INVERSE SATAKE ISOMORPHISM AND CHANGE OF WEIGHT

N. ABE, F. HERZIG, AND M.-F. VIGNERAS

ABSTRACT. Let G be any connected reductive p-adic group. Let K C G be any special
parahoric subgroup and V, V' be any two irreducible smooth F,[K]-modules. The main goal
of this article is to compute the image of the Hecke bi-module Endﬁp[K] (C-Indg V, c-Ind$ v’
by the generalized Satake transform and to give an explicit formula for its inverse, using the
pro-p Iwahori Hecke algebra of G. This immediately implies the “change of weight theorem”
in the proof of the classification of mod p irreducible admissible representations of G in terms
of supersingular ones. A simpler proof of the change of weight theorem, not using the pro-p
Iwahori Hecke algebra or the Lusztig-Kato formula, is given when G is split (and in the
appendix when G is quasi-split, for almost all K).
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1. INTRODUCTION

1.1. Throughout this paper, F' is a local nonarchimedean field with finite residue field k of
characteristic p, G is a connected reductive F-group, and C' is an algebraically closed field
of characteristic p. In our previous paper [AHHV17], we gave a classification of irreducible
admissible smooth C-representations of G = G(F') in terms of supercuspidal representations
of Levi subgroups of G. The most subtle ingredient in our proofs is the so-called “change of
weight theorem”, which we deduced from the existence of certain elements in the image of the
mod p Satake transform. The main goal of this paper is to determine its image entirely and
give an explicit formula for the inverse of the mod p Satake transform, we call it the ‘nverse
Satake theorem, from which the change of weight is an immediate consequence.

To be a bit more precise, the mod p Satake transform can be defined for the Hecke algebra
of a single irreducible representation V of a special parahoric subgroup, as well as more
generally for the Hecke bimodule of a pair (V, V') of such irreducible representations. The
image of the mod p Satake transform was known in case of a single irreducible representation
V of a special parahoric subgroup, cf. [HV15], [Her11b]. However, for the change of weight
theorem it is essential to allow pairs (V, V') with V 2 V.

In earlier work Prop. 5.1], we established the inverse Satake theorem when G is
split with simply-connected derived subgroup and V' = V' by deducing it from the Lusztig-
Kato formula, which is an inverse formula for the usual Satake transform in characteristic
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zero. (See also the related work of Ollivier |OII15].) In this paper we establish the inverse
Satake theorem in characteristic p for arbitrary G and pairs (V, V') by using the pro-p Iwahori
Hecke algebra.

1.2.  We now explain our results in more detail. Let S be a maximal split torus of G, Z
its centralizer, B = ZU a minimal parabolic subgroup and A the set of simple roots defined
by (G,B,S). Put Z = Z(F) and U = U(F). Let X.(S) be the group of cocharacters of S
and vz: Z — X,(S) ® R be the usual homomorphism (see Section 2.1). Put Z+ = {z € Z |
{a,v7(z)) > 0 for any o € A}, so that Z1 contracts U under conjugation.

Let K be a special parahoric subgroup of GG corresponding to a special point of the apart-
ment of S and put Z° = Z N K (the unique parahoric subgroup of Z), U = UN K. Let V
be an irreducible smooth C-representation of K. It is parameterized by a pair (¢¥y, A(V)),
where ¥y : Z° — C* describes the action of Z° on the line Vio and A(V) C A is a certain
subset (see . Let c-Ind¥ V denote the compact induction of V. If V' denotes an-
other irreducible smooth C-representation of K, we define the Hecke bimodule Hg(V, V') :=
Homcg (c-Ind% V, c-Ind$ V). This is non-zero if and only if ¥y is Z-conjugate to y. Once
we fix a linear isomorphism ¢: Viyo =~ Vo, Hg(V, V') has a canonical C-basis {1, = T Vi
where 2z runs through a system of representatives of Zg (V,V")/Z" and Z} (V, V') is a certain
union of cosets of Z° in ZTNZy, .., where Zy,, 4., ={z € Z | z-ty = ¢y} (see ) The

element T "V is determined up to scalar by the condition supp 7.V "V = KzK and normalized
by ¢ (see §2.6).
V'V
Similarly, we have the Hecke bimodule Hz(Vio, V}y) with C-basis {r, = 7. ue
z Tuns through a system of representatives of Zy, 4.,/ 7% Then we have the mod p Satake
transform S¢: Ha(V, V') = Hz(Vyo, Vo) which is C-linear and injective [HVI5]:

SC(f)(2) (@) = Z fuz)(v), for feHq(V,V'),z2€ Zandv eV,
ueUN\U

}, where

where v = U : V. — Vo (resp. V! — Vo) is the quotient map from V' (resp. V') onto its
UY-coinvariants, and we realize Hg(V, V') as a set of compactly supported functions on G
with a certain K-bi-equivariance.

1.3. For a € A, let M/ be the subgroup of G generated by the root subgroups Uy, for
the roots +£a. (Note that this need not be the F-points of a closed subgroup of G.) Then
(ZnM)/(Z°N M) ~ Z and we let an, € Z N M., be a lift of a generator such that
(a,vz(aq)) < 0 [AHHVIT, II1.16 Notation]. Let A’(V') be the set of o € A(V') such that ¢y

is trivial on Z° N M. The element TLYO{J 0V 4 independent of the choice of a, if « € A'(V).
For z € Z/(V, V'), note that

ZFV, VY =Z" Nz 1T al
Q€A (V)NA/ (V)
is a finite subset of Z/(V,V’) by Lemma

Theorem 1.1 (Inverse Satake theorem, Theorem [2.12). A C-basis of the image of S¢ is
given by the elements

v,V
(1.1) 7 U0 I a—m)
€A (VA (V)
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for z running through a system of representatives of Z&(V,V')/Z° in Z&(V, V).
A C-basis of Ha(V, V') is given by the elements

_ V'V
Pz = Z T,
zeZI (V,V)

for z running through a system of representatives of Zéf(V, V) Z°.
For z € ZL(V, V') we have:

V Vo
S (QOZ) — UO H (1 . T(YOLUO7VUO)-

€A (VA (V)

When A'(V') € A'(V), the convention is that [],earvyary (1 — T;/UO’VUO) =1

There is a Satake transform S§; : Ha(V, V') — Ha(Vvak, Vi) for any parabolic sub-
group P = MN containing B With Levi subgroup M containing Z [HV12, Prop. 2.2, 2.3]
with M = M(F) and N = N(F). We compute also S§;(¢,) (Theorem .

1.4. From the above theorem, we can easily deduce the following result which implies the
change of weight theorem (cf. Section . Suppose that V, V' satisfies that 1y = ¢y and
A(V) = A(V')U{a} for some a € A. Let Z;FV the subset of Z1 consisting of the elements
which normalize vy . Define ¢, by

1 ifae A(V),
“ 10 otherwise.

Theorem 1.2 (Theorem . Let z € Z;’V such that (a,vz(z)) > 0. Then there exist
G-equivariant homomorphisms ¢ : c-Ind%V — c-Ind% V' and ¢ : ¢-Ind$ V' — c-IndZ V
satisfying

Vlovvl VieVio VO:VO Vi0,V0
SG(poy) =710 —caT V0, 89 o) =TI — a0

In Section |§| we give a simple proof of Theorem (and hence of the change of weight
theorem) when G is split. It is more elementary than the other proofs we know in this case.
In particular, we do not use the pro-p Iwahori Hecke algebra or the Lusztig-Kato formula.
In the proof we first reduce to the case where G has simply-connected derived subgroup
and connected center, and vz(z) is minuscule. We construct many parabolically induced

representations which contain V' but not V’. From this we deduce that if ¢ = TV "V and
V0.V, V0.V,
o = TVV , then SE(¢'0¢) is so constrained that it is forced to be equal to T3 vo-tuo 722[{11’ uo,

In the appendlx two of us (N.A. and F.H.) show that the simple proof of the change of
weight theorem can be made to work, with some effort, for all quasi-split groups G, at least
for most choices of special parahoric subgroup K. We do not know a simple proof for general
G (or for the remaining choices of K when G is quasi-split), partly because the method seems
less powerful in the case where ¢, = 0.

1.5.  We briefly explain the strategy of the proof of Theorem In [Herlla] when G is
split and the derived subgroup is simply-connected, we assumed V = V' and first made a
reduction to the case where dimV = 1. Since G is split, the character V of K can be
extended to a character of G which allows us to reduce to the case where V is trivial and use
the characteristic zero formula of Lusztig-Kato. This argument cannot work for general G
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since a character of K need not extend to G. For example, this can happen when G = D*
where D is a (non-commutative) division algebra over F'.

In our proof, we treat arbitrary pairs (V,V’). First we make a reduction to the case where
A(V') € A(V) using properties of Satake transform and the convolution of Hecke operators
(Lemmas B-2). When A(V’) C A(V), using a calculation in [AHHVIT7, §IV], we can
express the inverse of the Satake transform using an alcove-walk basis of the pro-p Iwahori
Hecke algebra (Proposition [5.1). Combining this with an explicit calculation of the alcove-
walk basis (Proposition e get Theorem More details are given below.

1.6. Let Hg be the Hecke Z-algebra of the pro-p Iwahori group I = K (1)U, where K (1) is
the pro-p radical of K and ng = K N U,p, where Uy, is the opposite to U (with respect to
Z). We also let Z(1) = ZNK(1). Until the end of this introduction we assume A(V') C A(V)
and z € Zg (V,V"). We now explain how the theory of H¢ allows us to prove

V! 5.Vyo

07
Y

= SG(SOz)

in Theorem hence the inverse Satake theorem.
Once we choose a non-zero element v € V5o and let v’ € V(}O correspond to v under our
fixed isomorphism ¢ : Viyo ~ V{}o, we define embeddings

I 7 i
IndF V 2 %o, oIndG V' 5 Xg,  oInd% Vpo 25 Xz, c-IndZo Vi 25 X5,

of c-Ind% V and c-Ind% V in the parabolically induced representation X = Ind$ (c—Indg(l) C)
and of C—Indgo Vo and c—Indgo Vo in Xz = c—Indg(l) C. We have

I, = (Ind$% j,) o Iy, Iy = (Ind$ jy) o Iy

for the canonical C[G]-embedding c-Ind% V L, Ind% (c-Ind%, Viyo) [HVI2], and similarly
for Iy. The representation C—Indﬁ V is generated by the I-invariant element f,, which is
supported on K and is such that f,(1) lies in VU and maps to v € Vyo. Similarly for
fo € c-Ind$ V',

Then, I,(f,), I/(f) lie in the (Hz, Hg)-bimodule X% = (Indg(c—lndg(l) CNL. Let 7(2) €
Hz be the characteristic function of 2Z(1).

The first key ingredient is Proposition (which generalizes [AHHV17, IV.19 Thm.]):

We give an explicit element h, € Hg such that 7(2)I,(fy) = Ly (for)hs.

We deduce (Proposition : there exists an intertwiner ¢, : c-Ind% V' — c¢-Ind$ V’ defined
by

¢z(fv) = fv’hz~

V' 0:Vi0
00U
Moreover, 7Y 7

(Ind% V)l on Z*:

= S%(¢.). The second key ingredient is the computation of fyh, €

The function fyh. vanishes on ZT\ Z°ZF(V,V') and is equal to v' on Z}(V,V').

We prove that it implies ¢, = ¢, (proof of Proposition [5.10]).
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1.7.  We develop in Section [4] the theory of the pro-p Iwahori Hecke algebra H¢ behind the
computation of fyh,|,+.

Let AV be the G-normalizer of Z, W (1) = N'/Z(1) the pro-p Iwahori Weyl group, A, € W (1)
the image of x € Z and Z;, the image on Z% in W (1). It is well known that the natural map
W (1) — I\G/I is bijective. The element h, € Hg is given as a product (Propositions
5.3):

hz = E;\zw‘_,,lv,T:’V,v”
where (Ej,),ew(1) is a certain alcove walk basis of H¢ (which depends on V'), (Ty)wew() @
non alcove walk basis of H¢, and wy,y» € W (1) is a lift of the product in N'/Z of the longest
elements of the finite Weyl groups associated to A(V') and A(V”).

The two bases are related by triangular matrices to the classical Iwahori-Matsumoto basis
(Tw)wew(q) of Hg, where T, is the characteristic function of InI for n € N lifting w. We
have

T = Z M (w,u)T,
ueW(1),usw
with coefficients ¢*(w,u) € C' and ¢*(w,w) = 1, where < is the Bruhat (pre)order on W (1)
associated to B (see (4.5))). Let M be the Levi subgroup of G containing Z associated to
A(V'); an index M indicates an object relative to M instead of G. It was a surprise to
discover (partially following an idea of Ollivier [OIl14]) that the coefficients of the expansion

of the alcove walk element E;\ Lol in the classical basis of Hg are given by the coefficients
v/

cM*(\,,u) of the expansion of the non alcove walk basis element 7T i\f ™ € My in the classical
basis (Té,\/[ Jwew,, ) of Hps. Recall that H s is not a subalgebra of H¢, and that the restriction

to Wr(1) of the Bruhat order < on W(1) is not equal to the Bruhat order <* associated to
By = M N B. We show (Proposition [4.30):

M %
E;zw’l, = Z c ()\Z,u)Tuw;lvl.
Y uewn (1), usMa, ’
We carry out a detailed study of the sum ., c*(w,tu)T; modulo ¢ = #k for w,u €
W(1),u < w. In particular, we show (Theorems 4.39)), for a character v : Zj, — C*:
1 if e 2% HaEAip al,

Forax € Z* and Ay < Xz, we have » | " (s, tAq)Y(t) =
0 otherwise.

teZy,
Here Ajy = {a € A | ¢ is trivial on Z%N M!}. With a “little more” we deduce that on Z,
M —1
By To—fe Y X MO0, < f Y T
’ v€Zf (V.V') 162k v€ZL (V)
By the “little more”, we mean: if u € Wy (1) and fU/Tuw‘;lv /T:;V’V, does not vanish on

Z*t then v € ZT/Z(1) (see (5.4)). The two conditions u € Z+/Z(1) and u <M X, are

equivalent to u = X, for € Z°ZF(V,V') (Proposition [£.3). For € Z°ZF(V,V’), we

have fyT) -1 Ty ., = foTy\ -1 Tw,,, on Z* (see (5.5). Then we use the braid relation
A ' v/

acwv7
T

Az W

v,v/

;1‘//va7v, = T),, that f,/T;\, = ¢;}(t)fvlT)\x for t € Zi, and that quz\;{l = A/(V,) =
’ V/

AV AV,
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From fyh, = fu ) ¢ rRUAD T, on ZT — and checking easily that f,,T), is supported on

KzI with value v at =, and Z+ N Kzl = Z%, for all z € Z}(V, V') — we obtain the desired
value of f,h, on ZT (§1.6).

2. CHANGE OF WEIGHT AND INVERSE SATAKE ISOMORPHISM

2.1. Notation. Throughout this paper we follow the notation given in [AHHVI7]. As
in loc. cit., let F' be a nonarchimedean field with ring of integers O and residue field k of
characteristic p and cardinality ¢q. Let ordp : F* — 7Z denote the normalized valuation of
F. A linear algebraic F-group is denoted with a boldface letter like H and the group of its
F-points with the corresponding ordinary letter H = H(F'); we use the similar convention
for groups over k. Let G be a connected reductive F-group.

We fix a triple (S,B,z) where S is a maximal torus in G, B a minimal F-parabolic
subgroup of G containing S with unipotent radical U and Levi subgroup the centralizer Z of
S in G, and x( a special point in the apartment corresponding to S in the adjoint Bruhat-Tits
building of G.

We write A for the normalizer of S in G. If X*(S) is the group of characters of S and
X.(S) is the group of cocharacters, we write ( , ) : X*(S) x X,.(S) — Z for the natural
pairing. We let ® C X*(S) be the set of roots of S in G and we write A for the set of simple
roots in the set ®T of positive roots with respect to B. For a € ®, the corresponding coroot
in X.(S) is denoted by a". For o, € ®, we say that « is orthogonal to 3 if and only if
{a, BY) = 0. The Weyl group Wy := N/Z ~ N'/Z is isomorphic to the Weyl group of ®.

We say that P is a parabolic subgroup of G to mean that P = P(F') where P is an F-
parabolic subgroup of G. If P contains B, we write P = M N to mean that N is the unipotent
radical of P and M the (unique) Levi component containing Z; we write Py, = M N, for the
parabolic subgroup opposite to P with respect to M. The parabolic subgroups containing B
are in one-to-one correspondence with the subsets of A; we denote by P; = M ;N the group
corresponding to J C A (when J = {a} we write simply P, = MyN,).

The apartment corresponding to S in the adjoint Bruhat-Tits building of G is an affine
space xg+ Vaq where Voq := X (Saq) ® R and S,q is the torus image of S in the adjoint group
G.q of G. The group N acts by affine automorphisms on the apartment, its subgroup Z acting
by translation by v = —v where v : Z — V,q is the composite of the map vz : Z — X, (S)®R
defined in [HV15] 3.2] and of the natural quotient map X.(S) @R — X, (Saq) @ R. (We recall
that vz is determined by the requirement that (x,vz) = ordg oy for all F-rational characters
x of Z.) The root system of S,q in G,q identifies with ®. The coroot of o € ® in V,q is the
image of the coroot a¥ € X,(S) ® R by the quotient map, and is still denoted by a".

As in [AHHVI17, 1.5] we write K for the special parahoric subgroup of G fixing gy and
K (1) for the pro-p radical of K. For a subgroup H of G, we put H’ :== HN K and H :=
(HNK)/(HNK(1)). The group S° is the maximal compact subgroup of S, Z° is the unique
parahoric subgroup of Z and Z(1) := Z N K(1) is the unique pro-p Sylow subgroup of Z°.
The group G}, := G = K is naturally the group of k-points of a connected reductive k-group
Gy, of minimal parabolic subgroup Bj, := B with Levi decomposition B, = Z,U;, where
7y, := Z and U, := U. The set of simple roots of the maximal split torus S = S of G}, with
respect to By is in natural bijection with A and will be identified with A. For J C A, the
corresponding parabolic subgroup Py of G containing By, is Py; its Levi decomposition is
PJJC = ]\4J7]€]\7:]7]C where Mk,J = MJ and ]\[JJC = NJ. We write PJykyop = MJ7kNJ7k7Op for the
parabolic group opposite to Pj; with respect to M.
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We fix an algebraically closed field C' of characteristic p. In this paper, a representation
means a smooth representation on a C-vector space.

2.2. The Satake transform S](é. Let V be an irreducible representation of the special
parahoric subgroup K of G; the normal pro-p subgroup K (1) of K acts trivially on V' and the
action of K on V factors through the finite reductive group Gj. Seeing V as an irreducible
representation of Gy, we attach to V' a character ¢y of Zj and a subset A(V) C A as in
[AHHV17, I11.9]; the space of Ug-coinvariants Vy;, of V' is a line on which Zj, acts by ¢y and
the G-stabilizer of the kernel of the natural map V' — Vy, is Pa¢v) - The pair (v, A(V)),
called the parameter of V', determines V. The character 1y, can be seen as the character of
79 acting on the space UY-coinvariants Vo of V.

Let P = M N be the parabolic subgroup of G containing B corresponding to J C A. Then
M? is a special parahoric subgroup of M and Vo is an irreducible representation of M? with
parameter (v, J N A(V)) [AHHVIT, II1.10].

The compact induction C—Ind% V of V to GG is the representation of G' by right translation
on the space of functions f : G — V with compact support satisfying f(kg) = kf(g) for all
k € K,g € G. We view the intertwining algebra Endcg(c-Ind% V) as the convolution algebra
He (V) of compactly supported functions ¢ : G — Endo (V) satisfying ¢(k1gkse) = ki1p(g)ke
for all k1, ke € K,g € G. The action of ¢ € Hg(V) on f € ¢-Ind% (V) is given by convolution

(2.1) (exflg)= > e@)(flz""g))

z€G/K
We have also the algebra Endcas(c-Ind}fo (Vo)) =~ Har(Vyo). The Satake transform is a
natural injective algebra homomorphism [AHHV17, I11.3]

SSr: Ha(V) = Har(Vyo);

it induces an homomorphism between the centers Z5 (V') — Zp(Vyo); both homomorphisms
are localizations at a central element [AHHVI7, 1.5].

For a representation o of M, the parabolic induction IndIGp o of o to G is the representation
of G by right translation on the space of functions f : G — o satisfying f(mngk) = mf(g)
for all m € M,n € N,g € G,k in some open compact subgroup of G depending on f. The
canonical isomorphism

Homcg(c-Ind$ V, nd% ) = Home s (c-Ind3, Viyo, o)
is Ha(V)-equivariant via S§ [AVI2, §2].

2.3. The Satake transform S¢ = S§. As in [AHHVI7, I11.4], the algebra Hz(Vyo) is
easily described. The unique parahoric subgroup Z° of Z being normal, for z € Z we have
the character z - ¢y of Z° defined by (2 - ¢v)(z) = Yy (2 twz),z € Z°. Let
Zypy ={2 € Z |z-yYv =9v}

be the Z-normalizer of ¢y . For z € Zy,,, there is a unique function 7, € Hz (Vo) of support
270 with 7,(2) = idy, .. A basis of Hz(Vyo) is given by the functions 7, where z runs through
a system of representatives of Z,,, /Z° in Z,,,. The multiplication satisﬁes Tzl * Tpy = Tayzg-
The function 7, belongs to the center Zz (Vi) if and only if ¢y (2 twza~!) = 1 for all
x € Zy, . We write also 7, = 7, vl
Let

Zt={z€ Z | {a,vz(2)) >0 for all a € A}.
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be the dominant submonoid of Z. For a subset H of Z we write HF = HNZ™.
When M = Z we put S¢ = Sg. The image of S¢ is

(2.2) S¢He(V)) =P Cr

for z in a system of representatives of Z{[V /Z% in Z;rv (see [Herllb] when G is unramified
and [HV15] in general). For another irreducible representation V' of K with ¢y = 1y, we
have a canonical Z%-equivariant isomorphism End¢ (Vy0) ~ End¢(V/}0) and hence a canonical
isomorphism iz : Hz(Viyo) = Hz (Vo) (sending the function 7. € Hz (Vo) to the function
7. € Hz(V}0) for all z € Zy,,). It induces a canonical isomorphism

(2.3) ig:Ha(V) = Ha(V)

satisfying S¢ o ig =iy 0 SC.

2.4. The elements a,. Let G’ be the group generated by U and Uy, (this is not the group
of F-points of a linear algebraic group in general). The action of A/ on the apartment xg+ Vaq
induces an isomorphism from (N'NG")/(Z°NG") onto the affine Weyl group W2 of a reduced
root system

(2.4) D, ={ag :=eq | a € P}

on Va4, where e, for a € ® are positive integers [Vigl6, Lemma 3.9], [Bou02, VI.2.1]. The map
a — g gives a bijection from A to a set A, of simple roots of ®,; the coroot in X, (Saq) ® R

associated to ag is a) = e;'a"; the homomorphism v = —v : Z — V,q induces a quotient

map Z NG’ — @aenZa) with kernel Z° N G’. An element z € Z belongs to Z7 if and only
if v(2) lies in the closed antidominant Weyl chamber

(2.5) D" ={z € Vyq | (aq,z) <0 for a € A}.

For a € A we also have M/, and the quotient map Z N M! — Za) with kernel Z° N M,
induced by v [AHHV17, II1.16].

Definition 2.1. For a character ¢ : Z° — C* and a € A, let
w={ae Al is trivial on Z°n M}y,
ao € Z N M}, such that v(a,) = .
If « € A, then Z N M), is contained in the Z-normalizer Zy of 1,

Ta = Ta, € Hz(V)

does not depend on the choice of a,, and belongs to the center Zz(v) [AHHV17, II1.16]. The
set A, is included in the subset A(¢)) of A defined by (4.18) (cf. Remark {4.33).

2.5. Change of weight. Let V’ and V be two irreducible representations of K with
parameters ¥y = Yy, A(V) = A(V') U {a} where « € A — A(V’), let x : Z5(V) — C be a
character of the center of Hg(V), let P = M N denote the smallest parabolic subgroup of G
containing B such that y factors through S]C\j, and let A(x) be the subset of A corresponding
to P (denoted by Ag(x) in [AHHV17, II1.4 Notation]). We have the homomorphism x’ :
Za(V') — C corresponding to x via the isomorphism ([2.3)).
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Theorem 2.2 (Change of weight). Assume o & A(x). The representations X®ZG(V)C—Ind[G< v
and ' ®z (V1) C—Ind% V' of G are isomorphic unless

a is orthogonal to A(x), ¢y is trivial on Z° N M., x(1a) = 1.

The change of weight theorem was proved in [AHHVIT, IV.2 Corollary] (generalizing
[Herlla] for GL, and [Abel3|] for split groups) and was one of the key tools in establish-
ing a classification result for irreducible representations of G over C'. The change of weight
theorem is a simple consequence of the next theorem. Define

B {1 if ¢y is trivial on 20N M/,
L=

(2.6) .
0 otherwise.

Theorem 2.3. Let z € ZJV such that (a,v(2)) > 0. Then there exist G-equivariant homo-
morphisms ¢ : c-Ind% V — ¢-Ind% V' and ¢’ : ¢-Ind$ V! — ¢-Ind$ V satisfying

/

\% v’
S (o) =18 —cardy, SC(P o) =TI —cat .
We will prove in Proposition [2.17]that Theorem [2.3] follows from the inverse Satake theorem
(Theorem [2.12)) for the pair (V, V') and for the pair (V', V). We now recall why Theorem [2.3

implies Theorem (compare with the proof of [AHHV1T, IV.2 Corollary]).

Proof of Theorem[2.4. As in we can canonically identify Hea(V) with He(V') and sim-
ilarly Z5(V) with Z5(V’), denoting them Hqg and Z¢ for short. We also identify x and
X'. Pick any z € Z;[V such that (o, v(z)) > 0, (B,v(2)) = 0 for all B € A — {a}, and
such that 7,2 € Zz(yy) (cf. [AHHVIT, I11.4]). As S¢ is injective and compatible with
compositions, the homomorphisms ¢, ¢’ of Theorem for our chosen z are Zg-equivariant
and induce G-equivariant homomorphisms between x ®z, C—Ind?( V and x ®z, c—IndIG( V!
with composition in either direction equal to (7,2 — ¢4 T,2,,) € C. It suffices to show that
X(Tp2 — €a Ty2q,) # 0. First, x(7,2) # 0 by [AHHV17, I11.4 Lemma] and as o & A(x), so we
are done if ¢, = 0. For the same reason, if ¢, = 1 and « is not orthogonal to A(y), then
X(7,2,,) = 0 and we are done. Finally, if ¢, = 1, o is orthogonal to A(x), and x(7.) # 1,

then X(TZQ — Ca TZQaa) = X(TZQ)(l - X(Ta)) 7& 0. O

2.6. Intertwiners from c-Ind% V to c¢-Ind% V'. Let V and V' be two irreducible repre-
sentations of K. We extend to the space of intertwiners Homegg(c-Ind$ V, c-Ind% V') our
previous discussion on Endog(c-Ind% V) in §2.20 We view Homeg(c-Ind$ V, c-Ind$ V') as
the space Ha(V, V') of compactly supported functions ¢ : G — Home(V, V') satisfying
o(k1gks) = k1p(g)ke for all ki, ks € K, g € G. For z € Z, we write

(2.7) A, ={ae A {(a,v(z)) =0}

Remark 2.4. When 2,2’ € Z7, we have A, = A, NA,.

The quotient map p : V — Vo induces a Z%equivariant isomorphism between the lines
VUor = Viro; similarly for V/. We fix compatible linear isomorphisms

(2.8) P VU 2 (VYo% and o Vio =5 V.
When V = V' we suppose that (°P and ¢ are the identity maps. We now recall the description

of Ha(V, V). By the Cartan decomposition [HV15 6.4 Prop.], the map Z — K\G/K,z —
KzK induces a bijection Z /2% = K\G/K. Recalling from §2.2|the parameters (¢, A(V))
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of V and (¢, A(V")) of V', a double coset KzK with z € Z* supports a non zero function
of Ha(V, V') if and only if z lies in

(2.9) ZLV,V)={z€Z' |z ¢y = ¢y and A, N (A(V)AA(V')) = &}
(2.10) ={z€Z" | z-4y =y and {a,v(2)) > 0 for all @ € A(V)AA(V')}.
where A(V)AAV') = (A(V)\ AV") U (A(V')\ A(V)) is the symmetric difference.

The space of such functions has dimension 1 and contains a unique function 7, such that

the restriction of T3(z) to VU is 1°P. The function T, is also denoted by T, = V'V or
Y Ve,

Proposition 2.5 ([HV15, 7.7]). A basis of Ha(V, V') consists of the T, for z running through
a system of representatives of Z&(V,V')/Z° in Z5(V,V").

We will write that <Tz)zezg(v,V')/ZO is a basis of Ha(V, V).
These considerations apply also to the group Z and to the representations Vo, Véo of Z0.
We write Zy,, 4., = {2 € Z | 2-¢y = ¢y }. Then the function 7, € Hz(Vy0, Vo) of support

V! Voo V! Voo
0y 0'uY .
v or 7, Y . A basis of

792 and value ¢ at z for z € Zd,%wv, is denoted also by 7
,HZ<VU07V[}O) iS (TZ)ZGZwV,¢V//ZO'

Ezample 2.6. If V =V, then Z5(V,V) = Z . If v =y, then Z4(V,V') = ZL(V', V) C

Zj,- WA(V) = AV), then ZL(V.V) = 2,

Remark 2.7. (i) We have Hg(V, V') # 0 if and only if Zy,, 4., is not empty [HV15] 7.8 Prop.].
In this case Aj, = A, (Definition because Z° N M/, is a normal subgroup of Z.

(ii) Let z € Zyy, p,,, @ € Al = Aibv/ and a, € ZNM], (Deﬁnition. Then a,zay'z7! €
Z° N M/, (Z N M, is also a normal subgroup of Z) hence zaq = tanz € Zy, y,,, some
t € Z°N M/,. The convolution satisfies

V[;O »VU07L VUO’VUO V{]O,VUo,L VIIJoaVUOJ' V[;O,V[/JO V[}O »VU07L
Tz To — — = T« Tz .

ZQe — 'tagz

Let V" be a third irreducible representation of K. The composition of intertwiners corre-
sponds to the convolution. We fix compatible linear //°P : (V/)U» =5 (V")Usp and 1/ : o —
V!, and we define as above 7"V = TV"V' when z € Z(V',V") and TV"V = TV" Vo
when z € Z&(V,V").

For g € G we note that (TZ‘,/N’V, «TV"V)(g) equals

V”,V’ /’ _ . V”,V/ /7 _ _
Y V@)oYVl = Y 1V @) e TV (2l ).
2€KZ'K/K z€K/(KN2'K2z'—1)

Remark 2.8. (i) When ¢y, = ¢y» and A(V)NAWV') ¢ A(V") € A(V)UA(V'), we have
25V, V') € ZE (V. V7).

(ii) For z € ZL(V, V"), 2" € Z&(V', V") we have 'z € ZZ,(V, V") because 2'z-thy = 2'-thyr =
Yy, Ay, = ALNA (as 2,2 € ZT), and A(V)AAV") C (A(V)AAV)UA(V)AAVT)).
V[’j’O,V(’jo,L’ V[’JO"/UO’L VI’J’O,VUO,L’OL

we have 7, Ty =77

(111) For z € ZWVJPV/’Z/ S Zl/)v/ﬂl}

Vll

We will later use the following lemma concerning the support of SG(TZV l’v).

Lemma 2.9. Ifz € Z5(V, V'), 2/ € Z and S (TY"V) () # 0, then vz(?') € vz(z) +R<AV.
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Proof. Letting wg denote the Kottwitz homomorphism, we have ker wg = Z°G’ [Vigl6, Rk.
3.37). If SY(T,)(#') # 0, then 2’ € ZNUK 2K, hence wg(2') = wg(2), so 2’ € zker(wg|z) =
2Z%ZNG"). By [AHHV17, I1.6 Prop.] with I = @ it follows that Z N G’ is generated by all
ZN M, for a € A. As vy (ZN M) = Zvz(a,) C RaV, we see that vz(z') € vz(z) + RAY.
By [HV15] 6.10 Prop.] we deduce vz(2') € vz(z) + R<oAV. O

Remark 2.10. In fact, we know that vz(as) = —e, o [AHHVIT, IV.11 Example 3]. So the
the proof shows that vz(2') € vz(2) + Y aea Z<oes . This improves on [HerlIb, Lemma
3.6] when G is unramified and [HV15] 6.10 Prop.] when G is general.

2.7. The generalized Satake transform. Let P = MN be a parabolic subgroup of G
containing B.

Definition 2.11 ([HVI2, Prop. 2.2 and 2.3], [HVI5, Prop. 7.9]). The generalized Satake
transform is the injective linear homomorphism

S$ - Ha(V, V') = Har(Vivo, Vi)

defined as follows. Let ¢ € Ha(V,V'),m € M and let p: V — Vyo, p': V' — V,, denote the
natural quotient maps. Then Sf/[ is determined by the relation

(S§ip)m)op=po > @(am).
T€NO\N

For ¢ € He(V, V') and ¢’ € Hg(V', V") we have S§/ (¢’ * p) = S§(¢') * S$(p) [AVIZ,
Formula (6)].

When M = Z, we write S¢ = Sg.
2.8. Inverse Satake theorem. We now give our main result. Let V and V' be irreducible
representations of K. Our main theorem determines the image of the Satake transform

S Ha(V, V') = Haz(Vigo, Vi)

and moreover gives an explicit formula for the inverse of S¢ on a basis of the image. (Of
course this theorem is only interesting when Hg(V, V') # 0. See Remark for when this
happens.)

We fix compatible isomorphisms (P : VU — V'V and . Vijo = Vo as in (2.8)) and
ao € Z N M|, for a € A (Definition . Recalling A, (Definition , we denote

(2.11) AWV)=AV)NAY, ={ae AV) |y is trivial on Z° N M/ }.
Theorem 2.12 (Inverse Satake theorem). A basis of the image of SC is given by the elements

(2.12) T I (-7

Q€A (V\A/(V)
for z running through a system of representatives of Z&(V,V')/Z° in Z(V,V'). The inverse
of S¢ sends ([2.12)) to
V"V = Z V'V, where ZH(V,V'):=ZTNz H al.
ze€ZT (V,V') acAN(VINA/(V')
The function @YV is well defined for z € ZZ(V, V") because of the following lemma.

Lemma 2.13. For z € Z}(V,V'), the set ZF(V,V') is finite and contained in Z}(V, V).
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Proof. For z € Z, the set ZT N 2[[yen @ is finite. Indeed, 2[]nen ag(a), n(a) € N =
{0,1,...} lies in Z* if and only if

(Ba,v( Z a){(Ba, ) <0 forall € A.
a€A
These inequalities admit only finitely solutions n(a) € N for a € A, because the matrix
(dg(Ba,)))a.pen is positive definite for some dg > 0.
For z € Z}(V,V'), an element x = z[laear(vynar (v aa n@) of ZF(V, V') lies in Zyy, 4, a
o € Zyy, for a € A}, (see §2.1). For

ae A(V)nA (V) = A(V)NA(V) N AL,

and 8 € A(V)A A(V') we have (Bq, o)) < 0. By (2:10)), z € Z/ (V, V') satisfies (84, v(2)) < 0,
so the same is true for z. Hence x € Z (V, V). O

Remark 2.14. When V = V’ and G is split with simply-connected derived subgroup, the
inverse Satake theorem was obtained by [Herllal Prop. 5.1 using the Lusztig-Kato formula.
The proof of the inverse Satake theorem for arbitrary G and an arbitrary pair (V,V’) uses
the pro-p Iwahori Hecke algebra. It is inspired by the work of Ollivier [OII15].

Remark 2.15. When V = V' the image of S¢ was known, see . The description of the
image of S¢ for a pair (V, V') with V 2 V' was an open question in [HV15], §7.9]. Theorem
shows that the image of S¢ for a pair (V, V') with V' 2 V' is not always contained in
the subspace of functions in Hz(Vio, V};0) supported in Z *. This was noticed for many split
groups in [Herllal, Prop. 6.13].

Remark 2.16. We establish a similar theorem for S} in the next section (Corollary , at
least when A'(V') € A/ (V) U Ayy.

We mentioned earlier that Theorem (hence the change of weight theorem) follows from
the inverse Satake theorem; it is now the time to justify this assertion.

Proposition 2.17. The inverse Satake theorem (Theorem |2.12) implies Theorem (and
hence the change of weight theorem).

Our first proof only uses the “image of S¢” part of Theorem (for V2 V'), whereas
our second proof uses the explicit formula in Theorem (but only for V- =V").

First proof. As in Theorem we suppose that the parameters of the irreducible represen-
tations V and V'’ of K satisfy ¢y = ¢y and A(V) = A(V’) U {a}. In the proof, we will use
only that we know the image of the Satake homomorphisms for (V, V') and for (V', V).

As in Theorem let z € Z} satisfying (o,v(z)) > 0. This is equivalent to z €

Z&(V, V) = Z4(V', V) (Example . By the definition of ¢, (2.6) and of A’(V) (2.11)),

if cq =1
A/(V) \ A/(V,) — {Oé} 1 Co ’
0] if ¢, = 0.
The inverse Satake theorem (Theorem [2.12)) gives two functions QOZI’V € Ha(V, V') and
eV e Hg(V!, V) satisfying

V' V.o V.0,V’ V V
G/ V'V 0:YU0 G/ V.vV! U0V 0 0>
S ((pz ’ ) =Y and S (90/ ) =Tz U — o Zaa
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By Remark the two convolution products are

v Vo, VoVl Vo,V

G V'V G VI\VNaG( V,V/ 0 U
SOV x ¥ V) = 89V V)8 (L) = v (1 — Ca Tzap V")
V[/]O Vi VoVl
T2 — fal2q, )
Voo, V! VoV o VoVio
G/ ViV . V'V _ oG/ VVINaGy VIV _ vo:Y50 v0sY0 0
ST(p" w0 ) =87 )ST (e, ) = (12 Y —caTraa V)TV
Vi0,V0 Vi0,V50 Vi0,V0 Vi0,V0
= TZ2U U= CaTzan: U = TZ2U U —ca Tﬁ%ﬂ o
In the second product we used that 7o, € Z7(Vyo). O

Second proof. In this proof, we prove Theorem [2.3| for z € ZJr such that (o, v(z)) > 0 and

(B,v(z)) =0 for any 8 € ZT. As we mentloned after Theorem [2.3] . 3, this implies Theorem [2
In this proof, we use Theorem only for V' =V’. We also use Lemma and [3.2] from
the next section. The argument is almost the same as the proof in [Herllal AbelS]

Set o =TV"V € Ha(V, V') and ¢/ = TV"Y' € Hg(V', V). By the assumption on z, we have
A, = A\ {a}. On the other hand, we have a ¢ A(V’). Hence A(V') C A,. By Lemma
we have ¢’ % p = TZVQ’V.

We calculate SE(T ZZV) using Theorem From Lemma [2.18| below and Theorem m

we get the following:
o If € A'(V), then

P
z’EZ;LQ(V,V)
v,V v,V
= SYTLY) + > SeryY)
z'ezzga (V,V)

—SG( VV)_'_T‘;UO,VUO'

z%aq

V0,V V0,V
Hence SG(TVV) = TZ2U0 vl _ 722‘(]10 v,

o If o ¢ A'(V), then TVUO’ v = SG(TZ‘QV).

Vi0,V0 Vi0,V0
v0Vyo ., Vu0,Yyo.

Therefore we get SG(go’ xp) =T 2 aT 2,
Since A(V') C A,, Lemma implies S (i)

. %4 7‘/ 0
Canceling 7, voru

1% Vo Vio

N%
= V""" Hence SC(')7 =

V0.V, V0.V, . . :
vOrtuY e 000, and keeping in mind that 7, is central, we get

22 2204
Vi O7Vl Vi 07V
SG(@’) =7, et zal{1 U%  Hence we have
V! oVio , Vo,V V.o, V!
G / 0 U0» 0 U0>» 0
S (px¢) =17 (’Tz U — caTean V)
! !
VUO’VUO e 7_VUO,V 0
Ty2 22aq :

Lemma 2.18. Let o € A, z € Zt such that {a,v(z)) > 0 and (3,v(z)) =0 for B € A\ {a}.
(i) We have z%a, € Z7.
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(ii) We have z1 € Z+ N 22 [Igen ag if and only if z1 = 22 or 21 € ZT N 2%a, [lgen alg. In
particular, for any irreducible representation V of K, we have

oy [P UZE, (V) (e NV,

ZZ2(V, V) {{22} (a ¢ A/(V)).
Proof. Let f € A. TE  # a, then (B v(aa)) = (Pa—aY) > 0. Hence (8o, v(aa)) >
(oo 2 0 Por 52 e e (oo} — e —al) = 5. Honce (s o(n)) ~

)) —22>0.
For (ii), the “if” part is trivial. We prove the “only if” part. Let z; € 22 [gea ag NZ* and
take n(3) € N such that z; = 22 [[gcn ag(ﬁ). Assume that z; ¢ 2%a, [gen ag N Z*, namely
n(a) = 0. Then for v € A\ {a}, we have

0< (Ya0(21)) = (va,0(z%) = > 1(B)(Va, Ba)
peA\{a}

Hence
> n(B) (Ve BY) < 2(va,v(2)) =0
BeA\{a}

from the assumption on z. Since the matrix (dy(va, By ))sca\{a} 18 POsitive definite for some
dy >0, we get n(8) =0 for all B € A\ {a}. Hence 2 = 22. O

2.9. Inverse Satake for Levi subgroups. Let P = MN be a parabolic subgroup con-
taining B. By the inverse Satake theorem (Theorem [2.12) for S¢ = S§, we can get the
following formula for S, T~ Let V.V’ be irreducible K-representations. We denote the function

V, V ,
T, NN ¢ Har(Viyo, Vio) for M by T, Vo Vo.M . Also, for X C A we write ax := [[,ex ay-

Theorem 2.19. For z € Z(V, V'), we have

>, ST = > (—)*X >

zeZ (V,V') XCA(VH\(A(V)UA ) :ceZ;Z)I‘f(VNO,V]’VO)

v

T, wosVive

Remark 2.20. In the theorem we have zax € Z;;(Viyo, Vo) since z € Z&(V, V') C Z;(Vo, Vo)
and (B4,7)) <0forany € Apy and v € X C A\ Ay,

Proof of Theorem[2.19. Apply SM to both sides of the formula given in the theorem. For the
left-hand side, we have

sML Y spmty | = Y sA@mtY)
zeZF (V,V') zeZF(V,V')

=T, H (1—74)

aeA'(VH\A'(V)
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by Theorem [2.12] For the right-hand side, applying Theorem to M and using an
inclusion-exclusion formula, we have

XCA (VOH\(A(VIUA ) 2€Z3 % (Vyo, NO)
_ 3 Yy st
XCA(VONA(V)UAM) 2€Z2% (Vo Vi)
= Z (_1)#X7—zax H (1 — Ta)
Xcar(VON(A (V)UAM) acA(Vip\A' (Vyo)
=T, (1—714) H (1—714)
acA(VI\(A'(V)UAM) acA(Vio)\A' (Vyo)

=T, H (1 —74),
aeA'(VH\A'(V)
noting also that A'(Vio) \ A'(Vyo) = (Ap NA(V')) \ A'(V) (since A(Vyo) = Ay NA(V)
by [AHHV17, I11.10 Lemma)]). Since SM is injective, we get the theorem. O

In a special case the formula is simple. In particular this happens when V ~ V.
Corollary 2.21. If A'(V') ¢ A'(V)U Ay, then we have for z € Zg(V V'),

’ V! 0,Vno
DR TS E D DI
2€ZF (VV') 2€Z M (Vo Vi)

Vo.M
and the image of S$; is spanned by {T. VivorVive |z € Z4L(V,V')}.

Proof. The first part is immediate. For the last part fix z € Z}(V,V’). We note that

ZFM(Vyo,Vie) C ZF(V,V') € ZL(V,V'). Let < denote the partial order on the finite

set ZFM(Vyo, Vi) defined by z < y if © € zZ5 M(Viyo, Vo). Then the first part applied
+ M ’ V 07V M . . . G .

toy € ZH"(Vyo, Vyo) shows that -, <, To ™ is in the image of S§;. A triangular

Vo.M . .
argument now shows that 75 Vivo Vo is in the image of S]C\;/[ for any y € ZHM (Vyo, Vo), in

particular this is true when y = z. O

3. REpuCcTION TO A(V') C A(V)

Let V, V' be two irreducible representations of K. We reduce the proof of the inverse Satake
theorem for (V, V') to the particular case where their parameters satisfy A(V') € A(V). First,
we establish some lemmas that are of independent interest.

3.1. First lemma. Let P = MN be a parabolic subgroup of G containing B corresponding
to Ap C A. Our first lemma is the computation in a particular case of the generalized
Satake transform S$; : Hea(V, V') — Har(Viyo, Vo) (Definition ; it is a generalization of
[Herlla, Cor. 2.18].

We fix linear isomorphisms (°P,¢ as in for (V,V'); for z € Z£(V,V') we recall the

, VoWV,
elements TV'V € Ha(V, V'), T ¥ ™ € Hp (Viyo, Vo) defined in and the subset A, of
A defined by (2.7)).
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Vo

! V/ ’
Lemma 3.1. Let z € Z4(V,V'). We have S§;(TY"V) = T, V°
Ap orin A,.

if A(V') is contained in

We will use the lemma only when P = B, M = Z.

Proof. Let z € Z4(V,V'). Suppose m € M. Definition shows that (SG7Y"V)(m) =
wenoyn (P’ oTY"V)(xm), where p' : V' — Vi, is the quotient map. The description of TV
given in shows that the support of 7YV is KzK, and the image of TV (kizky) =
ki TY"V (2)ky is k1 V'™Neow for ky, kg € K [HV15, §7.4]. One knows that [HV12, Cor. 3.20]

(3.1) P (ke V/Neor) £ 0 & ky € POMY, PP

Z’Op’

where Py = My Ny is the parabolic subgroup of G corresponding to A(V”).
Observe that A(V') C Ap implies MY, € M° and that A(V’) C A, implies MY, ¢ MY,

so in either case we know that POMS,PQOP = POPgop. If k1 € POPgOp then kjzks lies in
POPY 2K = P°2K as z € Z* and 27 ' P,z C P),.

Therefore, if (p' o TY"V)(xm) # 0 for € N we deduce that m € P'2K NP = PY2P" =
NO(MO2MP). Tt follows that m € M°2M° and n € N°. In particular, the support of
S$(TY"V) is contained in MO2M° and (S,TY"V)(2) = p’ o TY"V (), which induces the map
t: Vyo — V5. The lemma follows. O

3.2. Second lemma. Our second lemma is the computation of the composite of two par-
ticular intertwiners; it is done in [Herllal Prop. 6.7], [Abel3, Lemma 4.3] when G is split.
Let V" be a third irreducible representation of K; we fix linear isomorphisms as in for
(V, V') and (V', V") and by composition for (V,V"). For z € ZL(V, V') and 2’ € Z}(V', V"),
the product 2’z lies in Zg (V, V") (Remark [2.8) and we have the elements TV € Ha(V, V'),
TV € Ha(V/, V") and TV € Ha(V,V") (§2.6).

Lemma 3.2. Let z € ZL(V,V') and 2’ € Z,(V',V"). We have TZ‘,/N’V/ « TV = TZ‘,/:’V if
A(V') is contained in A, or in A,

Proof. By the formula for the convolution product in we are lead to analyse the elements
(x,g9) € K x G such that T:”’V/(xz’) o TY'V(Z~'z7'g) # 0. We follow the arguments of
the proof of Lemma The non-vanishing of 7"V (2'~'z~'g) implies z/~'z =g = ki zks
with k1, ko € K; the homomorphism TZ‘,/ v (x2) = xTZ‘,/ N’V,(z’ ) factors through the quotient
map py : V' — VJ(TO, (see . The image of TV"V (z'~1z=1g) is k1V'Mor and by (3-1),

por(kyV™N2or) £ 0 if and only if ky € POMY, PO, .
We know that POMY,PY = POP? . since A(V') C A, or A(V') C A,.. The non-

Z,0p z,0p?
vanishing of TZ‘,/ V(@2 oTY' V(2 e g) implies 2/ to g = kyzky € PY2K. As 2/PY2'"1 C
PY we deduce KgK = Kz'2K. We suppose ¢ = 2’z and we analyze the elements © € K

z
such that T;N’V/(JIZ/) o TV V(2" 'a=12'2) # 0. We have 2/~ 'a712/2 € PY2K and z € K,
or equivalently z € 2/2Kz712/712/PY2" 1N K = (Z2K2712"' N K)2'P%2’~1. The group
ZKzZ7' N K contains 2/PY2~! and we claim that it contains also z’2Kz712/"! N K. The
formula for the convolution product given in and this claim imply the lemma. The claim
is proved in Lemma below. O

We now check the claim used in the proof of Lemma (3.2
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Lemma 3.3. Let z,2' € Zt. Then 22K (2'2)"' N K is contained in 2’ Kz'"' N K.

Proof. For z € Z* consider the bounded subset Q, = {x¢, 220} of the apartment of S, so
2Kz~' N K is the pointwise stabilizer of €2, in the kernel of the Kottwitz homomorphism
[Vigl6l Def. 3.14]. For a@ € @ let rq (o) = max{0,—(c,v(z))}. By Bruhat-Tits theory
(following [Vigl6l §3.6], noting that the description of the pointwise stabilizer in equation
[Vigl6l (42)] is valid not just for points = but for bounded subsets of the apartment of .S)
we then know that zKz~! N K is generated by the groups Uatrg, (o) C Uq for o € @ and

the cosets s3Z% C N for 8 € ® such that (8,v(z)) = 0. The lemma follows by noting that
ra_,(a) > rq_ (o) and that (3,v(22')) = 0 implies (3,v(2')) = 0 for any roots a, 8 € . [

3.3. Third lemma.

Lemma 3.4. Let z € Z1 and © = z[Joen ar® with n(a) € N. If (o, v(z)) is large enough
for those a € A with n(a) > 0, then x € ZT.

Proof. Recall that v = —v and that ZT is the monoid of z € Z such that the integers
(Ba,v(2)) are < 0 for all B € A. We have v(ay) = (Deﬁmtlon and (B, ( ) =

(Bas v(2)) + X 0en n(a@){Bq, af) for all B € A. We have (ﬁa, N <0ifa ;é B and {(ag, o)) = 2.
The integer (B,,v(z)) is < 0 as z € ZT. If n(B) = 0 then <ﬁa, (x)) <0. If n(B) > 0 and

<ﬁa,V(Z)> + 2”(6) < 0 then (ﬁayy(-r» <0. OJ

Later we will use it in the following form.

Lemma 3.5. Suppose z € Z, J C A, andn(a) € N for o € J. Then there existsy € ZTNM),
such that yz [[aey am®) lies in Z+ for all m(a) € N,m(a) < n(a).

Proof. We can find y € ZT N M/, with (ag,v(y)) > 2n(a) — (aq, v(2)) for all @ € J. Then we
have (ag,v(yz)) > 2m(a) for m(a) < n(a). The proof of Lemma implies yz [[,es am®
lies in Z* for all m(a) € N,m(a) < n(a). O

3.4. Reduction to A(V') C A(V). We are ready to prove that (a special case of) the inverse
Satake theorem for a pair (V, V') with parameters satisfying A(V’) C A(V') implies the inverse
Satake transform for a general pair. Note that when A(V’) € A(V), then A'(V') C A/(V).

Theorem 3.6. Assume A(V') C A(V). For z € Z5(V, V'), we have S€(p,) = 7., where

0, = Z T, and ZH(V,V)=ZTnz H al.
zeZi (V,V7) acA(V")

Proposition 3.7. Theorem implies the inverse Satake theorem (Theorem (2.12).

Proof. The proof is divided into several parts.
A) Let (V, V') be an arbitrary pair of irreducible representations of K. We introduce:

(i) The irreducible representation V" of K with parameters ¢y~ = ¢y, and A(V") =
A(V)NA(V"). Such a representation exists [HVI2, Thm. 3.8], Z& (V, V') C ZL(V,V")
(Remark [2.8) and Z+(v’ V") = ZL(V", V') (Example [2.6)

(ii) A central element 2’ of Z (hence normalizing any character Y of Z0) lying in Z+
(hence in ZJr for any 1) and such that A, N (A(V) U A(V')) = A(V). Hence

2 ZE(V V) by @)
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Let z € Z&(V,V’) and let e/ = dvezt vy TV"V as in Theorem We reduce the

computation of S¢(pY"V) to the single computation of S(T Z‘,/ /’V") using Theorem for
(V,V"). As z € Z£,(V, V") and A(V") C A(V), Theorem implies

" ViV
(32) SE(pl ) =m v,

where V"V = TV"V for v € ZT N 2[[ ey a with
J=AV)NAV)NA , =AWV NAY ,

Such an x is contained in Z/ (V, V') by Lemma and hence in Z/(V,V"). Also, the sets
A(V") and A(V) are contained in A/, and 2’ € Z&(V", V') N Z;FV. Lemma [3.2| applied twice
gives

4R %4 V'V _ V'V V'V V.V _ V'V
TZ’ * Tx - Tz’:c Tz * Tz’ =T, )

and Lemma applied to M = Z, V =V’ and 2/ € ZJV gives

SG (TV V) T:UO 7VUO '

Z,

Since 2’ is central in Z, we can permute 2z’ and x on the right-hand side, hence TV V= TV v

We deduce

(3.3) SE(TY VS TY V) = SG(TY V)

9\
Taking the sum of (3.3 for z € Z+ N 2], al, we get

(34 SUTL )8 L") = SOy e,

We used only Lemmas [3.1] and to get (3.4). Using (3.2) in (3.4) and taking the right

V,0,V, .
convolution by T U)O’ v’ we obtain

V/ v V"' Voo V. WV Vv v ,Vo
(3.5) SEPYY) = SUT T ) T Y = SUT ) O

The computation of SG(QDZ/’V) is reduced to the computation of SG(TZ‘,/ I’V”).
B) We cannot directly apply Theorem E to compute SY(T, v, V”) because A(V') is not

contained in A(V”). But we show that the computatlon of SC( ZV V" )

putation of S¢(T Z‘,/Q v ) using Lemmas and
As A(V") C A, Lemmaapplied to M = Z V', V" and 2 € Z£L(V', V") gives

reduces to the com-

"yt v 7V
(3.6) STy Yy =1,

Z
and Lemma applied to 2/ € ZL(V/, V") and 2’ € ZS(V", V') gives

V/,V” V/l’vl V/,V/
TZ’ * TZ’ - T ’2 .

"
O’VUO

V/
Applying the Satake transform, using (3.6 and taking a right convolution by T(;/)_l we get

SG(T‘I//’V”) SG( V’ V/)TVUO,V

z (z)~1
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Plugging this value of SG( v ) into (3.5)) and using that 2’ is central in Z we get

ryry VeV VI Vo 1y Vg Vo
(37) SOy = SOV e o o o — GOV e,

C) We now compute SG(T;,/;’V/). Applying Theoremto V =V'and to z? € Z,(V', V')

gives
RV v,V
SG(SOL//QVV ) - /go U0

for ;" = Zmeﬁ R0 TY"V" where Z3,(V', V') = Z* 0 2* [laenrv a

But we want to compute SG(TZ‘,/Q/’VI). We can choose any element 2’ that satisfies A)
(ii). We choose such a 2z’ with the property that 2 Hoeavnar ag(a) lies in Z T for all
e(a) € {0,1} (this is possible by Lemma [3.4). For such a 2z’ and a € A'(V') \ A'(V), we
have 2/%aq € Z{[V/ (recall from Definition that aq € Zy,, as 1y is trivial on Z°n M!).
Theorem applied to V =V’ and 2'%a, € Z;r . gives

‘7/ ‘7/ ‘7 ‘7/ ‘7/ ‘f
G, Vv’ 0770 0’ 07170
S ((FZ/QU, ) T /[2J /IQJ U v .
@ Ao

We see that @Z;’V/ - cpi/,;’;;l is the sum of TV for z € Z* N 2 [sea viy—{a} ag and
Vl V/ V/ V! V! 7‘// 1744 ’V/
S e =l ) =8 (L =),
By iteration we obtain that

V'V V’ ,V’
T l[2]0 U0 H (1 _ UO 0)

ac A" (VH\A(V)

is the sum of SE(TV"V') for z € Zt N 22 [geavnnarvy ag. But 2 is the only element
2" HﬁGA/(V’)ﬂA’(V) ag(ﬁ) with n(ﬁ) € N such that

(o, v(2)) + Z n(B){aq, B)) <0 Va € A.
BeA(VHNA/(V)

The reason is that all the 8 € A'(V') N A’(V) are contained in A(V') hence in A/, and that
the matrix (do(a, By ))a,gear(vynar(vy is positive definite for some do > 0. We deduce:

1yt % 7V V aV
(3.8) SUTY )y =1 80 I[I a-n""").
aEA(V\A'(V)

D) Plugging the value of SG( ) given by (3.8]) into ( we get

, V/oVio V/oVioy VigVyo
(3.9) SEe) =T 5 [I Q-]
a€ A (VH\A/(V)

As 2 is central in Z, the first term on the right-hand side commutes with the product and

Vi v Voo Vo Vio
using T ,[2]0 T ’/)0 2, =727 07U the element z'? disappears from the formula As
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V/

UO,V’ v Voo _ Y,

UO7 U07V 0 VUO’VUO
a

for a € Ay, =AY ., (Remark , we obtain the
formula of Theorem m
V!0 Vio

(3.10) S =m0 [I -

a€A/(V)\A/(V)

E) Choose a system of representatives X for Z&(V,V')/Z° in Z/,(V,V') such that = €
X, wa, € ZZ(V,V') implies that xa, € X. In particular, the TX,7V for x € X form a
basis of Hg(V,V’). Recalling that o}V =3 ¢ yn Ty Y and that ZF(V,V') = 2+ n
z[Haearvynarvy ay, Lemma implies that the expansion of the goZ/’V in terms of the

basis TV (2,2 € X) is triangular. Therefore the ¢V € Hq(V, V') for z € X form a basis
of Ha(V,V"). As SY is injective, this implies that the elements on the right-hand side of the
formula ([3.10)) form a basis of the image of S©. O

4. PRO-p IWAHORI HECKE RING

The inverse Satake theorem for a pair (V,V’) of irreducible representations of K with
parameters satisfying A(V') € A(V) (Theorem relies on the theory of the pro-p Iwahori
Hecke ring of G [Vigl6] and on the results presented in this chapter.

4.1. Bruhat order on the Iwahori Weyl group. The Iwahori subgroups of G are the
conjugates of the Iwahori subgroup K(1) gp; their pro-p Sylow subgroups are the pro-p
Iwahori subgroups of GG, and are the conjugates of the pro-p Iwahori subgroup

I=K(1)U,

We have K (1)By, = 1Z° and I = U2, Z(1)(UNI) (in any order) with the notation of The
map n — 17017 induces a bijection from the Iwahori Weyl group W = N /IZ° onto the
set 1Z°\G/I1Z° of double cosets of G’ modulo the Iwahori group IZ°, and the map n + Inl
induces a bijection from the pro-p Iwahori Weyl group W (1) = N'/Z(1) onto the set I\G/I
of double cosets of G modulo the pro-p Iwahori group I; the group W (1) is an extension of
W by Z,, = Z°/Z(1). The action of N on the apartment o + V,q factors through W. We
identify zg + Vaq with Vaq by sending xy to 0 € V,q. The Iwahori Weyl group W contains
the group W = (NN G")/(Z° N G') identified with the affine Weyl group of ®, via the
action of N on V,q. The quotient map W — Wy = N /Z splits as it induces an isomorphism
from N?/Z° onto Wy, and the kernel A = Z/Z% of W — W, is commutative and finitely
generated. The homomorphism v : Z — V4 factors through A and induces an isomorphism
from A N W2 onto the coroot lattice v(Z N G') = @penZay of Y, (defined in (2.4)). The
lattice v(Z) contains the coroot lattice and is contained in the lattice of coweights

P(®)) = {x € Vaq | (0, z) € Z for all a € A}.

The Iwahori group K (1)ng = IZY is the fixator of the fundamental antidominant alcove
¢~ of vertex 0 contained in the antidominant closed Weyl chamber ©~ (defined in (2.5)).
For a € ®,n € Z, the reflection sq,—pn : * — & — ({aq,x) — n)a) of Vaq with respect to a
wall (aq,z) = n of Vuq is conjugate in W2 to a reflection with respect to a wall of €~; let
& (resp. S*) denote the set of reflections with respect to the walls Ker(a, —n) of Vagq (resp.
of €7). Let Q be the W-normalizer of S*!. The Iwahori Weyl group admits two semidirect
product decompositions

W =AxW,=w Q.
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The image ;W2 of AN G’ in W (1) is a normal subgroup and is an extension of W by a
subgroup Z& of Z;.. The inverse image W2T(1) of W3 in W (1) is {W*Z,. Denoting by
&(1) (resp. S (1), resp. (1)) the inverse image of & (resp. S*T, resp. Q) in W (1), we have
(4.1) w(1) = WA, wAno@) =z,
6(1) =167, (1) =157, where ;W N &(1) =16, (W 0 52 (1) = 521
Definition 4.1. Let A\, € A be the image of a, € Z N M/, (Definition .

Note that A, is independent of any choices. By Definition v(Aa) = v(as) = ), and
(4.2) Anwat = TT AZ.

acA

The length ¢ of the Coxeter system (W2, §2f) extends to a length on W (by £(wu) = £(w)
for w € W™, u € Q) and further inflates to a length on W (1), still denoted by ¢. For
w, % € W(1) lifting w € W2 u € Q, we have £(wii) = (wu) = ¢(w). There is a useful
formula for the length of Aw where A € A, w € Wy [Vigl6, Cor. 5.10] (the signs are different

because S is the set of reflections with respect to the walls of the dominant alcove €T = —¢~
in loc. cit.):
(4.3) (w)y= > [aarO)+ D> Hew,v(A) +1]
0a € Nw(®) aa €7 Nw ()
(4.4) = 1(\) — €(w) +2/{a € B Nw(®;), (aa,v(N)) > 0},
In particular, for A € At = Z+/Z% we have £(\) = —(2p,v()\)), where 2p is the sum of

positive roots of ®,, and £(w) = £(\) + £(w).

Definition 4.2. The Bruhat partial order < of (W2, §2f1) inflates to a partial order < on
W and to a preorder < on W(1).

o wiuy < wolsy < wy < wo,u = us for wy, we € W uy, uy € Q [Vigh6, Appendix].

o Wy < Wy & wy < wy for wy,we € W(1) with images wy,wy € W [Vig06], Appendix].

There is the partial order < on V,q determined by —AY (the basis of ®, corresponding to
the anti-dominant closed Weyl chamber ®~ (2.5)): #1 < 3 ifand only if 21—z € 3" ,cn Nay.
The next proposition compares the “Bruhat order” < on A* = Z*/Z° and the partial order
=< on v(AT).

Proposition 4.3. Let A\;, Ao € AT. Then

M<A & e [ A & () 2v(de), A€ W),
acA

The latter equivalence is clear because v()\,) = ) and by ([4.2). The first one follows from
the next two lemmas [Rap05] (we thank Xuhua He for drawing our attention to them).

Lemma 4.4. Let « € A and X € AT such that A\, € AT. Then
Ao < Asq < A

Proof. [Rap05, Remark 3.9]. Recall v(\,) = o (Definition [4.1). We have (2p, ) = 2 where
2p is the sum of positive roots o, € ®} [Bou02, VI.1.11, Prop. 29 (iii)]. We deduce

(0 = 20, 0(0) = 20,0000} — (20, 0(0)) = (29, 5(A)) + (29, 0Y) = £(ANg) +2.
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Also, £(Asy) = £(N) — 1, as (ag, v(N)) < =2, since A\, € AT. We have that sq\o = Sa,41 i8
an affine reflection in &. Also, A = (Asq)(saAa), £(Asq) = €(A)—1 and £(AN,) = €(Asq) —1.
Recalling the Definition [£.2] of the Bruhat order, we get the lemma. O

Half of the first equivalence of Proposition follows from this lemma (proof of [Rap05,
Prop. 3.5)). Indeed, let Ay, Ay € AT such that A € Ay [[ep An® with n(a) € N. By Lemma

there exists A € AT such that A2 [Taen A2 Jies in A for all integers m(a) € N,m(a) <
n(a). There is a chain (z;)1<i<pn from 1 = A\g to &, = A\ in AT such that z;41 = x;\, for
some a € A. Lemma implies z;11 < x;. Hence A1 < Aa. We have £(A)\;) = £(N) +£()\;)
by the length formula and A1 < Mg is equivalent to A\; < A\o. Therefore if A\;, Ao € AT
are such that Ay € A2 [[,en )\E we have A1 < Aog.

Lemma 4.5. Let P be a Wy-invariant convexr subset of Vayq and let x1,x0 € W such that
x1 < x9. If 22(0) € P then x1(0) € P.

Proof. [Rap05, Lemma 3.3]. We can reduce to 1 = Sq,+m2 for a simple affine reflection
Sag+m With Sq,+mZ2 < x2 and oy € @4, m € Z. In particular oz +m is positive on the alcove
¢~. Then o, + m is negative on the alcove x2(€7). Hence m > 0 and (ag,x2(0)) +m < 0.
This implies that z1(0) = x2(0) — ({ag, 72(0)) + m)a; lies between x5(0) and s (z2(0)) =
22(0) — (g, 22(0))r). The lemma is now clear. The lemma is true (with the same argument)
for any element in the closure of € instead of the origin 0. 0

The second half of the first equivalence in Proposition follows from this lemma. For
we Wpand A € AT, w(v(N)) € v(X) — X 4ea Nay because v(A) lies in the cone D1 N P(DY)
of dominant coweights [Bou02, VI.1.6, Prop. 18]. The convex envelope in V,q of the Wjy-
conjugate of v(\) is a convex Wy-invariant polygon P(A) contained in v(X) + > ca R0y .
Let A1, A2 € AT such that A\; < Xg, hence A\; € Ag[[pen AZ by (“.2). By Lemma
v(A1) € P(A2) hence A € A2 []aea AY. This ends the proof of Proposition

4.2. Bases of the pro-p Iwahori Hecke ring. The pro-p Iwahori Hecke ring of G is a
ring isomorphic to Endg(c—IndIG Z), where I acts trivially on Z. We see the pro-p Iwahori ring
of GG as the convolution algebra Hy of functions ¢ : G — Z which are compactly supported
and constant on the double cosets of G modulo I. The Z-module Hy has several important
bases indexed by w € W(1).

I) A double coset Iz1 for z € N depends only on the image w € W (1) of = in the pro-p
Iwahori Weyl group W (1) = N /Z(1) and is also denoted by IwI. The characteristic functions
Tw € Hyz of Twl for w € W (1) form a natural basis of the Z-module Hy, called the Iwahori-
Matsumoto basis. Let R be a commutative ring. We still denote by T, the element 1 ® T,
in the R-algebra Hr = R ®z Hz. The definition of the other bases of Hy is more elaborate.

The relations verified by the basis elements T, € Hy, for w € W(1) are:

e The braid relations Ty, Ty, = Twyw, if £(w1) + €(wa) = £(wiws); hence t — T} gives
an embedding Z[Z] — Hz.

e The quadratic relations T2 = q(s)Ts2 +c(3)T;s for 5 € S (1) lifting a simple reflection
s € S, We have 32 € Zy,q: & — ¢~ — {1} is a W-invariant function (for conjuga-
tion), ¢ : 6(1) — Z[Zy] is a W (1)-invariant function (for the conjugation action on
Zy, and on 6(1)) satisfying c(wt) = ¢(tw) = te(w) for w € S(1),t € Z.
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Remark 4.6 ([Vigl6l, §3.8, §4.2]). Let s € S, We denote by H, the affine hyperplane of
Vad fixed by s, a +r € @ an affine root of G [Vigl6}, 3.5] such that Hy = Ker(a + 7). Let
u € (Uy N Ry) \ Ks(1), m(u) the only element in NN U_,ulU_, where & is the parahoric
subgroup of G fixing the face of €~ contained in Hs;. We have ¢(s) = [Im(u)I/I| and the
image of m(u) in W(1) is a lift § of s contained in {W?*T. A lift § obtained in this way is
called admissible.

The quotient of & by its pro-p radical £s(1) is the group Gy, s of rational points of a finite
connected reductive k-group with maximal torus Z; and of semisimple rank 1. Let G;c, . the
subgroup of G, ; generated by the unipotent elements, Zj, , = Z; N Gz’s. We have Z;, ; C ZZH

and ¢(8) € Z[Zs]. This implies c(w) € Z[ZM] for w € 16.
IT) We now give the second basis [Vigl6l Lemma 4.12, Prop. 4.13]. There exist unique

elements T, € Hyz for w € W(1) such that

° T:)lT':)Q = T’:}11U2 if é(wl) + é(’u}g) = K(wlwg),

o T =T, ifue Q1) (ie. l(u) =0),

o TF =T; —c(3) if 5 € S*(1).
They form a basis of Hyz, as the Iwahori-Matsumoto expansion of T}; is triangular:
(4.5) T: = Z hy, hi=c"(0,%)T;,

zeW,x<w

where w,z € W(1) lift w,x € W, ¢*(w,z) € Z[Zy] (k% does not depend on the choice of &
lifting x) and ¢*(w,w) = 1.

Remark 4.7. When the characteristic of R is p (in particular when R = C'), we have ¢(s) =0
in R and T2 = ¢(3)Ts, T¢Ts = T5T¢ = 0 for 5 € S*(1); for an admissible lift 5 € 192,

(16) o5) = ~1 2t 3 T
tGZk,S

The Z-submodule ’H%ﬂ with basis T, for w € ;W is a subalgebra, Ty, for w € MUEET
also a basis of H&T, and ¢*(w, &) € Z[Z] for w, & € ;WAL
For w € W(1) lifting w € W, we have [Vigl6, Prop. 4.13]
TwT:;—l = Qu,
where w — gy, : W — ¢" is the function defined by [Vigl6, Def. 4.14] with properties
® Guwiqwy; = Quiws if g(wl) + E(wQ) - g(w1w2)7
o g, =1ifueQ (ie. £(u) =0),
e gs = q(s) for s € S as in the quadratic relation of 7'(3).
For wi,wy € W, the positive square root
)1/2

Gur,we = (le sz%;llwg
belongs to ¢ [Vigl6, Lemma 4.19] and gy, w, = 1 if and only if £(w1) + £(w2) = €(wiws)
[Vigl6, Lemma 4.16]. We inflate g, and gy, w, to W (1), we put ¢z = ¢ and G, iy = Guw: ws
for w, Wy, we € W(1) lifting w, wy, ws.

Remark 4.8. [Vigl6l, Prop. 4.13(6)]. There is also a unique function w + ¢,, : W2 (1) = Z[Z}]
satisfying cy, Cwy = Cwywy if £(w1) + £(we) = L(wiwe), cs = ¢(§) for § € S (1), and ¢; = t for
te Z.
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Remark 4.9. Some properties of ¢*(w, x) for z,w € W(1),z < w, follow easily from the braid
relations for T7; and T):
(i) For t € Z, we have c*(tw, z) = tc*(w, z) and c*(w, xt)ztz~! = ¢*(w, tz)t = c*(w, )
because T}, = T T, and c¢*(w, )T, = ¢*(w, xt) Ty = c*(w, xt) 1Ty = ¢ (w, tx)Tiy
*(w, te) Ty T,.
(ii) For v € Q(1) we have ¢*(wv, zv) = ¢*(w, x) because T3 T, = Ty, and T, T, = Th,.

ITI) The other bases of Hy are associated to spherical orientations of V,q; they generalize
the Bernstein basis of an affine Hecke algebra. The spherical orientations are in one-to-
one correspondence with the Weyl chambers of V,q (cf. [Vigl6, Def. 5.16]). If D, is the
Weyl chamber of a spherical orientation o and w € W(1) = N/Z(1) an element of image
wo € Wy = N'/Z, we denote by o-w the orientation of Weyl chamber wy *(D,). In particular
o-A=owhen A € A(1) = Z/Z(1). There is a basis E,(w) for w € W (1) of Hz associated to
each spherical orientation o [Vigl6, §5.3].

The main properties of the elements F,(w) are:

e Multiplication formula E,(w1)Eq.u, (W2) = Gu; ws Eo(wiwe) for wy,wy € W(1).
e Triangular Iwahori-Matsumoto expansion [Vigl6), Cor. 5.26]

(4.7) Ey(@) = Y ho(x), ho(x) = co(w,)T%,
zeW,z<w
where w,z € W(1) lift w,z € W, ¢co(0, %) € Z|Zy] (ho(x) does not depend on the
choice of Z lifting x) and c,(w,w) = 1.
T, ifv(A 0
e B = T es
Ty ifv(h) e =9,
When R is a ring of characteristic p (in particular R = C'), in Hr we have
E, if ¢ l =/ ;
EO(wl)Eo~w1(w2) = (wle) ' (wl).+ (wQ) (wle)
0 otherwise.

for A € A(1).

Remark 4.10. The integral Bernstein basis (E(w) = E,-(w))yew (1) is the basis associated to
the spherical orientation o~ corresponding to the antidominant Weyl chamber ©~ (2.5)).

For z € N of image w € W (1) we write also T'(z) = Ty, T*(x) = T, Eo(z) = E,(w).

4.3. Representations of K and Hecke modules. The submodule Hz (K, I) of functions
with support in K in the pro-p Iwahori Hecke algebra Hy is the submodule of basis T, for
w € Wp(1); it is a subalgebra of Hy canonically isomorphic to the algebra of intertwiners
Endg (c-Ind¥ 7).

We may view Hz(K,I) as the convolution algebra Hz (G, Uy op) of functions G, — Z
which are constant on the double cosets modulo Uy, op. The irreducible representations V' of
G, are in one-to-one correspondence with the characters of Hc (G, Ug,op) [CL76, Cor. 7.5],
[CE04, Thm. 6.10]. The representation V' corresponds to the character x giving the action of
Hc(Gr, Uk,op) on the line VUkor . We consider V as an irreducible representation of K and X
as a character of Ho (K, I) giving the action of Ho(K,I) on VI = VUkop,

A character x of Ho(K,I) is determined by a C-character 1y, of Z° such that 1, (t) =
X(T'(t)) for t € Z° and by the subset A(x) of Ay, defined by

-1 ifae Ay \Ax)

(4.8) X(Ts.) = {o if € A(x) ora g Ay,
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where 3, is an admissible lift of s, (Remark[4.6)). The pair (1y, A(x)) is called the parameter
of x.

e V =V (Uy) ®VUror where V(Uy) is the kernel of the quotient map V — Vi, [CE04,

Thm. 6.12]. In particular, Zj acts on the lines VUkop and Vu, by the same character

Yy
e The stabilizer of VUker in G}, is the parabolic subgroup PA(x) k0p [CL76, Prop. 6.6,
Thm. 7.1].

e The stabilizer of V(Uy) in Gy is the parabolic subgroup Pa(yy (see §2.2).

Lemma 4.11. The parameter (v, A(V)) of V and the parameter (1y, A(x)) of x satisfy
v =9t A(V) = Ax).

Proof. We have fT(t71) =tf for t € Z hence ¢, = w‘;l, because

fh=>" h(@)z™'f forheHo(K,I), feV
zel\K
Let wa be the longest element of Wy. The group Uk, is conjugate to U, by wa, the

stabilizer Pa(y) k,op Of VUkop is the conjugate by wa of the stabilizer of the line VU, which
is P_y,(a(vy),x [AHHVIT, 1I1.9 Remark 1]. Hence A(V) = A(x). O

4.4. The elements ¢}, € Z[Z;]. Our motivation is to explicitly compute the expansion of
T in the Iwahori-Matsumoto basis in Hz modulo ¢ (Theorem 4.23). We associate to the
function ¢ : &(1) — Z[Zy] defining the quadratic relation of Ty for s € S*¥(1), elements

co € L1 Zy)  for z,2w e W(1), z < w,
and we study their properties.

Notation 4.12. The action of W (1) by conjugation on Zj, factors through W and we write
w-c=wew ! for ¢ € Z[Z;] and @ € W (1) lifting w € W. We write also wq - wy = wlwgwl_l
for wy,we in W (1) (or wy,wy in W).

For a sequence @ = (81,...,35,) in S (1) lifting a sequence w = (s1,...,s,) in S, write
W:=§ -+ §y,w:= 818y for the products of the terms of the sequences. We take 1 for the
“product of the terms” of the empty sequence ( ). The lifts of the sequence w in S are the

sequences (131, ...,t,5,) in S*%(1), where t; € Z;,.
Definition 4.13. Let w = (51,...,5,) be a sequence in @aﬂ(l) and Z = (8;,...,8;,) with
1 <ip < -+ <i. <n a subsequence of w. We define ci as the product of the following

elements of Z[Zy]:
c(81) -+ e(8i-1)
siy - (e(8iy+1) -+ e(3iy-1))
SiySiy + (€(8igt1) - ¢(8iz-1))

Siy -+ Si - ((8i41) - c(8i,)-
Remark 4.14. Strictly speaking, for the subsequence & we need to remember the sequence of
integers 47 < -+ < Gp.
Example 4.15. We have ¢ = 1.

When w = §; --- §, is a reduced decomposition, we have c( ) — co (Remark .

w

Sle
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Take 1 < m < n and cut the sequences w and Z in two: W = w;W, and T = Z,Z,
with @; = (31,...,3m), W = (Bm41,---,8n), L1 = (8is---+54,), 2o = (54,4, --,5;,) where
it < m < 4441. The sequence decompositions w = w;w, and & = xle are called compatible.
For ¢ = 1,2, the sequence &, is a subsequence of w; and we have c~ . The terms in the

1

or xj - C~ appear in the product defining Z except the last term

product defining ¢
x1 - (e(84,41) - c(§m)) of Cill and the first term xl (c(8m+1) -+ (84,4 ,—1)) of @1 - 0*2 their
product z1 - (¢(55,41) - - - ¢(34,,,—1)) appears in ¢ Then we get a one-to-one correspondence

with the terms appearing in the product deﬁnlng Co

0 i i

(4.9) ci; =cg (T1- ¢y )

This useful formula allows us to study ci by induction on the length n of @
Ezrample 4.16. When 332 = W, we have ci = cifl

By iteration of we deduce:
Lemma 4.17. Let W and I be two sequences in Saﬁ(l) such that Z is a subsequence of W and
consider compatible sequences decompositions W = Wy --- Wy, and T = 21 ---Zy,. Then
— cigl (21 - Cifg) (z122 - Ci;i,) (@ T - c%k).
The function ¢ : S* (1) — Z[Z};] satisfies:
Lemma 4.18. For § € S*(1) lifting s € S and ¢ € Z[Zy], we have s - c(3) = ¢(8) and

c(8)c=c(3) (s-c).

Proof. The equalities ¢(5)t = ¢(3) (s - t) for t € Z and ¢(5)c = ¢(5) (s - ¢) for ¢ € Z[Z]
are equivalent. Suppose that § is an admissible lift of s (Remark . Then, the lemma is
proved in [Vigl6, Prop. 4.4]. The other lifts of s are §t for t € Zj, and s - ¢(5t) = s - (¢(8)t) =
(s-c(8)(s-t) = c(8)t = c(t). For t,t' € Zy, we have c(8t)t' = c(3)tt’ = ¢(8) (s - tt') =
c(8)t(s-t') =c(5t)(s-1t). O
Lemma 4.19. Let w and & be two sequences in S (1) such that & is a subsequence of W and
let ¢ € Z[Zy)]. Then, g (x-¢) = g (w-c).

‘gﬁ&z

Proof. We cut the sequences @ and Z in two (as above with m = n — 1). Let w; =
(515"'7511—1)7@2: (gn) _

When i, = n, applying Example [4.16| we have cﬁ; = c@ where Z; = (s,l, ...y8i,_,). By
induction on n, ci}l (r1-¢) = ci}l (wq - ¢). Hence c%};(x c) = %1;11 (r18p - ¢) = C~ (wisy - ¢) =

c@ (w - c).

~ When 4, # n, applying Example (twice), Lemma as well as induction on n we have
(1) = g (w-c(3n)e) = e, (-¢(30) (sn-¢)) = &g (2-(30)) (@s0-0) = ¢ (-c(5n)) (wrsp-c) =
(w c). O

S le e

Proposition 4.20. Let w be a sequence in Saﬁ(l) and T a subsequence of W such that w =
81+ 8, and T = 3;, -+ 3;, are reduced decompositions (i.e. n = L(w),r = {(x)), and t,u € Z.
Then the product tu‘lci~ depends only on tw,uz € W(1).
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Proof. We have to prove tu_lc% = t’u’_lcg,, when @' = (3},...,5)) is a sequence in S*(1),
= (8,,...,8 ) isa subsequence of @' and #,u/ are elements in Z, satisfying tw = /i
and uZ = v/7’. Then w,w’ have the same length n, and z, 2’ have the same length r. The
proof is divided into several steps and uses induction on n.

A) Assume @ = /. Then t = ¢’ and we will prove u~'ck = u’*lcg

. By symmetry, we
have three cases:

(1) ip =jr=mn, (2) i, <nand j. <n, (3)i =nand j. <n.

We denote by @, w’ the sequences obtained by erasing the last term of in the sequences W, w;
the products of the terms in @’ and of w” are denoted by @° and w’. We examine each case
separately, using Example We have:

~ ~b ~1b p

X X X X . . — —
(1) ¢z = CpprCqp = Caip- By induction on n, v ™! =1
T

=Uu

‘gﬁ&x
\Sﬁ&%\x

-¢(8,)) and C@Q = cgb (2'-¢(3,)). By induction on n, and noting that = = a/,

]
o =

T T T ~ . .

(3) ¢ =c, and ¢ = c_, (2" - ¢(8;,)). Since s, --- 8, = §j, - - - 5, are reduced decomposi-

D D
tions, by the exchange condition there exists 1 < k < r such that s;, ., ---s;.8;, = sj, -+ 5j,

and 2° = s, ---8;._, = 81t Sju_1Sjpsy * Sj.- OSuppressing the k-th term of the sequence
7’ we get 2% = (§j1, s S 1 S §jT) and 7™ = gjbl S 1Sk T S lifting z’. Let
~ P
u" € Z), such that vz’ = u"#*. By induction on n, u~=" fbb = u”‘lcfjb ; hence
71 A 71 4 -
(4.10) u” Cij = Ci;b (@ e(3i,))
implies u‘lc% = _10% We now prove (4.10). Applying Lemma [4.17] to the compatible
- - ~ /% 5/
decompositions @’ = w, (5, )3, * = & ( )4, and &' = #(5;,)24 we get o = ¢ (@] -
~ ~ 4 -4 ~ 4
c(§jk)ci;33) and cﬁb = cijl (x5, - ci:";) We have c(§jk)ci;33 = ¢(55,) (s, - cifg) by Lemma 4.18
5% ~l
so that Czb = ‘;b (] - ¢(55,)). Hence
(4.11) u @ e(35,)) = w7 e(50,)
implies (4.10). We now prove (4.11). We have u'3;, ---5;, = u”"5; --- 55,85, -5} 5.
Therefore «'((5;, -+ §j,) - 5;1) = u"((55, -85, ,) - §J_k1) Taking the inverse shows (7’ -
Siu' ™ = (@ - 5 0" and WM (2 - o(5;,)) = (2 - el5,))u T = o((@ - 50T = e(# -
g )u" ™) = (@) - §,)u" 1 = u"71(2] - ¢(5;,)). This ends the proof of case A).

B) Assume w = w’. We will prove that tu_lc@@ =t'u _10%/, by induction on n. When n = 1

this follows from the following identities for a € Zj: cEa)é&) = c(ad1) = ac(dy) = acgg)l) and
CEZ;B =1= CEZ; For n > 1 we will reduce to case A) as follows. Let 2" = (3} ,...,5] ).
Choose non-trivial decompositions @ = Wy, W' = wjwh with £(w;) = l(w]) > 0 for i = 1,2.
Then we have compatible decompositions & = ;25 and £’ = z{z4. In particular, w; = w),

z; = z}, and we can choose t;,u; € Zj such that w; = t;w}, w;@; = ] for i = 1,2. By
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induction we have that w; 1L ticfb"( . Hence from (4.9) and Lemma [4.19[ we get

w;

-

z _ il iQ _ illl 1 Ty _ / iIQI
Cp = Cg, (1 '0@2) =t cy (7 'tQUQC@/Q) =ty (w] - to)ui(zy - uz)c~ (2] - c@é)
I~
= tl(wl . tg)ul (331 . 'LLQ)CEQ/ .
Hence tu*ICg = t/U,il’LLl(xl"U/Q)Cg//. This equals t'u/~ 1&, by case A), since uuy  (z1-ug) 17" =
u'z. B

C) Assume that w = (s,¢,s,...), w = (¢, s, ¢, .)Wherew—sss c=g'ss o= is
a braid relation in W2, Choose hfts 5,8 e S*(1 ) of 5,5 € S, Then by part B) we may
assume without loss of generality that w = (5,3, ,. .), w = (§,5,8,...). (Use the same
integers i1 < --- < i, for the old and the new o, and smnlarly for w'.) Then the case r = n

. . _ 1
is obvious because W = &, @' = &/, tu~! =t/ and r ﬁ, =1, so we assume r < n. We

III

~!

— X

= t'/1cE,.
w

prove tu‘lc%
As r < n the sequence 2’ = z is unique. By symmetry we suppose that the last terms of
w and z are equal.
(1) We reduce to the case where iy =n —r+kand jp=n—1—r+kforal 1<k <r.

For § = (8,—p41,---,8n) and § = 3,_p41---5,, we have T = §. By A), c% = c% As

s}, = Si, = Sp = 8;,_y, we have similarly for §' = (5],_,,...,8,_;), ¥’ = ¢ and ci, = cg@,. We

have v/ = ug and the equalities t1flci~ = t'/ *101%, and tuilc% =t~ 1cy, are equivalent.
(2) We assume iy, = n—r+kand jy =n—1—r+kforl <k <r. Then 2 = &

and u = v’ as x = 2/. We prove tf =t/ Co " where i = t’ w'. We cons1der the sequence

decompositions w = w0z, W' = Wz’ ( ") Applylng Lemma Example and Lemma
4.19] we have Ci = ¢! zcg =gy, Coy =cC
1

ek o3)) = ca f<w ¢(3,)) = cqy (wha - c(3))).

!
wy
c(81) because |78, = @' = tt'~lw = tt'~15 W} 7.

D) To end the proof we reduce to case A) using B) and C). Since the change of reduced
expressions in W is given by iteration of the braid relations, we may assume that there are
sequence decompositions W = W, W3, w' = WjwWhHws where w,y, wh correspond to a braid
relation we = w) as in C) and w; = w), w3 = wjs. Again by B) we may assume without loss
of generality that w; = @}, w3 = w4, and that @, = (5,5, 8,...), wh = (§,5,§,...) for some
5,5 € S*(1). We will reduce to case A) by extracting a subsequence " from 1@’ such that
Vi =" (for some bV € Z,) and tb'~!c; = t’cg,/.

From tw = t'@ we deduce that ¢ = w; - a,t’ = wy - a’ for some a,a’ € Z; such that
als = a' 1ZJ’2. We have the compatible decomposition Z = Z; 5 Z3. Choose a subsequence

z4 of wz such that bio = & (for some b € Zj), hence (x1 - b)Z = . Then by C) we have

ab Lo = a’CiQ,. The sequence &’ = &,&4Z5 is a subsequence of w'. Applying Lemmas 4.17

and I8

z T T T T T
=g (v1- ) (T122 - €, ) = ¢ (w1~ ) (T172 - € ).

‘gﬁ&h
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We deduce that t(z; - b)~'cg = cil (27 - ab‘lcﬁ)(xlxg : 0%33) = ci}l (27 - a’cﬁ)(mlxé’ : c%j;) =
t'cy. O
We denote tu_lc% = U2 in Proposition [4.20, This defines %, € Z[Z;] for z,w € W (1)

and z < w.
When z, w € W(1) satisfy x < w there exists v € (1) unique modulo Zj such that

zv,wv € W (1) with zv < wv by definition of the Bruhat order (Definition . By

Lemma the element ¢Z¥ does not depend on the choice of v and we can define % = V.
To summarize:

Definition 4.21. Let z, w € W(1) such that x < w. We define ¢, as

= cin =t € L[ Z]

wv

where v € Q(1), t € Zy,, tav = (s4,...,5;,) is a subsequence of wv = (s1,...,s,) in S (1)
such that wv = s1--- s, and tzv = s;, - - - 5;, are reduced decompositions.

Proposition 4.22. The elements c& € Z[Zy| for z,w € W(1),x < w satisfy the following
properties:

(i) e =1.
Y =ty =1 for t,u € Zy, v € Q(1).

)
(iii) 5% =wv -k forv e Q(1).
(iv) & (z-c) =l (w-c) for c € L[ Z].
(v) etz = gt (w1 - c2) if xp,w; € W(1), o < wy, U(x1m2) = £(1) + £(22), L(wiwz) =
l(wr) + £(ws).

(Vi) e =cib if ve W(1), £(zv) = l(x) + L(v), {(wv) = l(w) + £(v).
(vii) ¢k, = ¢y for w € Wa(1).
(viii) ¢} € & Z[Zy]  for x,v,w € W (1) such that x < v < w.

These properties come from the definition of ¢Z and properties of the c(s) (s € S*(1)),

as well as Example and Lemma .19 Items are first proved for x, w, x;, w; in
W2 (1) and then extended to W(1). Item |(vi)|is a consequence of |(v)| and

4.5. The Iwahori-Matsumoto expansion of 7T}, modulo q. We compute the triangular

decomposition of 7T}, modulo ¢; with the notation of (4.5)), we will prove the congruence in
L Zy]: for z,w € W(1) and = < w,

(4.12) Hw,z) = (1)@ mod q.

w

For h,h' € Hz, we write h = h' mod q if h — h' € qHz. An equivalent formulation of the
congruence is:

Theorem 4.23. Suppose that w € W (1) lifts w € W. We have

T: = Z (—1) =@ mod q, kX = LTy for any & € W (1) lifting x.
reW,z<w

Proof. We assume w € W, We can reduce to this case because c*(wv, zv) = ¢*(w, x), c¥ =
e for x,w € W (1), 2 < w,v € Q1) (Remark Proposition

One easily checks the theorem when ¢(w) = 0 or £(w) = 1. For t € Zy,, T; = T; and ¢} = 1.
For s € S (1), T =T, — c(s) and ¢ = 1, ¢}t = ¢(s).
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In general we prove the theorem by induction on ¢(w). Assume that ¢(w) > 1 and apply
the braid relation to @ = w5 in W¥(1) lifting w = wys with £(w) = £(w1)+£(s) = £(w;) +1.
By induction T = T3, T5 is congruent modulo ¢ to

Z (_1)f(w1)7f(x)c;:%1TjT§ = Z (_1)f(w)f£(x)cg; )+ Z C T

r<w z<wy z<wi
The first sum on the right-hand side equals
S = Z (=1)w)=t=) 2 7
r<wi
because Tzc(8) = (2-¢(8))T; and ¢k (2-¢(8)) = ¢k by Proposition To analyze the second
sum S on the right-hand side, as in [AHHV17, IV.9] we divide the set {x € W | z < w;}
into the disjoint union X LY L'Y's where

X={zeW|z<wp,zsLu}, Y={zeW|zs<z<w}

We examine separately the contribution of X and of Y UYs. For x € X we have x < xs.
The contribution of X in Sy is

Sa(X) = Y (1)@ 1oy = ST (—1) W)@ T = S (—1)A @2
reX zeX r€Xs

For x € Xs we have xs < z hence cw,1 = % (Proposition [4.22). We have Xs = {z €
Wz <w,z£w} [AHEVIT IV.9 Lemma 2]. Hence7

S+ So(X) = > (~1)f e
z<w
We now show that the contribution of Y UY's in Sy lies in ¢Hz (hence the theorem). The
contribution of Y UY's is
SQ(Y U YS) = Z (_1)€(w1)—€(a:) (CwlT - st T:ps)Ts
z€eY
We have ¢k = ¢k = ¢k (z-¢(3) = &, (x5 - ¢(3)) by Proposition 4.22| and Lemma as
Z

c
rs < x < wi; < w = ws. Therefore f 5= cg, (x5 c(8)Tzs = cwlTjgc(E), and

CwlTj — CstlTjg = CwlTngg — CwlT;;;gC(g) = CwlTjg(Tg — 0(5)) = CfblegTsik'
As TiTs = q(5)8% and ¢ divides ¢(s) we have So(Y LUY's) € qHz. O

4.6. The Iwahori-Matsumoto expansion of E,,(w). Let J C A and Py = M;N; the
corresponding parabolic subgroup of G containing B. The group I N M is a pro-p-Iwahori
subgroup of M; and we can apply to M; and I N M the theory of the pro-p Iwahori Hecke
algebra given in the preceding sections for G and I. We indicate with an index J the objects
associated to M instead of G.

On the positive side: the root system ®; of M is generated by J, the Weyl group W =
(NN My)/Z of My is generated by the s, for a € J, the Iwahori Weyl group W; = (N N
MJ)/ZO of My is a semidirect product Wj; = A x W, the sets & ; and Wjﬂ are contained in
S and W and we have the semidirect product Wy = Wf}ff x €y where € is the normalizer
of S3 in W;. The pro-p Iwahori Weyl group Wy (1) = (N N M;)/Z(1) of M is the inverse
image of W in W (1), ;W3 is the inverse image of W3 in W (1) and W, (1) = W3t Q,(1),
where (1) is the inverse image of Q; in W (1). The pro-p Iwahori Hecke ring H ;7 of M
admits the bases (Td)wewj(l), (T{l{’*)weWJ(l), (Eg(w))weWJ(l) for spherical orientations o of
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Vad, and the integral Bernstein basis (E7(w))yew,1)- We have ¢/ (w) = g(w) for w € &,
and ¢/ (w) = c(w) for w € &;(1) [Vig, Thm. 2.21].

On the negative side: the set Sf}ff of simple reflections is not contained in S*¥, the length ¢;
of W is not the restriction of £, €2; is not contained in €2, the Bruhat order <; of Wj‘ﬁ is not
the restriction of the Bruhat order < of W& the functions w @l Wy = ¢V, (wr,ws) —
@y = Wi x Wy = " w — ¢ : Wy(1) — Z[Zy] are not the restrictions of the functions
W Qs (W1, W2) > Gy g, W —> ¢ for W and W (1). The linear injective map respecting the
Iwahori-Matsumoto bases

LJ:H(LZ_)HZ Td—)Tw

does not respect products.

Definition 4.24. An element z € Z is called J-positive if (o, v(z)) > 0 for all « € &\ &7,
When z € Z of image A € A is J-positive, A\w € W is called J-positive for all w € W, and
lifts of Aw in W;(1) are also called J-positive.

Remark 4.25. ZT is the set of 2z € Z which are J-positive for all J C A.
For wy,wy € Wj(1), w1 <j we, if wy is J-positive the same is true for w; [Abel9, Lemma
4.1].

Notation 4.26. For w € W(1) or W, let n(w) € N denote an element with image w; when w €
W the image of n(w) in W (1) is a lift 72(w) of w. In particular, when w € Wy = N°/Z° c W
we have n(w) € N°. We do not require the lifts n(w) € N for w € Wy to satisfy the relations
of [AHHV17, IV.6 Proposition]|. The advantage is that this allows us to check compatibilities
and to avoid some silly mistakes.

We have [Viglh, Thm. 1.4]:
e The Z-submodule of H ;7 with basis T}/ for the J-positive elements w € W;(1) is a
subalgebra HIZ of H 7z, called the J-positive subalgebra.
e H ;7 is a localization of 'H}L’Z.
e The restriction of ¢; to HIZ respects products.
e Another basis of HIZ is T:* for the J-positive elements w € W, (1) (by the triangular

decomposition (4.5) and Remark 4.25)).

e Similarly, for any spherical orientation o of Vj,q4, the elements EJ(w) for the J-
positive elements w € W;(1) form a basis of HIZ (by the triangular decomposition

(4.7) and Remark [4.25)).

Let w; denote the longest element of W;o. For z € Z, the integral Bernstein elements
E(ﬁ (2) = EOJJJF (z) € H,z associated to the orientation o} of Vj,q of dominant Weyl chamber

’D}r and E,,(z) € Hz associated to the orientation oy of V,q of Weyl chamber ®,, = w (D7)
satisfy:

Lemma 4.27. When z € Z is J-positive, 1;(E/, (2)) = Eo,(2).

Proof. The proof follows the arguments of [Oll14, Lemma 3.8], [Abel9, Lemma 4.6], [Vigl5,
Prop. 2.19]. Let z € Z. The element v(z) lies in the image by w; of the dominant Weyl
chamber DT of V,q if and only if

(4.13) (a,v(2)) >0 for a € wy(@F) = (21 \ @F) U .
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When v(z2) € ws(DF) & v(z) = —v(2) € w (D) we have v;(z) € D} because
(a,v(2)) >0 for a € ®; < (a,vy(2)) >0 for a € OF.

Thus when v(z) € w;(D7) the integral Bernstein elements E7, (z) = E;]+(z) € Hyz and
J
E,,(z) € Hz satisty

(4.14) Eji(2) =T7(2), Eoy(2) =T(2), w(E(2)) = Eo,(2).

On the other hand, let z, z1, 20 € Z such that z = zlzgl and A, Ay € A the images of z1, z5.
For any orientation o of V,q (resp. Vjaq), we have in Hyz, (resp. H,z)

(4.15) Eo(21)ax, = a3, z;1Bo(2)Eo(22)  (resp. El(z1)q], = quglE;] (2)E (22)).
This follows from the multiplication formula in §4.2] which gives in Hz,
EO(zl)EO(*Z;l) = q/\L)\;lEO(Z), EO(Z2)E0(251) = Dyt = e

and the analogous formula in H ;7. For z € Z general, we can find 21, 22 as above such that
v(21),v(22) lie in w; (D). For such elements we obtain from (4.14) and (4.15) that

(4'16) (:I)\l’)\Q_lEOJ (Z)T(Z2) = Q)\ZT(Zl)v Qih)\;lE;]Jr (Z)TJ(Z2) = QS\IQTJ(Zl)'

We now suppose that z € Z is J-positive. We choose z1, z0 € Z such that z = zlzgl and
v(z1),v(22) € wy(DT), in particular z1, 20 are J-positive. As EJ, (z) and T7(z;) lie in HIZ,
the algebra homomorphism ¢ : ’H}F’Z — Hyz applied to the second formula in (4.16)) gives

@}, a1t (B ()T (20) = a5, T(=0).
In Hg where T'(z) is invertible we have, using again (4.16)),
LJ(E;)]-Q-(*Z)) - (qih)‘;l)_lq{QT(zl)T(ZQ)_l = (Qi,)\2*1)_1(]{2Q)\17)\271Q)T;E0J (Z)

The coefficient of T(z) in the Iwahori-Matsumoto expansion of v;(EJ, (z)) and of E,,(z)

being 1, we deduce qi )\71(%\72)*1 =q,, A;lq;; and LJ(Eg+(z)) = FE,, (%) in Hg hence also in
1N\ ’

Hz. O

Suppose z € Z* with images A € AT(1),\ € AT. We have EY, (2) = T7*(z) and z is
J-positive hence E,,(z) = t;(T7*(z)). By the triangular Iwahori-Matsumoto expansion of

T (2) ([&.5),
(4.17) Eoy(2)= Y *(\a)T().

zeWix<jw
(In particular, by {@&7), co,(\, &) = ¢’*(\, &) for & € W;(1) with  <; X.) For later use we
need the value of E, , (zn(wjwy)~t) for J' € J C A. The computation will use (£.17) and
the following Lemma (whose proof uses Lemma [4.28)). Recall the surjective map ® — @,
(2.4) respecting positive roots.

Lemma 4.28 ([OII15, Lemma 2.9 ii]). Let w € W, X € AT such that w < . Then there ezists
A1 € AT such that Ay < X and w € WohWy. In particular, v(A) — v(X) € X pen Q00"
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Proof. Since our assumptions on W are more general than in [OII15] we give a brief sketch
of the proof. We have that w < wa, the longest element of WyAW,. Choose A\; € AT such
that w € Wy Wy. Since waA, waAi are the longest elements of their double cosets, the
lifting property of Coxeter groups [BB05L Prop. 2.2.7] shows inductively that waA; < waA,
so A1 < waA. By using the lifting property again we deduce that A\; < A. (We repeatedly
use that £(w\) = £(w) + £(A) for w € Wy, A € AT. This is a consequence of ([£.3)).) O

Lemma 4.29. Let J' C J C A and X € A such that {(a,v(N\)) >0 forallae J\ J'.
(i) For \i € AT such that v(X) —v(A1) € X pe 0 Qx08", we have (v,v(A1)) > 0 for all
v EDT\ DY,
(ii) Suppose A € AT and x € Wy with x <j X\. Then {(x) = £(zwpwy) + L(wywy).

Proof. (i) For « € J\ J" and B € J', we have {a, ") < 0 hence (o, v()\)) < (a,v(A1)). Let

v € ®F \ ®F,. There exists a € J\ J' such that 7 — « is a sum of roots in ®*. Since
A1 € AT, {(y —a,v(A1)) > 0 hence (o, v(A\1)) < (y,v(A1)) and (a,v(N\)) < (v,v(A\1)). Hence
(v,v(A1)) > 0 for v € T\ <I>j]',.

(ii) There exists A; € A™/" such that © € Wy oA Wyr o and v(A) — v(A1) € Bperr Q08"
(Lemmal4.28) v = —v). In particular, 0 < {(a,v(\)) < (a,v(A\1)) for @ € J\J’, hence A\; € A™.
We write © = A\yv, with A\p =v1 - A\ € A and vy, v, € Wy .

As @F \ @7, is stable by Wy ¢ and (v,v(A1)) > 0 for v € @F \ &7, by (i) we have

(v,v(Az)) >0 for v € F\ ®7,.

By the length formula (4.4)), ((zwjw;s) = {(Agv,wrwy) is equal to

lzwpwy) = L(Ag) — L(vgwpwy) + 2{a € ®F Nvwpws (@), (aa, v(As)) < 0}
As vy € Wy we have L(vywpwy) = Lwy) — Lvgwy) = L(wy) — Lwy) + L(vg) = L(vg) +
L(wgwy). Hence £(N\;) — L(vgwypwy) = €(Ng) — L(vg) — b(wywy). We have
O Nt wg (B,) = BFN[(@, \ By UL NG ) Ut (@ )] = (87 \BE )V (0,(8;),
and (aq,v(A\g)) > 0 for o4 € @IJ \ @IJ" Hence
Uzwpwy) + U wpwy) = L(A) — L(vy) + 2[{ag € PF Nv (D)), (ag,v(Az)) <0} = L(x). O
Proposition 4.30. For J' C J C A and z € ZT of image A € At(1) and X\ € AT such that
(o, v(N)) >0 for allv € T\ J,

B, (zn(wywy) ™) = > N BT (@En(wwy) )

for any lifts T € Wy (1) of x € Wyi.
Proof. We have £(\) = £(Aw pwy)+£€(wywy) by Lemma and the multiplication formula
in gives

Eo,(2) = Eo, (zn(wswy) ™) Eo v w, (n(wywy)).
The orientation oy - wyw; of Weyl chamber wjw; (D, ,) = w;(D~) = D,, is o; and
E,,(n(wywy)) = T(n(wsywy)) [Vigle, Example 5.32], so

E,, (2) = EOJ,(zn(waJ/)_1)T(n(waJ/)).

Applying (4.17) and Lemma

EOJ,(zn(waJ/)_l)T(n(waJ/)) = Z (N &) T (En(wywy) T (n(wywy)).
zeWx< oA
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In Hq, the basis element T'(n(wjw;)) is invertible and we deduce
E,,(n(wwp) ™= Y AT (@En(wiwy) ).
CCEWJ/ ,CESJ/)\

This remains true in Hy,. O

Remark 4.31. Comparing with (4.5)), (4.7, Proposition implies
COJ,(S\n(ijt]/)fl,fn(ijj/)fl) ="\, %)
for J/C J C Aand X\, € W(1) lifting A € Atz € Wy, z <y A

4.7. ¥(c(s)) for a simple affine reflection. Let ¢ : Z° — C* be a character. It is trivial
on Z°N M, 2 (Definition by the following lemma.

Lemma 4.32. For J C A, the group Z° N M/, is generated by Z° N M, for a € J.

Proof. Let (UaesZ°N M) denote the group generated by the Z°N M/, for a € J. This group
is contained in Z% N M/, and Z° N M, is contained in the kernel of v. The group Z N M} is
generated by Z N M/ for o € J [AHHVI17, I1.6 Prop.] and the group Z N M/ is generated
by Z° N M/, and a, (Definition [AHTV17, §I11.16]. The group Z normalizes M/, and Z°
hence
ZN My = (Uaes Z° N M) ] af.
acJ

The group Z° is contained in the kernel of v and v(a,) = ). The a) for a € J are
linearly independent, hence an identity > ,c;n(a)ay = 0 with n(a) € Z implies n(a) = 0
for all @ € J. We get Z N M)NKerv = (UaesZ° N ML), hence Z° N M, is contained in
(Uaes Z° N M). O

As in 79N M, denotes the image of Z° N M/, in Z.

Remark 4.33. For a € A, the group Z°N M), is different from the group Zj s, defined in
Remark The group Z°N M, is generated by Zj,, and another group Z, _, such
that for an admissible lift §,,_1 of s4,—1 the value ¢(3,,-1) € Hc is given by a formula
like for ¢(34) with Zy, _, instead of Zj,, [AHHVIT, IV.24 Claim, IV.25-28]. The
group Z9N M/ is also generated by Zj s, and Sa(Zk,sarl) because Z9 N M/ and Ll s aT€
normalized by s,. The set A;b (Definition is therefore contained in the set

(4.18) A(Y) :={a € A | 4 is trivial on Zj 4, }.
Lemma 4.34.
(i) Let J C A and 7 € 16,. Then c(7) € Z[Z°NM)]. When J C Al,, we have
¥(e(7)) = —1.

(ii) Let « € A\ Aiﬁ' Then 1(c(3q) ¢(Sa,—1)) = ¥(c(3a) (8a - ¢(8a,-1))) = 0.

Proof. (i) This follows from Remark 4.6 applied to the Levi subgroup M of G. (Recall that
T () —
¢ (w) = c(w).)
(ii) By hypothesis ¢ is not trivial on the image of Z° N M/, in Z, hence if ¢ is trivial on
Z,s,, then ¢ is not trivial on Zy ., _, and on s4(Zys,, ,). By formula (4.6) and Remark
¥(c(84)) = 0 (resp. ¥(c(34,-1)) = 0, resp. Y(Sq - ¢(Sa,—1)) = 0) if and only if ¢ is not

trivial on Zj 5, (resp. Zk 50,15 TESD- Sa(Zk,saa_l))- O
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4.8. (c%) for dominant translations. Let 1 : Z° — C* be a character and %, € W (1)
lifting , w € AT such that # < . To compute ¥ (c%) we need some knowledge of the reduced
expressions of the elements of A™. This is obtained in the following lemmas.

Lemma 4.35. Let « € A, X\ € AT such that \y\ € AT and let X = s1---s,u with s; €
S w e Q be a reduced expression. Then there exist ki < ko such that
® Mg\ =51 Sk —18k +1 " Sky—15ko+1 ** - SpU 15 a reduced expression, and
® (517" 8ky—1) " Sky> (517" Sk —18k1+1" " Sky—1) * Sky} = {Sas Sada} 07 {Sa; Aasa}-
Proof. As in Lemma [£.4 we have
Ao < SaAaA < A
because £(saAa)) = L(ATIAT sq) = €(AaA) +1 = £(X) — 1 (using ([£.4)), and we have soAq =
Saa+1 € 6. By the strong exchange condition there exists ¢ such that saAgs1---8; =81+ 81
and there exists j such that either of the following hold:
(1) j <1, Sq81--+8j =s81---5j—1: hence (s1---5j_1)-5j = Sq and (51 Sj_18j41 - Si—1) -
Si = (SaS1 "+ Si—1) * Si = Sa - Sada = AaSa; We take k; = j, ko = i.
(2) j >, 8081 Si—1Si41-+Sj = 81 Si—1Si41 - Sj—1: hence (s1---8j—1)- 8 = SaAa and

(81 0 8-1Si+1 Sj_l) . Sj = S, W€ take kl = i, kQ = j O
Remark 4.36. We will apply Lemma as follows. For a choice of lifts in W (1), we have
cy‘f’ =t(s1-Sgy—1-C(8k,)) (51 Sky—1Sky+1 " Sky—1 - ¢(Sk,)) for some t € Zj, by definition

of ¢ . Hence, as \ySa = Sa,—1;Sara = SaSa,—15«, We have
M € ¢(3a) (50 C(Bay1))ZIZ1] or c(3a)c(3a,—1)ZIZ1].
By iteration of the lemma, we get:
Lemma 4.37. Let A € AT, J C A,n(a) €N for a € J such that ANyes A e AF for all

m(a) € N,m(a) < n(a), and let X = s1 - - spu with s; € S, u € Q be a reduced expression.
Then there exist 1 < i1 < 19 < -+- < i <n such that

e AMaen AZ(O‘) = 5;, - 8, u 1s a reduced expression, and
o (s --sij) - 81, lies in Wf}‘ﬁ c Woaft forany 0 <j<randi; <k <iji1.
Here we let ig = 0, 2,41 =n + 1.
Proof. We proceed by induction on 3 g-;n(8). Let a € J such that n(a) > 0. Then
A= Mges )\g(ﬁ) = XAa)\q and Ao € AT. By the inductive hypothesis, there exist i < is <

-+» < i, such that Ay = s, -+ s;,u is a reduced expression and (s;, - - - s;;) - s lies in Wf’,‘ﬁ
for any 0 < j < r and i; < k < ij4;. From Lemma there exist a < b such that A\; =
Siy " Siq_1Siqi1 " Siy_1Sipe, ** Si,u is @ reduced expression and 71 = (8i; + - Si,_y) " Sigy T2 =

. T . . e . . . .
(Siy " Sig_1Siqpr """ Siy_1)Sip are in W3 We prove that (¢),...,4._9) = (i1, -+, la—1,%a41s- - tb—15Tb41, - - -

satisfies the conditions of the lemma. Take 0 < j < r — 2 and z; < k < z';H. Then
(Si’l .- SZ;) - 83, lies in Wf}ﬂ. Indeed, if k = i, or 4; this is the condition on a and b. Otherwise,
take j' such that iy < k <4;41. Then
(Siv "+ 8i,) " Sk if j < a (hence j = j'),
(811 - sZ;) “sk = (T18i 0 Si,) Sk if a <j' < b (hence j =j —1),
(ro718iy -+ 8i,) sk if b <5’ (hence j = j' —2).

In any case, this is in Wjﬁ by the inductive hypothesis and because 71, 72 are in Wj‘ff. (|

yir)
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Remark 4.38. We will apply Lemma as follows. Keep the notation of the lemma, so
ij < k < ij41. Let oy € ® be a reduced root such that sj is the reflection in an affine
hyperplane of the form ay+r = 0 (r € R). We have s;, - -+ s;,(ay) € @, where ®; C ® denotes
the root subsystem generated by J. Choose lifts §;,,...,8;,,5 € WA of s -3 8ij, Sk
with 3 admissible. Writing Mé = (Ug,U_p) for any reduced root f € ®, we have that
8y lies in the image of N'N M, in W (1). It follows that 5; ---5;; - 5 lies in the image of
NNM! (o) in W(1),s0 8, -+ 3,8 € 1Wf}ffﬂ€5(1) =16 . Hence by Lemma |4.34 we see

Sil 51] o

that s;, - - si;-c(8x) = c(8i, - - - 8i; - 31) lies in Z[ Z9 N M} ]. Therefore ¢(s;, - - - 54, -c(31)) = —1
if ¢ is trivial on Z° N M.

We are now ready to compute ¢(c%) when &, are elements of the inverse image A (1) of
At in W(1).

Theorem 4.39. Let &,w € AT (1) lifting x,w € A such that x < w. Then

o) (=)= if 7 € 0 aenr, aqs

cy) = .

Y 0 fongaEAgb AL,

Proof. We have z = w]],ca ALY with n(a) € N (Proposition . For A € AT(1),
cf’%\ = & (Proposition [4.22)), so by Lemma 3.5 we may assume without loss of generality

that w]],en AT € A+ for any 0 < m(a) < n(a).

Assume n(a) > 0 for some o € A\ Aj. Let ' = ;! for some lift A, of Ay, s0 & =
W' A\ < W <. Then ¢k € cg:’\o‘Z[Zk] by Proposition @, 50 2 € c(8a) (5 C(Bay—1))Z[ Zy)
or ¢(54)¢(8a,-1)Z[Zk] by Remark Therefore ¥ (c%) = 0 by Lemma

Assume now n(a) = 0 for all @ € A\ A}, and that & € ﬁ’HaeA;b ae . Take a reduced

expression @ = §; - - - §,@ where 31, ..., 5, € 15?1 are admissible and @ € Q(1). Let J = Aip-
By Lemma [4.37] and Remark [4:38] there exist i; < ia < --+ < 4, such that

o vz =w]][,en )\Z(a) = S;, -+ Si,u is a reduced expression,

® Siy 8, Sk € 16 for any 0 < j <r andi; < k < ij41, and

® Sj cccSi;c C(gk) = C(§i1 ce §i]- . §k) € Z[ZO N M}] and 1/)(81'1 TS C(§k)) = —1 for

any 0 <j <randij <k <ijq.

We have & = t§;, --- §;,u for some ¢ € Zj. Taking the product of all 5;, ---3;, - 5 € 16,
we deduce that (wu=1)(t"17u=1)"t = w31t € W3, Since 710 = [[,ey aa"® e el
it, follows by normality that @z~ € ;W3 Thus t € Z, N W3t = 2207 50 y(t) = 1.
Therefore, from the definition of ¢ we get that ¥(ck) = (—1)"". O

5. INVERSE SATAKE THEOREM WHEN A (V') C A(V)

5.1. Value of ¢, on a generator. Let V,V’ be two irreducible representations of K with
parameters (1by, A(V)), (b7, A(V')) such that A(V') C A(V), let 1P : VU =5 /U
Vo — V5o be compatible linear isomorphisms ([2.8)), and let ([2.10)

2 € ZL(V. V) ={2€Z" | z-¢v = ¢y, (a,v(2)) > 0 for all a € A(V)\ A(V')}.
The Satake transform S : He(V, V') = Hz(Vyo, Vo) is injective (cf. Definition [2.11)). After

VUO 7V(307

showing that 7, ' belongs to the image of S¢ we will compute the value of the unique
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antecedent ¢, on a generator of the representation c—Ind% V of G (Proposition . As a
generator we take the function f, € c—Ind% V of support K and value at 1 a non-zero element
v € VY. This generator f, is fixed by the pro-p Iwahori group I = K (1)Ugp and its image
by a G-intertwiner c-Ind% V — c-Ind$% V' is also fixed by I. The space (c-Ind$ V’)! of I-
invariants of c—IndIG{ V' is a right module for the pro-p Iwahori Hecke C-algebra H¢o. We will
show that ¢,(f,) = fuh. where fy € c-Ind% V' has support K and value v/ = 1°P(v) at
1, and h, € Hc; then, we will describe h, using the elements T}y and E w) of He for

OA(V’)(
we W(l).
Proposition 5.1. Suppose z € Z4(V,V'). There ezists ¢, € Ha(V, V') such that S¢(p,) =
VUO,VI’JO,L

Tz . The value of p, on f, is fyrh, where
he = Eoy o, (zn(wagywawny) DT (n(wapywaws))-

Note that E,,(zn(w)~1)T*(n(w)) does not depend on the choice of the lift n(w) € N of
w € W because another choice differs only by multiplication by ¢t € Z° and for n,n’ € N,
E,,(nt™")T*(tn') = E,, ()Tt~ )T (t)T*(n) = E,,(n)T*(n).

5.2. Embedding in X = Indg(c-lndg(l) 1¢). Proposition is essentially the same as
Theorem [AHHV17, IV.19 Thm.] which implies the easier part of the change of weight theorem
[AHHV17, IV.I Thm. (i)]. (See the end of for an explanation why it is essentially the
same.) The first step of the proof is to embed the two representations C—Ind% V and c—Ind% V!
of GG in the same representation

X = Indf(c-IndZ ;) 1¢).
For a C-character ¢ of Z° let ey € C—Indg(l) 1¢ denote the function of support Z° and equal

to ¢ on Z9. For v € VU \ {0} of image T € Vyyo, let f, € c-Ind% V' (resp. ez € c-IndZ, Vi)
denote the function of support K with f,(1) = v (resp. of support Z° with ez(1) = ). We
recall the injective intertwiner [HV12, Def. 2.1]

Iy : ¢-Ind% V < Ind%(c-Ind%, Vo)
such that Iy (f,)(1) = ez. We have the injective Z-intertwiner
Ju : ¢-IndZo Viyo < ¢-Ind% ;1o
sending ez to ey, .

Definition 5.2. For v € VU \ {0}, let I, : c-Ind¥ V < X be the injective G-equivariant
map such that I,(f,)(1) = ey,

The intertwiner I, is the composite of Iy and the injective G-intertwiner
d%(j7) : Ind%(c-IndZ, Vio) < %
induced by jg. For ¢ € Ha(V, V'), the diagram

-Ind$ V — Ind$ (c-IndZ, Vo)

‘Pi lSG(so)

c-Ind% v/ - Ind%(c-Ind%, o)
V/
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is commutative [HV12l §2]|. For z € Z, let 7(z) be the characteristic function of zZ(1) seen as
a Z-intertwiner c—Indg(l) lo — c—Indg(l) 1c. This makes C—Indg(l) 1o into a left C[Z/Z(1)]-
module. Let " = ¢(v). The diagram

c-Ind%, Viyo —> c-Ind% ) 1¢
V,.0,V/

7_ZU ’ UO’L\L lr(z)

C-Indgo Véo ? C-Indg(l) 1C

is commutative. By functoriality, the diagram

Ind (j7)

Ind% (c-Ind%, Vio)

VUO’V(/JO’L\L lf(z)
TZ

Indf(c-Ind%, V},

is also commutative.
Proposition 5.3. Suppose z € Z5(V,V'). In the (C[Z/Z(1)], Hc)-bimodule X! we have
T(2)o(fo) = Lo (for)hzy he = EOA(V/)(Zn(wA(V)wA(V’))_l)T*(n(wA(V)wA(V’)))'

This proposition implies Proposition as we now explain: we see in particular that
7(2)I,(fo) € Iy (c-Ind% V'), so 7(2) I, (c-Ind% V') € Iy (c-Ind$ V). Thus there exists a unique
. € Ha(V, V') such that the following diagram commutes:

cInd§ vV e x

I
Yz | lT(z)
\
c-Ind V! —— X.

V0,V o
By the above discussion and injectivity of Indg (ju) we deduce that 7, vortuort, Iy = Iy op,.

We also have S%(¢.) o Iy = Iy o .. From the discussion of [IVI2, §2] it follows that

G VU07V/07L . .
S%(p,)=1." Y (both correspond to the map Iy o ¢, under the adjunction [HV12] (2)],
where we take P = B and W = c-IndZ, V).

Proposition is a variant of [AHHV17, TV.19 Theorem|. In loc. cit. one assumes ¢y =
Yy =, A(V) = A(V')U{a} and the representation X of G is replaced by X, = Indg(c—lndgo V).
Identifying Vijo ~ v, Vo =~ v+ via our bases 7,7 we have the embeddings Ind$(j3) :
Xy = X, nd%(jy) Xy, = X. We need to explain why certain arguments of [AHHV17]
remain valid or can be adapted to our more general setting.

5.3. Proof in ¥!. We start the proof of Proposition For n(w) € NV lifting w € W,
the double coset Bn(w)I does not depend on the choice of n(w); we write Bwl = Bn(w)I.

Definition 5.4. For a C-character 1 of Z°, the function Jom(wa) € X! has support Bwal
and its value at n(wa) ™! is ey.
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The function fy ,(,) is the image of the function fo € :{{b of [AHHV17, IV.7 Definition]
for a fixed choice of n(wa). As announced earlier, we first show 1,(fs) € fy, nwa)He-

Lemma 5.5. We have I,(f,) = fwv’n(wA)T(n(wA)n(wA(V))_1)T*(n(wA(V))).

Proof. This is obtained from [AHHVI1T7, IV.9 Proposition| by applying the embedding Xy —
X, for a certain choice of n(wa) and n(wayy). This is valid for any choice because for

t € Z°, the product T(nt=1)T*(tn') for n,n’ € N does not depend on ¢, and neither does
fov inwa)T () = tfy, nwa)T ()T (n), recalling

(5.1) fh=>" h@)a~'f forheMte, feXx,
zeI\G

hence fT(t) =t~1f. O
Lemma 5.6. For a C-character ¢ of Z° and z € ZT we have

T(Z)fw,n(wA) = fz-w,n(wA)T(n(wA) : Z)'
Proof. When z - ¢ = 1 this is obtained from [AHHV17, IV.10 Proposition| by applying
the embedding X, < X. By loc. cit., the support of f..; nwa)T(n(wa) - 2) is Bwal
and its value at n(wa)~! is fz.wm(wA)(n(wA)*l(n(wA) ) = fz‘wm(wA)(z*ln(wA)*l) =

2 frpmwa) (M(wa) ™) = 27 te.y = T(2)ey. Therefore 7(2) fyn(wa) = fopmwa)T(n(wa) -
z). O

Lemmas and imply
7(2)L(fo) = Fopy m(wa) T(n(wa) - 2)T (n(wa)n(waw)) )T (n(wav)))-

We want to show that the right-hand side is equal to
Ly (fu) Eog i, (Zn(waprywans) ™ )T (n(waywan))-

This is a problem entirely in (the image in X! of) the Hc-module %{pv/ which is solved

implicitly by [AHHVIT7, IV.19 Theorem] for a special choice of lifts in N° of wa, w A(V) WAV
and when ¢y = 1y, A(V) = A(V') U {a}. Checking the homogeneity, the choice of the lifts
does not matter, but the hypothesis on the parameters of V' and of V' forces us to analyze the
proof of [AHHV17, IV.19 Theorem|. The sets A(V) and A(V’) appear together only when
the proof uses [AHHV17, IV.19 Lemma]. But this lemma is valid when A(V) is any subset
of A containing A(V’). With our notation this lemma is:

Lemma 5.7. For A(V') C J C A we have
Ly (for) = Loy m(wa) T (n(wa)n(wy) ) T*(n(w)n(wiway) )T (n(wiwawry))-
We now consider the characters. The equality ¥y = 1y appears only when the proof uses

[AHHV17, IV.14 Theorem]| for w = 1, but we can replace it by:
Lemma 5.8. For a C-character v of Z°, J C A and z € Z we have

{T(Z)fw»n(wA)T("(wA)n(wJ)_1) ifze€Z"

Fovma T(n(wa)n(wy) ™) Ey, (n(wy) - 2) = 0 if2d 7+,
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Proof. The formula of Lemma multiplied on the right by T'(n(wa)n(wy)~!) is

) o DA IN(0) ) = Forgn(ang) T - VT (s ) ).
Suppose z € Z*. In the pro-p Iwahori Hecke algebra,
T(n(wa) - 2)T(n(wa)n(wy) ™) = T(n(wa)n(ws) ™) Eo, (n(wy) - 2).
This follows from [AHHVIT, IV.15] applied to n(wy) - z instead of A and to n(wa)n(w;)~*
instead of n,,s and n(wy)~! instead of v,,,. We get the formula of the lemma for z € Z7.
Suppose now z € Z*. As in [AHHVI7, IV.15] we take z; € Z* such that («,vz(21)) > 0

for any o € @ and we multiply on the right by E,, (n(wy) - z) the formula that we just
established for z; € ZT. Using E,, (n(wy) - z1)E,, (n ( J) - 2) =0 we deduce

0= 7(21) Fymtun) T(n(wa)n(ws) ™) Eo, (n(wy) - 2),

and then we multiply on the left by the inverse 7(z;!) of 7(21) in C[Z/Z(1)]. The result is
valid for any 1) and we replace 1 by z - 1 to get the lemma for z ¢ ZT. O

By induction on {(w) for w € Wy, Lemma is a particular case of a more general result,
as explained in [AHHV17, TV.16-18] (again we see that the choice of representatives n(w) for
w € Wy is irrelevant):

Lemma 5.9. For a C-character v of Z°, JC A, 2 € Z and w € W0, we have
Fepmom)T((wa)n(wy) ™ T (n(w)) By, (n(w) " n(wy) - 2)
_ 7(2) fymwa) T (n(wa)n(wy) T (n(w)) if z€ ZF
0 if2& Z".

Now applying the proof of [AHHVI1T7, IV.19 Theorem] we get Proposition (Note
that we still get E(zn(wA(V)wA(V/))_l) = L(n(wamywawry) - 2) — Ln(wagywarr))), as
z € Z&(V,V').) This ends the proof of Proposition

5.4. Expans‘i/?/n of ¢, in the basis (7,) of Hqe(V,V’). We now give the expansion in
the basis (TV-V'+ +vun g0 of Ha(V, V') (Proposition [2.5) of the function ¢, given in
Propositioil b}),Ziva(;Ze)i)Zn a gener;tor j?v (of C—Ind[G{ V: o
(5.2) ©z(fo) = foEopp, (zn(wagrywaen) ™ T (n(wagywanr)))-

Recall that Z (V, V') = ZTNz ey ab is finite and contained in Z¢ (V, V') (Lemma/|2.13).
Proposition 5.10. Let z € Z/(V,V'). The function ¢, € Ha(V, V') is equal to

ST
z€ZF (V,V)
Clearly Propositions [5.1] and [5.10] imply Theorem [3.6]

Proof. Two elements o1, p2 € Ha(V, V') such that ¢1(f,)|z+ = @2(fu)|z+ are equal. This
follows from two properties:
(i) a basis of Hg(V, V') is TZY’V/’L for 2’ running through a system of representatives of
Z&(V, V20 So o1 =3, al(z')TZ‘{’V,’L for some a;(2") € C.
(i) o1(fo)(2") = a1( ) for 2’ € ZL(V, V') because of the lemma below.
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Lemma 5.11. For 2/ € ZL(V,V') the function TZ‘,/’VI’L(fv) € c-Ind% V' wvanishes outside
KZ' K and is equal to v' at 2'.

Proof. For y € G, the value of TZV,’V/’L(fU) at y,
= Y T @) fule ')

geKZK/K

is 0 if K2"'KyN K = @ (hence TVV *“(fy) vanishes outside Kz'K) and TVV “(fo)(Z) =
TV () (£u(1) = 1P (0) = ', 0

Therefore it is enough to prove that ¢.(fy)lz+ =2, ¢ ERUAD TV V' ()] 2+, or equivalently,

oo e ZHV, V),

(5:3) #a(fo) (@) = {0 v e 7T\ 207 (V, V).

We now write J' = A(V’) and J = A(V). We prove (5.3]) in two steps. In the first step we
prove (|5.3) assuming two claims which are proved in the second step.
A) By the congruence modulo q of the Iwahori-Matsumoto expansion of £, , (zn(wjw 7)Y

(Propositions [4.23| and |4.30]), we have
JoEoy Gnlwswp) ™) = Y (~D)r @y (T T (@ (ww ) ),

xEWJ/,$§J/)\
where X is the image of z in A*(1) and A the image of z in AT. We used that fyc = w‘;}(c)fv/
for ¢ € Z[Zy), as fuT(t) =t~ fy = Yy (t71) fo for t € Z (5.1). We claim that

(5.4) foT(@n(wywy) )T (n(wyw))|z+ #0 =z € A*.

Now for € AT we have <y X if and only if z € ATNAT],cpr A (Proposition 4. , and we

know the value of 1y, (ci:i"],) (Theorem [4.39)). Obviously A’ = A’ _, and J’ﬂA' =A(V)
V/

hence z € AT N A T[henrvr AN (Proposition if oy (C~ ) # 0. Together with ( . we
obtain

0z(fo)lz+ = > foT(@n(wywy) )T (n(wywy))| g+

FEAT(1 mHaeA/(v/) al
We claim also that
(5.5) foT@n(wyws ) )T (n(wswy))z+ = foT(@n(wswy) )T (n(wswy))lz+-
Assuming the claim, the braid relations and ¢(z) = ((zwywy) + {(wywy) (Lemma [4.29)
imply

:(fo)lz+ = > foT(Z)| 7+

FeAT ()N HQGMV,) al

We finally compute f,/T(Z)|z+.

Lemma 5.12. For z € Z, the function fyT(2) € (c-Ind$ V') vanishes on Z+ if = ¢ Z+,
and f,T(z) is the function of support KzI with value v’ at z if z € ZT.
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Proof. The map z — KzI : Z — K\G/I factors to a bijective map A = K\G/I. We have
KzInzZt =222 Zt and Kz2INZt =g if z € Z\Z+ and

(foT(2) Z fur(zz™

xeI\IzI

The support of f,T(z) is contained in KzI hence fyT(z) € (c-Ind% V’)! vanishes on Z+
if 2 ¢ Z*. In the displayed formula f,(zz~!) # 0 implies zz~—! € K N zlz~'I. Consider
the Iwahori decomposition I = US (I N B). If z € Z*, we have UY C 2U%z"' C Uy
and z(I N B)z~! € I N B. By intersecting with K we get U) = K N z2U%z"'. Hence
Knzlz"'T=KNzUY 2T =1, 50 (fuT(2))(z) = fu(1) =" O

B) We prove the two claims (5.4) and (5.5). There are weak braid relations in H¢ valid
for any pair of elements in W (1).

Lemma 5.13. For wy,wy € W(1) there exists wh € W (1) with wh < wy and Ty, Ty, €
ClZ4)T,

w1w
Proof. This is done by induction on f(ws). When § € S*(1) we have T,,,Ts = Ty, if
wy < wi§ and Ty, Ts = Ty 5112 = Ty 5-1¢(8)T5 = (w1 - ¢(3)) Ty if w13 < wy. O

As an application, for w1, wy € W (1) lifting wy, wy € W, the triangular Iwahori-Matsumoto
expansion of T7  and the weak braid relations imply

Tay(Ty, —Tay) € Y. ClZTe, Ty Y. ClZkTay,
yeW,y<ws yeW,y<ws

where g € W(1) lifts y. We use this result as follows: fv w1 Ty lz+ = foTw Ta,lz+ if
Jo T glz+ = 0 for all y € W with y < wa. The two claims ) and . follow from:

Lemma 5.14. Suppose wy € W (1) lifts wy = zwywy with x € Wy, o <p X\, A € AT, and
g€ W) liftsy € Wy withy < wjywy. Then fyTgg vanishes on Zt except if x € AT and
Y= wywy.

Proof. Let A, € A and v, € Wy ¢ such that x = A\yv,. We have (y,v();)) > 0fory € 1\ @7,
by the proof of Lemma [4.29]ii).

We have wiy = Avzwypwyy where vawpwyy € Wy, the support of f,/Ty,5 is con-
tained in Kn(\;)n(vewpwy)l = K(n(vewpwyy)~" - n(Az))I and recalling the bijection
A — K\G/I, we have Z N K(n(vywpwyy)~t - n(A)I = Z°(n(vewypwyy) =t - n(Ag)). We
have ((vywrwsy) L (Y), v((vewrwy) - Ap)) = (v,v(\)). If vywywyy & Wy o there exists
v € &%\ @7, with (vywpwyy)~(y) < 0, hence f,Tg,5 vanishes on ZT. Hence we may
assume that v,wpwyy € Wy .

We recall:

Lemma 5.15 ([Bou02, IV.1, Exercise 3]). Let J C A. Every coset wW g in Wy has a unique
representative d of minimal length. We have ((du) = (d) 4+ £(u) for allu € Wyo. An element
d € Wy is the representative of minimal length in dW g if and only if d(J) C 7.

The element wjwy is the representative of minimal length of the coset w;Wy . Since
vpwywyy € Wy o, we have y € wyWy g, so y = wywy, as y < wyw, by assumption.
We deduce that f,, Ty, vanishes on Z7 if y # wyw.
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Assume y = wywy. Then & = w§ lifts x = \v,. If f,, Tz does not vanish on Z*, then by
above we have v; 1 -\, € AT, If vl A, € AT then £(z) = £(ve (vt Ny)) = E(vx)—kﬁ( 1),
and by the braid relations f, T3 = fu/ 15, T -

Vz = vy,

The element f, € (c-Ind% V')! generates a subrepresentation of K isomorphic to V'.
The parameter of the character of Ho (K, I) acting on C'f,r is (@Z)‘;,l, J') (Lemma {4.11). By
, foTs, =0 for v, € Wy o — {1}. We deduce that f,T; = 0, except if z € AT and
Yy=wjgwyj. ]

This ends the proof of (5.3)) hence of Proposition O

6. A SIMPLE PROOF OF THE CHANGE OF WEIGHT THEOREM FOR CERTAIN G

In this section, we give a simple proof of the change of weight theorem (Theorem when
G is split. For GL, (and more generally for any split group, see this gives a more
elementary proof than the one in [Herlla] and [Abel3], avoiding the Lusztig-Kato theorem.

Since G is split, Z is equal to S and vy gives an isomorphism X, (S) ~ S/S° = A, and
Bruhat-Tits theory gives a Chevalley group scheme G with generic fiber G and such that
G(O) = K is the special maximal compact open subgroup of G fixing x [Tit79, 3.4.2]. We
have G(k) = Gy, the root system ® of (G, S) identifies canonically with the root system of
(G, Sk).

Lemma 6.1. Assume that G is F-split. For o € A, we have ZNM!, = oV (F*), Z°NM! =
a¥(0*), and Zy N M/, = oV (k).

Proof. Note that Mg‘fr is a semisimple group of rank 1 and that M/, C M3°'. Hence the first
two equalities are reduced to the case where G is semisimple of rank 1 and hence isomorphic
to SLg or PGLy [Spr09, Thm. 7.2.4]. In either case the first two equalities are easily verified
by hand, noting that Z = G,,, and so the parahoric Z° is the maximal compact O* C F*.
For the third equality, the same proof as for the first one works, but now one works over k
instead of F'. 0

By the lemma, for a character ¢: Zj, — C*, which is also regarded as a character of Z° by
the quotient map Z° — Zj,, v is trivial on Zk N M)  if and only if 4 is trivial on Z0N M,
Hence A(V) = A’(V) for any irreducible representation V of K.

In this section we prove Theorem [2.3] We will first focus on the case when the center of G
is a torus (i.e. smooth and connected) and the derived subgroup of G is simply connected. In
fact, just as in the first proof of Proposition [2.17] we prove a stronger version which we now
state. Fix o, V, V' as in Theorem

Theorem 6.2. Suppose that G is a split group whose center is a torus and whose derived
subgroup is simply-connected. Let z € Zt such that (a,vz(2)) > 0, i.e. z € Z&(V,V'). Then
there exist G-equivariant homomorphisms ¢ : c-Ind%V — ¢-Ind$ V' and ¢’ : c-Ind% V' —
C—IndIG{ V' satisfying

V Voo V0.V Vo,V

SG(‘P) LU ) SG(‘P/) =Tz 7 = Taaa
If moreover (8,v7(z)) =0 for € A(V'), then o =TV and o' = TV"V'.

Remark 6.3. Recall that we fixed an isomorphism of vector spaces ¢: Vo ~ V(’JO (2.8). This
is also an isomorphism of representations of ZY because 1y = 1. We have isomorphisms
Hz(Vyo, Vi) = Hz(Vio, Vo) = Hz(Vije, Vi) = Hz(Vie) = Hz(Viyo, Vipo) = Hz(Viyo) and
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V0 V{;o . . ’
forx € Z, 7.V, 7Y correspond to each other under the isomorphism Hz (Vo) ~ Hz(V0),
and we will just denote them by 7,. We remark that since Z = S is commutative, H¢g (Vo)
is commutative.

The basic idea of the proof is the following. We construct many G-representations 7 that
contain the weight V but not the weight V’. This implies that y ® c-Ind% V % x ® c-Ind$ V’
for any homomorphism y : Ha(V) ~ Ha(V') — C that occurs in Homg (V, 7). This in
turn implies that y(TV"Y" s TV"V) = 0 for such y. When z is as in Theorem and chosen
minimally, i.e. (o,vz(z)) = 1 and (5,vz(z)) = 0 for § € A\ {a}, then it turns out that

SC(TYV' «TY"V) is so constrained that it is forced to be equal to 7,2 — T,2q,- BY Lemma

v V0 Vi0,V! Vyo,V! .
we have S¢(TYV""V) = 7,v"""" and we deduce that SE(TV"V') = 7,V v° — 7,0 v° Using

properties of S it is then not dlfﬁcult to deduce the theorem.

1. The case of GLy. To warm up, in this section we illustrate the proof strategy by
showing that SG(TZVJ// * TZVI’V) = T,2 — T,2,, When G = GLg, V is the trivial representation
1 of K, V' is the Steinberg representation Sty of K, and z = diag(w, 1) where w is a
uniformizer. We note that 7o = Tgiag(w-1,w)s SO T224, = Tdiag(w,w)- 1 he Satake homomorphism

SY satisfies (see [Herllal, proof of Prop. 6.3] or Lemma [2.9):
o SC(TY"V)(2') # 0 implies vz (2') € vz(2) + RcgAY.
VoV /
e The coefficient of 7.°" "" in SE(TY' VY is 1.

’ V V0 V',V
This also holds after switching V and V’. This means that S& (7)) € 7, v° ve +> <0 CT, lag(w(ii1 nys

similarly after switching V and V', and S¢(TV"YV") o SE(TYV"V) € 7,2 + " n<0 CTdiag(wn+2,0-n)-

The support of SE(f) € Hz(1,0) is contained in ZT for any f € He(lx). For n < 0, if
diag(w"2, @ ") € Zt then n = —1, so

G(V,V VIV 2
S (Tz ° Tz ) =T, + CTdiag(w,w)

for some ¢ € C. Let x1 : Hz(10) — C be the character such that x1(7.) = x1(Tdgiag(w,=)) = 1-

We also denote by x1 the character x1 0S5 of Hg(1x) =~ Ha(Str). The algebra He (1) acts
on the line Homg (c-Ind% 1, 1¢;) by the character x; because the embedding 1¢ < Ind% 1,
implies

Homp (1x,1¢) = Homp (15, Ind% 17) = Homg (1, Ind%, 1) ~ Hom o (1] 50, 12| 20),

and the isomorphism Homp (1f,1¢) — Homzo (1|0, 12]40) is Ha(1x)-equivariant via S
[HerIlal Lemma 2.14]. Hence 1¢ is a quotient of y; ® c-Ind$ 1x and

X1 ® c-Ind% g £2x1® c—Ind[G( Stg .

(If these are isomorphic to each other, then we have a non-zero homomorphism c-Ind% Stz —
X1 ® c—Indf( Str ~ x1 ®c- IndK 1x — 1g which gives Stx — 1g|x by Frobenius reciprocity.
This is a contradiction.) For a character x : Hz(140) — C such that x(72 + CTdiag(w,w)) 7 0,
we have y ® c-Ind$ V ~ x @ c-Ind% V’. Therefore (72 + CTdiag(w,w)) = 0, hence ¢ = —1 as
desired.
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6.2. Reducibility and change of weight. Until the end of fix G,a,V,V’" as in
Theorem
Let x: Hz(Vyo) — C be a character. Since Z C Z is normal, c—Indgo Vyo is a free
Hz(Vyo)-module of rank 1. The character x @y, (v, ) c-IndZy Vipo of Z is z + x(7,-1)
because 7,-1 = z as endomorphisms of c—Indgo Viyo; its restriction to Z° is ¥y because 7,-1 =
Yy (2)11 = Py (2) in Hz(Vio) for z € Z°. Since vy is trivial on Z° N M, 7, is well-defined.
Assume that x(74) = 1. The character z — x(7,-1) of Z is trivial on Z N M/, = oV (F™),

hence we can extend it to a character of M, that is trivial on UNM,, ([Abel3l, Proposition 3.3],
[AHHV17, I1.7 Corollary 1]). We denote this extended character by o,.

Lemma 6.4 ([AHHV17, IT1.18 Proposition]). Assume that x: Hz (Vo) — C satisfies x (7o) =
1. Then Homg (V,Ind%, o) # 0 and Hom (V’,Ind$, oy) = 0.

Proof. By Frobenius reciprocity, the Iwasawa decomposition G = P, K and using P) = MON?
we have

Homyg (V4, Indga oy) = Homg (V7 Indgo o) = Hompzo (V1) no, oy )
for any irreducible representation V; of K. The parameter of Vo is (Yy, {a}), the parameter
of Vo is (¢v, @) [AHHVIT, I11.10 Lemma]. On the other hand, the parameter of the character
oxlmo is (Yv,{a}) [AHHVI1TZ, II1.10 Remark]. O

Lemma 6.5. Assume that x: Hz(Vyo) — C satisfies x(1o) = 1. Then
X ®ne(v) c-Ind@ V £ x OHe (V) c-Ind% V7.

Proof. By definition of o, we have an M,-equivariant map o, — Indg"n"Ma (x OH (Vo)

c-Ind%, Viyo). By exactness of parabolic induction we get
Hompg (V, Ind}Gpa o) < Homg (V,Ind$(x Uz (Vo) c-IndZ, Vio))
~ Hom zo (Vyyo, x O, (Viyo) C—Indgo Viro),

and this map is Hg(V)-linear with respect to S. The latter space is one-dimensional and
the Hecke algebra #Hz(Vi0) acts on this line by the character x. Hence a non-trivial homo-
morphism c-Ind% V' — IndIG;a oy (which exists by Lemma factors through c-Ind% V —
X @ (V) c—IndIG< VoI X @y v) C—Ind?{ V' were isomorphic to x @, v) c—IndIG{ V', we would
have a non-zero homomorphism c-Ind% V' — x @ (V) c-Ind$ V' — IndIGpa oy contradicting
Homy (V/,Ind$, o) = 0 (Lemma . O

6.3. Proof of Theorem (minuscule case). The hypothesis that the center of G is
a torus is equivalent to Z® being a direct summand of X*(S), for example by [Mil, (154)].
Hence, for each @ € A we have a fundamental coweight u, € X,.(S). Namely we have
(o, o) = 1 and (B, o) = 0 for any 5 € A\ {a}. In this section we consider z € Z such that
vz(2) = pa-

The element 7, —1 € Hz(Vgo) is irreducible, since the derived subgroup of G is simply con-
nected [Abel3, Remark 2.5 and Lemma 4.17] (alternatively, one can argue as in Lemma[A.12)).
Put f = SC(TYY «TV'V) in Hz (Vo). Lemma [6.5 implies that x(f) = 0 for any character
X: Hz(Vyo) — C such that x(7,) = 1. By the Nullstellensatz, we see that f is contained in
the radical of the ideal (7, — 1), hence as 7, — 1 is irreducible and Hz(V0) is a UFD, we
deduce that f = f/(1 — 1) for some f' € Hz(Vy0). We will prove that f' = 7,2.
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Consider any 2’ € supp f'. We claim that both 2z’ and z'a, lie in ZT and that vz(2') €
2v7(2) + R<pAY. To see this, pick r, s > 0 maximal such that 2’a’, € supp f’ for —r <i < s.
Then 2'a;", 2’a3*! € supp f, so they both lie in Z*. By convexity of the dominant region
we deduce that 2/, z’a, € Z*. Similarly, as recalled in we know that vz(2'a’) €
2vz(2) + R<pAY for i € {—r,s+ 1}, hence by convexity we have vz(2') € 2vz(z) + R<oAV.

There exist ng € Rxo for f € A such that vz(2') = 2ua — XgeansB’. Recalling

vz(aa) = —aY, we have vz(2'an) = 240 — @ — Y gcangf’. Let v € A If v # q,
then EBEA nﬁ<’77/8v> = _<71 UZ(Z/)> < 0. If vy = o, then Z,BEA nﬁ<’77/3\/> =2- <a>av> -
(a,vz7(7'aa)) = —(o,vz(7'an)) < 0. Hence Yo gepnp(y,8Y) < 0 for any v € A. Since

(dy(7,BY))8,yen is positive definite for some d, > 0, we have ng = 0 for any § € A. We
deduce that 2z’ € 2229 (as Z° is the kernel of vz). So f' € C*7,2. Since the coefficient of 7.2
in fis 1, we get f = STV «TV'V) =1, — T2, -

GV vy — YooVuo Gpviv'y — o Vio
By Lemma|3.1{we have S“(T, ") = 1,V , hence we deduce that S(1,°V ) =71." V" —

V0,V
Tzalf U This completes the proof of Theorem [6.2 when vz(2) = fiq.

6.4. Proof of Theorem (general case). We consider now z € Z* such that
(a,vz7(2)) > 0. Take zy € Z such that vz(20) = po. Then zz5' € Z* and from (2.2)
we deduce the existence of 6 € H¢ (V') such that S(0) = 7,_-1. Letting ¢ = 0 x Tz‘glvv and
0
¢ = TZ‘QV/ * 0, we see from that S¢(p) = 7, and S¢(¢') = 7. — Teq,,-
In the special case that (,vz(z)) = 0 for § € A(V’), we have A(V') C A, C A_ 1, s0

0

Lemma shows that 6 = TZ‘:;Y/. From Lemma we then deduce that ¢ = 7"V and

0
(PI — TZV,V )
6.5. A corollary.

Corollary 6.6. Suppose thatV is an irreducible representation of K and that z € Zt satisfies
(a,vz(2)) # 1 for all a € A(V'). Then the image of T, € Ha (V') under the Satake transform
SC is given by

STy =m [ (-m).

aE€A(V)\As

Proof. We induct on #(A(V)\ A,). If A(V) C A,, then S9(T,) = 7. by Lemma and
we are done. Otherwise we choose a € A(V) \ A, and take 2o such that vz(z9) = pto. Then
2252 € ZF, as (o, vz(2)) > 2 by assumption. Define V' by the parameter (¢y, A(V)\ {a}).
Applying Lemmatwice (using that A(V') C A,,) we get that TV = T;gvvl*Tvl;‘Q//*T;g”V.
ZZO
As A(V')\ Azzo_z is a proper subset of A(V)\ A, we get by induction that SC(TVY") =
ZZO
T [Ta@wpa. (1 —75). On the other hand, by Theorem we have SG(TZ‘S'J/) = 7, and
S¢ (Tz‘g’vl) = T4, (1 — 7o). By combining these formulas we get the corollary. O

Remark 6.7. It is not hard to deduce the corollary from Theorem noting that z [[sc x ap €
Z* for any subset X C A(V)\ A,.

6.6. The general split case. We now use two reduction steps to extend the above proof
of Theorem to the case of general split groups G.
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(1) We remove first the assumption on the center. Suppose that G is split with simply-
connected derived subgroup.

Let G1 be the quotient of G x Z by the normal subgroup {(z,27!) : 2z € Zg}, where Zg
is the center of G, as in [DL76, 5.18]. Then the natural map G — G is a closed embedding
that induces an isomorphism on derived subgroups. The natural map Z — G to the second
coordinate induces an isomorphism Z —+ Zg,. In particular, G; is as in Theorem It
follows that Z; := Z - Zg, = (Z x Z)/{(2,271) : 2 € Zg} is a minimal Levi (i.e. maximal
F-torus) of Gi. Let K be the hyperspecial parahoric subgroup of G fixing the special point
zo. Then we have K = K1 NG, see Lemma [A.15] We have (as in [Abel3, §3.2]):

Lemma 6.8. The following hold:

(i) The restriction to K of any irreducible representation of K1 is irreducible. Con-
versely, any irreducible representation V of K extends to K.

(ii) Let Vi, V] be irreducible representations of K1 and V, V' their restrictions to K. Then
the restriction map @1 — ¢1|a gives an isomorphism between {1 € Hea, (V1,V{) |
supp o1 C K1ZK1} and Ha(V,V"). We have S%(p1lg) = S (p1)|z for any ¢1 €
He, (Vi, V) with supp1 C K1 ZK;. Moreover, we have TZV{’VI\G =TV"V for any
z € ZL(V, V).

Given o, V, V', z € Z/(V, V') as in Theorem we choose extensions Vi, V{ of V, V' to
Kj-representations and let ¢1, ¢} denote the Hecke operators provided by Theorem for
G1, V1, V], z. Then, as the supports of 7., 7, — 7,4, are contained in Z(Z; N K1), we deduce
from the lemma that the supports of 1, ¢} are contained in K1 ZK;. Hence we can take
v = pila, ¢ = ¢}|e. Similarly, Corollary continues to hold for G.

(2) To remove the assumption on the derived subgroup, we use a z-extension. (See [CTO8,
§3] for more on z-extensions.) Suppose that G is any split reductive group. Choose a split
z-extension 7: G — G, i.e. an F-split group G with simply connected derived subgroup which
is a central extension of G and the kernel of r is an (F-split) torus. In particular, part (1)
above applies to G. Set Z = r~1(Z); it is a maximal torus of G. Let K C G be the special

(maximal compact open) parahoric subgroup fixing zp; the map K — K is surjective [Abel3,
Lemma 2.1], [[AIVIE, §3.5].

Lemma 6;9,' Let V1, Vs be irreducible representations of K and ciemlte by ‘71,‘72 their in-
flations to K. Then there exist algebra homomorphisms ©¢ : Hz(Vi,V2) = Ha(Vi, V2) and

Oz : Hz((Vi)yo, (Va)po) = Hz((Vi)yo, (Vo)po) such that
(i) S 00¢ =00 SC; o
(ii) for z € Z+7 @G(Tgfz,Vl) — TZVQ,Vl and @Z(T’ZEV2)UO,(V1)UO) _ Tz(Vz)UOu(V1)U07 where
z =1(2).

To construct the algebra homomorphism ©¢, we identify the category of representations
of G with the category of representations of G trivial on the kernel of the surjective ho-
momorphism 7 : G — G, and we note that Frobenius reciprocity (applied twice) induces

a natural isomorphism Homg(c-Ind$ V, o) ~ Homa,(c—Ind% V., o) for representations o of G
(for any irreducible K-representation V' with inflation ‘7) In particular we get a G-linear

map jy : c—Ind%v — c—IndIG( V' corresponding to the identity map. By Yoneda’s lemma
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the above adjunction gives for any ¢ € 7-[5(‘71, V2) a unique O¢(p) € Ha(Vi, Va) such that
Jv, 0 = Oc(p)ojv,. We leave the details of the end of the proof of the lemma to the reader.

The lemma shows that Theorem m holds even for @ since it holds for G: asr: Z — Z
is surjective, we can choose z with r(2) = z. Suppose @, ¢’ are the Hecke operators provided
by Theorem for G, V, V', Z. Then we can take ¢ = O¢(@), ¢ = O¢(@). Similarly,
Corollary [6.6] continues to hold for G.
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APPENDIX A. A SIMPLE PROOF OF THE CHANGE OF WEIGHT THEOREM FOR QUASI-SPLIT
GROUPS

N. Abe and F. Herzig

The purpose of the appendix is to show that the simple proof of §f extends to quasi-split
groups.

Suppose that G is a quasi-split connected reductive group over F. As in §2.4] recall that if
H is any connected reductive F-group, then H' denotes the subgroup of H generated by the
unipotent radicals of all minimal parabolics. By Kneser—Tits (see e.g. [AHHV17, I1.3 Prop.|)
we know that H' = HI" if HI" is simply connected with no anisotropic factors. (Note that
the second condition is automatic if H is quasi-split.) Similarly we define H' for H connected
reductive over k and know that H' = H if HI" is simply connected.

We also recall that all special parahoric subgroups K in this paper are associated to special
points in the apartment of S. We let red : K — (G}, denote the natural reduction map whose
kernel is the pro-p radical (i.e. largest normal pro-p subgroup) of K.

Theorem A.l. There exists a special parahoric subgroup K of G such that the following
holds.

Suppose that V., V' are irreducible representations of K and o € A such that 1y = Py and
A(V) =AWV U{a}, and let z € ZT such that {a,vz(z)) > 0. Then there exist G-equivariant
homomorphisms ¢ : c-Ind% V — ¢-Ind% V' and ¢’ : ¢-Ind% V! — c-Ind$ V' satisfying

SG((/O) =Tz, SG(()O/):TZ_Tzaa'

If moreover (8,vz(2)) = 0 for B € A(V'), then ¢ =TV and ' =TV"".
Any choice of K works, provided the adjoint quotient G.q of G does not have a simple
factor isomorphic to Resg p PU(m + 1,m) for some E/F finite separable and m > 1.

Remark A.2. This is enough to establish Theorems 1-3 of [AHHV17] for quasi-split G, avoid-
ing [AHHV1T7, §IV], since the proofs given there only require one choice of K.
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Remark A.3. There exist quasi-split groups G and special parahoric subgroups K for which
the conclusion of Theorem [A.1] fails. We claim that it suffices to show that ¢y (20N M) # 1
for some G, K, V, a as in Theorem [A.I] Under this condition, Theorem tells us that
the image S¢(Hg(V’,V)) has C-basis 7., where z runs through a system of representatives of
Z&(V' V) /Z% in Z}(V',V). If Theorem were true, then for z € Z(V', V) the element
Ty — Tsan Would lie in SY(Ha(V',V)), so zaq € Z4(V', V). However, for large n we have
za & 7.

For example, if G = SU(2,1) defined by a ramified separable quadratic extension of F,
then we can choose K such that Gy = PGLy and if #k is odd, then red(Z° N M) = Z,
strictly contains Zy N My, (where A = {a}). Or, suppose that G = SU(2,1) defined by
the unramified separable quadratic extension. Then for any non-hyperspecial K we have
G = U(1,1), and then red(Z° N M) = Z,, strictly contains Z N M, ;. (where A = {a}). In
either case we can therefore choose V such that vy (Z2° N M) # 1.

A.1. On special parahoric subgroups.

Proposition A.4. There exists a special parahoric subgroup K of G such that for any o € A
the image of M!, N K in Gy is equal to ]\46’”C Any choice of K works, provided the adjoint
group Gaq does not have a simple factor isomorphic to Resg/p PU(m + 1, m) for some E/F
finite separable and m > 1.

Proof. Step 1: We show that for any quasi-split G such that G simply connected we can
choose a special parahoric subgroup K such that red(G' N K) = GY..

Since G, and hence M, have simply-connected derived subgroups and G is quasi-split, we
know that G’ = G4 and M/ = M. Note that the pro-p radical of G' N K = G4 N K is
normal in K and hence contained in the pro-p radical of K. Hence we obtain a commutative
diagram with injective horizontal arrows as follows:

Girn K > K

L

(Gder>k(_> Gk
Note that the bottom map induces an isomorphism (G9), —» G} (since U and U, are
contained in G4°7). Tt thus suffices to show that the inclusion (G97), C (G9°r); is an equality,
and hence it’s enough to show that (G9°"); is semisimple and simply connected (for a suitable
choice of K).

Note in the following that our choice of special K is given by a subset X C Aj,. of the
relative local Dynkin diagram of G [Tit79, 1.11], or equivalently of G, consisting of one
special vertex in each component of Aj,.. (We write Ajoe, A 1oc instead of A, Ay in [Tit79]
in order to avoid confusion.)

We first determine for which K we have that (G9°T),, is semisimple. The absolute rank of
(Gder),, is the relative rank of G over the maximal unramified extension, i.e., it’s |Ay joc|
minus the number of components of Ajj,.. On the other hand, the absolute semisimple
rank of (G9°");, equals the number of absolute simple roots of (G4°)g, i.e., the cardinality of
A1 joc — UyexO(v) in the notation of Tits, by [Tit79, 3.5.2]. It thus suffices to show that for
any v € X, O(v) contains precisely one point of each component of Ay ¢ (it always contains
at least one).
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Looking at the tables in [Tit79] and keeping in mind the reduction steps to the absolutely
almost simple case in [Tit79, 1.12], we see that any choice of X works, as long as it does not
contain any non-hyperspecial vertices in type 2A%, . (in which case we can take the hyperspecial
ones). In other words, we can always choose a special parahoric K such that (Gd°), is
semisimple, and any K works in case the adjoint group G,q does not have a simple factor
isomorphic to Resg,r H, where H = PU(m+1,m) is unramified and E/F is finite separable.

Next we recall from [Tit79, §3.5] that, since G4 is semisimple and simply connected, the
residual group (G9°"),, has simply connected derived subgroup, provided we let K correspond
to a subset X satisfying the condition in the last sentence of [Tit79, §3.5], i.e. UyexO(v)
contains a “good special vertex” out of each connected component of Ay ,.. Note that by
Tits’ tables this is always possible (in fact even if G isn’t quasi-split). Now note from Tits’
tables that when G is quasi-split, his condition on X is always satisfied, except when G.q
has a factor of type QAST)WL and the special vertex at the long end is chosen. (In other words,
Gag has a simple factor isomorphic to Resg/r H, where H = PU(m + 1,m) is ramified and
E/F is finite separable.) In this case we choose the special vertex at the other end.

By combining the above, we see that we can always choose a special parahoric K such that
(Gder), is semisimple simply connected (and hence red(G’ N K) = G}), and any K works in
case the adjoint group G,q does not have a simple factor isomorphic to Resg/p PU(m+1,m)
and E/F is finite separable (or equivalently when the root system & is reduced).

Step 2: We prove the proposition in the case where G simply connected.

From Step 1 we know that red(M), N K) = M/, for a« € A, provided M, »q isn’t isomorphic
to Resp/p PU(2,1) for some E/F. By considering indices of quasi-split groups, for example
in [Tit66], it follows that there is at most one exceptional « in each component of A, namely
the exceptional « are precisely the multipliable simple roots in components of A of type BC,..

Suppose first that GI°* is almost simple, and suppose that there is an exceptional o € A,
i.e. Mg aqa = Resg/p PU(2,1) for some E/F. Then the choice of a special point for M, coming
from Step 1 corresponds to a choice of a-wall H, in the reduced building of G. (By a-wall
we just mean an affine hyperplane parallel to ker(«).) Now choose arbitrary f-walls Hg for
p € A —{a}. Then the special parahoric subgroup defined by the special point NgeaHpg
works for this proposition.

In general the reduced apartment of G (for S) is a product of reduced apartments for all
the almost simple factors of G, and we obtain a desired special point by taking a product
of special points that work for the almost simple factors (previous paragraph).

Step 3: We deduce the proposition in general. N
_ Suppose that G is any quasi-split group. Pick a z-extension 7 : G — G of G. Then
G and G have the same reduced building, and by Step 1 above we can choose a special
point z corresponding to a special parahoric K of G such that red(G' N K) = é; We will
show that red(G' N K) = G). The argument showing that red(M/, N K) = M/&k implies
red(Mg, N K) = M, is completely analogous.

We have W(él ) = G'. If K denotes the special parahoric of G corresponding to x, then
we also have 7(K) = K (see part (d) of the proof of [HROS, Proposition 3]). We claim that
7(G'NK) = G'NK. Suppose that g € G'NK and pick § € G’ such that m(§) = g. Then § fixes
the special point = and it is in the kernel of the Kottwitz homomorphism (since G’ is contained
in that kernel). Hence g € K, proving the claim. Similarly we see that (U N K )=UNK

and w(ﬁopﬂ%) =Uyp NK.
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Now note that the image under 7 of the pro-p radical of K is contained in the pro-p radical
of K. Hence we get a commutative diagram

K-—"»K
redi ired

G, —> Gy
and by the previous paragraph we see that w(G4) = G}. Tt follows that red(G’ N K) =
red(n7(G'NK)) =7(red(G' N K)) =7(G),) = G} O

Remark A.5. Surely the map (G9°"), — G} in Step 1 of the proof arises from a closed
immersion (Gder) r — Gy of algebraic groups, but we do not know a reference.

Corollary A.6. For any K for which Proposition holds, we have that red(Z° N M) =
Z OV My, for any o € A.

Proof. Choose K as in Proposition Let K(1) := ker(K — Gj). Then Z°K(1) =
red~1(Z;,) and we deduce by the proposition that Zj, NM, = red(Z°K(1)N M) =red(Z°N
M), noting that we have an Iwahori decomposition MyNK (1) = (ZNK(1))(UsNK(1))(U-aN
K(1)) and that U,, U_, are contained in M. O

A.2. Setup for the proof of Theorem In Sectz’on we will assume that GIe
A5

is simply connected and G /G is coflasque. In Section |A.5| we will reduce the general case
to that one by using a suitable z-extension.

We recall that an F-torus T is said to be coflasque if we have H'(F', X*(T)) = 0 for all
finite separable extensions F’/F [CT08| §0.8]. Note that any induced torus is coflasque. We
remark that if T is coflasque, then H*(F”, X*(T)) = 0 for any separable algebraic extension
F"/F (because by inflation-restriction it equals H*(F” N F(T), X*(T)), where F(T) is the
splitting field of T).

We now observe that our assumptions on G imply that Z is a coflasque torus since (i)
Z NG9 is an induced torus because G is simply connected and G is quasi-split, and (ii)
any extension of a coflasque torus by an induced torus is split (by Shapiro’s lemma).

Let I'p = Gal(F*°P/F) with inertia subgroup Ir and o a topological generator of I'r/Ip.
Let L denote the fixed field of If, i.e. the maximal unramified extension of F. Let ®* (resp.
A®%) denote the set of absolute (resp. absolute simple) roots.

Lemma A.7. Under the above assumptions, we have:
(i) the group X.(Z)1, is torsion-free;
(i) the group A = Z/Z° is a finite free Z-module;
(iii) any special parahoric K of G is maximal compact.

Proof. We first show that if I is a profinite group acting smoothly on a finite free Z-module X,
then the finite groups H'(T', X) and Homp(X, Z)ior are dual. By inflation-restriction, as X is
torsion-free, we reduce to the case where I is finite (replacing I' with the finite quotient that
acts faithfully on X). As HY(I', X) = HYI', X) and Homp (X, Z)ior = H (', Hom(X,7Z)),
we conclude by [NSWO00, Prop. 3.1.2].

For our coflasque torus Z we conclude that (X«(Z)r, )ior = 0, as it is dual to H (Ir, X*(Z)).
Hence A = X, (Z)7  [HRI10, Cor. 11.1.2] is a finite free Z-module. This implies that any K is

I

maximal compact [HR10, Prop. 11.1.4]. O
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By [Kot97, §7.2] we have a o-equivariant commutative diagram

wz

Z(L) X.(Z);

(A1) X lQZ

Hom(X*(Z)'r,7),

where qz([A]) (1) = (A, 1) and vz (2)(p) = ordp(p(z)) (where the valuation ordp is normalized
so that ordp(F*) = Z). By Lemma [A.7)i) and [Kot97, §7.2], gz is an isomorphism. Since
the composite map j : X.(Z)'F — X,(Z) — X.(Z);, becomes an isomorphism after ®Q,
we get a o-equivariant isomorphism (gz o j) @ R : (X,(Z) ® R)'F = Hom(X*(Z)'*,R). Let
w : Hom(X*(Z)'F,Z) — (X«(Z) ® R)!F denote the restriction of the inverse of (¢z o j) ® R
to the lattice Hom(X*(Z)'* 7).

By taking o-invariants in diagram composed with w we obtain

wz

VA

(X.(Z2) ® R)FF = X*(S) ®R,
where wy is the Kottwitz homomorphlsm and vy is as in §2.11 Explicitly, for A\ € X.(Z),

(A.2) (wogz)([A]) = Z N e ) ®R)'F
#(Ir - A) IF ) véTpa
A root a € ® determines a finite separable extension Fi/F: it is the fixed field of the

stabilizer of any lift & € ®2b, (All lifts are T'p-conjugate, so the choice doesn’t matter. Cf.
[BT84, 4.1.3].) Let e = e(Fy/F) denote the ramification degree.

Lemma A.8. The image of Z N M/, in A is a direct summand. Its image under vz in
X.(S) ®R is identified with Z. - iag, where ag is the greatest multiple of a that is contained
in .

Proof. Note that X,(ZNM4) is a permutation module (a basis is given by all absolute simple
coroots that restrict to a), i.e. ZNMT is an induced torus. Similarly, (ZNG9r)/(Z Nder)
and Z N G are induced tori. Therefore, as Z/(Z N G9°) is coflasque by assumption, we
deduce that Z/(Z N Mde) is coflasque and hence that the sequence 1 — Z N Mder — 7 —
Z/(Z N Mder) — 1 is split exact. The natural map j : Z N M3 — Z is compatible with the
induced map j. : X, (Z N Mder)g 7, — X«(Z)f, with respect to the functorial Kottwitz maps
WzApder, Wz. The map j is clearly a split injection of finite free Z-modules.

As X, (ZNMG™) has Z-basis all & € "8 lifting a, the image of X,(ZNMg™)7  in X.(Z)F,
is generated by [Y¢ a] € Xi(Z)§,, where @ C b5 is a set of representatives for the Ip-
orbits on the set of roots lifting «. Using we see that it is identified with i Y aY in
X.(S) ®R, where @ € A*"® now runs through all lifts of o. By the lemma below this is equal
to oy O

Lemma A.9. Let us drop temporarily all assumptions in §A.9 about G, and only assume
that it is a quasi-split connected reductive F-group. Suppose that o € A. Then af = > aV
in X.(Z), where the sum is over all lifts & of o in ®*PS,
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Proof. We may replace G with Md°" and hence assume that G is semisimple and A = {a}.
Then A* = {&y,...,a&p,} for the lifts &; of o in P and the cocharacters @) span X,(Z)®Q.
In particular, as I'r acts transitively on A, we see that oV = c¢> @) for some constant
c € Q. Note that 2a € @ if and only if &y +&; € ®2P for some 7 > 1 if and only if (a1,a)) < 0
(hence equal to —1) for some i > 1.

If 2a ¢ @, then the @; are pairwise orthogonal and (o, ") = 2 yields ¢ = 1. Otherwise,
since I'p acts transitively on A2P% and the Dynkin diagram has no loops, it follows that
(a1,@)) = —1 for a unique i > 1. Then {(a, ") = 2 yields ¢ = 2. 0

Remark A.10. Lemma together with [AHHV1T7, IT1.16 Notation|, shows that vz(as) =
—iab/. Recall that in * we also defined integers e,. By comparing with [AHHV17, IV.11
Example 3] we deduce that e, = 22, if 2a € ® and e, = &, otherwise. Alternatively, we can
see this by comparing [BT84] 4.2.21] with [Vigl6l (39)].

A.3. Basic case. We assume that 1 — Zg — Z — Z/Zg — 1 is a split exact sequence of
F-tori. In particular, the center Zg of G is a torus. We continue to assume that G is
simply connected and G/G9" is coflasque, as in

Suppose that K is any special parahoric subgroup for which Proposition [A.]] holds.

Fix an F-splitting 0 : Z — Zg of the exact sequence 1 - Zg — Z — Z/Zg — 1. Since
X*(Z/)Zg) = ®parsZa, we have a canonical absolute fundamental coweight )‘E € X.(Z) for

any B € A®" normalized by demanding that it be orthogonal to 6*X *(Zg). These are
permuted by the action of I'p. Thus for any simple root 5 € A we obtain a canonical relative
fundamental coweight A\g € X.(S) = X.(Z)'F by taking the sum of )\E € X.(Z) for all lifts

B € A®Ps of 3. (It is the unique fundamental coweight for 3 that is orthogonal to 6* X*(Zg).)
Lemma A.11. We have A = Zi)\a @ ker « inside X,(S) @ R.

Proof. Note that X.(Z) = EBZ)\EEB (Z®*)L | where B runs through A®PS. Tt follows that
X.(Z)7, is the direct sum of Z[> ¢ Az], where @' is as in the proof of Lemma and a
module that is orthogonal to «. As in the proof of Lemma we see that [Y A5] is identified
with =X, € X.(S) @ R. O

As a € A(V), Corollary shows that ¥y (Z° N M.) = 1. In particular, 7, € Hz(¢by) is
well-defined.

Lemma A.12. The element 1 — 1o of Hz(¢y) is irreducible.

Proof. As the character 1y : Z° — C* is trivial on Z%N M/,, we can extend it to a character
n: Z — C* that is trivial on Z N M. We get an isomorphism ¢ : Hz(¢y) — Hz(1) = C[A],
defined by ¢(f)(z) = n(2)~f(z) for z € Z. In particular, ¢(7,) = n(z)~'7,. Thus it suffices
to show that «(1 — 7,) = 1 — 74, is irreducible in C[A]. By Lemma and freeness of A
we can extend x1 := ao to a Z-basis xz1,...,xz, of A. Obviously, 1 — x; is irreducible in
Clait,. .. =, O

rrTr

Recall that for any z € Z* with (a,z) > 0 we have intertwining operators 7" :
cInd¥V = ¢-Ind% V' and TVV' : ¢-Ind% V' — c-Ind% V supported on the double coset
KzK.

Proposition A.13. Suppose z € Z such that vz(z) = i)\a. Then S¢(TY"V) = 7. and
SUTYY") = 7:(1 = 7a) in Hz(dv).
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Proof. We have that S¢(TY"V) = 7, by Lemma [3.1] and the coefficient of 7, in S (TVV") is
1. Tt thus suffices to show that i) € C1,2(1 —T%a(\)/), where ¢ = SC(TVV' «TV"V) € Hz(y).

Pick any algebra homomorphism y : Hz(wav) — C. Then as in §6.2] we know that the
character oy 1= X @7, (yy) c—Indgo Yy of Z is given by z — x(7,-1), and that the restriction
of oy to Z° equals . Assume now that x(7,) = 1. We know that o, is trivial on the
image of Z° N M/, by above. Moreover, Z N M, is generated by Z° N M/, and a,, so oy is
trivial on Z N M), as oy(aq) = x(75') = 1. As M, = (Z,UL,), we have an isomorphism
Z/(Z N M)) = My/M|, so oy extends to a smooth character of M,, which we still denote
by oy. By Frobenius reciprocity, the induced representation IndIGga oy contains V' but not V’,
and the Hecke eigenvalues of V in Indga o, are given by x via SC (see Lemma and the

proof of Lemma [6.5]). As in we deduce that x(¢) = 0.
We saw that x(1 — 7,) = 0 implies that y(¢)) = 0. By the Nullstellensatz we get that

1 is contained in the radical of the ideal (1 — 7,), hence by Lemma and the fact that
Hz(Yy)(= C[A]) is a UFD, we see that ¢ = ¢/(1 — 1) for some ¢’ € Hz(y).

As in §6.3, by Lemma we now see that if 2/ € Z is in the support of ¢/, then
(A.3) 2 ezt Ya, € 7T
(A.4) vz(Z) <p %)\a, vz(Zaqs) <r %)\a.
(This follows since for 2’ € supp ) we have 2’ € ZT and vz(2') <g %)\a.) From (A.4]) we can
write

(A.5) vz(2) = %)\a — Y angBY
for some ng € R>¢. Hence by Remark
(A.6) v2(70) = ZAa — 2o — L anpBY.

For v € A — {a} we pair (A.5]) with v and deduce that > 5 ng(y,8Y) <O0.
Case 1: 2o € @, so af = «”. We pair (A.6) with o and deduce that > 5 ng{a, 8Y) < 0.
Hence as in §6.3| we get that ng = 0 for all 3 € A, so ¢’ is a scalar multiple of 7,2, as required.
Case 2: 2a € ®, so af = 1aV. The above proof goes through, provided we show
(A7) (yvz(2) > 2, (,vz(2aa)) > -

— €a’ — €a

for any 2’ € supp /. For this it is enough to show that («,vz(z")) > i for any 2’ € supp .
As SG(TV"V) = 7. by Lemma it suffices to show that (a,vz(z')) > 0 for any 2/ €
supp SC(TY"V"). In fact, we will show that (o, vz(2')) > 0 for any 2’ € supp S%(¢) and any
¢ € Ha(Vh, Va) (where Vi, V5 are irreducible representations of K).

By [HV15, §7.9], it suffices to show that 2'~1(U,NK)z' is a proper subgroup of U, N K for
2" € Z such that {(a, z') < 0. Using notation as in [FIVI5, §6] we can write 2’1 (U, N K)z2' =
Ua,g(a)—(oc,z’)UQa,g(?a)—Q(a,z’) and Uy N Ky = Uoc,g*(oc) U2a,g*(2oc)' Recall that g*(8) = g(8)+ if a
jump occurs in the Ug ,-filtration (modulo Uss if 2 is a root) at u = g(f) and g*(8) = g(53)
otherwise. Also note the set of jumps of the Ug,-filtration (modulo Usg) are invariant under
shifts by (3, 2') (as Z acts on the apartment with all its structures). For any fixed 8 € {«, 2a}
it follows that Ug 4(g)—(s,.1y C Up g+(3) and if equality holds, then the Ug,,-filtration (modulo
Usg) jumps precisely at the elements u € g(3) + (8,2/)Z. Thus 21Uy, N K)z' C Uy N K4
and if equality holds, then the Ug ,-filtration (modulo Usg) jumps precisely at the elements
u€ g(B)+ (B,2)Z for g € {a,2a}; in particular, g(2a)) = 2g(«) from the definition of g.
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By [BT84, 4.2.21] the jumps in the Us, ,-filtration occur when u € ordp(FY — {0}) and
in the Uy, -filtration (modulo Us,) occur when u € 3 ordp(¢) + ordp(F2). Here, F denotes
the elements of F, that are of trace 0 in the separable quadratic extension Fy/Fs,, { € F,
denotes an element of trace 1 of maximum possible valuation. Note that F. — {0} is principal
homogeneous under the Fj-action, so the spacing of the jumps in the U, ,-filtration is
ordp(Fy,,). The spacing of the jumps in the U, ,-filtration (modulo Us,) is ordp(FY).

So if equality holds above, then Fi/Fs, is ramified and ¢g(2a) = 2g(a). We finish by
showing that this is impossible. By the previous paragraph we can pick ¢ € F? — {0}
of the same valuation as ¢. As F,/F, is ramified we can scale ¢ by an element of (’);2&
such that ordp(¢ — ¢') > ordp(¢). This contradicts that ¢ has maximum possible valuation
among elements of trace 1. (Alternatively, from Tits’ tables in [Tit79] the affine root system
can only be non-reduced if the adjoint group has a factor isomorphic to Resg,p H, where
H = PU(m + 1, m) is unramified and E/F is finite separable and in that case the extension
F, /Fy, is unramified.) O

We can now deduce Theorem [AT] from Proposition [A.13] exactly as in §6.4] replacing pq
there by i)\a. (It is still true, by Lemma A.11|7 that if z € ZT with (a,vz(2)) > 0 and

vz(20) = i)\a then 22,1 € ZT))

A.4. First reduction step. We continue to assume that G is simply connected and
G /G is coflasque. We now reduce to the basic case (§A.3)).

Proposition A.14. There exists a quasi-split connected reductive group Gi1 containing G as
a closed normal subgroup such that
(1) thier — Gder’.
(ii) the torus G1/G$" is coflasque;
(ii) 1 > Zgy, — Z1 — Z1/Zg, — 1 is a split exact sequence of F-tori.

Here, Zy denotes the minimal Levi Z - Zg, = Cg,(Z) of G1.

Proof. We define Gy and Z; exactly as in §6.6(1), so in particular (i) holds. The exact
sequence 1 — Zg, — Z; — Z/Zg — 1, where the second map is induced by the first
projection, has a canonical splitting induced by Z — Z x Z, z + (z, 2~'). This implies (iii).
Finally, consider the short exact sequence 1 — G /G — G/G{*" — Z/Zg — 1. The first
term is coflasque by assumption and the last term is induced because it is the maximal torus
in the quasi-split adjoint group G/Zg. Hence G1/G{" is coflasque and (ii) follows. O

Hence the group Gj is as in §A-3] The reduced buildings of G and G; are canonically
identified with each other (as the reduced building only depends on the adjoint group), in
particular there is a natural bijection between special parahoric subgroups of these two groups.
Denote by K7 any special parahoric subgroup of (G; and let K denote the corresponding special
parahoric subgroup of G.

Lemma A.15. We have K = K1 NG.

Proof. Consider the commutative diagram given by functoriality of the Kottwitz homomor-
phism. (Note that the codomains simplify, since G4°" = G{*" is simply connected. See [Kot97,



SIMPLE PROOF FOR QUASI-SPLIT GROUPS 57

§7.4].)
G _we X*(G/Gder)?p

L

waG
G1 —> X.(G1/G{™)F,

We claim that the vertical arrow on the right is injective. The first term in the short exact
sequence 1 — G/G4" — G1/G{" — Z/Zg — 1 of F-tori is coflasque, so X,(G/G");, is
torsion-free, as noted in the proof of Lemma [A.7] Let I' be a finite quotient of Ir through
which it acts on the character groups of the tori in the sequence. Then H(I', X.(Z/Zg))
is torsion, as I is finite, so X.(G/G4);, — X.(G1/G{);, is injective, which implies the
claim.

Since the reduced buildings of G and G are naturally identified and parahoric subgroups
are the fixers of facets in the kernel of the Kottwitz homomorphism, it follows that K =
KinNndG. ]

Lemma A.16. The restriction to K of any irreducible representation of K1 is irreducible.
Conversely, any irreducible representation of K extends to K.

Proof. Note that as K <1 K1, the pro-p radical of K is normal in K7, so we get a commutative
diagram as follows:

K——K;

]

GL—— G

Note that G} ;, C G C Gy . It is enough to show that any irreducible representation of Gy
restricts irreducibly to G ;, and hence to Gj. (Then if V is an irreducible representation of

G, any irreducible quotient of Indg;‘k V extends V to Gy .)

We will prove more generally that if H is any connected reductive group over k and V an
irreducible representation of H, then the restriction of V to H’ is irreducible. Suppose first
that the derived subgroup HI" is simply connected. Then H’ = H9". We know that we can
lift V' to an irreducible representation of H with g-restricted highest weight (where q = #k),
cf. [Her09, Appendix, (1.3)]. Then its restriction to H4" is still irreducible with g-restricted
highest weight (noting that H is generated by its center and Hr). Hence V restricted to
Hder remains irreducible by the result we just cited.

For the general case pick a z-extension  : H — H, so R := ker 7 is an induced torus and
Hder js simply connected. We have a commutative diagram with exact rows:

1—=RNH H H' 1
1 R H H 1

By inflation we can consider V' as irreducible representation V of H that is trivial on R. By
above we know the restriction of V' to H’ is irreducible, and hence so is the restriction of V
to H'. O
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Remark A.17. As in Remark we expect that the map Gy — G, arises from a closed
immersion Gg — Gy .

Lemma A.18. Proposition holds for (G, K) if and only if it holds for (Gy,K;). More
precisely, we have red(Mg, N K) = M, inside Gy, if and only if red(Mj , N K1) = M
inside Gy k.

7a7k

Proof. Fix a € A. We note that M, <<M ,, for the Levi subgroups defined by o and that by
Lemma we have My, N K <M N K] for the corresponding special parahoric subgroups.
Hence, restricting the top row of diagram (applied to Levi subgroups defined by «), we
get a commutative diagram

My VK~ Mj , N K;

| |

Ma,k(—) Ml,a,k

Note that the top row is an isomorphism (by Lemma as M, = Mj,) and that the
bottom row induces an isomorphism between the vertical images, as well as between M &k
and M ;. The lemma follows. O

Choose now any K such that Proposition holds for (G, K); equivalently, Proposi-
tion holds for (G1, K1), by Lemma From Corollary and since o € A(V), we
see that ¥y (Z° N M!) = 1. Now we deduce in exactly the same way as in §6.6(1) that
Theorem holds for (G, K), since we know it holds for (G1, K1) by §A.3]

A.5. Second reduction step. Suppose now that G is any quasi-split group. We will reduce
to the previous case. The following result is proved by Colliot-Thélene [CTO8, Prop. 4.1].

Proposition A.19. The group G has a (quasi-split) z-extension G such that é/éder s a
coflasque torus.

Hence the group G is as in Now choose any special parahoric subgroup K of G for
which Proposition [A.4] holds. Let K denote the corresponding special parahoric subgroup of
G. It follows from Step 3 of the proof of Proposition [A-4] that Proposition [A-4] holds also for
(G,K). From Corollary and since a € A(V), we see that 1y (Z2° N M) = 1. Now we
deduce in exactly the same way as in §6.6(2) that Theorem holds for (G, K), since we
know it holds for (G, K) by
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