MAT 347 Irreducibility criteria January 28, 2020

Let R be a UFD and let F be its field of fractions. Let $f(X) = a_n X^n + \dots + a_1 X + a_0 \in R[X]$.

The main result

• If $f(X) \in R[X]$ is primitive, then f(X) is irreducible in $R[X] \iff f(X)$ irreducible in F[X].

About roots

- f(X) has a degree 1 factor in F[X] iff it has a root in F.
- Assume deg f(X) = 2 or 3. If f has no roots in F, then it is irreducible in F[X].
- Assume that $\frac{r}{s}$ is a root of f(X) written as a fraction in R in lowest terms. Then $r|a_0$ and $s|a_n$.

Reduction

Let P ≤ R be a prime ideal. Assume f(X) is monic. Let f(X) ∈ (R/P)[X] be the reduction of f(X).
If f(X) is irreducible in (R/P)[X], then f(X) is irreducible in R[X].

Eisenstein criterion

• Let $P \leq R$ be a prime ideal. Assume f(X) is monic; $a_{n-1}, \ldots, a_0 \in P$; and $a_0 \notin P^2$. Then f(X) is irreducible in R[X].

Translation

• Let $a \in R$. The map $T_a : R[X] \to R[X], f(X) \mapsto f(X+a)$ is a ring isomorphism.

Exercises

Determine with proof whether each of the following polynomials is irreducible in the given polynomial ring. If they are not, factor them into irreducibles.

1.
$$f(X) = X^3 + 4X^2 + X - 6$$
 in $\mathbb{Q}[X]$.
2. $f(X) = X^4 + X^2 + 1$ in $(\mathbb{Z}/2\mathbb{Z})[X]$.
3. $f(X) = X^4 + 1$ in $\mathbb{Z}[X]$.
4. $f(X) = X^5 + 3X^4 + 30X^2 - 9X + 12$ in $\mathbb{Q}[X]$.
5. $f(X) = X^5 + 4X^3 - X + iX + 3 + 3i$ in $\mathbb{Z}[i][X]$.
6. $f(X) = X^3 + 6$ in $(\mathbb{Z}/7\mathbb{Z})[X]$.
7. $f(X,Y) = X^3 + X^2Y + 3XY^2 + 5XY + 2Y$ in $\mathbb{Z}[X,Y]$.
8. $f(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$ in $\mathbb{Z}[X]$.

Bonus Exercises

Determine with proof whether each of the following polynomials is irreducible in the given polynomial ring. If they are not, factor them into irreducibles.

- 9. $f(X) = X^3 + 37X^2 + 300X 100$ in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$.
- 10. $f(X) = X^4 + 4$ in $\mathbb{Z}[X]$.
- 11. $f(X,Y) = X^3 + Y^3$ in $\mathbb{C}[X,Y]$ and in $\mathbb{Q}[X,Y]$.
- 12. $f(X, Y, Z) = X^3 + Y^3 + Z^3$ in $\mathbb{C}[X, Y, Z]$.
- 13. Find all irreducible polynomials of degree 1 and 2 and 3 in $(\mathbb{Z}/2\mathbb{Z})[X]$.
- 14. Find all irreducible polynomials of degree 1 and 2 in $(\mathbb{Z}/3\mathbb{Z})[X]$ and use that to factor $X^4 + X + 1$ and $X^3 X$ in $(\mathbb{Z}/3\mathbb{Z})[X]$.

Hints

- 3. Apply Eisenstein to f(X+1). 7. Eisenstein. 8. Apply Eisenstein to f(X+1).
- 9. Use reduction modulo 3. 11. Use $R = \mathbb{C}[X]$. 12. Use $R = \mathbb{C}[X, Y]$.