MAT 347 The Galois group March 3, 2020

Note that we already covered questions 1–3 in class.

Definition 1 Let K/F be a field extension. The Galois group of K over F is defined as

 $\operatorname{Gal}(K/F) = \{\varphi : K \to K | \varphi \text{ is an automorphism and } \varphi(a) = a \text{ for all } a \in F \}$

(which is a group under composition).

- 1. Show that $\operatorname{Aut}(K) = \operatorname{Gal}(K/F)$, if F is the prime subfield of K.
- 2. Show that $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \tau\}$, where τ is complex conjugation. (Hint: consider $\varphi(a+bi)$ for $\varphi \in \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. What do you know about $\varphi(i)$?)
- 3. Suppose that $\varphi \in \operatorname{Gal}(K/F)$ and $f(x) \in F[x]$.

 \sim

- (a) If $\alpha \in K$ is a root of f(x), then so is $\varphi(\alpha)$.
- (b) Show that $\alpha \in K$ is algebraic over F iff $\varphi(\alpha)$ is algebraic over F, and that in that case they have the same minimal polynomial over F.
- (c) Deduce that there is an action of $\operatorname{Gal}(K/F)$ on the set of roots of f(x) in K.
- 4. Suppose $K = F(\alpha)$ for some algebraic $\alpha \in K$, and α has minimal polynomial f(x) over F. Then $|\operatorname{Gal}(K/F)| =$ number of roots of f(x) in K. (*Hint:* use "Theorem A".)
- 5. Consider the field extension $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$. Find the Galois group of this extension.
- 6. Consider the field extension $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$. Find the Galois group of this extension.
- 7. Consider the field extension $\mathbb{Q}(\zeta_5)/\mathbb{Q}$, where $\zeta_5 = e^{2\pi i/5}$. Find the Galois group of this extension.
- 8. Consider the field extension $\mathbb{Q}(i,\sqrt{2})/\mathbb{Q}$. Find the Galois group of this extension. (*Hint:* use "Theorem A" twice.)

Definition 2 Let H be a subgroup of $\operatorname{Gal}(K/F)$. The fixed field of H, denoted $\operatorname{Inv}(H)$ or $\widehat{I}(H)$ or K^H , consists of all the elements of K that are fixed by all the automorphisms in H. In other words,

$$I(H) = \{ \alpha \in K : \varphi(\alpha) = \alpha \text{ for all } \varphi \in H \}.$$

- 9. Show that $\widehat{I}(H)$ is a subfield of K that contains F.
- 10. If $H_1 \leq H_2$ are subgroups of $\operatorname{Gal}(K/F)$, how are $\widehat{I}(H_1)$ and $\widehat{I}(H_2)$ related?
- 11. List all the subgroups of $\operatorname{Gal}(K/\mathbb{Q})$ for $K = \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt[4]{2}), \mathbb{Q}(\zeta_5), \mathbb{Q}(i, \sqrt{2})$ and find the corresponding fixed fields. (This is perhaps slightly tricky in the third example.)