MAT 347 Finite fields March 24, 2020

Finite fields

Recall what we already know. Let K be a finite field. Then we know its characteristic is a prime p. Moreover, the field with p elements \mathbb{F}_p is the prime subfield of K, so that $\mathbb{F}_p \subseteq K$. Hence K is a (finite dimensional) vector space over \mathbb{F}_p so that $|K| = p^n$, where the integer n is the dimension of K as \mathbb{F}_p -vector space.

We also defined the Frobenius homomorphism $\sigma_p : K \to K$ by $\sigma_p(a) = a^p$ for all $a \in K$. Notice that $\sigma_p \in \text{Gal}(K/\mathbb{F}_p)$.

Our first goal is to show that for each $n \ge 1$ there is a unique field K with $|K| = p^n$, up to isomorphism.

- 1. Let K be a field of size p^n . Then K is a splitting field of the polynomial $X^{p^n} X$ over \mathbb{F}_p . (*Hint:* recall that the group K^{\times} is cyclic!)
- 2. Conversely, fix any integer $n \ge 1$ and let K be a splitting field of the polynomial $X^{p^n} X$ over \mathbb{F}_p . Prove that $|K| = p^n$. (*Hint:* let Σ be the set of roots of $X^{p^n} X$ in K. Show that Σ is a field so $\Sigma = K$. Also show that $X^{p^n} X$ is separable.)
- 3. Deduce that for any $n \ge 1$ there exists a unique field of order p^n up to isomorphism. We will denote it by \mathbb{F}_{p^n} .
- 4. Deduce that for any $n \ge 1$ there exists an irreducible polynomial in $\mathbb{F}_p[X]$ of degree *n*. (*Hint:* use that $\mathbb{F}_{p^n}/\mathbb{F}_p$ is simple.)
- 5. Show that the extension $\mathbb{F}_{p^n}/\mathbb{F}_p$ is Galois.
- 6. Prove that the Galois group $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is cyclic of order *n*, generated by the Frobenius automorphism σ_p .
- 7. Classify the intermediate fields of $\mathbb{F}_{p^n}/\mathbb{F}_p$: what sizes do they have and how many are there of each size?
- 8. Let $F = \mathbb{F}_2$. Let $K = F[X]/(X^4 + X + 1)$. Describe $\operatorname{Gal}(K/F)$ and draw the lattice of subextensions of K/F. For each subfield $F \subseteq M \subseteq K$ find $\alpha \in M$ such that $M = F(\alpha)$ and find the minimal polynomial of α over K.

9. Continuing with the previous question, how does the polynomial $X^4 + X + 1$ factor over K? (*Hint:* if β denotes the obvious root in K, how do you obtain new roots from β ?)

Further problems

- 10. Repeat Question 8 with $K = F[X]/(X^6 + X + 1)$. You may assume that this polynomial is irreducible.
- 11. Suppose that F is a finite field of characteristic p and that K/F is an extension of degree n. Show that K/F is Galois and that Gal(K/F) is cyclic, generated by $\sigma_p^{[F:\mathbb{F}_p]}$ (i.e., the automorphism $x \mapsto x^{|F|}$).