MAT 347 Order September 10, 2019

Order

Let G be a group. Let $a \in G$. We want to compare the powers of a. In other words, when do we have $a^n = a^m$?

First, we define the *order* of a as the smallest positive integer n such that $a^n = 1$, if there is such a thing. Otherwise we define the *order* of a to be infinity. We denote the order of a by |a|.

- 1. Let G be a group, let $a \in G$, and let r = |a|. Complete the following statements and prove them:
 - (a) $a^n = 1 \iff \dots$ (something about *n* and *r*)
 - (b) $a^n = a^m \iff \dots$ (something about n, m, and r)
- 2. Find the order of every element in $\mathbb{Z}/12\mathbb{Z}$ (under addition) and $(\mathbb{Z}/18\mathbb{Z})^{\times}$ (under multiplication).

Note: This questions is shorter than it seems.

3. Find an example of a group G that contains one element of order n for every positive integer n and which also contains an element of order infinity.

Order in symmetric groups

The cycle notation for symmetric groups is well-adapted to finding the order of elements.

- 4. What is the order of a k-cycle?
- 5. What is the order of the following elements of S_6 ?
 - (a) (12)(34)(56)
 - (b) (12)(345)
 - (c) (123)(456)
- 6. Given a permutation expressed as a product of disjoint cycles, explain how you would compute its order.
- 7. What is the maximal order of an element in S_7 ?