MAT 1200/415, Algebraic Number Theory, Fall 2018 Homework 5, due on Friday December 14 Florian Herzig

- 1. Milne, Appendix B, problem 6.
- 2. Cassels, chapter 7, exercises 5 (only (i)–(iii)), 13 (not 13 bis), 18.
- 3. Consider the cyclotomic field $K = \mathbb{Q}(\zeta_{p^r \cdot s})$, where $p \nmid s$. Show that $\mathbb{Q}(\zeta_s)$ is the largest subfield of K in which p is unramified.
- 4. Consider $K = \mathbb{Q}(\alpha)$, where α is a root of the irreducible polynomial $x^3 + x^2 6x 7$, which has discriminant $361 = 19^2$. Note that K/\mathbb{Q} is a cylic extension, since the discriminant is a square. The Kronecker-Weber theorem implies that K is contained in a cyclotomic field $\mathbb{Q}(\zeta_n)$.
 - (a) Use the previous problem to show that K is contained in $\mathbb{Q}(\zeta_{19^r})$ for some r.
 - (b) Then prove that K is contained in $\mathbb{Q}(\zeta_{19})$.
 - (c) Determine the set of primes that split completely in K.

(In these two problems you will need to know Euler's ϕ -function.)

- 5. Consider $K = \mathbb{Q}(\sqrt[3]{10})$. Recall that in Homework 3 you showed that (3) = \mathfrak{pq}^2 in \mathcal{O}_K , where $\mathfrak{p} \neq \mathfrak{q}$ are prime ideals, by using a clever argument relying on the knowledge of \mathcal{O}_K . The goal of this exercise is to give two alternative proofs of this that avoid knowing \mathcal{O}_K .
 - (a) Use Newton's method to show that $f(x) = x^3 10$ has precisely one root α in \mathbb{Q}_3 . Use this to deduce the claim. You may use that 3 ramifies in K from Homework 3. Also, determine α modulo $3^7\mathbb{Z}_3$.
 - (b) Alternatively, consider the Newton polygon of f(x+1) to deduce the claim. (This time do not assume you already know that 3 ramifies in K.)

Note that it's natural to consider f(x+1), since any root of f(x) in \mathbb{Z}_3 has to be $\equiv 1 \pmod{3}$.

- 6. Consider the polynomial $f(x) = 5!(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!}) \in \mathbb{Z}[x].$
 - (a) Let p be 2, 3, or 5. By using the Newton polygon, determine the degrees of the irreducible factors of f(x) over \mathbb{Q}_p . Deduce from this that f(x) is irreducible over \mathbb{Q} .
 - (b) Using the previous part, show that the Galois group of f(x) is either A_5 or S_5 . (Consider bounding e's and f's for the Galois closure.)

In fact, the Galois group is S_5 , as can be checked using the discriminant.