MAT 347 An example of the FTGT March 17, 2020

The Fundamental Theorem of Galois Theory

Definition. A finite field extension K/F is *Galois* if it is normal and separable.

Theorem. Let K/F be a finite Galois extension. Let G = Gal(K/F). Consider the maps \widehat{I} and \widehat{G} from Section 4 of Alfonso's notes.

- (1) The maps \widehat{I} and \widehat{G} are inverses of each other. In other words:
 - $\widehat{G}(\widehat{I}(H)) = \operatorname{Gal}(K/\operatorname{Inv}(H)) = H$ for every subgroup $H \leq G$.
 - $\widehat{I}(\widehat{G}(M)) = \text{Inv}(\text{Gal}(K/M)) = M$ for every intermediate field $F \subseteq M \subseteq K$.
- (2) Let $H \leq G$ and let $M = \widehat{I}(H)$, so that $H = \widehat{G}(M)$. Then |H| = [K : M]. In particular |G| = [K : F]. Equivalently, (G : H) = [M : F].
- (3) Under the same conditions as in Part (2), K/M is always Galois. In addition, TFAE:
 - M/F is Galois.
 - M/F is a normal field extension.
 - *H* is a normal subgroup of *G*.

In that case, $\operatorname{Gal}(M/F) \cong \operatorname{Gal}(K/F)/\operatorname{Gal}(K/M)$.

An Example

Let $f(X) = X^4 - 2$. Let $K \subset \mathbb{C}$ be the splitting field of f(X) over \mathbb{Q} . Let $G = \operatorname{Gal}(K/\mathbb{Q})$.

- 1. Find all roots of f(X) in \mathbb{C} .
- 2. Find a (nice) set of two elements that generate the field extension K/\mathbb{Q} .
- 3. Calculate $[K : \mathbb{Q}]$.

- 4. Find a basis for K as a \mathbb{Q} -vector space.
- 5. List all the elements of G by showing how they act on a set of generators. (*Hint:* the easy part is to give an upper bound $|G| \leq \ldots$ by considering the action on generators. On the other hand, use the FTGT to compute |G| to see that all such actions are possible.)
- 6. Determine the group G up to isomorphism. (*Hint:* study the group operation by using the action on generators.)
- 7. Find all intermediate fields of K/\mathbb{Q} .
- 8. Which intermediate fields are normal over \mathbb{Q} ? Each one of them has to be the splitting field of some polynomial. Find such polynomials.
- 9. Find a primitive element for the field extension K/\mathbb{Q} , i.e. an element $\alpha \in K$ such that $K = \mathbb{Q}(\alpha)$. (*Hint:* find an α such that $\widehat{G}(\mathbb{Q}(\alpha)) = 1...$)