MAT 1200/415, Algebraic Number Theory, Fall 2018 Homework 3, due on Friday October 26 Florian Herzig

- 1. Marcus, Number fields, Chapter 3, Problem 12. (Do not use Kummer-Dedekind in this problem! Optional: can you see directly why the map in (c) is an isomorphism?)
- 2. Determine exactly which prime numbers p split, ramify, and remain inert in \mathcal{O}_K , where $K = \mathbb{Q}(\sqrt{6})$ or $\mathbb{Q}(\sqrt{-11})$. Your answer should be expressed in terms of congruence conditions on p.
- 3. Consider $K = \mathbb{Q}(\sqrt[3]{10})$.
 - (a) Find all prime numbers $p \neq 3$ that ramify in \mathcal{O}_K and factor $p\mathcal{O}_K$ into prime ideals in each case.
 - (b) Suppose that $p \equiv 1 \pmod{3}$ is unramified in \mathcal{O}_K . What are the possible splitting behaviours of p in \mathcal{O}_K (i.e. how many primes does $p\mathcal{O}_K$ factor into, and what are their residue degrees f_i)? Give an example of a prime p and its factorisation in \mathcal{O}_K for each possible splitting behaviour.
 - (c) Now repeat the same question for $p \equiv 2 \pmod{3}$ unramified in \mathcal{O}_{K} .
 - (d) Factor the prime 3 in \mathcal{O}_K , by following Marcus Chapter 3, Problem 26(d). (This is very special to this field... Later we will see a nice way to determine the splitting behaviour of (3) using *p*-adic techniques.)

(Hint: remember Homework 2 for \mathcal{O}_K , as well as Kummer-Dedekind!)

- 4. Recall that $\mathbb{Z}[\sqrt{-5}]$ is a Dedekind domain that is not a PID. Find a very indirect proof that there are infinitely many prime numbers in \mathbb{Z} by showing that otherwise $\mathbb{Z}[\sqrt{-5}]$ would be a PID.
- 5. Suppose that I is any fractional ideal in a Dedekind domain A.
 - (a) Show that there is a surjection of A-modules $\pi: A^2 \to I$ (where $A^2 = A \oplus A$).

- (b) Find a map of A-modules $s: I \to A^2$ such that $\pi \circ s = 1_I$, the identity function $I \to I$.
- (c) Deduce that there is an A-module J such that $A^2 \cong I \oplus J$. (Hint: try $J = \ker(\pi)$.)
- (d) Give an example of an *I* that is not free as an *A*-module. (Remark: this is an example of a projective module that is not free.)

(Hint: recall that fractional ideals in Dedekind domains are invertible and can be generated by two elements. Do not use the classification of finitely generated modules over Dedekind domains that I mentioned in class!)