Math 470-3, Spring 2010

Graduate Algebra Homework 3

- 1. Suppose that k is a field. Find the associated primes of the k[x, y, z]-module $k[x, y, z]/(x^2, xy^2, yz)$. Write each one as Ann(m) for some m in the module.
- 2. Suppose that \mathbb{T} is a ring that is finitely generated as \mathbb{Z} -module. Suppose that M is a finite and faithful \mathbb{T} -module. (Faithful means: for all $T \neq 0$ in \mathbb{T} there is an $m \in M$ with $Tm \neq 0$.) Suppose that $\mathfrak{m} \subset \mathbb{T}$ is a maximal ideal. Show that there is a prime ideal $\mathfrak{p} \subset \mathfrak{m}$ such that $M[\mathfrak{p}] \neq 0$, i.e., there is an $f \in M$, $f \neq 0$ such that Tf = 0 for all $T \in \mathfrak{p}$.
- 3. Suppose A is a ring that is complete with respect to the *I*-adic topology. Show that $I \subset \operatorname{rad} A$.
- 4. (a) Let A be a noetherian ring, p a prime ideal such that ht(p) ≥ 2.
 Prove that p contains infinitely many prime ideals of height 1. (Hint: deduce a contradiction to Krull's principal ideal theorem.)
 - (b) Let $\mathfrak{p} \subset \mathfrak{q}$ be prime ideals of a noetherian ring A. Prove that if there is a prime ideal strictly between \mathfrak{p} and \mathfrak{q} , then there are infinitely many such prime ideals.
- 5. Let A be a dvr. Show that $A[\![x]\!]$ is a regular local ring of dimension 2. You may assume that this ring is noetherian. (As I mentioned in class, this follows by a similar argument as Hilbert's basis theorem.) (Hint: an earlier homework problem might be useful.)
- 6. Suppose that k is a field. Show that $k[\![x]\!]$ is a dvr. Describe the corresponding discrete valuation v of the fraction field and give a uniformiser.

Other exercises (not required):

- 1. Find the associated primes of k[x, y, u, v]/(xy, uv, xu+yv). (This is lengthier...)
- 2. Suppose that (A, \mathfrak{m}) is a noetherian local ring and suppose that $x \in \mathfrak{m}$ is a non-zero-divisor. If A/xA is a domain, show that A is a domain.