfied by our hypothesis.

Finally, from our assumptions on ca and (8.2), we find that the contribution
from Xbad(a) can be absorbed into the error term. This completes the proof. �

The lower bound assumed of t1 in Proposition 8.0.3 are essential; we do not have
sufficiently strong control over Jacobi symbols involving only small primes to give
the equidistribution result we need. However, there is a combinatorial trick to get
around this bad behaviour. We make the following definition:

Definition 8.0.4. Given X = X1×· · ·×Xr and a as in Definition 8.0.1, and given
a permutation σ : {1, · · · , r} → {1, · · · , r}, we put

X(σ, a) = (Xσ1
× · · · ×Xσ(r))(a).

Given k2 ≤ r, define S(k2) to be the set of permutations of {1, · · · , r} that fix the
points i, i > k2.

The reason for this definition is twofold: first, the ordering of the primes do not
affect the rank: hence, the class structure of a point in X(σ, a) is independent of
σ. Secondly, this has the effect of mixing the “bad” corner of a Legendre symbol
matrix in with the rest.

We may now state and prove the following refinement of Proposition 8.0.3:

Theorem 8.0.5. Let c1, · · · , c8 be positive numbers satisfying (8.2), c9, · · · , c12

positive numbers satisfying

c10 log 2 + 2c11 + c12 < 1 and c11 + c12 < c9,

and A, t, t1, t
′
1, · · · , tr, t′r be numbers satisfying (8.3). Let Xi be the set of prime

numbers congruent to 1 mod 4 in the interval (ti, t
′
i) and let X be their Cartesian
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product. Let a be as in Definition 8.0.1. Choose non-negative integers k0, k1, k2

satisfying

0 ≤ k0 ≤ k1 < k2 ≤ r and t′k0+1 > t.

Suppose that Assumption (8.6) holds and k2 > A. Put t = t′k0+1 and that the
following hold:

(1) p < t for all p ∈ P;
(2) t > rc1 and t′k1 < exp (tc2);
(3) For i > k0,

|Xi| ≥
2|P|+ic3 · kc92 · t′i

(log t′i)
c4

and |P| ≤ log t′ii.

(4) If k1 6= r, then

t′k1+1 > exp ((log t′1)c5) , exp (tc6) ;

(5) k1 − k0 < c7 log t and that, for any k0 < i ≤ r and any j satisfying i− 2 +
c7 log t′i ≤ j ≤ r, we have

exp ((log t′i)
c5) < t′j ;

(6) c10 log k2 > |P|+ k0 and c11 log k2 > log k1.

Then, for any choice of M,MP we have

∑
a∈FM∪MP2

∣∣∣∣∣∣2−|M∪MP | · k2! · |X| −
∑

σ∈S(k2)

|X(σ, a)|

∣∣∣∣∣∣
≤
((
k−c122 + t−c8

)
· k2! · |X|

)
.

Let X,P,M,MP be as in Definition 8.0.1. Assume that M,MP are maximal
given r and P. Choose integers 0 ≤ k0 ≤ k1 ≤ k2 ≤ r so that

2|P|+k0+1 · k2
1 < k2.

For σ a permutation of {1, · · · , r} and a as in Definition 8.0.1, put XC(σ, a) for the
set of x = (x1, · · · , xr) ∈ X so that(

d

xj

)
= a

((
σ−1(j), d

))
for all (j, d) ∈ [k1]× P

and (
xi
xj

)
= a

({
σ−1(i), σ−1(j)

})
whenever i, j ≤ k1, σ−1(i) ≤ σ−1(j), and either i ≤ k0 or j ≤ k0.

Put mC for the number of Legendre symbol conditions specified; that is,

mC = k1|P|+
1

2
(k2

0 − k0) + k0(k1 − k0).

The proof of Theorem 8.0.5 will follow from Proposition 8.0.3 and the following:

Proposition 8.0.6. In the set-up above, for any x ∈ X we have∑
a∈FM∪MP2

(
2−mC · k2!− {σ ∈ S(k2) : x ∈ XC(σ, a)}

)2
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≤ 2|P|+k0+1 · k2
1

k2
· 2−2mC+|M∪MP | · (k2!)2.

Proof. Put

W (a) = {σ ∈ S(k2) : x ∈ XC(σ, a)} .
We see that the average size of W (a) over all a is 2−mC · k2!, as the condition that
x ∈ XC(σ, a) for a given x and σ is given by mC binary conditions on a.

We now consider the average of |W (a)|2. We see that |W (a)|2 is the number of
pairs of permutations (σ1, σ2) so that x ∈ XC(σ1, a) ∩XC(σ2, a). Write W (σ1, σ2)
for the set of a so that x is in this intersection.

The maximal number of conditions on a in W (σ1, σ2) is 2mC ; a lower bound on
the number of conditions depends on σ1, σ2. Let d1 be the number of i ∈ {1, · · · , r}
so that σ−1

1 (i) and σ−1
2 (i) are both at most k1. Then we see that W (σ1, σ2) is

determined by at least

2mC − d1(|P|+ k0)

conditions. Therefore

|W (σ1, σ2)| ≤ 2−2mC+d1(|P|+k0)+|M∪MP |.

At the same time, the number of ways to choose a permutation τ of {1, · · · , k2} so
that

|τ({1, · · · , k1}) ∩ {1, · · · , k1}| ≥ d
for a given positive integer d is bounded by the number of ways to choose two
cardinality d subsets from {1, · · · , k1}, a bijection between these sets, and a bijection
between their complements in {1, · · · , k2}. This is bounded by

d! ·
(
k1

d

)2

· (k2 − d)! ≤
(
k2

1

k2

)d
· k2!.

The mean value of |W (a)|2 is therefore bounded by∑
d≥0

2−2mC+d(|P|+k0)

(
k2

1

k2

)d
· (k2!)2.

Combining this with the average of |W (a)| gives the desired conclusion. �

8.1. Proof of Theorem 8.0.5. Without loss of generality, we may assume that
M,MP are both maximal as in Proposition 8.0.6. We use the same notation for
mC , XC(σ, a). Further, we assume that X1, · · · , Xk0 are singletons x1, · · · , xk0 .

We prove the theorem by bounding

∑
a

∣∣∣∣∣∣k2! · |X| − 2mC ·
∑

σ∈S(k2)

|XC(σ, a)|

∣∣∣∣∣∣
+

∑
σ∈S(k2)

∑
a

∣∣∣2mC · |XC(σ, a)| − 2|M∪MP ||X(σ, a)|
∣∣∣ .

The former sum can be bounded via Proposition 8.0.6 by

k−c122 · |X| · 2|M∪MP | · k2!.
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For the second sum, fix a σ and a choice of a outside of the values referenced in the
definition of XC(σ, a). There are then 2mC of a, and these a partition X into sets

XC(σ, a) = {x1} × · · · × {xk0} ×Xk0+1(a)× · · · ×Xk1(a)×Xk1+1 × · · · ×Xr,

with Xi(a) the subset of Xi consistent with the choice of P and x1, · · · , xk0 .

Given k0 < i ≤ k1, the union of all XC(σ, a) for which

|Xi(a)| ≤ |Xi|
2|P|+k0 · kc92

has order at most k−c92 |X|. Because of this, we can restrict the sum to be over only
(σ, a) that do not satisfy this inequality at all such i, introducing an error with
magnitude bounded by

k1k
−c9
2 · |X| · 2|M∪MP | · k2!.

Once restricted, each summand can be bounded by Proposition 8.0.3 and can be
seen to be less than

t−c8 · 2mC |X|,
which gives the desired conclusion.

8.2. 4-narrow class groups of real quadratic fields behave like random
matrices. For the remainder of the paper, we put

(8.7) D = log log logN,D1 = D(log logN)1/10 , C0 = C · log log logN,

where C > 0 is a fixed constant.

Definition 8.2.1. Let D,D1, N,C0 be as in (8.7) and let r be given by (7.2).
We say that X is acceptable if it is Siegel-free and comfortably spaced above D1,
C0-regular.

We will now prove the following theorem, which is critical as it provides the
“seed” distribution necessary to run our Markov chain argument. Recall that for
positive integers k0, k1, k2 that P (k0; k1, k2) denotes the probability that a random
k1× k2, where each of the entries is an independent Bernoulli random variable, has
kernel of rank k0.

Theorem 8.2.2. For a positive number N > 3, put S(N) for the set of positive
square-free integers up to N which can be written as a sum of two squares, so that
S(N) = |S(N)|. Then there exists c > 0 such that for all n1 ≥ 0 we have∣∣∣∣ |S(N) ∩ Sn1,±(N)|

S(N)
− lim
n→∞

P Sym(n1;n+ n1, n+ n1)

∣∣∣∣ = O
(
(log logN)−c

)
.

Proof. By Propositions 7.1.3, 7.4.1, and 7.4.2 we find that it suffices to prove this
on acceptable boxes in S∗r (D;N), with D larger than the largest bad prime of the
number field associated to Sn1,±.

We apply Proposition 8.0.5 to our acceptable box X, where k0 is the smallest
positive integer so that t = t′k0+1 is larger than D1. Taking t = D1, we have that
the Siegel-less condition holds. Now choose k1 minimal so that t′k1+1 is larger than
exp (Dc6

1 ), and take k2 = r. Finally, let P be the set of all primes congruent to 1
mod 4 less than D, and takeM,MP maximal. We need to check that, at least for



52 ERICK KNIGHT AND STANLEY YAO XIAO

sufficiently large N and some appropriate choice of c1, · · · , c12, C, that the condi-
tions of Proposition 8.0.5 hold. This is a simple numerical exercise.

Thus, considered up to permutation, the Legendre symbol matrices in our ac-
ceptable box X are equidistributed with error within the acceptable bound. Now,
we apply an analogue of Swinnerton-Dyer’s work in [8] to symmetric matricies. As
in the proof of Corollary 6.11 in [6], a little work on the modified Markov process
gives the necessary error estimates, showing the theorem. �

9. The Markov process: completion of the proof of Theorem 3

To prove Theorem 3, it suffices to prove
(9.1)∣∣∣∣T (N) ∩ Sn2,··· ,nm+1,±(N)

∣∣− P (nm+1, nm, nm − 1)
∣∣T (N) ∩ Sn2,··· ,nm,±(N)

∣∣∣∣
= O

(
N(logN)−1/2(log log log logN)−cm

)
,

where cm > 0 depends only on m.

We shall see that (9.1) will follow by applying Proposition 9.0.1, (9.1) is a conse-
quence of applying Propositions 7.1.3 and 7.4.2 to Proposition 7.4.1, in conjunction
with the following proposition; it moves the question from T (N) to boxes S∗r (D;N).

Proposition 9.0.1. There exists c > 0 such that, for any quadratic field Q(
√
n0,

there is some A > 0 so that the following holds: for D,D1, N as in (8.7), r
as in (7.2) and D larger than the largest prime factor of n0, we have that for
any X of S∗r (D;N) which is extravagantly spaced and Siegel-free above D1, and
(log log logN)1/2-regular. Then, for any m ≥ 1 and any sequence n1 ≥ · · · ≥ nm+1

of non-negative integers of the same parity, we have∣∣∣∣X ∩ Sn1,··· ,nm+1,±(N)
∣∣− P (nm+1, nm, nm + 1) ·

∣∣X ∩ Sn1,··· ,nm,±(N)
∣∣∣∣

≤ A|X|(log log log logN)−cm .

The next step is to address the following issue: as x ∈ X varies, the pairs
(wa(x), wb(x)) corresponding to elements of cl∨(K(x0))[2] × cl(K(x0))[2] change.
We aim to restrict our attention to sets X(a), where this issue is no longer present.
This reduction is cumbersome, since there are some choices of a where we are unable
to find suitable sets of raw cocycles, governing expansions, or additive-restrictive
systems.

We now consider X,N, n0 as in Proposition 9.0.1. Suppose that the extravagant
spacing that occurs in the hypothesis of the Proposition occurs between indices
kgap and kgap + 1. Let P be the set of prime numbers less than D congruent to 1
mod 4. In the context of Definition 8.0.1, take M,MP to be maximal, and let a
be any function in FM∪MP2 .

Under these assumptions, any x ∈ X{1,··· ,r} entirely contained in X(a) is then
quadratically consistent (Definition 3.1.6). Take Art(1), · · · ,Art(m−1) to be a choice
of lower pairings as in (5.4), and choose bases wa,1, · · · , wa,n1

and wb,1, · · · , wb,n1
as
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in (5.6). We assume that ib > kgap, and write Sgap for the union of the S(j1, j2)−
{ib} that appear in Lemma 5.2.2. We assume that

Sgap ⊆ [kgap/2, kgap].

Let Pgap be an element of
∏
i∈{1,··· ,kgap}−Sgap

Xi. We assume that a is consistent

with this choice of Pgap. Next we write

Xi(a,Pgap)

for the subset of Xi consistent with a and the data associated with Pgap, and put
X(a,Pgap) for the subset of X(a) which equals Pgap on {1, · · · , kgap}−Sgap. Finally,
given our choice of pairs Art(1), · · · ,Art(k), put

X(a,Pgap, k)

for the subset of i(a,Pgap) whose first k Artin pairings agree with the given se-
quence.

We shall refer to the above objects as the initial data. We then have:

Proposition 9.0.2. There exists c > 0 for which the following holds: for the initial
data as chosen above, writing

nmax =
⌊√

cm log log log log logN
⌋

and assume that nmax ≥ n. Next we suppose that

(9.2) |Xi(a, Pgap)| > 4−kgap · |Xi|
for i ∈ Sgap. Let Art(m) to be any nm × nm matrix with coefficients in F2. Then
there is some number A > 0 depending on n0 so that∣∣∣|X(a,Pgap,m)| − 2−nm(nm+1) · |X(a,Pgap,m− 1)|

∣∣∣
≤ A · |X(a,Pgap)| · (log log log logN)−cm .

We now have most of the ingredients to apply the structures which appear in
Sections 3 and 4. The next thing to add is a set of governing expansions. To do so,
we introduce some additional objects below.

Choose the initial data as above, which obeys the conditions of Proposition 9.0.2.
For each i ∈ Sgap, choose a subset Zi ⊂ Xi. For each set S(j1, j2) and data as in
Definition 5.2.4, choose a set of governing expansions G(ia(j1, j2)) on the product

Zgap of the Zi’s. For any set S of the form S(j1, j2) − {ib} and any x ∈ (Zgap)S ,
we assume that φx(G(ia(j1, j2)) exists.

For x ∈ Zgap, put L(x) for the composition of all quadratic fields ramified only
at ∞, the places of P, and the places of Pgap. Put M(j1, j2) for the composition of

the fields of definition for the set of φx with x ∈ (Zgap)S(j1,j2)−{ib} and M◦(j1, j2)

for the composition of the fields of definition for the set of φx with x ∈ (Zgap)S for
some proper subset S of S(j1, j2)− {ib}.

We assume that, for each S(j1, j2), the field M◦(j1, j2)/Q splits completely at
all primes in P,Pgap, and in any Zi with i outside of S(j1, j2)− {ib}.
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Next, take M to be the composition of any L(x) with the set of M(j1, j2), and
take M◦ to be the composition of any L(x) with the set of M◦(j1, j2). We write
Xi(M◦) to be the subset of primes in Xi so p is consistent with the choice of a and
Pgap, and the prime p splits completely in each M◦(j1, j2). Note that Xi(M◦) is
described alternatively as the subset of Xi mapping under the Frobenius map to
one specific central element of Gal(M◦/Q). Finally, put

(9.3) Z = {Pgap} × Zgap ×
∏

i>kgap

Xi(M◦).

We shall denote the content above as the starting data.

Proposition 9.0.3. Let the starting data be as above, and put

M =
⌊
(log log log logN)1/5(m+1)

⌋
,

with M > 0. We shall assume that |Zi| = M for all i.

Then there exists an absolute constant c > 0 and a number A depending only on
n0 so that ∣∣∣|Z ∩X(a,Pgap,m)| − 2−nm(nm+1) · |Z ∩X(a,Pgap,m− 1)|

∣∣∣
≤ A · |Z ∩X(a,Pgap)| · (log log log logN)−cm .

We shall now prove Proposition 9.0.3.

Proof of Proposition 9.0.3. Take F to be a non-zero multiplicative character of the
vector space of nm×nm matrices with coefficients in F2. For x ∈ Z∩X(a,Pgap,m−
1), write Art(x) for the Artin pairing on D∨(m)×D(m). To prove the proposition, it

is enough to prove that ∑
x∈Z∩X(a,Pgap,m−1)

F (Art(x))

= O
(
|Z ∩X(a,Pgap)| · (log log log logN)−cm

)
for each F . Take j1 < j2 ≤ n0 so that F depends on the value of Art(x)j1j2 , and
take S = S(j1, j2). From Proposition 3.1.9 we find that there is a natural bijection

Gal(M(j1, j2)M◦/M◦) ∼= CS−{ib}(πS−{ib}(Z))

of F2-vector spaces, with our notation in Definition 6.0.2. For σ in this Galois
group, we take Xib(σ) to be the subset of Xib(M◦) mapping under Frobenius to σ.
From the Chebotarev density theorem, we find

|Xib(σ)| = 2−(M−1)m+1

· |Xib(M◦)| ·
(
1 +O

(
e−kgap

))
.

Choose xi ∈ Xi(M◦) for i > kgap and i 6= ib such that the set of xi is consistent
with a, writing this tuple as Pgap,+. From Propositions 7.3.2 and 8.0.3, we see that,
outside of a negligible set of choices of Pgap,+, if we write Xib(Pgap,+) for the subset
of Xib consistent with a, we have

(9.4) |Xib(σ) ∩Xib(Pgap,+)|

= 2−(M−1)m+1

· |Xib(M◦) ∩Xib(Pgap,+)| · (1 +O(e−kgap))

for each σ.
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On the product

ZAR = Zgap × (Xib(M◦) ∩Xib(Pgap,+)),

we can find full additive-restrictive inputs as in Definition 5.2.4. The corresponding
additive-restrictive system has abelian groups with orders bounded by

2nmax(nmax+2m+6).

We then apply Proposition 6.0.5 to the additive restrictive system A(j1, j2). By
Propositions 5.2.3 and 6.0.5, whenever

(9.5) ε < 2−nmax(nmax+2m+6)

and

(9.6) logM ≥ A · 6m+2 log ε−1,

there is a choice of σ1, · · · , σM in Gal(M(j1, j2)M◦/M◦) so that, for any σ in this
Galois group and any choice of Z ′AR = Zgap × {x1, · · · , xM} with

xi ∈ Xib(σ + σi) ∩Xib(Pgap)

for all i ≤M , we have ∑
x∈Z′AR

F (Art(x)) ≤ ε · |Z ′AR|.

From (9.4), we see that ZAR can be split into subproducts Z ′AR with the remainders
that can be absorbed into the error term. Therefore, equidistribution applies to
ZAR as well. Choosing

ε = (log log log log logN)
−c

(m+1)6m

we find that ε satisfies (9.5) and (9.6). This completes the proof of this proposition,
with

(9.7) cm =
c

(m+ 1)6m
,

where we recall that c is an absolute constant. �

It remains to show how one uses Proposition 9.0.3 implies Proposition 9.0.1.
indeed, we will see that

Proposition 9.0.3⇒ Proposition 9.0.2⇒ Proposition 9.0.1.

9.1. Proposition 9.0.2 implies Proposition 9.0.1. The argument is reduced
to controlling bad types of pairs (a,Pgap). First, we need to avoid the case where
n is not less than nmax. Second, we need to avoid those a where, for some choice
of pairings, we cannot find suitable initial data for Proposition 9.0.2. Finally, we
need to avoid those (a,Pgap) for which (9.2) fails to hold for some i ∈ Sgap. We
claim that the union of X(a,Pgap) over all three kinds of bad pairs (a,Pgap) can
be absorbed into the error term of Proposition 9.0.1.

The assertion that the union of X(a) for which nm ≥ nmax can be absorbed into
the error term is a consequence of Theorem 8.2.2.

Next, consider those a such that, for some choice of pairings Art(k) and a basis,
there is no suitable choice of S(j1, j2) as in Lemma 5.2.2. We claim that the union
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of X(a) for such a can also be absorbed into the error term.

The proportion of a for which there are elements w1, w2 ∈ cl(K(x0)) so that
either w1 or w2 is non-zero, and

(9.8) |(T1(w1) + T2(w2)) ∩ [kgap/2, kgap]| >
(

1

4
+ 2−10nmax

)
· kgap

has density at most

O

((
15

16

)r
+ exp

(
2−20nmax · kgap

))
in the space FM∪MP2 . Here, T1 + T2 denotes the symmetric difference.

Call a generic if there is no non-zero tuple w of X(a) for which T1(w) +T2(w) =
{1, · · · , r}, and if there are no pairs of non-zero tuples (w1, w2) with w1 + w2 also
non-zero, but T1(w1) + T2(w1) + T1(w2) + T2(w2) = {1, · · · , r}. We then see, after
some effort, that the conditions of Lemmas 4-6 in [8] are satisfied, so that are non-
generic a due to the condition on w can be bounded by their consequences. It thus
follows we obtain the bound

O
(

22|P| · (3/4)r
)
.

For the condition on (w1, w2), we can use Lemma 7 in [8] instead, after noting that
the condition u′1 = u′′2 can be weakened to u′1/u

′′
2 ∈ XS , in the notation of [8],

without any change. Therefore we conclude that the number of non-generic a is
bounded by

A|P| ·
(

15

16

)r
for some absolute constant A > 1.

We may now suppose that w is a generic tuple. We can then conclude, from
genericity, that the local conditions at the r primes coming from X are indepen-
dent, and so the proportion of a where w is an admissible tuple for X(a) is bounded
by O (4−r). Similarly, if (w1, w2) is generic as above, the probability that w1 and
w2 are both admissible for X(a) is bounded by O

(
4−2r

)
by independence.

Hoeffding’s inequality is sufficient to complete the estimate of the density of
a ∈ FM∪MP2 not satisfying (9.8) for some w1, w2.

For a other than those in this set, it is easy to find sets admissible indices S(j1, j2)
if nmax is sufficiently large in terms of n0. Choose ib > kgap, so that ib is not in
Ti(wj) for any i = 1, 2 and j. Then each S(j1, j2)− {ib, ia(j1, j2)} can be taken to
be an arbitrary subset of size m inside of

T2(wj2) ∩ ({1, · · · , r} − T1(wj2)) ∩
⋂
j 6=j2

({1, · · · , r} − (T1(wj) ∪ T2(wj))) .

The assumptions on a give that this intersection has density about 4−n1 on the
integers in the interval [kgap/2, kgap], which will be larger than m for sufficiently
large nmax.
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If k2 < kgap/2, we see that permuting the first k2 indices do not change whether
(9.8) holds for a given a. Then, by Proposition 8.0.5, we find that the union of
X(a) over all a for which it may be impossible to find a set of acceptable S(j1, j2)
can be absorbed into the error of Proposition 9.0.1.

Finally, we claim that the union of X(a,Pgap) over all (a,Pgap) for which (9.2)
does not hold for some i can be absorbed into the error term of Proposition 9.0.1.
We will work in the context of Proposition 8.0.3. To do this, add the primes
p1, · · · , pk of the box to the set P ; taking Xi(a,P) to be the subset of Xi consistent
with P an the choice of a. We attempt to apply the argument of Proposition 8.0.3
to

X1(a,P)× · · · ×Xr(a,P).

This will work only if no Xi(a,P) is smaller than |Xi|
(log t′1)c′

for some choice of c′. For

such a choice, outside a set of choices of a over which the union of the X(a)’s can
be absorbed into the error term of Proposition 9.0.1, we always have

|Xi(a,P)| ≥ |Xi|
(log t′1)c′

.

Suppose we have such an a. Then a choice of Pgap for which (9.2) does not hold
would be exceptional in the sense of the proof of Proposition 8.0.3. In that proof,
the union of all such exceptional can be seen to be absorbed into the error term of
Proposition 9.0.1.

We now note that there are at most 2mn
2
max sequences of pairings Art(k). The

conclusion of Proposition 9.0.2 then implies∣∣∣∣X(a,Pgap) ∩ Sn1,··· ,nm+1,±(N)
∣∣− P (nm+1;nm, nm + 1) ·

∣∣X(a,Pgap) ∩ Sn1,··· ,nm,±(N)
∣∣∣∣

≤ A · 2mn
2
max · |X(a,Pgap)| · (log log log logN)−cm .

A routine calculation shows that the sum of this error over all a and Pgap is then
acceptable for the error term of Proposition 9.0.1.

9.2. Proposition 9.0.3 implies Proposition 9.0.2. Choose initial data as right
before the statement of Proposition 9.0.2. Write Vgap for the subset of

∏
i∈Sgap

Xi

consistent with Pgap and the conditions of a. Take

R = bexp exp(kgap/5)c,
and assume that R > 0. We choose t ≥ 0, and for each i ∈ Sgap, we choose
sequences of subsets

Z1
i , · · · , Zti ⊆ Xi(a,Pgap)

each with cardinality M . We take

Z`gap =
∏

i∈Sgap

Z`i .

We suppose that these subsets satisfy the following:

• For ` 6= `′, we have |Z`gap ∩ Z`
′

gap| ≤ 1;

• Each Z`gap is a subset of Vgap and any point in Vgap is in at most R of the

Z`gap;

• The set Z`gap can be used as starting data for Proposition 9.0.3.
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Furthermore, we assume that the sequence of Z`gap cannot be extended under these
requirements to a sequence of t+ 1 subgrids.

Write

Xgap =
∏

i∈Sgap

Xi(a,Pgap).

Take V bad
gap to be the set of points in Vgap that are consistent with the choice of

a and Pgap and that are in fewer than R of the Z`gap. Write δ for the density

of V bad
gap in Xgap. By a greedy algorithm, one can choose a subset W of V bad

gap of

density at least δ/RMm+1 such that no point in W is in more than two of the Z`gap.

By adjoining splitting behaviour at the primes in Pgap to the system constructed
in Proposition 5.1.1, we can then define an additive-restrictive system on Xgap with

Y
◦
∅ = W and where, if x ∈ Y ◦Sgap

, then the governing expansions defined at x are
as required for Proposition 9.0.3. The maximal size of the abelian groups in this
additive-restrictive system is bounded by 2kgap+|P|. Then, by Proposition 5.0.2, the

density of Y
◦
Sgap

in Xgap ×Xgap is at least(
δ

2kgap|P| ·RMm+1

)3|Sgap|

.

We note |Sgap| ≤ (m+ 1)n2
0. In addition, for sufficiently large N , we always have

|Xi(a,Pgap)| > exp exp(0.3 · kgap)

for i ∈ Sgap. Applying Proposition 6.0.1 and the assumptions on t, we then have

M2m >
exp(0.3 · kgap)

(m+ 1)3(m+1)n2
m · (exp(kgap/4) + log δ−1)

for sufficiently large N . We can then bound δ by exp(− exp(kgap/4)) for sufficiently
large N . Then, following the proof of Proposition 8.0.3, we see that the subset of
x ∈ X(a,Pgap) for which πSgap

(x) is in V bad
gap can be absorbed into the error term

in Proposition 9.0.2.

We associate grids Z`gap with fields M ` and M `
◦ and a supergrid Z` as in (9.3).

For x ∈ X(a,Pgap) with πSgap
(x) outside of V bad

gap , write Θ(x) for the number of

` ≤ t for which x is in Z`. Write dML for the degree of M ` over some L(x) with
x ∈ Z`gap; from Proposition 3.1.9, we find this degree is independent of x and `. For
i > kgap, put Xi(L(x)) for the subset of Xi(a,Pgap) consistent with the choice of
x. By Proposition 7.3.1 and the definition of extravagant spacing, we then have

|Xi(M
`
◦)| = d−1

ML · |Xi(L(x))|(1 +O(exp(−2kgap)))

for i > kgap. Proposition 8.0.3 then gives that the subset of∏
i>kgap

Xi(M
`
◦)

consistent with a has order

d
−(r−kgap)
ML · |X(a,Pgap ∩ π−1

Sgap
(x)| · (1 +O(exp(−kgap))).
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From this, we see that Θ(x) has average order

d
−(r−kgap)
ML R · (1 +O(exp(−kgap))).

Similarly, from the requirements on Z` ∩ Z`′ and Proposition 3.1.9, we see that
M `
◦M

`′

◦ has degree d2
ML over L(x) for Z`, Z`

′
distinct grids containing x. Then the

average order of Θ(x) is seen to be

d
−2(r−kgap)
ML ·R2(1 +O(exp(−kgap))).

Thus, outside of a set of density O(exp(−kgap/2)) in the support of Θ, we find that
Θ(x) over the mean value of Θ is within exp(−kgap/4) of 1. The effect of the set
of low density can be absorbed into the error term of Proposition 9.0.2, and the
variance between Θ(x) can also be absorbed into the error term. Proposition 9.0.2
then follows from Proposition 9.0.3.
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