MAT 1200/415, Algebraic Number Theory, Fall 2018 Homework 1, due on Friday September 28 Florian Herzig

- 1. Marcus, Number fields, Chapter 2, Problems 11, 14, 30, 42(ab).
- 2. Suppose that $A \subset B$ are domains with B integral over A, and that \mathfrak{q} is a prime ideal of B.
 - (a) Show that A is a field iff B is a field.
 - (b) Deduce that \mathfrak{q} is maximal in B iff $\mathfrak{q} \cap A$ is maximal in A.
- 3. Let $K = \mathbb{Q}(\sqrt{-14})$. Let $I = (3, \sqrt{-14} 1)$ be an ideal in \mathcal{O}_K . Prove that I, I^2, I^3 aren't principal, while I^4 is.
- 4. Let *I* be the ideal $(2, 1 + \sqrt{-3})$ in $\mathbb{Z}[\sqrt{-3}]$. Prove that $I^2 = 2I$ but $I \neq (2)$. Conclude that ideals in $\mathbb{Z}[\sqrt{-3}]$ do not factor uniquely into prime ideals. (We'll soon see that in rings of integers of number fields we do have unique factorisation into prime ideals. Why isn't this a contradiction?)