
INVERSE SATAKE ISOMORPHISM AND CHANGE OF WEIGHT

N. ABE, F. HERZIG, AND M.-F. VIGNÉRAS

Abstract. Let G be any connected reductive p-adic group. Let K ⊂ G be any special
parahoric subgroup and V, V ′ be any two irreducible smooth Fp[K]-modules. The main goal
of this article is to compute the image of the Hecke bi-module EndFp[K](c-IndGK V, c-IndGK V ′)
by the generalized Satake transform and to give an explicit formula for its inverse, using the
pro-p Iwahori Hecke algebra of G. This immediately implies the “change of weight theorem”
in the proof of the classification of mod p irreducible admissible representations of G in terms
of supersingular ones. A simpler proof of the change of weight theorem, not using the pro-p
Iwahori Hecke algebra or the Lusztig-Kato formula, is given when G is split (and in the
appendix when G is quasi-split, for almost all K).
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1. Introduction

1.1. Throughout this paper, F is a local nonarchimedean field with finite residue field k of
characteristic p, G is a connected reductive F -group, and C is an algebraically closed field
of characteristic p. In our previous paper [AHHV17], we gave a classification of irreducible
admissible smooth C-representations of G = G(F ) in terms of supercuspidal representations
of Levi subgroups of G. The most subtle ingredient in our proofs is the so-called “change of
weight theorem”, which we deduced from the existence of certain elements in the image of the
mod p Satake transform. The main goal of this paper is to determine its image entirely and
give an explicit formula for the inverse of the mod p Satake transform, we call it the inverse
Satake theorem, from which the change of weight is an immediate consequence.

To be a bit more precise, the mod p Satake transform can be defined for the Hecke algebra
of a single irreducible representation V of a special parahoric subgroup, as well as more
generally for the Hecke bimodule of a pair (V, V ′) of such irreducible representations. The
image of the mod p Satake transform was known in case of a single irreducible representation
V of a special parahoric subgroup, cf. [HV15], [Her11b]. However, for the change of weight
theorem it is essential to allow pairs (V, V ′) with V 6∼= V ′.

In earlier work [Her11a, Prop. 5.1], we established the inverse Satake theorem when G is
split with simply-connected derived subgroup and V = V ′ by deducing it from the Lusztig-
Kato formula, which is an inverse formula for the usual Satake transform in characteristic
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zero. (See also the related work of Ollivier [Oll15].) In this paper we establish the inverse
Satake theorem in characteristic p for arbitrary G and pairs (V, V ′) by using the pro-p Iwahori
Hecke algebra.

1.2. We now explain our results in more detail. Let S be a maximal split torus of G, Z
its centralizer, B = ZU a minimal parabolic subgroup and ∆ the set of simple roots defined
by (G,B,S). Put Z = Z(F ) and U = U(F ). Let X∗(S) be the group of cocharacters of S
and vZ : Z → X∗(S) ⊗ R be the usual homomorphism (see Section 2.1). Put Z+ = {z ∈ Z |
〈α, vZ(z)〉 ≥ 0 for any α ∈ ∆}, so that Z+ contracts U under conjugation.

Let K be a special parahoric subgroup of G corresponding to a special point of the apart-
ment of S and put Z0 = Z ∩K (the unique parahoric subgroup of Z), U0 = U ∩K. Let V
be an irreducible smooth C-representation of K. It is parameterized by a pair (ψV ,∆(V )),
where ψV : Z0 → C× describes the action of Z0 on the line VU0 and ∆(V ) ⊂ ∆ is a certain
subset (see §2.2). Let c-IndGK V denote the compact induction of V . If V ′ denotes an-
other irreducible smooth C-representation of K, we define the Hecke bimodule HG(V, V ′) :=
HomCG(c-IndGK V, c-IndGK V ′). This is non-zero if and only if ψV is Z-conjugate to ψV ′ . Once
we fix a linear isomorphism ι : VU0 ' V ′U0 , HG(V, V ′) has a canonical C-basis {Tz = T V

′,V
z },

where z runs through a system of representatives of Z+
G(V, V ′)/Z0 and Z+

G(V, V ′) is a certain
union of cosets of Z0 in Z+∩ZψV ,ψV ′ , where ZψV ,ψV ′ = {z ∈ Z | z ·ψV = ψV ′} (see (2.9)). The
element T V ′,Vz is determined up to scalar by the condition suppT V ′,Vz = KzK and normalized
by ι (see §2.6).

Similarly, we have the Hecke bimodule HZ(VU0 , V ′U0) with C-basis {τz = τ
V ′
U0 ,VU0

z }, where
z runs through a system of representatives of ZψV ,ψV ′/Z

0. Then we have the mod p Satake
transform SG : HG(V, V ′) ↪→ HZ(VU0 , V ′U0) which is C-linear and injective [HV15]:

SG(f)(z)(v) =
∑

u∈U0\U
f(uz)(v), for f ∈ HG(V, V ′), z ∈ Z and v ∈ V ,

where v 7→ v : V → VU0 (resp. V ′ → V ′U0) is the quotient map from V (resp. V ′) onto its
U0-coinvariants, and we realize HG(V, V ′) as a set of compactly supported functions on G
with a certain K-bi-equivariance.

1.3. For α ∈ ∆, let M ′α be the subgroup of G generated by the root subgroups U±α for
the roots ±α. (Note that this need not be the F -points of a closed subgroup of G.) Then
(Z ∩ M ′α)/(Z0 ∩ M ′α) ' Z and we let aα ∈ Z ∩ M ′α be a lift of a generator such that
〈α, vZ(aα)〉 < 0 [AHHV17, III.16 Notation]. Let ∆′(V ) be the set of α ∈ ∆(V ) such that ψV
is trivial on Z0 ∩M ′α. The element τVU0 ,VU0

aα is independent of the choice of aα if α ∈ ∆′(V ).
For z ∈ Z+

G(V, V ′), note that

Z+
z (V, V ′) := Z+ ∩ z

∏
α∈∆′(V )∩∆′(V ′)

aNα

is a finite subset of Z+
G(V, V ′) by Lemma 2.13.

Theorem 1.1 (Inverse Satake theorem, Theorem 2.12). A C-basis of the image of SG is
given by the elements

(1.1) τ
V ′
U0 ,VU0

z

∏
α∈∆′(V ′)\∆′(V )

(1− τVU0 ,VU0
aα )
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for z running through a system of representatives of Z+
G(V, V ′)/Z0 in Z+

G(V, V ′).
A C-basis of HG(V, V ′) is given by the elements

ϕz =
∑

x∈Z+
z (V,V ′)

T V
′,V

x

for z running through a system of representatives of Z+
G(V, V ′)/Z0.

For z ∈ Z+
G(V, V ′) we have:

SG(ϕz) = τ
V ′
U0 ,VU0

z

∏
α∈∆′(V ′)\∆′(V )

(1− τVU0 ,VU0
aα ).

When ∆′(V ′) ⊂ ∆′(V ), the convention is that
∏
α∈∆′(V ′)\∆′(V )(1− τ

VU0 ,VU0
aα ) = 1.

There is a Satake transform SGM : HG(V, V ′) → HM (VN∩K , V ′N∩K) for any parabolic sub-
group P = MN containing B with Levi subgroup M containing Z [HV12, Prop. 2.2, 2.3]
with M = M(F ) and N = N(F ). We compute also SGM (ϕz) (Theorem 2.19).

1.4. From the above theorem, we can easily deduce the following result which implies the
change of weight theorem (cf. Section 2.5). Suppose that V, V ′ satisfies that ψV = ψV ′ and
∆(V ) = ∆(V ′) t {α} for some α ∈ ∆. Let Z+

ψV
the subset of Z+ consisting of the elements

which normalize ψV . Define cα by

cα =
{

1 if α ∈ ∆′(V ),
0 otherwise.

Theorem 1.2 (Theorem 2.3). Let z ∈ Z+
ψV

such that 〈α, vZ(z)〉 > 0. Then there exist
G-equivariant homomorphisms ϕ : c-IndGK V → c-IndGK V ′ and ϕ′ : c-IndGK V ′ → c-IndGK V
satisfying

SG(ϕ ◦ ϕ′) = τ
V ′
U0 ,V

′
U0

z2 − cα τ
V ′
U0 ,V

′
U0

z2aα
, SG(ϕ′ ◦ ϕ) = τ

VU0 ,VU0
z2 − cα τ

VU0 ,VU0
z2aα

.

In Section 6 we give a simple proof of Theorem 1.2 (and hence of the change of weight
theorem) when G is split. It is more elementary than the other proofs we know in this case.
In particular, we do not use the pro-p Iwahori Hecke algebra or the Lusztig-Kato formula.
In the proof we first reduce to the case where G has simply-connected derived subgroup
and connected center, and vZ(z) is minuscule. We construct many parabolically induced
representations which contain V but not V ′. From this we deduce that if ϕ = T V

′,V
z and

ϕ′ = T V,V
′

z , then SG(ϕ′◦ϕ) is so constrained that it is forced to be equal to τVU0 ,VU0
z2 −τVU0 ,VU0

z2aα
.

In the appendix, two of us (N.A. and F.H.) show that the simple proof of the change of
weight theorem can be made to work, with some effort, for all quasi-split groups G, at least
for most choices of special parahoric subgroup K. We do not know a simple proof for general
G (or for the remaining choices of K when G is quasi-split), partly because the method seems
less powerful in the case where cα = 0.

1.5. We briefly explain the strategy of the proof of Theorem 1.1. In [Her11a] when G is
split and the derived subgroup is simply-connected, we assumed V = V ′ and first made a
reduction to the case where dimV = 1. Since G is split, the character V of K can be
extended to a character of G which allows us to reduce to the case where V is trivial and use
the characteristic zero formula of Lusztig-Kato. This argument cannot work for general G
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since a character of K need not extend to G. For example, this can happen when G = D×

where D is a (non-commutative) division algebra over F .
In our proof, we treat arbitrary pairs (V, V ′). First we make a reduction to the case where

∆(V ′) ⊂ ∆(V ) using properties of Satake transform and the convolution of Hecke operators
(Lemmas 3.1, 3.2). When ∆(V ′) ⊂ ∆(V ), using a calculation in [AHHV17, §IV], we can
express the inverse of the Satake transform using an alcove-walk basis of the pro-p Iwahori
Hecke algebra (Proposition 5.1). Combining this with an explicit calculation of the alcove-
walk basis (Proposition 4.30), we get Theorem 1.1. More details are given below.

1.6. Let HG be the Hecke Z-algebra of the pro-p Iwahori group I = K(1)U0
op, where K(1) is

the pro-p radical of K and U0
op = K ∩ Uop, where Uop is the opposite to U (with respect to

Z). We also let Z(1) = Z∩K(1). Until the end of this introduction we assume ∆(V ′) ⊂ ∆(V )
and z ∈ Z+

G(V, V ′). We now explain how the theory of HG allows us to prove

τ
V ′
U0 ,VU0

z = SG(ϕz)

in Theorem 1.1, hence the inverse Satake theorem.
Once we choose a non-zero element v ∈ VU0 and let v′ ∈ V ′U0

correspond to v under our
fixed isomorphism ι : VU0 ' V ′U0 , we define embeddings

c-IndGK V
Iv−→ XG, c-IndGK V ′

Iv′−−→ XG, c-IndZZ0 VU0
jv−→ XZ , c-IndZZ0 V ′U0

jv′−−→ XZ ,

of c-IndGK V and c-IndGK V ′ in the parabolically induced representation XG = IndGB(c-IndZZ(1)C)
and of c-IndZZ0 VU0 and c-IndZZ0 V ′U0 in XZ = c-IndZZ(1)C. We have

Iv = (IndGB jv) ◦ IV , Iv′ = (IndGB jv′) ◦ IV ′

for the canonical C[G]-embedding c-IndGK V
IV−→ IndGB(c-IndZZ0 VU0) [HV12], and similarly

for IV ′ . The representation c-IndGK V is generated by the I-invariant element fv, which is
supported on K and is such that fv(1) lies in V U0

op and maps to v ∈ VU0 . Similarly for
fv′ ∈ c-IndGK V ′.

Then, Iv(fv), Iv′(fv′) lie in the (HZ ,HG)-bimodule XIG = (IndGB(c-IndZZ(1)C))I . Let τ(z) ∈
HZ be the characteristic function of zZ(1).

The first key ingredient is Proposition 5.3 (which generalizes [AHHV17, IV.19 Thm.]):

We give an explicit element hz ∈ HG such that τ(z)Iv(fv) = Iv′(fv′)hz.

We deduce (Proposition 5.1): there exists an intertwiner φz : c-IndGK V → c-IndGK V ′ defined
by

φz(fv) = fv′hz.

Moreover, τ
V ′
U0 ,VU0

z = SG(φz). The second key ingredient is the computation of fv′hz ∈
(IndGK V ′)I on Z+:

The function fv′hz vanishes on Z+ \ Z0Z+
z (V, V ′) and is equal to v′ on Z+

z (V, V ′).

We prove that it implies ϕz = φz (proof of Proposition 5.10).
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1.7. We develop in Section 4 the theory of the pro-p Iwahori Hecke algebra HG behind the
computation of fv′hz|Z+ .

LetN be the G-normalizer of Z,W (1) = N/Z(1) the pro-p Iwahori Weyl group, λx ∈W (1)
the image of x ∈ Z and Zk the image on Z0 in W (1). It is well known that the natural map
W (1) → I\G/I is bijective. The element hz ∈ HG is given as a product (Propositions 5.1,
5.3):

hz = E′
λzw

−1
V,V ′

T ∗wV,V ′ ,

where (E′w)w∈W (1) is a certain alcove walk basis of HG (which depends on V ′), (T ∗w)w∈W (1) a
non alcove walk basis of HG, and wV,V ′ ∈W (1) is a lift of the product in N/Z of the longest
elements of the finite Weyl groups associated to ∆(V ) and ∆(V ′).

The two bases are related by triangular matrices to the classical Iwahori-Matsumoto basis
(Tw)w∈W (1) of HG, where Tw is the characteristic function of InI for n ∈ N lifting w. We
have

T ∗w =
∑

u∈W (1),u≤w
c∗(w, u)Tu

with coefficients c∗(w, u) ∈ C and c∗(w,w) = 1, where ≤ is the Bruhat (pre)order on W (1)
associated to B (see (4.5)). Let M be the Levi subgroup of G containing Z associated to
∆(V ′); an index M indicates an object relative to M instead of G. It was a surprise to
discover (partially following an idea of Ollivier [Oll14]) that the coefficients of the expansion
of the alcove walk element E′

λzw
−1
V,V ′

in the classical basis of HG are given by the coefficients

cM,∗(λz, u) of the expansion of the non alcove walk basis element TM,∗
λz
∈ HM in the classical

basis (TMw )w∈WM(1) of HM . Recall that HM is not a subalgebra of HG, and that the restriction
to WM (1) of the Bruhat order ≤ on W (1) is not equal to the Bruhat order ≤M associated to
BM = M ∩B. We show (Proposition 4.30):

E′
λzw

−1
V,V ′

=
∑

u∈WM (1), u≤Mλz

cM,∗(λz, u)Tuw−1
V,V ′

.

We carry out a detailed study of the sum
∑
t∈Zk c

∗(w, tu)Tt modulo q = #k for w, u ∈
W (1), u ≤ w. In particular, we show (Theorems 4.23, 4.39), for a character ψ : Zk → C×:

For x ∈ Z+ and λx ≤ λz, we have
∑
t∈Zk

c∗(λz, tλx)ψ(t) =

1 if x ∈ Z0z
∏
α∈∆′

ψ
aNα,

0 otherwise.

Here ∆′ψ = {α ∈ ∆ | ψ is trivial on Z0 ∩M ′α}. With a “little more” we deduce that on Z+,

fv′E
′
λzw

−1
V,V ′

T ∗wV,V ′ = fv′
∑

x∈Z+
z (V,V ′)

∑
t∈Zk

cM,∗(λz, tλx)ψ−1
V ′ (t)Tλx = fv′

∑
x∈Z+

z (V,V ′)

Tλx .

By the “little more”, we mean: if u ∈ WM (1) and fv′Tuw−1
V,V ′

T ∗wV,V ′ does not vanish on

Z+ then u ∈ Z+/Z(1) (see (5.4)). The two conditions u ∈ Z+/Z(1) and u ≤M λz are
equivalent to u = λx for x ∈ Z0Z+

z (V, V ′) (Proposition 4.3). For x ∈ Z0Z+
z (V, V ′), we

have fv′Tλxw−1
V,V ′

T ∗wV,V ′ = fv′Tλxw−1
V,V ′

TwV,V ′ on Z
+ (see (5.5)). Then we use the braid relation

Tλxw−1
V,V ′

TwV,V ′ = Tλx , that fv′Ttλx = ψ−1
V ′ (t)fv′Tλx for t ∈ Zk, and that ∆M

ψ−1
V ′

= ∆′(V ′) =
∆′(V ) ∩∆′(V ′).
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From fv′hz = fv′
∑
x∈Z+

z (V,V ′) Tλx on Z+ – and checking easily that fv′Tλx is supported on
KxI with value v′ at x, and Z+ ∩KxI = Z0x, for all x ∈ Z+

z (V, V ′) – we obtain the desired
value of fv′hz on Z+ (§1.6).

2. Change of weight and Inverse Satake isomorphism

2.1. Notation. Throughout this paper we follow the notation given in [AHHV17]. As
in loc. cit., let F be a nonarchimedean field with ring of integers O and residue field k of
characteristic p and cardinality q. Let ordF : F× → Z denote the normalized valuation of
F . A linear algebraic F -group is denoted with a boldface letter like H and the group of its
F -points with the corresponding ordinary letter H = H(F ); we use the similar convention
for groups over k. Let G be a connected reductive F -group.

We fix a triple (S,B, x0) where S is a maximal torus in G, B a minimal F -parabolic
subgroup of G containing S with unipotent radical U and Levi subgroup the centralizer Z of
S in G, and x0 a special point in the apartment corresponding to S in the adjoint Bruhat-Tits
building of G.

We write N for the normalizer of S in G. If X∗(S) is the group of characters of S and
X∗(S) is the group of cocharacters, we write 〈 , 〉 : X∗(S) × X∗(S) → Z for the natural
pairing. We let Φ ⊂ X∗(S) be the set of roots of S in G and we write ∆ for the set of simple
roots in the set Φ+ of positive roots with respect to B. For α ∈ Φ, the corresponding coroot
in X∗(S) is denoted by α∨. For α, β ∈ Φ, we say that α is orthogonal to β if and only if
〈α, β∨〉 = 0. The Weyl group W0 := N/Z 'N /Z is isomorphic to the Weyl group of Φ.

We say that P is a parabolic subgroup of G to mean that P = P(F ) where P is an F -
parabolic subgroup of G. If P contains B, we write P = MN to mean that N is the unipotent
radical of P and M the (unique) Levi component containing Z; we write Pop = MNop for the
parabolic subgroup opposite to P with respect to M . The parabolic subgroups containing B
are in one-to-one correspondence with the subsets of ∆; we denote by PJ = MJNJ the group
corresponding to J ⊂ ∆ (when J = {α} we write simply Pα = MαNα).

The apartment corresponding to S in the adjoint Bruhat-Tits building of G is an affine
space x0 +Vad where Vad := X∗(Sad)⊗R and Sad is the torus image of S in the adjoint group
Gad of G. The groupN acts by affine automorphisms on the apartment, its subgroup Z acting
by translation by ν = −v where v : Z → Vad is the composite of the map vZ : Z → X∗(S)⊗R
defined in [HV15, 3.2] and of the natural quotient map X∗(S)⊗R� X∗(Sad)⊗R. (We recall
that vZ is determined by the requirement that 〈χ, vZ〉 = ordF ◦χ for all F -rational characters
χ of Z.) The root system of Sad in Gad identifies with Φ. The coroot of α ∈ Φ in Vad is the
image of the coroot α∨ ∈ X∗(S)⊗ R by the quotient map, and is still denoted by α∨.

As in [AHHV17, I.5] we write K for the special parahoric subgroup of G fixing x0 and
K(1) for the pro-p radical of K. For a subgroup H of G, we put H0 := H ∩ K and H :=
(H ∩K)/(H ∩K(1)). The group S0 is the maximal compact subgroup of S, Z0 is the unique
parahoric subgroup of Z and Z(1) := Z ∩ K(1) is the unique pro-p Sylow subgroup of Z0.
The group Gk := G = K is naturally the group of k-points of a connected reductive k-group
Gk, of minimal parabolic subgroup Bk := B with Levi decomposition Bk = ZkUk where
Zk := Z and Uk := U . The set of simple roots of the maximal split torus Sk = S of Gk with
respect to Bk is in natural bijection with ∆ and will be identified with ∆. For J ⊂ ∆, the
corresponding parabolic subgroup PJ,k of Gk containing Bk is P J ; its Levi decomposition is
PJ,k = MJ,kNJ,k where Mk,J = MJ and NJ,k = NJ . We write PJ,k,op = MJ,kNJ,k,op for the
parabolic group opposite to PJ,k with respect to MJ,k.
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We fix an algebraically closed field C of characteristic p. In this paper, a representation
means a smooth representation on a C-vector space.

2.2. The Satake transform SGM . Let V be an irreducible representation of the special
parahoric subgroup K of G; the normal pro-p subgroup K(1) of K acts trivially on V and the
action of K on V factors through the finite reductive group Gk. Seeing V as an irreducible
representation of Gk, we attach to V a character ψV of Zk and a subset ∆(V ) ⊂ ∆ as in
[AHHV17, III.9]; the space of Uk-coinvariants VUk of V is a line on which Zk acts by ψV and
the Gk-stabilizer of the kernel of the natural map V → VUk is P∆(V ),k. The pair (ψV ,∆(V )),
called the parameter of V , determines V . The character ψV can be seen as the character of
Z0 acting on the space U0-coinvariants VU0 of V .

Let P = MN be the parabolic subgroup of G containing B corresponding to J ⊂ ∆. Then
M0 is a special parahoric subgroup of M and VN0 is an irreducible representation of M0 with
parameter (ψV , J ∩∆(V )) [AHHV17, III.10].

The compact induction c-IndGK V of V to G is the representation of G by right translation
on the space of functions f : G → V with compact support satisfying f(kg) = kf(g) for all
k ∈ K, g ∈ G. We view the intertwining algebra EndCG(c-IndGK V ) as the convolution algebra
HG(V ) of compactly supported functions ϕ : G → EndC(V ) satisfying ϕ(k1gk2) = k1ϕ(g)k2
for all k1, k2 ∈ K, g ∈ G. The action of ϕ ∈ HG(V ) on f ∈ c-IndGK(V ) is given by convolution

(2.1) (ϕ ∗ f)(g) =
∑

x∈G/K
ϕ(x)(f(x−1g)).

We have also the algebra EndCM (c-IndMM0(VN0)) ' HM (VN0). The Satake transform is a
natural injective algebra homomorphism [AHHV17, III.3]

SGM : HG(V ) ↪→ HM (VN0);
it induces an homomorphism between the centers ZG(V )→ ZM (VN0); both homomorphisms
are localizations at a central element [AHHV17, I.5].

For a representation σ ofM , the parabolic induction IndGP σ of σ to G is the representation
of G by right translation on the space of functions f : G → σ satisfying f(mngk) = mf(g)
for all m ∈ M,n ∈ N, g ∈ G, k in some open compact subgroup of G depending on f . The
canonical isomorphism

HomCG(c-IndGK V, IndGP σ) ∼−→ HomCM (c-IndMM0 VN0 , σ)
is HG(V )-equivariant via SGM [HV12, §2].

2.3. The Satake transform SG = SGZ . As in [AHHV17, III.4], the algebra HZ(VU0) is
easily described. The unique parahoric subgroup Z0 of Z being normal, for z ∈ Z we have
the character z · ψV of Z0 defined by (z · ψV )(x) = ψV (z−1xz), x ∈ Z0. Let

ZψV = {z ∈ Z |z · ψV = ψV }
be the Z-normalizer of ψV . For z ∈ ZψV , there is a unique function τz ∈ HZ(VU0) of support
zZ0 with τz(z) = idVU0 . A basis of HZ(VU0) is given by the functions τz where z runs through
a system of representatives of ZψV /Z0 in ZψV . The multiplication satisfies τz1 ∗ τz2 = τz1z2 .
The function τz belongs to the center ZZ(VU0) if and only if ψV (z−1xzx−1) = 1 for all
x ∈ ZψV . We write also τz = τ

VU0
z .

Let
Z+ = {z ∈ Z | 〈α, vZ(z)〉 ≥ 0 for all α ∈ ∆}.
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be the dominant submonoid of Z. For a subset H of Z we write H+ = H ∩ Z+.
When M = Z we put SG = SGZ . The image of SG is

(2.2) SG(HG(V )) =
⊕
z

Cτz

for z in a system of representatives of Z+
ψV
/Z0 in Z+

ψV
(see [Her11b] when G is unramified

and [HV15] in general). For another irreducible representation V ′ of K with ψV = ψV ′ , we
have a canonical Z0-equivariant isomorphism EndC(VU0) ' EndC(V ′U0) and hence a canonical
isomorphism iZ : HZ(VU0) '−→ HZ(V ′U0) (sending the function τz ∈ HZ(VU0) to the function
τz ∈ HZ(V ′U0) for all z ∈ ZψV ). It induces a canonical isomorphism

(2.3) iG : HG(V ) '−→ HG(V ′)

satisfying SG ◦ iG = iZ ◦ SG.

2.4. The elements aα. Let G′ be the group generated by U and Uop (this is not the group
of F -points of a linear algebraic group in general). The action of N on the apartment x0 +Vad
induces an isomorphism from (N ∩G′)/(Z0∩G′) onto the affine Weyl groupW aff of a reduced
root system

(2.4) Φa = {αa := eαα | α ∈ Φ}

on Vad, where eα for α ∈ Φ are positive integers [Vig16, Lemma 3.9], [Bou02, VI.2.1]. The map
α→ αa gives a bijection from ∆ to a set ∆a of simple roots of Φa; the coroot in X∗(Sad)⊗R
associated to αa is α∨a = e−1

α α∨; the homomorphism ν = −v : Z → Vad induces a quotient
map Z ∩G′ � ⊕α∈∆Zα∨a with kernel Z0 ∩G′. An element z ∈ Z belongs to Z+ if and only
if ν(z) lies in the closed antidominant Weyl chamber

(2.5) D− = {x ∈ Vad | 〈αa, x〉 ≤ 0 for α ∈ ∆}.

For α ∈ ∆ we also have M ′α and the quotient map Z ∩M ′α � Zα∨a with kernel Z0 ∩M ′α
induced by ν [AHHV17, III.16].

Definition 2.1. For a character ψ : Z0 → C× and α ∈ ∆, let

∆′ψ = {α ∈ ∆ | ψ is trivial on Z0 ∩M ′α},
aα ∈ Z ∩M ′α such that ν(aα) = α∨a .

If α ∈ ∆′ψ, then Z ∩M ′α is contained in the Z-normalizer Zψ of ψ,

τα := τaα ∈ HZ(ψ)

does not depend on the choice of aα, and belongs to the center ZZ(ψ) [AHHV17, III.16]. The
set ∆′ψ is included in the subset ∆(ψ) of ∆ defined by (4.18) (cf. Remark 4.33).

2.5. Change of weight. Let V ′ and V be two irreducible representations of K with
parameters ψV = ψV ′ ,∆(V ) = ∆(V ′) t {α} where α ∈ ∆ −∆(V ′), let χ : ZG(V ) → C be a
character of the center of HG(V ), let P = MN denote the smallest parabolic subgroup of G
containing B such that χ factors through SGM , and let ∆(χ) be the subset of ∆ corresponding
to P (denoted by ∆0(χ) in [AHHV17, III.4 Notation]). We have the homomorphism χ′ :
ZG(V ′)→ C corresponding to χ via the isomorphism (2.3).
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Theorem 2.2 (Change of weight). Assume α 6∈ ∆(χ). The representations χ⊗ZG(V )c-IndGK V
and χ′ ⊗ZG(V ′) c-IndGK V ′ of G are isomorphic unless

α is orthogonal to ∆(χ), ψV is trivial on Z0 ∩M ′α, χ(τα) = 1.

The change of weight theorem was proved in [AHHV17, IV.2 Corollary] (generalizing
[Her11a] for GLn and [Abe13] for split groups) and was one of the key tools in establish-
ing a classification result for irreducible representations of G over C. The change of weight
theorem is a simple consequence of the next theorem. Define

(2.6) cα =
{

1 if ψV is trivial on Z0 ∩M ′α,
0 otherwise.

Theorem 2.3. Let z ∈ Z+
ψV

such that 〈α, v(z)〉 > 0. Then there exist G-equivariant homo-
morphisms ϕ : c-IndGK V → c-IndGK V ′ and ϕ′ : c-IndGK V ′ → c-IndGK V satisfying

SG(ϕ ◦ ϕ′) = τ
V ′
U0

z2 − cα τ
V ′
U0

z2aα
, SG(ϕ′ ◦ ϕ) = τ

VU0
z2 − cα τ

VU0
z2aα

.

We will prove in Proposition 2.17 that Theorem 2.3 follows from the inverse Satake theorem
(Theorem 2.12) for the pair (V, V ′) and for the pair (V ′, V ). We now recall why Theorem 2.3
implies Theorem 2.2 (compare with the proof of [AHHV17, IV.2 Corollary]).

Proof of Theorem 2.2. As in §2.3 we can canonically identify HG(V ) with HG(V ′) and sim-
ilarly ZG(V ) with ZG(V ′), denoting them HG and ZG for short. We also identify χ and
χ′. Pick any z ∈ Z+

ψV
such that 〈α, v(z)〉 > 0, 〈β, v(z)〉 = 0 for all β ∈ ∆ − {α}, and

such that τz2 ∈ ZZ(ψV ) (cf. [AHHV17, III.4]). As SG is injective and compatible with
compositions, the homomorphisms ϕ,ϕ′ of Theorem 2.3 for our chosen z are ZG-equivariant
and induce G-equivariant homomorphisms between χ ⊗ZG c-IndGK V and χ ⊗ZG c-IndGK V ′
with composition in either direction equal to χ(τz2 − cα τz2aα) ∈ C. It suffices to show that
χ(τz2 − cα τz2aα) 6= 0. First, χ(τz2) 6= 0 by [AHHV17, III.4 Lemma] and as α 6∈ ∆(χ), so we
are done if cα = 0. For the same reason, if cα = 1 and α is not orthogonal to ∆(χ), then
χ(τz2aα) = 0 and we are done. Finally, if cα = 1, α is orthogonal to ∆(χ), and χ(τα) 6= 1,
then χ(τz2 − cα τz2aα) = χ(τz2)(1− χ(τα)) 6= 0. �

2.6. Intertwiners from c-IndGK V to c-IndGK V ′. Let V and V ′ be two irreducible repre-
sentations of K. We extend to the space of intertwiners HomCG(c-IndGK V, c-IndGK V ′) our
previous discussion on EndCG(c-IndGK V ) in §2.2. We view HomCG(c-IndGK V, c-IndGK V ′) as
the space HG(V, V ′) of compactly supported functions ϕ : G → HomC(V, V ′) satisfying
ϕ(k1gk2) = k1ϕ(g)k2 for all k1, k2 ∈ K, g ∈ G. For z ∈ Z, we write
(2.7) ∆z = {α ∈ ∆ | 〈α, v(z)〉 = 0}.

Remark 2.4. When z, z′ ∈ Z+, we have ∆z′z = ∆z′ ∩∆z.

The quotient map p : V � VU0 induces a Z0-equivariant isomorphism between the lines
V U0

op ∼−→ VU0 ; similarly for V ′. We fix compatible linear isomorphisms

ιop : V U0
op ∼−→ (V ′)U0

op and ι : VU0
∼−→ V ′U0 .(2.8)

When V = V ′ we suppose that ιop and ι are the identity maps. We now recall the description
of HG(V, V ′). By the Cartan decomposition [HV15, 6.4 Prop.], the map Z → K\G/K, z 7→
KzK induces a bijection Z+/Z0 ∼−→ K\G/K. Recalling from §2.2 the parameters (ψV ,∆(V ))
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of V and (ψV ′ ,∆(V ′)) of V ′, a double coset KzK with z ∈ Z+ supports a non zero function
of HG(V, V ′) if and only if z lies in

Z+
G(V, V ′) = {z ∈ Z+ | z · ψV = ψV ′ and ∆z ∩ (∆(V )4∆(V ′)) = ∅}(2.9)

= {z ∈ Z+ | z · ψV = ψV ′ and 〈α, v(z)〉 > 0 for all α ∈ ∆(V )4∆(V ′)}.(2.10)
where ∆(V )4∆(V ′) = (∆(V ) \∆(V ′)) ∪ (∆(V ′) \∆(V )) is the symmetric difference.

The space of such functions has dimension 1 and contains a unique function Tz such that
the restriction of Tz(z) to V U0

op is ιop. The function Tz is also denoted by Tz = T V
′,V

z or
T V

′,V,ι
z .

Proposition 2.5 ([HV15, 7.7]). A basis of HG(V, V ′) consists of the Tz for z running through
a system of representatives of Z+

G(V, V ′)/Z0 in Z+
G(V, V ′).

We will write that (Tz)z∈Z+
G(V,V ′)/Z0 is a basis of HG(V, V ′).

These considerations apply also to the group Z and to the representations VU0 , V ′U0 of Z0.
We write ZψV ,ψV ′ = {z ∈ Z | z ·ψV = ψV ′}. Then the function τz ∈ HZ(VU0 , V ′U0) of support

Z0z and value ι at z for z ∈ ZψV ,ψV ′ is denoted also by τ
V ′
U0 ,VU0

z or τ
V ′
U0 ,VU0 ,ι

z . A basis of
HZ(VU0 , V ′U0) is (τz)z∈ZψV ,ψV ′ /Z0 .

Example 2.6. If V = V ′, then Z+
G(V, V ) = Z+

ψV
. If ψV = ψV ′ , then Z+

G(V, V ′) = Z+
G(V ′, V ) ⊂

Z+
ψV

. If ∆(V ) = ∆(V ′), then Z+
G(V, V ′) = Z+

ψV ,ψV ′
.

Remark 2.7. (i) We have HG(V, V ′) 6= 0 if and only if ZψV ,ψV ′ is not empty [HV15, 7.8 Prop.].
In this case ∆′ψV = ∆′ψV ′ (Definition 2.1) because Z0 ∩M ′α is a normal subgroup of Z.

(ii) Let z ∈ ZψV ,ψV ′ , α ∈ ∆′ψV = ∆′ψV ′ and aα ∈ Z∩M
′
α (Definition 2.1). Then aαza−1

α z−1 ∈
Z0 ∩ M ′α (Z ∩ M ′α is also a normal subgroup of Z) hence zaα = taαz ∈ ZψV ,ψV ′ , some
t ∈ Z0 ∩M ′α. The convolution satisfies

τ
V ′
U0 ,VU0 ,ι

z τ
VU0 ,VU0
α = τ

V ′
U0 ,VU0 ,ι

zaα = τ
V ′
U0 ,VU0 ,ι

taαz = τ
V ′
U0 ,V

′
U0

α τ
V ′
U0 ,VU0 ,ι

z .

Let V ′′ be a third irreducible representation of K. The composition of intertwiners corre-
sponds to the convolution. We fix compatible linear ι′ op : (V ′)U0

op ∼−→ (V ′′)U0
op and ι′ : V ′U0

∼−→
V ′′U0 and we define as above T V ′′,V ′z = T V

′′,V ′,ι′
z when z ∈ Z+

G(V ′, V ′′) and T V ′′,Vz = T V
′′,V,ι′◦ι

z

when z ∈ Z+
G(V, V ′′).

For g ∈ G we note that (T V
′′,V ′

z′ ∗ T V ′,Vz )(g) equals∑
x∈Kz′K/K

T V
′′,V ′

z′ (x) ◦ T V ′,Vz (x−1g) =
∑

x∈K/(K∩z′Kz′−1)
T V

′′,V ′

z′ (xz′) ◦ T V ′,Vz (z′−1x−1g).

Remark 2.8. (i) When ψV ′ = ψV ′′ and ∆(V ) ∩ ∆(V ′) ⊂ ∆(V ′′) ⊂ ∆(V ) ∪ ∆(V ′), we have
Z+
G(V, V ′) ⊂ Z+

G(V, V ′′).
(ii) For z ∈ Z+

G(V, V ′), z′ ∈ Z+
G(V ′, V ′′) we have z′z ∈ Z+

G(V, V ′′) because z′z·ψV = z′·ψV ′ =
ψV ′′ , ∆z′z = ∆z∩∆z′ (as z, z′ ∈ Z+), and ∆(V )4∆(V ′′) ⊂ (∆(V )4∆(V ′))∪(∆(V ′)4∆(V ′′)).

(iii) For z ∈ ZψV ,ψV ′ , z
′ ∈ ZψV ′ ,ψV ′′ we have τ

V ′′
U0 ,V

′
U0 ,ι

′

z′ τ
V ′
U0 ,VU0 ,ι

z = τ
V ′′
U0 ,VU0 ,ι′◦ι

z′z .

We will later use the following lemma concerning the support of SG(T V ′,Vz ).

Lemma 2.9. If z ∈ Z+
G(V, V ′), z′ ∈ Z and SG(T V ′,Vz )(z′) 6= 0, then vZ(z′) ∈ vZ(z)+R≤0∆∨.
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Proof. Letting wG denote the Kottwitz homomorphism, we have kerwG = Z0G′ [Vig16, Rk.
3.37]. If SG(Tz)(z′) 6= 0, then z′ ∈ Z ∩ UKzK, hence wG(z′) = wG(z), so z′ ∈ z ker(wG|Z) =
zZ0(Z ∩G′). By [AHHV17, II.6 Prop.] with I = ∅ it follows that Z ∩G′ is generated by all
Z ∩M ′α for α ∈ ∆. As vZ(Z ∩M ′α) = ZvZ(aα) ⊂ Rα∨, we see that vZ(z′) ∈ vZ(z) + R∆∨.
By [HV15, 6.10 Prop.] we deduce vZ(z′) ∈ vZ(z) + R≤0∆∨. �

Remark 2.10. In fact, we know that vZ(aα) = −e−1
α α∨ [AHHV17, IV.11 Example 3]. So the

the proof shows that vZ(z′) ∈ vZ(z) +
∑
α∈∆ Z≤0e

−1
α α∨. This improves on [Her11b, Lemma

3.6] when G is unramified and [HV15, 6.10 Prop.] when G is general.

2.7. The generalized Satake transform. Let P = MN be a parabolic subgroup of G
containing B.

Definition 2.11 ([HV12, Prop. 2.2 and 2.3], [HV15, Prop. 7.9]). The generalized Satake
transform is the injective linear homomorphism

SGM : HG(V, V ′) ↪→ HM (VN0 , V ′N0)
defined as follows. Let ϕ ∈ HG(V, V ′),m ∈M and let p : V � VN0 , p′ : V ′ � V ′N0 denote the
natural quotient maps. Then SGM is determined by the relation

(SGMϕ)(m) ◦ p = p′ ◦
∑

x∈N0\N
ϕ(xm).

For ϕ ∈ HG(V, V ′) and ϕ′ ∈ HG(V ′, V ′′) we have SGM (ϕ′ ∗ ϕ) = SGM (ϕ′) ∗ SGM (ϕ) [HV12,
Formula (6)].

When M = Z, we write SG = SGZ .

2.8. Inverse Satake theorem. We now give our main result. Let V and V ′ be irreducible
representations of K. Our main theorem determines the image of the Satake transform

SG : HG(V, V ′) ↪→ HZ(VU0 , V ′U0)
and moreover gives an explicit formula for the inverse of SG on a basis of the image. (Of
course this theorem is only interesting when HG(V, V ′) 6= 0. See Remark 2.7 for when this
happens.)

We fix compatible isomorphisms ιop : V U0
op → V ′U

0
op and ι : VU0 → V ′U0 as in (2.8) and

aα ∈ Z ∩M ′α for α ∈ ∆ (Definition 2.1). Recalling ∆′ψ (Definition 2.1), we denote

(2.11) ∆′(V ) = ∆(V ) ∩∆′ψV = {α ∈ ∆(V ) | ψV is trivial on Z0 ∩M ′α}.

Theorem 2.12 (Inverse Satake theorem). A basis of the image of SG is given by the elements

(2.12) τz
∏

α∈∆′(V ′)\∆′(V )
(1− τaα)

for z running through a system of representatives of Z+
G(V, V ′)/Z0 in Z+

G(V, V ′). The inverse
of SG sends (2.12) to

ϕV
′,V

z :=
∑

x∈Z+
z (V,V ′)

T V
′,V

x , where Z+
z (V, V ′) := Z+ ∩ z

∏
α∈∆′(V )∩∆′(V ′)

aNα.

The function ϕV ′,Vz is well defined for z ∈ Z+
G(V, V ′) because of the following lemma.

Lemma 2.13. For z ∈ Z+
G(V, V ′), the set Z+

z (V, V ′) is finite and contained in Z+
G(V, V ′).
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Proof. For z ∈ Z, the set Z+ ∩ z
∏
α∈∆ a

N
α is finite. Indeed, z

∏
α∈∆ a

n(α)
α , n(α) ∈ N =

{0, 1, . . .} lies in Z+ if and only if

〈βa, ν(z)〉+
∑
α∈∆

n(α)〈βa, α∨a 〉 ≤ 0 for all β ∈ ∆.

These inequalities admit only finitely solutions n(α) ∈ N for α ∈ ∆, because the matrix
(dβ〈βa, α∨a 〉)α,β∈∆ is positive definite for some dβ > 0.

For z ∈ Z+
G(V, V ′), an element x = z

∏
α∈∆′(V )∩∆′(V ′) a

n(α)
α of Z+

z (V, V ′) lies in ZψV ,ψV ′ as
aα ∈ ZψV for α ∈ ∆′ψV (see §2.1). For

α ∈ ∆′(V ) ∩∆′(V ′) = ∆(V ) ∩∆(V ′) ∩∆′ψV
and β ∈ ∆(V )4∆(V ′) we have 〈βa, α∨a 〉 ≤ 0. By (2.10), z ∈ Z+

G(V, V ′) satisfies 〈βa, ν(z)〉 < 0,
so the same is true for x. Hence x ∈ Z+

G(V, V ′). �

Remark 2.14. When V = V ′, and G is split with simply-connected derived subgroup, the
inverse Satake theorem was obtained by [Her11a, Prop. 5.1] using the Lusztig-Kato formula.
The proof of the inverse Satake theorem for arbitrary G and an arbitrary pair (V, V ′) uses
the pro-p Iwahori Hecke algebra. It is inspired by the work of Ollivier [Oll15].

Remark 2.15. When V = V ′ the image of SG was known, see (2.2). The description of the
image of SG for a pair (V, V ′) with V 6' V ′ was an open question in [HV15, §7.9]. Theorem
2.12 shows that the image of SG for a pair (V, V ′) with V 6' V ′ is not always contained in
the subspace of functions in HZ(VU0 , V ′U0) supported in Z+. This was noticed for many split
groups in [Her11a, Prop. 6.13].

Remark 2.16. We establish a similar theorem for SGM in the next section (Corollary 2.21), at
least when ∆′(V ′) ⊂ ∆′(V ) ∪∆M .

We mentioned earlier that Theorem 2.3 (hence the change of weight theorem) follows from
the inverse Satake theorem; it is now the time to justify this assertion.

Proposition 2.17. The inverse Satake theorem (Theorem 2.12) implies Theorem 2.3 (and
hence the change of weight theorem).

Our first proof only uses the “image of SG” part of Theorem 2.12 (for V 6∼= V ′), whereas
our second proof uses the explicit formula in Theorem 2.12 (but only for V = V ′).

First proof. As in Theorem 2.3, we suppose that the parameters of the irreducible represen-
tations V and V ′ of K satisfy ψV = ψV ′ and ∆(V ) = ∆(V ′) t {α}. In the proof, we will use
only that we know the image of the Satake homomorphisms for (V, V ′) and for (V ′, V ).

As in Theorem 2.3, let z ∈ Z+
ψV

satisfying 〈α, v(z)〉 > 0. This is equivalent to z ∈
Z+
G(V, V ′) = Z+

G(V ′, V ) (Example 2.6). By the definition of cα (2.6) and of ∆′(V ) (2.11),

∆′(V ) \∆′(V ′) =
{
{α} if cα = 1,
∅ if cα = 0.

The inverse Satake theorem (Theorem 2.12) gives two functions ϕV ′,Vz ∈ HG(V, V ′) and
ϕV,V

′
z ∈ HG(V ′, V ) satisfying

SG(ϕV ′,Vz ) = τ
V ′
U0 ,VU0

z and SG(ϕV,V ′z ) = τ
VU0 ,V ′

U0
z − cα τ

VU0 ,V ′
U0

zaα .
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By Remark 2.7, the two convolution products are

SG(ϕV ′,Vz ∗ ϕV,V ′z ) = SG(ϕV ′,Vz )SG(ϕV,V ′z ) = τ
V ′
U0 ,VU0

z (τ
VU0 ,V ′

U0
z − cα τ

VU0 ,V ′
U0

zaα )

= τ
V ′
U0 ,V

′
U0

z2 − cα τ
V ′
U0 ,V

′
U0

z2aα
,

SG(ϕV,V ′z ∗ ϕV ′,Vz ) = SG(ϕV,V ′z )SG(ϕV ′,Vz ) = (τ
VU0 ,V ′

U0
z − cα τ

VU0 ,V ′
U0

zaα )τ
V ′
U0 ,VU0

z

= τ
VU0 ,VU0
z2 − cα τ

VU0 ,VU0
zaαz = τ

VU0 ,VU0
z2 − cα τ

VU0 ,VU0
z2aα

.

In the second product we used that τα ∈ ZZ(VU0). �

Second proof. In this proof, we prove Theorem 2.3 for z ∈ Z+
ψV

such that 〈α, v(z)〉 > 0 and
〈β, v(z)〉 = 0 for any β ∈ Z+. As we mentioned after Theorem 2.3, this implies Theorem 2.2.

In this proof, we use Theorem 2.12 only for V = V ′. We also use Lemma 3.1 and 3.2 from
the next section. The argument is almost the same as the proof in [Her11a, Abe13].

Set ϕ = T V
′,V

z ∈ HG(V, V ′) and ϕ′ = T V,V
′

z ∈ HG(V ′, V ). By the assumption on z, we have
∆z = ∆ \ {α}. On the other hand, we have α /∈ ∆(V ′). Hence ∆(V ′) ⊂ ∆z. By Lemma 3.2,
we have ϕ′ ∗ ϕ = T V,Vz2 .

We calculate SG(T V,Vz2 ) using Theorem 2.12. From Lemma 2.18 below and Theorem 2.12,
we get the following:

• If α ∈ ∆′(V ), then

τ
VU0 ,VU0
z2 =

∑
z′∈Z+

z2
(V,V )

SG(T V,Vz′ )

= SG(T V,Vz2 ) +
∑

z′∈Z+
z2aα

(V,V )

SG(T V,Vz′ )

= SG(T V,Vz2 ) + τ
VU0 ,VU0
z2aα

.

Hence SG(T V,Vz2 ) = τ
VU0 ,VU0
z2 − τVU0 ,VU0

z2aα
.

• If α 6∈ ∆′(V ), then τVU0 ,VU0
z2 = SG(T V,Vz2 ).

Therefore we get SG(ϕ′ ∗ ϕ) = τ
VU0 ,VU0
z2 − cατ

VU0 ,VU0
z2aα

.

Since ∆(V ′) ⊂ ∆z, Lemma 3.1 implies SG(ϕ) = τ
V ′
U0 ,VU0

z . Hence SG(ϕ′)τ
V ′
U0 ,VU0

z =
τ
VU0 ,VU0
z2 − cατ

VU0 ,VU0
z2aα

. Canceling τ
V ′
U0 ,VU0

z and keeping in mind that τα is central, we get

SG(ϕ′) = τ
VU0 ,V ′

U0
z − cατ

VU0 ,V ′
U0

zaα . Hence we have

SG(ϕ ∗ ϕ′) = τ
V ′
U0 ,VU0

z (τ
VU0 ,V ′

U0
z − cατ

VU0 ,V ′
U0

zaα )

= τ
V ′
U0 ,V

′
U0

z2 − cατ
V ′
U0 ,V

′
U0

z2aα
. �

Lemma 2.18. Let α ∈ ∆, z ∈ Z+ such that 〈α, v(z)〉 > 0 and 〈β, v(z)〉 = 0 for β ∈ ∆ \ {α}.
(i) We have z2aα ∈ Z+.
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(ii) We have z1 ∈ Z+ ∩ z2∏
β∈∆ a

N
β if and only if z1 = z2 or z1 ∈ Z+ ∩ z2aα

∏
β∈∆ a

N
β . In

particular, for any irreducible representation V of K, we have

Z+
z2(V, V ) =

{
{z2} t Z+

z2aα
(V, V ) (α ∈ ∆′(V )),

{z2} (α /∈ ∆′(V )).

Proof. Let β ∈ ∆. If β 6= α, then 〈βa, v(aα)〉 = 〈βa,−α∨a 〉 ≥ 0. Hence 〈βa, v(z2aα)〉 ≥
〈βa, v(z2)〉 ≥ 0. For β = α, we have 〈αa, v(aα)〉 = 〈αa,−α∨a 〉 = −2. Hence 〈αa, v(z2aα)〉 =
2〈αa, v(z)〉 − 2 ≥ 0.

For (ii), the “if” part is trivial. We prove the “only if” part. Let z1 ∈ z2∏
β∈∆ a

N
β ∩Z+ and

take n(β) ∈ N such that z1 = z2∏
β∈∆ a

n(β)
β . Assume that z1 /∈ z2aα

∏
β∈∆ a

N
β ∩ Z+, namely

n(α) = 0. Then for γ ∈ ∆ \ {α}, we have

0 ≤ 〈γa, v(z1)〉 = 〈γa, v(z2)〉 −
∑

β∈∆\{α}
n(β)〈γa, β∨a 〉

Hence ∑
β∈∆\{α}

n(β)〈γa, β∨a 〉 ≤ 2〈γa, v(z)〉 = 0

from the assumption on z. Since the matrix (dγ〈γa, β∨a 〉)β,γ∈∆\{α} is positive definite for some
dγ > 0, we get n(β) = 0 for all β ∈ ∆ \ {α}. Hence z1 = z2. �

2.9. Inverse Satake for Levi subgroups. Let P = MN be a parabolic subgroup con-
taining B. By the inverse Satake theorem (Theorem 2.12) for SG = SGZ , we can get the
following formula for SGM . Let V, V ′ be irreducible K-representations. We denote the function
T
VN0 ,V ′

N0
z ∈ HM (VN0 , V ′N0) for M by T

V ′
N0 ,VN0 ,M

z . Also, for X ⊂ ∆ we write aX :=
∏
γ∈X aγ .

Theorem 2.19. For z ∈ Z+
G(V, V ′), we have

∑
x∈Z+

z (V,V ′)

SGM (T V ′,Vx ) =
∑

X⊂∆′(V ′)\(∆′(V )∪∆M )
(−1)#X ∑

x∈Z+,M
zaX

(VN0 ,V ′
N0 )

T
V ′
N0 ,VN0 ,M

x .

Remark 2.20. In the theorem we have zaX ∈ Z+
M (VN0 , V ′N0) since z ∈ Z+

G(V, V ′) ⊂ Z+
M (VN0 , V ′N0)

and 〈βa, γ∨a 〉 ≤ 0 for any β ∈ ∆M and γ ∈ X ⊂ ∆ \∆M .

Proof of Theorem 2.19. Apply SM to both sides of the formula given in the theorem. For the
left-hand side, we have

SM

 ∑
x∈Z+

z (V,V ′)

SGM (T V ′,Vx )

 =
∑

x∈Z+
z (V,V ′)

SG(T V ′,Vx )

= τz
∏

α∈∆′(V ′)\∆′(V )
(1− τα)



16 N. ABE, F. HERZIG, AND M.-F. VIGNÉRAS

by Theorem 2.12. For the right-hand side, applying Theorem 2.12 to M and using an
inclusion-exclusion formula, we have

SM

 ∑
X⊂∆′(V ′)\(∆′(V )∪∆M )

(−1)#X ∑
x∈Z+,M

zaX
(VN0 ,V ′

N0 )

T
V ′
N0 ,VN0 ,M

x


=

∑
X⊂∆′(V ′)\(∆′(V )∪∆M )

(−1)#X ∑
x∈Z+,M

zaX
(VN0 ,V ′

N0 )

SM (T
V ′
N0 ,VN0 ,M

x )

=
∑

X⊂∆′(V ′)\(∆′(V )∪∆M )
(−1)#XτzaX

∏
α∈∆′(V ′

N0 )\∆′(VN0 )
(1− τα)

= τz
∏

α∈∆′(V ′)\(∆′(V )∪∆M )
(1− τα)

∏
α∈∆′(V ′

N0 )\∆′(VN0 )
(1− τα)

= τz
∏

α∈∆′(V ′)\∆′(V )
(1− τα),

noting also that ∆′(V ′N0) \∆′(VN0) = (∆M ∩∆′(V ′)) \∆′(V ) (since ∆(VN0) = ∆M ∩∆(V )
by [AHHV17, III.10 Lemma]). Since SM is injective, we get the theorem. �

In a special case the formula is simple. In particular this happens when V ' V ′.
Corollary 2.21. If ∆′(V ′) ⊂ ∆′(V ) ∪∆M , then we have for z ∈ Z+

G(V, V ′),∑
x∈Z+

z (V,V ′)

SGM (T V ′,Vx ) =
∑

x∈Z+,M
z (VN0 ,V ′

N0 )

T
V ′
N0 ,VN0 ,M

x ,

and the image of SGM is spanned by {T
V ′
N0 ,VN0 ,M

z | z ∈ Z+
G(V, V ′)}.

Proof. The first part is immediate. For the last part fix z ∈ Z+
G(V, V ′). We note that

Z+,M
z (VN0 , V ′N0) ⊂ Z+

z (V, V ′) ⊂ Z+
G(V, V ′). Let � denote the partial order on the finite

set Z+,M
z (VN0 , V ′N0) defined by x � y if x ∈ Z+,M

y (VN0 , V ′N0). Then the first part applied

to y ∈ Z+,M
z (VN0 , V ′N0) shows that

∑
x�y T

V ′
N0 ,VN0 ,M

x is in the image of SGM . A triangular

argument now shows that T
V ′
N0 ,VN0 ,M

y is in the image of SGM for any y ∈ Z+,M
z (VN0 , V ′N0), in

particular this is true when y = z. �

3. Reduction to ∆(V ′) ⊂ ∆(V )

Let V, V ′ be two irreducible representations ofK. We reduce the proof of the inverse Satake
theorem for (V, V ′) to the particular case where their parameters satisfy ∆(V ′) ⊂ ∆(V ). First,
we establish some lemmas that are of independent interest.

3.1. First lemma. Let P = MN be a parabolic subgroup of G containing B corresponding
to ∆P ⊂ ∆. Our first lemma is the computation in a particular case of the generalized
Satake transform SGM : HG(V, V ′)→ HM (VN0 , V ′N0) (Definition 2.11); it is a generalization of
[Her11a, Cor. 2.18].

We fix linear isomorphisms ιop, ι as in (2.8) for (V, V ′); for z ∈ Z+
G(V, V ′) we recall the

elements T V ′,Vz ∈ HG(V, V ′), T
V ′
N0 ,VN0

z ∈ HM (VN0 , V ′N0) defined in §2.6, and the subset ∆z of
∆ defined by (2.7).
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Lemma 3.1. Let z ∈ Z+
G(V, V ′). We have SGM (T V ′,Vz ) = T

V ′
N0 ,VN0

z if ∆(V ′) is contained in
∆P or in ∆z.

We will use the lemma only when P = B,M = Z.

Proof. Let z ∈ Z+
G(V, V ′). Suppose m ∈ M . Definition 2.11 shows that (SGMT V

′,V
z )(m) =∑

x∈N0\N (p′ ◦T V ′,Vz )(xm), where p′ : V ′ � V ′N0 is the quotient map. The description of T V ′,Vz

given in §2.6 shows that the support of T V ′,Vz is KzK, and the image of T V ′,Vz (k1zk2) =
k1T

V ′,V
z (z)k2 is k1V

′N0
z,op for k1, k2 ∈ K [HV15, §7.4]. One knows that [HV12, Cor. 3.20]

(3.1) p′(k1V
′N0
z,op) 6= 0⇔ k1 ∈ P 0M0

V ′P
0
z,op,

where PV ′ = MV ′NV ′ is the parabolic subgroup of G corresponding to ∆(V ′).
Observe that ∆(V ′) ⊂ ∆P implies M0

V ′ ⊂ M0 and that ∆(V ′) ⊂ ∆z implies M0
V ′ ⊂ M0

z ,
so in either case we know that P 0M0

V ′P
0
z,op = P 0P 0

z,op. If k1 ∈ P 0P 0
z,op then k1zk2 lies in

P 0P 0
z,opzK = P 0zK as z ∈ Z+ and z−1P 0

z,opz ⊂ P 0
z,op.

Therefore, if (p′ ◦ T V ′,Vz )(xm) 6= 0 for x ∈ N we deduce that xm ∈ P 0zK ∩ P = P 0zP 0 =
N0(M0zM0). It follows that m ∈ M0zM0 and n ∈ N0. In particular, the support of
SGM (T V ′,Vz ) is contained inM0zM0 and (SGMT V

′,V
z )(z) = p′ ◦T V ′,Vz (z), which induces the map

ι : VU0 → V ′U0 . The lemma follows. �

3.2. Second lemma. Our second lemma is the computation of the composite of two par-
ticular intertwiners; it is done in [Her11a, Prop. 6.7], [Abe13, Lemma 4.3] when G is split.
Let V ′′ be a third irreducible representation of K; we fix linear isomorphisms as in (2.8) for
(V, V ′) and (V ′, V ′′) and by composition for (V, V ′′). For z ∈ Z+

G(V, V ′) and z′ ∈ Z+
G(V ′, V ′′),

the product z′z lies in Z+
G(V, V ′′) (Remark 2.8) and we have the elements T V ′,Vz ∈ HG(V, V ′),

T V
′′,V ′

z′ ∈ HG(V ′, V ′′) and T V
′′,V

z′z ∈ HG(V, V ′′) (§2.6).

Lemma 3.2. Let z ∈ Z+
G(V, V ′) and z′ ∈ Z+

G(V ′, V ′′). We have T V
′′,V ′

z′ ∗ T V ′,Vz = T V
′′,V

z′z if
∆(V ′) is contained in ∆z or in ∆z′.

Proof. By the formula for the convolution product in §2.6, we are lead to analyse the elements
(x, g) ∈ K × G such that T V

′′,V ′

z′ (xz′) ◦ T V ′,Vz (z′−1x−1g) 6= 0. We follow the arguments of
the proof of Lemma 3.1. The non-vanishing of T V ′,Vz (z′−1x−1g) implies z′−1x−1g = k1zk2
with k1, k2 ∈ K; the homomorphism T V

′′,V ′

z′ (xz′) = xT V
′′,V ′

z′ (z′) factors through the quotient
map pz′ : V ′ � V ′

N0
z′

(see §2.6). The image of T V ′,Vz (z′−1x−1g) is k1V
′N0
z,op and by (3.1),

pz′(k1V
′N0
z,op) 6= 0 if and only if k1 ∈ P 0

z′M
0
V ′P

0
z,op.

We know that P 0
z′M

0
V ′P

0
z,op = P 0

z′P
0
z,op, since ∆(V ′) ⊂ ∆z or ∆(V ′) ⊂ ∆z′ . The non-

vanishing of T V
′′,V ′

z′ (xz′)◦T V ′,Vz (z′−1x−1g) implies z′−1x−1g = k1zk2 ∈ P 0
z′zK. As z′P 0

z′z
′−1 ⊂

P 0
z′ we deduce KgK = Kz′zK. We suppose g = z′z and we analyze the elements x ∈ K

such that T V
′′,V ′

z′ (xz′) ◦ T V ′,Vz (z′−1x−1z′z) 6= 0. We have z′−1x−1z′z ∈ P 0
z′zK and x ∈ K,

or equivalently x ∈ z′zKz−1z′−1z′P 0
z′z
′−1 ∩ K = (z′zKz−1z′−1 ∩ K)z′P 0

z′z
′−1. The group

z′Kz′−1 ∩ K contains z′P 0
z′z
′−1 and we claim that it contains also z′zKz−1z′−1 ∩ K. The

formula for the convolution product given in §2.6 and this claim imply the lemma. The claim
is proved in Lemma 3.3 below. �

We now check the claim used in the proof of Lemma 3.2.



18 N. ABE, F. HERZIG, AND M.-F. VIGNÉRAS

Lemma 3.3. Let z, z′ ∈ Z+. Then z′zK(z′z)−1 ∩K is contained in z′Kz′−1 ∩K.

Proof. For z ∈ Z+ consider the bounded subset Ωz = {x0, zx0} of the apartment of S, so
zKz−1 ∩ K is the pointwise stabilizer of Ωz in the kernel of the Kottwitz homomorphism
[Vig16, Def. 3.14]. For α ∈ Φ let rΩz(α) = max{0,−〈α, ν(z)〉}. By Bruhat-Tits theory
(following [Vig16, §3.6], noting that the description of the pointwise stabilizer in equation
[Vig16, (42)] is valid not just for points x but for bounded subsets of the apartment of S)
we then know that zKz−1 ∩ K is generated by the groups Uα+rΩz (α) ⊂ Uα for α ∈ Φ and
the cosets sβZ0 ⊂ N 0 for β ∈ Φ such that 〈β, ν(z)〉 = 0. The lemma follows by noting that
rΩzz′ (α) ≥ rΩz′ (α) and that 〈β, ν(zz′)〉 = 0 implies 〈β, ν(z′)〉 = 0 for any roots α, β ∈ Φ. �

3.3. Third lemma.

Lemma 3.4. Let z ∈ Z+ and x = z
∏
α∈∆ a

n(α)
α with n(α) ∈ N. If 〈α, v(z)〉 is large enough

for those α ∈ ∆ with n(α) > 0, then x ∈ Z+.

Proof. Recall that v = −ν and that Z+ is the monoid of z ∈ Z such that the integers
〈βa, ν(z)〉 are ≤ 0 for all β ∈ ∆. We have ν(aα) = α∨a (Definition 2.1) and 〈βa, ν(x)〉 =
〈βa, ν(z)〉+

∑
α∈∆ n(α)〈βa, α∨a 〉 for all β ∈ ∆.We have 〈βa, α∨a 〉 ≤ 0 if α 6= β and 〈αa, α∨a 〉 = 2.

The integer 〈βa, ν(z)〉 is ≤ 0 as z ∈ Z+. If n(β) = 0 then 〈βa, ν(x)〉 ≤ 0. If n(β) > 0 and
〈βa, ν(z)〉+ 2n(β) ≤ 0 then 〈βa, ν(x)〉 ≤ 0. �

Later we will use it in the following form.

Lemma 3.5. Suppose z ∈ Z, J ⊂ ∆, and n(α) ∈ N for α ∈ J . Then there exists y ∈ Z+∩M ′J
such that yz

∏
α∈J a

m(α)
α lies in Z+ for all m(α) ∈ N,m(α) ≤ n(α).

Proof. We can find y ∈ Z+ ∩M ′J with 〈αa, v(y)〉 ≥ 2n(α)− 〈αa, v(z)〉 for all α ∈ J . Then we
have 〈αa, v(yz)〉 ≥ 2m(α) for m(α) ≤ n(α). The proof of Lemma 3.4 implies yz

∏
α∈J a

m(α)
α

lies in Z+ for all m(α) ∈ N,m(α) ≤ n(α). �

3.4. Reduction to ∆(V ′) ⊂ ∆(V ). We are ready to prove that (a special case of) the inverse
Satake theorem for a pair (V, V ′) with parameters satisfying ∆(V ′) ⊂ ∆(V ) implies the inverse
Satake transform for a general pair. Note that when ∆(V ′) ⊂ ∆(V ), then ∆′(V ′) ⊂ ∆′(V ).

Theorem 3.6. Assume ∆(V ′) ⊂ ∆(V ). For z ∈ Z+
G(V, V ′), we have SG(ϕz) = τz, where

ϕz =
∑

x∈Z+
z (V,V ′)

Tx and Z+
z (V, V ′) = Z+ ∩ z

∏
α∈∆′(V ′)

aNα.

Proposition 3.7. Theorem 3.6 implies the inverse Satake theorem (Theorem 2.12).

Proof. The proof is divided into several parts.
A) Let (V, V ′) be an arbitrary pair of irreducible representations of K. We introduce:

(i) The irreducible representation V ′′ of K with parameters ψV ′′ = ψV ′ and ∆(V ′′) =
∆(V )∩∆(V ′). Such a representation exists [HV12, Thm. 3.8], Z+

G(V, V ′) ⊂ Z+
G(V, V ′′)

(Remark 2.8) and Z+
G(V ′, V ′′) = Z+

G(V ′′, V ′) (Example 2.6).
(ii) A central element z′ of Z (hence normalizing any character ψ of Z0) lying in Z+

(hence in Z+
ψ for any ψ) and such that ∆z′ ∩ (∆(V ) ∪ ∆(V ′)) = ∆(V ). Hence

z′ ∈ Z+
G(V ′′, V ′) by (2.9).
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Let z ∈ Z+
G(V, V ′) and let ϕV ′,Vz =

∑
x∈Z+

z (V,V ′) T
V ′,V
x as in Theorem 2.12. We reduce the

computation of SG(ϕV ′,Vz ) to the single computation of SG(T V
′,V ′′

z′ ) using Theorem 3.6 for
(V, V ′′). As z ∈ Z+

G(V, V ′′) and ∆(V ′′) ⊂ ∆(V ), Theorem 3.6 implies

(3.2) SG(ϕV ′′,Vz ) = τ
V ′′
U0 ,VU0

z ,

where ϕV ′′,Vz =
∑
x T

V ′′,V
x for x ∈ Z+ ∩ z

∏
α∈J a

N
α with

J := ∆(V ) ∩∆(V ′) ∩∆′ψV ′ = ∆(V ′′) ∩∆′ψV ′′ .

Such an x is contained in Z+
G(V, V ′) by Lemma 2.13 and hence in Z+

G(V, V ′′). Also, the sets
∆(V ′′) and ∆(V ) are contained in ∆z′ , and z′ ∈ Z+

G(V ′′, V ′)∩Z+
ψV

. Lemma 3.2 applied twice
gives

T V
′,V ′′

z′ ∗ T V ′′,Vx = T V
′,V

z′x , T V
′,V

x ∗ T V,Vz′ = T V
′,V

xz′ ,

and Lemma 3.1 applied to M = Z, V = V ′ and z′ ∈ Z+
ψV

gives

SG(T V,Vz′ ) = τ
VU0 ,VU0
z′ .

Since z′ is central in Z, we can permute z′ and x on the right-hand side, hence T V
′,V

z′x = T V
′,V

xz′ .
We deduce

SG(T V
′,V ′′

z′ )SG(T V ′′,Vx ) = SG(T V ′,Vx )τVU0 ,VU0
z′ .(3.3)

Taking the sum of (3.3) for x ∈ Z+ ∩ z
∏
α∈J a

N
α, we get

(3.4) SG(T V
′,V ′′

z′ )SG(ϕV ′′,Vz ) = SG(ϕV ′,Vz )τVU0 ,VU0
z′ .

We used only Lemmas 3.1 and 3.2 to get (3.4). Using (3.2) in (3.4) and taking the right
convolution by τVU0 ,VU0

(z′)−1 , we obtain

SG(ϕV ′,Vz ) = SG(T V
′,V ′′

z′ )τ
V ′′
U0 ,VU0

z τ
VU0 ,VU0
(z′)−1 = SG(T V

′,V ′′

z′ )τ
V ′′
U0 ,VU0

z(z′)−1 .(3.5)

The computation of SG(ϕV ′,Vz ) is reduced to the computation of SG(T V
′,V ′′

z′ ).
B) We cannot directly apply Theorem 3.6 to compute SG(T V

′,V ′′

z′ ) because ∆(V ′) is not
contained in ∆(V ′′). But we show that the computation of SG(T V

′,V ′′

z′ ) reduces to the com-
putation of SG(T V

′,V ′

z′2
) using Lemmas 3.1 and 3.2.

As ∆(V ′′) ⊂ ∆z′ , Lemma 3.1 applied to M = Z, V ′, V ′′ and z′ ∈ Z+
G(V ′, V ′′) gives

SG(T V
′′,V ′

z′ ) = τ
V ′′
U0 ,V

′
U0

z′ ,(3.6)

and Lemma 3.2 applied to z′ ∈ Z+
G(V ′, V ′′) and z′ ∈ Z+

G(V ′′, V ′) gives

T V
′,V ′′

z′ ∗ T V
′′,V ′

z′ = T V
′,V ′

z′2
.

Applying the Satake transform, using (3.6) and taking a right convolution by τ
V ′
U0 ,V

′′
U0

(z′)−1 we get

SG(T V
′,V ′′

z′ ) = SG(T V
′,V ′

z′2
)τ
V ′
U0 ,V

′′
U0

(z′)−1 .
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Plugging this value of SG(T V
′,V ′′

z′ ) into (3.5) and using that z′ is central in Z we get

SG(ϕV ′,Vz ) = SG(T V
′,V ′

z′2
)τ
V ′
U0 ,V

′′
U0

(z′)−1 τ
V ′′
U0 ,VU0

z(z′)−1 = SG(T V
′,V ′

z′2
)τ
V ′
U0 ,VU0

(z′)−2z .(3.7)

C) We now compute SG(T V
′,V ′

z′2
). Applying Theorem 3.6 to V = V ′ and to z′2 ∈ Z+

G(V ′, V ′)
gives

SG(ϕV
′,V ′

z′2 ) = τ
V ′
U0 ,V

′
U0

z′2

for ϕV
′,V ′

z′2 =
∑
x∈Z+

z′2
(V ′,V ′) T

V ′,V ′
x where Z+

z′2(V ′, V ′) = Z+ ∩ z′2
∏
α∈∆′(V ′) a

N
α.

But we want to compute SG(T V
′,V ′

z′2 ). We can choose any element z′ that satisfies A)
(ii). We choose such a z′ with the property that z′2

∏
α∈∆′(V ′)\∆′(V ) a

ε(α)
α lies in Z+ for all

ε(α) ∈ {0, 1} (this is possible by Lemma 3.4). For such a z′ and α ∈ ∆′(V ′) \ ∆′(V ), we
have z′2aα ∈ Z+

ψV ′
(recall from Definition 2.1 that aα ∈ ZψV ′ as ψV ′ is trivial on Z0 ∩M ′α).

Theorem 3.6 applied to V = V ′ and z′2aα ∈ Z+
ψV ′

gives

SG(ϕV
′,V ′

z′2aα
) = τ

V ′
U0 ,V

′
U0

z′2aα
= τ

V ′
U0 ,V

′
U0

z′2
τ
V ′
U0 ,V

′
U0

α .

We see that ϕV
′,V ′

z′2 − ϕV
′,V ′

z′2aα
is the sum of T V ′,V ′x for x ∈ Z+ ∩ z′2

∏
β∈∆′(V ′)−{α} a

N
β and

SG(ϕV
′,V ′

z′2 − ϕV
′,V ′

z′2aα
) = τ

V ′
U0 ,V

′
U0

z′2
(1− τ

V ′
U0 ,V

′
U0

α ).

By iteration we obtain that

τ
V ′
U0 ,V

′
U0

z′2

∏
α∈∆′(V ′)\∆′(V )

(1− τ
V ′
U0 ,V

′
U0

α )

is the sum of SG(T V ′,V ′x ) for x ∈ Z+ ∩ z′2
∏
β∈∆′(V ′)∩∆′(V ) a

N
β . But z′2 is the only element

z′2
∏
β∈∆′(V ′)∩∆′(V ) a

n(β)
β with n(β) ∈ N such that

〈αa, ν(z′2)〉+
∑

β∈∆′(V ′)∩∆′(V )
n(β)〈αa, β∨a 〉 ≤ 0 ∀α ∈ ∆.

The reason is that all the β ∈ ∆′(V ′) ∩∆′(V ) are contained in ∆(V ) hence in ∆z′ , and that
the matrix (dα〈αa, β∨a 〉)α,β∈∆′(V ′)∩∆′(V ) is positive definite for some dα > 0. We deduce:

SG(T V
′,V ′

z′2 ) = τ
V ′
U0 ,V

′
U0

z′2

∏
α∈∆′(V ′)\∆′(V )

(1− τ
V ′
U0 ,V

′
U0

α ).(3.8)

D) Plugging the value of SG(T V
′,V ′

z′2 ) given by (3.8) into (3.7) we get

SG(ϕV ′,Vz ) = τ
V ′
U0 ,V

′
U0

z′2

∏
α∈∆′(V ′)\∆′(V )

(1− τ
V ′
U0 ,V

′
U0

α )τ
V ′
U0 ,VU0

(z′)−2z .(3.9)

As z′ is central in Z, the first term on the right-hand side commutes with the product and
using τ

V ′
U0 ,V

′
U0

z′2
τ
V ′
U0 ,VU0

(z′)−2z = τ
V ′
U0 ,VU0

z , the element z′2 disappears from the formula (3.9). As
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τ
V ′
U0 ,V

′
U0

α τ
V ′
U0 ,VU0

z = τ
V ′
U0 ,VU0

z τ
VU0 ,VU0
α for α ∈ ∆′ψV = ∆′ψV ′ (Remark 2.7), we obtain the

formula of Theorem 2.12:

SG(ϕV ′,Vz ) = τ
V ′
U0 ,VU0

z

∏
α∈∆′(V ′)\∆′(V )

(1− τVU0 ,VU0
α ).(3.10)

E) Choose a system of representatives X for Z+
G(V, V ′)/Z0 in Z+

G(V, V ′) such that x ∈
X, xaα ∈ Z+

G(V, V ′) implies that xaα ∈ X. In particular, the T V ′,Vx for x ∈ X form a
basis of HG(V, V ′). Recalling that ϕV ′,Vz =

∑
x∈Z+

z (V,V ′) T
V ′,V
x and that Z+

z (V, V ′) = Z+ ∩
z
∏
α∈∆′(V )∩∆′(V ′) a

N
α, Lemma 2.13 implies that the expansion of the ϕV ′,Vz in terms of the

basis T V ′,Vx (z, x ∈ X) is triangular. Therefore the ϕV ′,Vz ∈ HG(V, V ′) for z ∈ X form a basis
of HG(V, V ′). As SG is injective, this implies that the elements on the right-hand side of the
formula (3.10) form a basis of the image of SG. �

4. Pro-p Iwahori Hecke ring

The inverse Satake theorem for a pair (V, V ′) of irreducible representations of K with
parameters satisfying ∆(V ′) ⊂ ∆(V ) (Theorem 3.6) relies on the theory of the pro-p Iwahori
Hecke ring of G [Vig16] and on the results presented in this chapter.

4.1. Bruhat order on the Iwahori Weyl group. The Iwahori subgroups of G are the
conjugates of the Iwahori subgroup K(1)B0

op; their pro-p Sylow subgroups are the pro-p
Iwahori subgroups of G, and are the conjugates of the pro-p Iwahori subgroup

I = K(1)U0
op.

We haveK(1)B0
op = IZ0 and I = U0

opZ(1)(U∩I) (in any order) with the notation of §2.1. The
map n 7→ IZ0nIZ0 induces a bijection from the Iwahori Weyl group W = N/IZ0 onto the
set IZ0\G/IZ0 of double cosets of G modulo the Iwahori group IZ0, and the map n 7→ InI
induces a bijection from the pro-p Iwahori Weyl group W (1) = N/Z(1) onto the set I\G/I
of double cosets of G modulo the pro-p Iwahori group I; the group W (1) is an extension of
W by Zk = Z0/Z(1). The action of N on the apartment x0 + Vad factors through W . We
identify x0 + Vad with Vad by sending x0 to 0 ∈ Vad. The Iwahori Weyl group W contains
the group W aff = (N ∩ G′)/(Z0 ∩ G′) identified with the affine Weyl group of Φa via the
action of N on Vad. The quotient map W �W0 = N/Z splits as it induces an isomorphism
from N 0/Z0 onto W0, and the kernel Λ = Z/Z0 of W → W0 is commutative and finitely
generated. The homomorphism ν : Z → Vad factors through Λ and induces an isomorphism
from Λ ∩W aff onto the coroot lattice ν(Z ∩ G′) = ⊕α∈∆Zα∨a of Φa (defined in (2.4)). The
lattice ν(Z) contains the coroot lattice and is contained in the lattice of coweights

P (Φ∨a ) = {x ∈ Vad | 〈αa, x〉 ∈ Z for all α ∈ ∆}.
The Iwahori group K(1)P 0

op = IZ0 is the fixator of the fundamental antidominant alcove
C− of vertex 0 contained in the antidominant closed Weyl chamber D− (defined in (2.5)).
For α ∈ Φ, n ∈ Z, the reflection sαa−n : x 7→ x − (〈αa, x〉 − n)α∨a of Vad with respect to a
wall 〈αa, x〉 = n of Vad is conjugate in W aff to a reflection with respect to a wall of C−; let
S (resp. Saff) denote the set of reflections with respect to the walls Ker(αa− n) of Vad (resp.
of C−). Let Ω be the W -normalizer of Saff . The Iwahori Weyl group admits two semidirect
product decompositions

W = Λ oW0 = W aff o Ω.
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The image 1W
aff of N ∩ G′ in W (1) is a normal subgroup and is an extension of W aff by a

subgroup Zaff
k of Zk. The inverse image W aff(1) of W aff in W (1) is 1W

affZk. Denoting by
S(1) (resp. Saff(1), resp. Ω(1)) the inverse image of S (resp. Saff , resp. Ω) in W (1), we have

(4.1) W (1) = 1W
affΩ(1), 1W

aff ∩ Ω(1) = Zaff
k ,

S(1) = 1SZk, S
aff(1) = 1S

affZk where 1W
aff ∩S(1) = 1S, 1W

aff ∩ Saff(1) = 1S
aff .

Definition 4.1. Let λα ∈ Λ be the image of aα ∈ Z ∩M ′α (Definition 2.1).

Note that λα is independent of any choices. By Definition 2.1, ν(λα) = ν(aα) = α∨a , and

(4.2) Λ ∩W aff =
∏
α∈∆

λZα.

The length ` of the Coxeter system (W aff , Saff) extends to a length on W (by `(wu) = `(w)
for w ∈ W aff , u ∈ Ω) and further inflates to a length on W (1), still denoted by `. For
w̃, ũ ∈ W (1) lifting w ∈ W aff , u ∈ Ω, we have `(w̃ũ) = `(wu) = `(w). There is a useful
formula for the length of λw where λ ∈ Λ, w ∈ W0 [Vig16, Cor. 5.10] (the signs are different
because Saff is the set of reflections with respect to the walls of the dominant alcove C+ = −C−
in loc. cit.):

`(λw) =
∑

αa∈Φ+
a ∩w(Φ+

a )

|〈αa, ν(λ)〉|+
∑

αa∈Φ+
a ∩w(Φ−a )

|〈αa, ν(λ)〉+ 1|(4.3)

= `(λ)− `(w) + 2|{α ∈ Φ+
a ∩ w(Φ−a ), 〈αa, ν(λ)〉 ≥ 0}|.(4.4)

In particular, for λ ∈ Λ+ = Z+/Z0 we have `(λ) = −〈2ρ, ν(λ)〉, where 2ρ is the sum of
positive roots of Φa, and `(wλ) = `(λ) + `(w).

Definition 4.2. The Bruhat partial order ≤ of (W aff , Saff) inflates to a partial order ≤ on
W and to a preorder ≤ on W (1).

• w1u1 ≤ w2u2 ⇔ w1 ≤ w2, u1 = u2 for w1, w2 ∈W aff , u1, u2 ∈ Ω [Vig06, Appendix].
• w̃1 ≤ w̃2 ⇔ w1 ≤ w2 for w̃1, w̃2 ∈W (1) with images w1, w2 ∈W [Vig06, Appendix].

There is the partial order � on Vad determined by −∆∨a (the basis of Φa corresponding to
the anti-dominant closed Weyl chamberD− (2.5)): x1 � x2 if and only if x1−x2 ∈

∑
α∈∆ Nα∨a .

The next proposition compares the “Bruhat order” ≤ on Λ+ = Z+/Z0 and the partial order
� on ν(Λ+).

Proposition 4.3. Let λ1, λ2 ∈ Λ+. Then

λ1 ≤ λ2 ⇔ λ1 ∈ λ2
∏
α∈∆

λNα ⇔
(
ν(λ1) � ν(λ2), λ1 ∈ λ2W

aff).
The latter equivalence is clear because ν(λα) = α∨a and by (4.2). The first one follows from

the next two lemmas [Rap05] (we thank Xuhua He for drawing our attention to them).

Lemma 4.4. Let α ∈ ∆ and λ ∈ Λ+ such that λλα ∈ Λ+. Then
λλα < λsα < λ.

Proof. [Rap05, Remark 3.9]. Recall ν(λα) = α∨a (Definition 4.1). We have 〈2ρ, α∨a 〉 = 2 where
2ρ is the sum of positive roots αa ∈ Φ+

a [Bou02, VI.1.11, Prop. 29 (iii)]. We deduce
`(λ) = 〈2ρ, v(λ)〉 = 〈2ρ, v(λλα)〉 − 〈2ρ, v(λα)〉 = 〈2ρ, v(λλα)〉+ 〈2ρ, α∨a 〉 = `(λλα) + 2.
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Also, `(λsα) = `(λ)− 1, as 〈αa, ν(λ)〉 ≤ −2, since λλα ∈ Λ+. We have that sαλα = sαa+1 is
an affine reflection in S. Also, λλα = (λsα)(sαλα), `(λsα) = `(λ)−1 and `(λλα) = `(λsα)−1.
Recalling the Definition 4.2 of the Bruhat order, we get the lemma. �

Half of the first equivalence of Proposition 4.3 follows from this lemma (proof of [Rap05,
Prop. 3.5]). Indeed, let λ1, λ2 ∈ Λ+ such that λ1 ∈ λ2

∏
α∈∆ λ

n(α)
α with n(α) ∈ N. By Lemma

3.5, there exists λ ∈ Λ+ such that λλ2
∏
α∈∆ λ

m(α)
α lies in Λ+ for all integersm(α) ∈ N,m(α) ≤

n(α). There is a chain (xi)1≤i≤n from x1 = λλ2 to xn = λλ1 in Λ+ such that xi+1 = xiλα for
some α ∈ ∆. Lemma 4.4 implies xi+1 < xi. Hence λλ1 ≤ λλ2. We have `(λλi) = `(λ) + `(λi)
by the length formula (4.3) and λλ1 ≤ λλ2 is equivalent to λ1 ≤ λ2. Therefore if λ1, λ2 ∈ Λ+

are such that λ1 ∈ λ2
∏
α∈∆ λ

N
α we have λ1 ≤ λ2.

Lemma 4.5. Let P be a W0-invariant convex subset of Vad and let x1, x2 ∈ W such that
x1 ≤ x2. If x2(0) ∈ P then x1(0) ∈ P.

Proof. [Rap05, Lemma 3.3]. We can reduce to x1 = sαa+mx2 for a simple affine reflection
sαa+m with sαa+mx2 < x2 and αa ∈ Φa,m ∈ Z. In particular αa +m is positive on the alcove
C−. Then αa + m is negative on the alcove x2(C−). Hence m ≥ 0 and 〈αa, x2(0)〉 + m ≤ 0.
This implies that x1(0) = x2(0) − (〈αa, x2(0)〉 + m)α∨a lies between x2(0) and sα(x2(0)) =
x2(0)−〈αa, x2(0)〉α∨a . The lemma is now clear. The lemma is true (with the same argument)
for any element in the closure of C− instead of the origin 0. �

The second half of the first equivalence in Proposition 4.3 follows from this lemma. For
w ∈W0 and λ ∈ Λ+, w(v(λ)) ∈ v(λ)−

∑
α∈∆ Nα∨a because v(λ) lies in the cone D+ ∩ P (Φ∨a )

of dominant coweights [Bou02, VI.1.6, Prop. 18]. The convex envelope in Vad of the W0-
conjugate of ν(λ) is a convex W0-invariant polygon P(λ) contained in ν(λ) +

∑
α∈∆ R≥0α

∨
a .

Let λ1, λ2 ∈ Λ+ such that λ1 ≤ λ2, hence λ1 ∈ λ2
∏
α∈∆ λ

Z
α by (4.2). By Lemma 4.5,

ν(λ1) ∈ P(λ2) hence λ1 ∈ λ2
∏
α∈∆ λ

N
α. This ends the proof of Proposition 4.3.

4.2. Bases of the pro-p Iwahori Hecke ring. The pro-p Iwahori Hecke ring of G is a
ring isomorphic to EndG(c-IndGI Z), where I acts trivially on Z. We see the pro-p Iwahori ring
of G as the convolution algebra HZ of functions ϕ : G → Z which are compactly supported
and constant on the double cosets of G modulo I. The Z-module HZ has several important
bases indexed by w ∈W (1).

I) A double coset IxI for x ∈ N depends only on the image w ∈ W (1) of x in the pro-p
Iwahori Weyl groupW (1) = N/Z(1) and is also denoted by IwI. The characteristic functions
Tw ∈ HZ of IwI for w ∈ W (1) form a natural basis of the Z-module HZ, called the Iwahori-
Matsumoto basis. Let R be a commutative ring. We still denote by Tw the element 1 ⊗ Tw
in the R-algebra HR = R⊗Z HZ. The definition of the other bases of HZ is more elaborate.

The relations verified by the basis elements Tw ∈ HZ for w ∈W (1) are:
• The braid relations Tw1Tw2 = Tw1w2 if `(w1) + `(w2) = `(w1w2); hence t 7→ Tt gives
an embedding Z[Zk] ↪→ HZ.
• The quadratic relations T 2

s̃ = q(s)Ts̃2 +c(s̃)Ts̃ for s̃ ∈ Saff(1) lifting a simple reflection
s ∈ Saff . We have s̃2 ∈ Zk, q : S→ qN − {1} is a W -invariant function (for conjuga-
tion), c : S(1) → Z[Zk] is a W (1)-invariant function (for the conjugation action on
Zk and on S(1)) satisfying c(wt) = c(tw) = tc(w) for w ∈ S(1), t ∈ Zk.
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Remark 4.6 ([Vig16, §3.8, §4.2]). Let s ∈ Saff . We denote by Hs the affine hyperplane of
Vad fixed by s, α + r ∈ Φaff an affine root of G [Vig16, 3.5] such that Hs = Ker(α + r). Let
u ∈ (Uα ∩ Ks) \ Ks(1), m(u) the only element in N ∩ U−αuU−α where Ks is the parahoric
subgroup of G fixing the face of C− contained in Hs. We have q(s) = |Im(u)I/I| and the
image of m(u) in W (1) is a lift s̃ of s contained in 1W

aff . A lift s̃ obtained in this way is
called admissible.

The quotient of Ks by its pro-p radical Ks(1) is the group Gk,s of rational points of a finite
connected reductive k-group with maximal torus Zk and of semisimple rank 1. Let G′k,s the
subgroup of Gk,s generated by the unipotent elements, Zk,s = Zk ∩G′k,s. We have Zk,s ⊂ Zaff

k

and c(s̃) ∈ Z[Zk,s]. This implies c(w) ∈ Z[Zaff
k ] for w ∈ 1S.

II) We now give the second basis [Vig16, Lemma 4.12, Prop. 4.13]. There exist unique
elements T ∗w ∈ HZ for w ∈W (1) such that

• T ∗w1T
∗
w2 = T ∗w1w2 if `(w1) + `(w2) = `(w1w2),

• T ∗u = Tu if u ∈ Ω(1) (i.e. `(u) = 0),
• T ∗s̃ = Ts̃ − c(s̃) if s̃ ∈ Saff(1).

They form a basis of HZ, as the Iwahori-Matsumoto expansion of T ∗w is triangular:

(4.5) T ∗w̃ =
∑

x∈W,x≤w
h∗x, h∗x = c∗(w̃, x̃)Tx̃,

where w̃, x̃ ∈ W (1) lift w, x ∈ W , c∗(w̃, x̃) ∈ Z[Zk] (h∗x does not depend on the choice of x̃
lifting x) and c∗(w̃, w̃) = 1.

Remark 4.7. When the characteristic of R is p (in particular when R = C), we have q(s) = 0
in R and T 2

s̃ = c(s̃)Ts̃, T ∗s̃ Ts̃ = Ts̃T
∗
s̃ = 0 for s̃ ∈ Saff(1); for an admissible lift s̃ ∈ 1S

aff ,

(4.6) c(s̃) = −|Zk,s|−1 ∑
t∈Zk,s

Tt.

The Z-submodule Haff
Z with basis Tw for w ∈ 1W

aff is a subalgebra, T ∗w for w ∈ 1W
aff is

also a basis of Haff
Z , and c∗(w̃, x̃) ∈ Z[Zaff

k ] for w̃, x̃ ∈ 1W
aff .

For w̃ ∈W (1) lifting w ∈W , we have [Vig16, Prop. 4.13]
TwT

∗
w−1 = qw,

where w 7→ qw : W → qN is the function defined by [Vig16, Def. 4.14] with properties
• qw1qw2 = qw1w2 if `(w1) + `(w2) = `(w1w2),
• qu = 1 if u ∈ Ω (i.e. `(u) = 0),
• qs = q(s) for s ∈ Saff as in the quadratic relation of T (s̃).

For w1, w2 ∈W , the positive square root

qw1,w2 = (qw1qw2q
−1
w1w2)1/2

belongs to qN [Vig16, Lemma 4.19] and qw1,w2 = 1 if and only if `(w1) + `(w2) = `(w1w2)
[Vig16, Lemma 4.16]. We inflate qw and qw1,w2 to W (1), we put qw̃ = qw and qw̃1,w̃2 = qw1,w2
for w̃, w̃1, w̃2 ∈W (1) lifting w,w1, w2.

Remark 4.8. [Vig16, Prop. 4.13(6)]. There is also a unique function w 7→ cw : W aff(1)→ Z[Zk]
satisfying cw1cw2 = cw1w2 if `(w1) + `(w2) = `(w1w2), cs̃ = c(s̃) for s̃ ∈ Saff(1), and ct = t for
t ∈ Zk.
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Remark 4.9. Some properties of c∗(w, x) for x,w ∈W (1), x ≤ w, follow easily from the braid
relations for T ∗w and Tx:

(i) For t ∈ Zk, we have c∗(tw, x) = tc∗(w, x) and c∗(w, xt)xtx−1 = c∗(w, tx)t = c∗(w, x)
because T ∗tw = TtT

∗
w and c∗(w, x)Tx = c∗(w, xt)Txt = c∗(w, xt)Txtx−1Tx = c∗(w, tx)Ttx =

c∗(w, tx)TtTx.
(ii) For v ∈ Ω(1) we have c∗(wv, xv) = c∗(w, x) because T ∗wTv = T ∗wv and TxTv = Txv.

III) The other bases of HZ are associated to spherical orientations of Vad; they generalize
the Bernstein basis of an affine Hecke algebra. The spherical orientations are in one-to-
one correspondence with the Weyl chambers of Vad (cf. [Vig16, Def. 5.16]). If Do is the
Weyl chamber of a spherical orientation o and w ∈ W (1) = N/Z(1) an element of image
w0 ∈W0 = N/Z, we denote by o ·w the orientation of Weyl chamber w−1

0 (Do). In particular
o · λ = o when λ ∈ Λ(1) = Z/Z(1). There is a basis Eo(w) for w ∈W (1) of HZ associated to
each spherical orientation o [Vig16, §5.3].

The main properties of the elements Eo(w) are:
• Multiplication formula Eo(w1)Eo·w1(w2) = qw1,w2Eo(w1w2) for w1, w2 ∈W (1).
• Triangular Iwahori-Matsumoto expansion [Vig16, Cor. 5.26]

(4.7) Eo(w̃) =
∑

x∈W,x≤w
ho(x), ho(x) = co(w̃, x̃)Tx̃,

where w̃, x̃ ∈ W (1) lift w, x ∈ W , co(w̃, x̃) ∈ Z[Zk] (ho(x) does not depend on the
choice of x̃ lifting x) and co(w̃, w̃) = 1.

• Eo(λ) =
{
Tλ if ν(λ) ∈ Do

T ∗λ if ν(λ) ∈ −Do
for λ ∈ Λ(1).

When R is a ring of characteristic p (in particular R = C), in HR we have

Eo(w1)Eo·w1(w2) =
{
Eo(w1w2) if `(w1) + `(w2) = `(w1w2),
0 otherwise.

Remark 4.10. The integral Bernstein basis (E(w) = Eo−(w))w∈W (1) is the basis associated to
the spherical orientation o− corresponding to the antidominant Weyl chamber D− (2.5).

For x ∈ N of image w ∈W (1) we write also T (x) = Tw, T
∗(x) = T ∗w, Eo(x) = Eo(w).

4.3. Representations of K and Hecke modules. The submodule HZ(K, I) of functions
with support in K in the pro-p Iwahori Hecke algebra HZ is the submodule of basis Tw for
w ∈ W0(1); it is a subalgebra of HZ canonically isomorphic to the algebra of intertwiners
EndK(c-IndKI Z).

We may view HZ(K, I) as the convolution algebra HZ(Gk, Uk,op) of functions Gk → Z
which are constant on the double cosets modulo Uk,op. The irreducible representations V of
Gk are in one-to-one correspondence with the characters of HC(Gk, Uk,op) [CL76, Cor. 7.5],
[CE04, Thm. 6.10]. The representation V corresponds to the character χ giving the action of
HC(Gk, Uk,op) on the line V Uk,op . We consider V as an irreducible representation of K and χ
as a character of HC(K, I) giving the action of HC(K, I) on V I = V Uk,op .

A character χ of HC(K, I) is determined by a C-character ψχ of Z0 such that ψχ(t) =
χ(T (t)) for t ∈ Z0 and by the subset ∆(χ) of ∆ψχ (4.18) defined by

(4.8) χ(Ts̃α) =
{
−1 if α ∈ ∆ψχ \∆(χ)
0 if α ∈ ∆(χ) or α 6∈ ∆ψχ

,
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where s̃α is an admissible lift of sα (Remark 4.6). The pair (ψχ,∆(χ)) is called the parameter
of χ.

• V = V (Uk)⊕ V Uk,op where V (Uk) is the kernel of the quotient map V � VUk [CE04,
Thm. 6.12]. In particular, Zk acts on the lines V Uk,op and VUk by the same character
ψV .
• The stabilizer of V Uk,op in Gk is the parabolic subgroup P∆(χ),k,op [CL76, Prop. 6.6,
Thm. 7.1].
• The stabilizer of V (Uk) in Gk is the parabolic subgroup P∆(V ),k (see §2.2).

Lemma 4.11. The parameter (ψV ,∆(V )) of V and the parameter (ψχ,∆(χ)) of χ satisfy
ψV = ψ−1

χ , ∆(V ) = ∆(χ).

Proof. We have fT (t−1) = tf for t ∈ Zk hence ψχ = ψ−1
V , because

fh =
∑

x∈I\K
h(x)x−1f for h ∈ HC(K, I), f ∈ V I .

Let w∆ be the longest element of W0. The group Uk,op is conjugate to Uk by w∆, the
stabilizer P∆(χ),k,op of V Uk,op is the conjugate by w∆ of the stabilizer of the line V Uk , which
is P−w∆(∆(V )),k [AHHV17, III.9 Remark 1]. Hence ∆(V ) = ∆(χ). �

4.4. The elements cxw ∈ Z[Zk]. Our motivation is to explicitly compute the expansion of
T ∗w in the Iwahori-Matsumoto basis in HZ modulo q (Theorem 4.23). We associate to the
function c : S(1)→ Z[Zk] defining the quadratic relation of Ts for s ∈ Saff(1), elements

cxw ∈ Z[Zk] for x,w ∈W (1), x ≤ w,
and we study their properties.

Notation 4.12. The action of W (1) by conjugation on Zk factors through W and we write
w · c = w̃cw̃−1 for c ∈ Z[Zk] and w̃ ∈W (1) lifting w ∈W . We write also w1 · w2 = w1w2w

−1
1

for w1, w2 in W (1) (or w1, w2 in W ).
For a sequence w̃ = (s̃1, . . . , s̃n) in Saff(1) lifting a sequence w = (s1, . . . , sn) in Saff , write

w̃ := s̃1 · · · s̃n, w := s1 · · · sn for the products of the terms of the sequences. We take 1 for the
“product of the terms” of the empty sequence ( ). The lifts of the sequence w in Saff are the
sequences (t1s̃1, . . . , tns̃n) in Saff(1), where ti ∈ Zk.

Definition 4.13. Let w̃ = (s̃1, . . . , s̃n) be a sequence in Saff(1) and x̃ = (s̃i1 , . . . , s̃ir) with
1 ≤ i1 < · · · < ir ≤ n a subsequence of w̃. We define cx̃w̃ as the product of the following
elements of Z[Zk]:
c(s̃1) · · · c(s̃i1−1)
si1 · (c(s̃i1+1) · · · c(s̃i2−1))
si1si2 · (c(s̃i2+1) · · · c(s̃i3−1))
· · ·
si1 · · · sir · (c(s̃ir+1) · · · c(s̃in)).

Remark 4.14. Strictly speaking, for the subsequence x̃ we need to remember the sequence of
integers i1 < · · · < ir.

Example 4.15. We have cw̃w̃ = 1.
When w̃ = s̃1 · · · s̃n is a reduced decomposition, we have c( )

w̃ = cw̃ (Remark 4.8).
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Take 1 ≤ m ≤ n and cut the sequences w̃ and x̃ in two: w̃ = w̃1w̃2 and x̃ = x̃1x̃2
with w̃1 = (s̃1, . . . , s̃m), w̃2 = (s̃m+1, . . . , s̃n), x̃1 = (s̃i1 , . . . , s̃it), x̃2 = (s̃it+1 , . . . , s̃ir) where
it ≤ m < it+1. The sequence decompositions w̃ = w̃1w̃2 and x̃ = x̃1x̃2 are called compatible.
For i = 1, 2, the sequence x̃i is a subsequence of w̃i and we have cx̃iw̃i . The terms in the
product defining c

x̃1
w̃1

or x1 · c
x̃2
w̃2

appear in the product defining c
x̃
w̃ except the last term

x1 · (c(s̃it+1) · · · c(s̃m)) of cx̃1
w̃1

and the first term x1 · (c(s̃m+1) · · · c(s̃it+1−1)) of x1 · c
x̃2
w̃2

; their
product x1 · (c(s̃it+1) · · · c(s̃it+1−1)) appears in cx̃w̃. Then, we get a one-to-one correspondence
with the terms appearing in the product defining cx̃w̃:

(4.9) c
x̃
w̃ = c

x̃1
w̃1

(x1 · c
x̃2
w̃2

).

This useful formula allows us to study cx̃w̃ by induction on the length n of w̃.

Example 4.16. When x̃2 = w̃2 we have cx̃w̃ = c
x̃1
w̃1

.
When m = n− 1 and ir < n, we have cx̃w̃ = c

x̃
w̃1

(x · c(s̃n)).

By iteration of (4.9) we deduce:
Lemma 4.17. Let w̃ and x̃ be two sequences in Saff(1) such that x̃ is a subsequence of w̃ and
consider compatible sequences decompositions w̃ = w̃1 · · · w̃k and x̃ = x̃1 · · · x̃k. Then

c
x̃
w̃ = c

x̃1
w̃1

(x1 · c
x̃2
w̃2

) (x1x2 · c
x̃3
w̃3

) · · · (x1 · · ·xk−1 · c
x̃k
w̃k

).

The function c : Saff(1)→ Z[Zk] satisfies:
Lemma 4.18. For s̃ ∈ Saff(1) lifting s ∈ Saff and c ∈ Z[Zk], we have s · c(s̃) = c(s̃) and
c(s̃) c = c(s̃) (s · c).
Proof. The equalities c(s̃) t = c(s̃) (s · t) for t ∈ Zk and c(s̃) c = c(s̃) (s · c) for c ∈ Z[Zk]
are equivalent. Suppose that s̃ is an admissible lift of s (Remark 4.6). Then, the lemma is
proved in [Vig16, Prop. 4.4]. The other lifts of s are s̃t for t ∈ Zk and s · c(s̃t) = s · (c(s̃)t) =
(s · c(s̃)) (s · t) = c(s̃)t = c(s̃t). For t, t′ ∈ Zk, we have c(s̃t) t′ = c(s̃)tt′ = c(s̃) (s · tt′) =
c(s̃)t (s · t′) = c(s̃t) (s · t′). �

Lemma 4.19. Let w̃ and x̃ be two sequences in Saff(1) such that x̃ is a subsequence of w̃ and
let c ∈ Z[Zk]. Then, cx̃w̃ (x · c) = c

x̃
w̃ (w · c).

Proof. We cut the sequences w̃ and x̃ in two (as above with m = n − 1). Let w̃1 =
(s̃1, . . . , s̃n−1), w̃2 = (s̃n).

When ir = n, applying Example 4.16 we have cx̃w̃ = c
x̃1
w̃1

where x̃1 = (s̃i1 , . . . , s̃ir−1). By
induction on n, cx̃1

w̃1
(x1 · c) = c

x̃1
w̃1

(w1 · c). Hence cx̃w̃ (x · c) = c
x̃1
w̃1

(x1sn · c) = c
x̃1
w̃1

(w1sn · c) =
c
x̃
w̃ (w · c).
When ir 6= n, applying Example 4.16 (twice), Lemma 4.18, as well as induction on n we have

c
x̃
w̃ (x·c) = c

x̃
w̃1

(x·c(s̃n)c) = c
x̃
w̃1

(x·c(s̃n)(sn·c)) = c
x̃
w̃1

(x·c(s̃n))(xsn·c) = c
x̃
w̃1

(x·c(s̃n))(w1sn·c) =
c
x̃
w̃ (w · c). �

Proposition 4.20. Let w̃ be a sequence in Saff(1) and x̃ a subsequence of w̃ such that w̃ =
s̃1 · · · s̃n and x̃ = s̃i1 · · · s̃ir are reduced decompositions (i.e. n = `(w), r = `(x)), and t, u ∈ Zk.
Then the product tu−1c

x̃
w̃ depends only on tw̃, ux̃ ∈W (1).
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Proof. We have to prove tu−1c
x̃
w̃ = t′u′−1c

x̃′

w̃′ , when w̃
′ = (s̃′1, . . . , s̃′n) is a sequence in Saff(1),

x̃′ = (s̃′j1 , . . . , s̃
′
jr) is a subsequence of w̃′ and t′, u′ are elements in Zk, satisfying tw̃ = t′w̃′

and ux̃ = u′x̃′. Then w,w′ have the same length n, and x, x′ have the same length r. The
proof is divided into several steps and uses induction on n.
A) Assume w̃ = w̃′. Then t = t′ and we will prove u−1c

x̃
w̃ = u′−1c

x̃′

w̃ . By symmetry, we
have three cases:

(1) ir = jr = n, (2) ir < n and jr < n, (3) ir = n and jr < n.

We denote by w̃[, w[ the sequences obtained by erasing the last term of in the sequences w̃, w;
the products of the terms in w̃[ and of w[ are denoted by w̃[ and w[. We examine each case
separately, using Example 4.16. We have:

(1) cx̃w̃ = c
x̃[

w̃[
, c
x̃′[

w̃[
= c

x̃′

w̃ . By induction on n, u−1c
x̃
w̃ = u′−1c

x̃′

w̃ .

(2) cx̃w̃ = c
x̃

w̃[
(x · c(s̃n)) and cx̃

′

w̃ = c
x̃′

w̃[
(x′ · c(s̃n)). By induction on n, and noting that x = x′,

u−1c
x̃
w̃ = u′−1c

x̃′

w̃ .

(3) cx̃w̃ = c
x̃[

w̃[
and cx̃

′

w̃ = c
x̃′

w̃[
(x′ · c(s̃ir)). Since si1 · · · sir = sj1 · · · sjr are reduced decomposi-

tions, by the exchange condition there exists 1 ≤ k ≤ r such that sjk+1 · · · sjrsir = sjk · · · sjr
and x[ = si1 · · · sir−1 = sj1 · · · sjk−1sjk+1 · · · sjr . Suppressing the k-th term of the sequence
x̃′ we get x̃′? = (s̃j1 , . . . , s̃jk−1 , s̃jk+1 , . . . , s̃jr) and x̃′? = s̃j1 · · · s̃jk−1 s̃jk+1 · · · s̃jr lifting x[. Let
u′′ ∈ Zk such that ux̃[ = u′′x̃′?. By induction on n, u−1c

x̃[

w̃[
= u′′−1c

x̃′?

w̃[
; hence

(4.10) u′′−1c
x̃′?

w̃[
= u′−1c

x̃′

w̃[
(x′ · c(s̃ir))

implies u−1c
x̃
w̃ = u′−1c

x̃′

w̃ . We now prove (4.10). Applying Lemma 4.17 to the compatible
decompositions w̃[ = w̃1(s̃jk)w̃3, x̃′? = x̃′1( )x̃′3, and x̃′ = x̃′1(s̃jk)x̃′3 we get cx̃

′?

w̃[
= c

x̃′1
w̃1

(x′1 ·

c(s̃jk)cx̃
′
3
w̃3

) and cx̃
′

w̃[
= c

x̃′1
w̃1

(x′1sjk · c
x̃′3
w̃3

). We have c(s̃jk)cx̃
′
3
w̃3

= c(s̃jk) (sjk · c
x̃′3
w̃3

) by Lemma 4.18

so that cx̃
′?

w̃[
= c

x̃′

w̃[
(x′1 · c(s̃jk)). Hence

(4.11) u′′−1(x′1 · c(s̃jk)) = u′−1(x′ · c(s̃ir))

implies (4.10). We now prove (4.11). We have u′s̃j1 · · · s̃jr = u′′s̃j1 · · · s̃jk−1 s̃jk+1 · · · s̃jr s̃ir .
Therefore u′((s̃j1 · · · s̃jr) · s̃−1

ir
) = u′′((s̃j1 · · · s̃jk−1) · s̃−1

jk
). Taking the inverse shows (x̃′ ·

s̃ir)u′
−1 = (x̃′1 · s̃jk)u′′−1 and u′−1(x′ · c(s̃ir)) = (x′ · c(s̃ir))u′−1 = c((x̃′ · s̃ir)u′

−1) = c((x̃′1 ·
s̃jk)u′′−1) = c(x̃′1 · s̃jk)u′′−1 = u′′−1(x′1 · c(s̃jk)). This ends the proof of case A).

B) Assume w = w′. We will prove that tu−1c
x̃
w̃ = t′u′−1c

x̃′

w̃′ by induction on n. When n = 1
this follows from the following identities for a ∈ Zk: c

( )
(as̃1) = c(as̃1) = ac(s̃1) = ac

( )
(s̃1) and

c
(as̃1)
(as̃1) = 1 = c

(s̃1)
(s̃1). For n > 1 we will reduce to case A) as follows. Let x′′ = (s̃′i1 , . . . , s̃

′
ir).

Choose non-trivial decompositions w̃ = w̃1w̃2, w̃′ = w̃′1w̃
′
2 with `(wi) = `(w′i) > 0 for i = 1, 2.

Then we have compatible decompositions x̃ = x̃1x̃2 and x̃′′ = x̃′′1x̃
′′
2. In particular, wi = w′i,

xi = x′′i , and we can choose ti, ui ∈ Zk such that w̃i = tiw̃
′
i, uix̃i = x̃′′i for i = 1, 2. By
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induction we have that u−1
i c

x̃i
w̃i

= tic
x̃′′i
w̃′i
. Hence from (4.9) and Lemma 4.19 we get

c
x̃
w̃ = c

x̃1
w̃1

(x1 · c
x̃2
w̃2

) = t1u1c
x̃′′1
w̃′1

(x′′1 · t2u2c
x̃′′2
w̃′2

) = t1(w′1 · t2)u1(x1 · u2)cx̃
′′
1
w̃′1

(x′′1 · c
x̃′′2
w̃′2

)

= t1(w′1 · t2)u1(x1 · u2)cx̃
′′

w̃′ .

Hence tu−1c
x̃
w̃ = t′u−1u1(x1·u2)cx̃

′′

w̃′ . This equals t
′u′−1c

x̃′

w̃′ by caseA), since uu−1
1 (x1·u2)−1x̃′′ =

u′x̃′.

C) Assume that w = (s, s′, s, . . . ), w′ = (s′, s, s′, . . . ), where w = ss′s · · · = s′ss′ · · · = w′ is
a braid relation in W aff . Choose lifts s̃, s̃′ ∈ Saff(1) of s, s′ ∈ Saff . Then by part B) we may
assume without loss of generality that w̃ = (s̃, s̃′, s̃, . . . ), w̃′ = (s̃′, s̃, s̃′, . . . ). (Use the same
integers i1 < · · · < ir for the old and the new w̃, and similarly for w̃′.) Then the case r = n

is obvious because w̃ = x̃, w̃′ = x̃′, tu−1 = t′u′−1 and cx̃w̃ = c
x̃′

w̃′ = 1, so we assume r < n. We
prove tu−1c

x̃
w̃ = t′u′−1c

x̃′

w̃′ .
As r < n the sequence x′ = x is unique. By symmetry we suppose that the last terms of

w and x are equal.
(1) We reduce to the case where ik = n − r + k and jk = n − 1 − r + k for all 1 ≤ k ≤ r.

For ỹ = (s̃n−r+1, . . . , s̃n) and ỹ = s̃n−r+1 · · · s̃n, we have x̃ = ỹ. By A), cx̃w̃ = c
ỹ

w̃. As

s′jr = sir = sn = s′n−1, we have similarly for ỹ′ = (s̃′n−r, . . . , s̃′n−1), x̃′ = ỹ′ and cx̃
′

w̃′ = c
ỹ′

w̃′ . We

have u′ỹ′ = uỹ and the equalities tu−1c
x̃
w̃ = t′u′−1c

x̃′

w̃′ and tu
−1c

ỹ

w̃ = t′u′−1c
ỹ′

w̃′ are equivalent.
(2) We assume ik = n − r + k and jk = n − 1 − r + k for 1 ≤ k ≤ r. Then x̃ = x̃′

and u = u′ as x = x′. We prove tcx̃w̃ = t′c
x̃′

w̃′ where tw̃ = t′w̃′. We consider the sequence
decompositions w̃ = w̃1x̃, w̃

′ = w̃′1x̃
′(s̃′n). Applying Lemma 4.17, Example 4.15, and Lemma

4.19, we have cx̃w̃ = c
( )
w̃1
c
x̃
x̃ = cw̃1 , c

x̃
w̃′ = c

( )
w̃′1
c
x̃
x̃(x · c(s̃′n)) = cw̃′1(x · c(s̃′n)) = cw̃′1(w′1x · c(s̃′n)).

We have w′1x · c(s̃′n) = c(w̃′1x̃ · s̃′n) = tt′−1c(s̃1) because w̃′1x̃s̃′n = w̃′ = tt′−1w̃ = tt′−1s̃1w̃
′
1x̃.

Therefore t′cx̃w̃′ = tc(s̃1)cw̃′1 = tcw̃1 = tc
x̃
w̃.

D) To end the proof we reduce to case A) using B) and C). Since the change of reduced
expressions in W is given by iteration of the braid relations, we may assume that there are
sequence decompositions w̃ = w̃1w̃2w̃3, w

′ = w̃′1w̃
′
2w̃
′
3 where w2, w

′
2 correspond to a braid

relation w2 = w′2 as in C) and w1 = w′1, w3 = w′3. Again by B) we may assume without loss
of generality that w̃1 = w̃′1, w̃3 = w̃′3, and that w̃2 = (s̃, s̃′, s̃, . . . ), w̃′2 = (s̃′, s̃, s̃′, . . . ) for some
s̃, s̃′ ∈ Saff(1). We will reduce to case A) by extracting a subsequence x̃′′ from w̃′ such that
b′x̃ = x̃′′ (for some b′ ∈ Zk) and tb′−1c

x̃
w̃ = t′c

x̃′′

w̃′ .
From tw̃ = t′w̃′ we deduce that t = w1 · a, t′ = w1 · a′ for some a, a′ ∈ Zk such that

aw̃2 = a′w̃′2. We have the compatible decomposition x̃ = x̃1 x̃2 x̃3. Choose a subsequence
x̃′′2 of w̃′2 such that bx̃2 = x̃′′2 (for some b ∈ Zk), hence (x1 · b)x̃ = x̃′′. Then by C) we have
ab−1c

x̃2
w̃2

= a′c
x̃′′2
w̃′2

. The sequence x̃′′ = x̃1x̃
′′
2x̃3 is a subsequence of w̃′. Applying Lemmas 4.17

and 4.19:
c
x̃
w̃ = c

x̃1
w̃1

(x1 · c
x̃2
w̃2

) (x1x2 · c
x̃3
w̃3

) = c
x̃1
w̃1

(w1 · c
x̃2
w̃2

) (x1x2 · c
x̃3
w̃3

).
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We deduce that t(x1 · b)−1c
x̃
w̃ = c

x̃1
w̃1

(x1 · ab−1c
x̃2
w̃2

)(x1x2 · c
x̃3
w̃3

) = c
x̃1
w̃1

(x1 · a′c
x̃′′2
w̃′2

)(x1x
′′
2 · c

x̃3
w̃3

) =
t′c

x̃
w̃. �

We denote tu−1c
x̃
w̃ = cux̃tw̃ in Proposition 4.20. This defines cxw ∈ Z[Zk] for x,w ∈ W aff(1)

and x ≤ w.
When x, w ∈ W (1) satisfy x ≤ w there exists v ∈ Ω(1) unique modulo Zk such that

xv,wv ∈ W aff(1) with xv ≤ wv by definition of the Bruhat order (Definition 4.2). By
Lemma 4.19 the element cxvwv does not depend on the choice of v and we can define cxw = cxvwv.

To summarize:

Definition 4.21. Let x, w ∈W (1) such that x ≤ w. We define cxw as

cxw = cxvwv = t ctxvwv ∈ Z[Zk]

where v ∈ Ω(1), t ∈ Zk, txv = (si1 , . . . , sir) is a subsequence of wv = (s1, . . . , sn) in Saff(1)
such that wv = s1 · · · sn and txv = si1 · · · sir are reduced decompositions.

Proposition 4.22. The elements cxw ∈ Z[Zk] for x,w ∈ W (1), x ≤ w satisfy the following
properties:

(i) cww = 1.
(ii) cuxvtwv = tu−1cxw for t, u ∈ Zk, v ∈ Ω(1).
(iii) cv·xv·w = v · cxw for v ∈ Ω(1).
(iv) cxw(x · c) = cxw(w · c) for c ∈ Z[Zk].
(v) cx1x2

w1w2 = cx1
w1(x1 · cx2

w2) if xi, wi ∈ W (1), xi ≤ wi, `(x1x2) = `(x1) + `(x2), `(w1w2) =
`(w1) + `(w2).

(vi) cxw = cxvwv if v ∈W (1), `(xv) = `(x) + `(v), `(wv) = `(w) + `(v).
(vii) c1

w = cw for w ∈W aff(1).
(viii) cxw ∈ cxv Z[Zk] for x, v, w ∈W (1) such that x ≤ v ≤ w.

These properties come from the definition of cxw and properties of the c(s) (s ∈ Saff(1)),
as well as Example 4.15 and Lemma 4.19. Items (iii)–(v) are first proved for x, w, xi, wi in
W aff(1) and then extended to W (1). Item (vi) is a consequence of (v) and (i).

4.5. The Iwahori-Matsumoto expansion of T ∗w modulo q. We compute the triangular
decomposition of T ∗w modulo q; with the notation of (4.5), we will prove the congruence in
Z[Zk]: for x,w ∈W (1) and x ≤ w,

(4.12) c∗(w, x) ≡ (−1)`(w)−`(x)cxw mod q.

For h, h′ ∈ HZ, we write h ≡ h′ mod q if h − h′ ∈ qHZ. An equivalent formulation of the
congruence is:

Theorem 4.23. Suppose that w̃ ∈W (1) lifts w ∈W . We have

T ∗w̃ ≡
∑

x∈W,x≤w
(−1)`(w)−`(x)k∗x mod q, k∗x = cx̃w̃Tx̃ for any x̃ ∈W (1) lifting x.

Proof. We assume w ∈W aff . We can reduce to this case because c∗(wv, xv) = c∗(w, x), cxvwv =
cxw for x,w ∈W aff(1), x ≤ w, v ∈ Ω(1) (Remark 4.9, Proposition 4.22).

One easily checks the theorem when `(w) = 0 or `(w) = 1. For t ∈ Zk, T ∗t = Tt and ctt = 1.
For s ∈ Saff(1), T ∗s = Ts − c(s) and css = 1, c1

s = c(s).
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In general we prove the theorem by induction on `(w). Assume that `(w) ≥ 1 and apply
the braid relation to w̃ = w̃1s̃ inW aff(1) lifting w = w1s with `(w) = `(w1)+`(s) = `(w1)+1.
By induction T ∗w̃ = T ∗w̃1T

∗
s̃ is congruent modulo q to∑

x≤w1

(−1)`(w1)−`(x)cx̃w̃1Tx̃T
∗
s̃ =

∑
x≤w1

(−1)`(w)−`(x)cx̃w̃1Tx̃c(s̃) +
∑
x≤w1

(−1)`(w1)−`(x)cx̃w̃1Tx̃Ts̃.

The first sum on the right-hand side equals
S1 =

∑
x≤w1

(−1)`(w)−`(x)cx̃w̃Tx̃

because Tx̃c(s̃) = (x·c(s̃))Tx̃ and cx̃w̃1(x·c(s̃)) = cx̃w̃ by Proposition 4.22. To analyze the second
sum S2 on the right-hand side, as in [AHHV17, IV.9] we divide the set {x ∈ W | x ≤ w1}
into the disjoint union X t Y t Y s where

X = {x ∈W | x ≤ w1, xs 6≤ w1}, Y = {x ∈W | xs < x ≤ w1}.
We examine separately the contribution of X and of Y t Y s. For x ∈ X we have x < xs.
The contribution of X in S2 is
S2(X) =

∑
x∈X

(−1)`(w1)−`(x)cx̃w̃1Tx̃Ts̃ =
∑
x∈X

(−1)`(w1)−`(x)cx̃w̃1Tx̃s̃ =
∑
x∈Xs

(−1)`(w)−`(x)cx̃s̃
−1

w̃s̃−1Tx̃.

For x ∈ Xs we have xs < x hence cx̃s̃−1

w̃s̃−1 = cx̃w̃ (Proposition 4.22). We have Xs = {x ∈
W | x ≤ w, x 6≤ w1} [AHHV17, IV.9 Lemma 2]. Hence,

S1 + S2(X) =
∑
x≤w

(−1)`(w)−`(x)cx̃w̃Tx̃.

We now show that the contribution of Y t Y s in S2 lies in qHZ (hence the theorem). The
contribution of Y t Y s is

S2(Y t Y s) =
∑
x∈Y

(−1)`(w1)−`(x)(cx̃w̃1Tx̃ − c
x̃s̃
w̃1Tx̃s̃)Ts̃.

We have cx̃s̃w̃1 = cx̃w̃ = cx̃w̃1(x · c(s̃)) = cx̃w̃1(xs · c(s̃)) by Proposition 4.22 and Lemma 4.18, as
xs < x < w1 < w = w1s. Therefore cx̃s̃w̃1Tx̃s̃ = cx̃w̃1(xs · c(s̃))Tx̃s̃ = cx̃w̃1Tx̃s̃c(s̃), and

cx̃w̃1Tx̃ − c
x̃s̃
w̃1Tx̃s̃ = cx̃w̃1Tx̃s̃Ts̃ − c

x̃
w̃1Tx̃s̃c(s̃) = cx̃w̃1Tx̃s̃(Ts̃ − c(s̃)) = cx̃w̃1Tx̃s̃T

∗
s̃ .

As T ∗s̃ Ts̃ = q(s)s̃2 and q divides q(s) we have S2(Y t Y s) ∈ qHZ. �

4.6. The Iwahori-Matsumoto expansion of EoJ (w). Let J ⊂ ∆ and PJ = MJNJ the
corresponding parabolic subgroup of G containing B. The group I ∩MJ is a pro-p-Iwahori
subgroup of MJ and we can apply to MJ and I ∩MJ the theory of the pro-p Iwahori Hecke
algebra given in the preceding sections for G and I. We indicate with an index J the objects
associated to MJ instead of G.

On the positive side: the root system ΦJ of MJ is generated by J , the Weyl group WJ,0 =
(N ∩MJ)/Z of MJ is generated by the sα for α ∈ J , the Iwahori Weyl group WJ = (N ∩
MJ)/Z0 of MJ is a semidirect product WJ = ΛoWJ,0, the sets SJ and W aff

J are contained in
S and W aff , and we have the semidirect product WJ = W aff

J oΩJ where ΩJ is the normalizer
of Saff

J in WJ . The pro-p Iwahori Weyl group WJ(1) = (N ∩MJ)/Z(1) of MJ is the inverse
image of WJ in W (1), 1W

aff
J is the inverse image of W aff

J in W (1) and WJ(1) = 1W
aff
J ΩJ(1),

where ΩJ(1) is the inverse image of ΩJ in W (1). The pro-p Iwahori Hecke ring HJ,Z of MJ

admits the bases (T Jw )w∈WJ (1), (T J,∗w )w∈WJ (1), (EJo (w))w∈WJ (1) for spherical orientations o of



32 N. ABE, F. HERZIG, AND M.-F. VIGNÉRAS

VJ,ad, and the integral Bernstein basis (EJ(w))w∈WJ (1). We have qJ(w) = q(w) for w ∈ SJ

and cJ(w) = c(w) for w ∈ SJ(1) [Vig, Thm. 2.21].
On the negative side: the set Saff

J of simple reflections is not contained in Saff , the length `J
of WJ is not the restriction of `, ΩJ is not contained in Ω, the Bruhat order ≤J of W aff

J is not
the restriction of the Bruhat order ≤ of W aff , the functions w 7→ qJw : WJ → qN, (w1, w2) 7→
qJw1,w2 : WJ ×WJ → qN, w 7→ cJw : WJ(1) → Z[Zk] are not the restrictions of the functions
w 7→ qw, (w1, w2) 7→ qw1,w2 , w 7→ cw for W and W (1). The linear injective map respecting the
Iwahori-Matsumoto bases

ιJ : HJ,Z → HZ T Jw → Tw

does not respect products.

Definition 4.24. An element z ∈ Z is called J-positive if 〈α, v(z)〉 ≥ 0 for all α ∈ Φ+ \ Φ+
J .

When z ∈ Z of image λ ∈ Λ is J-positive, λw ∈WJ is called J-positive for all w ∈WJ,0, and
lifts of λw in WJ(1) are also called J-positive.

Remark 4.25. Z+ is the set of z ∈ Z which are J-positive for all J ⊂ ∆.
For w1, w2 ∈ WJ(1), w1 ≤J w2, if w2 is J-positive the same is true for w1 [Abe19, Lemma

4.1].

Notation 4.26. For w ∈W (1) orW , let n(w) ∈ N denote an element with image w; when w ∈
W the image of n(w) in W (1) is a lift ñ(w) of w. In particular, when w ∈W0 = N 0/Z0 ⊂W
we have n(w) ∈ N 0. We do not require the lifts n(w) ∈ N 0 for w ∈W0 to satisfy the relations
of [AHHV17, IV.6 Proposition]. The advantage is that this allows us to check compatibilities
and to avoid some silly mistakes.

We have [Vig15, Thm. 1.4]:
• The Z-submodule of HJ,Z with basis T Jw for the J-positive elements w ∈ WJ(1) is a
subalgebra H+

J,Z of HJ,Z, called the J-positive subalgebra.
• HJ,Z is a localization of H+

J,Z.
• The restriction of ιJ to H+

J,Z respects products.
• Another basis ofH+

J,Z is T J,∗w for the J-positive elements w ∈WJ(1) (by the triangular
decomposition (4.5) and Remark 4.25).
• Similarly, for any spherical orientation o of VJ,ad, the elements EJo (w) for the J-
positive elements w ∈ WJ(1) form a basis of H+

J,Z (by the triangular decomposition
(4.7) and Remark 4.25).

Let wJ denote the longest element of WJ,0. For z ∈ Z, the integral Bernstein elements
EJo+(z) = EJ

o+
J

(z) ∈ HJ,Z associated to the orientation o+
J of VJ,ad of dominant Weyl chamber

D+
J and EoJ (z) ∈ HZ associated to the orientation oJ of Vad of Weyl chamber DoJ = wJ(D−)

satisfy:

Lemma 4.27. When z ∈ Z is J-positive, ιJ(EJo+(z)) = EoJ (z).

Proof. The proof follows the arguments of [Oll14, Lemma 3.8], [Abe19, Lemma 4.6], [Vig15,
Prop. 2.19]. Let z ∈ Z. The element v(z) lies in the image by wJ of the dominant Weyl
chamber D+ of Vad if and only if

(4.13) 〈α, v(z)〉 ≥ 0 for α ∈ wJ(Φ+) = (Φ+ \ Φ+
J ) ∪ Φ−J .
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When v(z) ∈ wJ(D+)⇔ ν(z) = −v(z) ∈ wJ(D−) we have νJ(z) ∈ D+
J because

〈α, v(z)〉 ≥ 0 for α ∈ Φ−J ⇔ 〈α, νJ(z)〉 ≥ 0 for α ∈ Φ+
J .

Thus when v(z) ∈ wJ(D+) the integral Bernstein elements EJo+(z) = EJ
o+
J

(z) ∈ HJ,Z and
EoJ (z) ∈ HZ satisfy

(4.14) EJo+(z) = T J(z), EoJ (z) = T (z), ιJ(EJo+(z)) = EoJ (z).

On the other hand, let z, z1, z2 ∈ Z such that z = z1z
−1
2 and λ1, λ2 ∈ Λ the images of z1, z2.

For any orientation o of Vad (resp. VJ,ad), we have in HZ (resp. HJ,Z)

(4.15) Eo(z1)qλ2 = qλ1,λ
−1
2
Eo(z)Eo(z2) (resp. EJo (z1)qJλ2 = qJ

λ1,λ
−1
2
EJo (z)EJo (z2)).

This follows from the multiplication formula in §4.2 which gives in HZ

Eo(z1)Eo(z−1
2 ) = qλ1,λ

−1
2
Eo(z), Eo(z2)Eo(z−1

2 ) = qλ2,λ
−1
2

= qλ2

and the analogous formula in HJ,Z. For z ∈ Z general, we can find z1, z2 as above such that
v(z1), v(z2) lie in wJ(D+). For such elements we obtain from (4.14) and (4.15) that

(4.16) qλ1,λ
−1
2
EoJ (z)T (z2) = qλ2T (z1), qJ

λ1,λ
−1
2
EJo+(z)T J(z2) = qJλ2T

J(z1).

We now suppose that z ∈ Z is J-positive. We choose z1, z2 ∈ Z such that z = z1z
−1
2 and

v(z1), v(z2) ∈ wJ(D+), in particular z1, z2 are J-positive. As EJo+(z) and T J(zi) lie in H+
J,Z,

the algebra homomorphism ιJ : H+
J,Z → HZ applied to the second formula in (4.16) gives

qJ
λ1,λ

−1
2
ιJ(EJo+(z))T (z2) = qJλ2T (z1).

In HQ where T (z) is invertible we have, using again (4.16),

ιJ(EJo+(z)) = (qJ
λ1,λ

−1
2

)−1qJλ2T (z1)T (z2)−1 = (qJ
λ1,λ

−1
2

)−1qJλ2qλ1,λ
−1
2
q−1
λ2
EoJ (z).

The coefficient of T (z) in the Iwahori-Matsumoto expansion of ιJ(EJo+(z)) and of EoJ (z)
being 1, we deduce qJ

λ1,λ
−1
2

(qJλ2
)−1 = qλ1,λ

−1
2
q−1
λ2

and ιJ(EJo+(z)) = EoJ (z) in HQ hence also in
HZ. �

Suppose z ∈ Z+ with images λ̃ ∈ Λ+(1), λ ∈ Λ+. We have EJo+(z) = T J,∗(z) and z is
J-positive hence EoJ (z) = ιJ(T J,∗(z)). By the triangular Iwahori-Matsumoto expansion of
T J,∗(z) (4.5),

(4.17) EoJ (z) =
∑

x∈WJ ,x≤Jw
cJ,∗(λ̃, x̃)T (x̃).

(In particular, by (4.7), coJ (λ̃, x̃) = cJ,∗(λ̃, x̃) for x̃ ∈ WJ(1) with x̃ ≤J λ̃.) For later use we
need the value of EoJ′ (zn(wJwJ ′)−1) for J ′ ⊂ J ⊂ ∆. The computation will use (4.17) and
the following Lemma 4.29 (whose proof uses Lemma 4.28). Recall the surjective map Φ→ Φa

(2.4) respecting positive roots.

Lemma 4.28 ([Oll15, Lemma 2.9 ii]). Let w ∈W,λ ∈ Λ+ such that w ≤ λ. Then there exists
λ1 ∈ Λ+ such that λ1 ≤ λ and w ∈W0λ1W0. In particular, ν(λ1)− ν(λ) ∈

∑
α∈∆ Q≥0α

∨.
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Proof. Since our assumptions on W are more general than in [Oll15] we give a brief sketch
of the proof. We have that w ≤ w∆λ, the longest element of W0λW0. Choose λ1 ∈ Λ+ such
that w ∈ W0λ1W0. Since w∆λ, w∆λ1 are the longest elements of their double cosets, the
lifting property of Coxeter groups [BB05, Prop. 2.2.7] shows inductively that w∆λ1 ≤ w∆λ,
so λ1 ≤ w∆λ. By using the lifting property again we deduce that λ1 ≤ λ. (We repeatedly
use that `(wλ) = `(w) + `(λ) for w ∈W0, λ ∈ Λ+. This is a consequence of (4.3).) �

Lemma 4.29. Let J ′ ⊂ J ⊂ ∆ and λ ∈ Λ such that 〈α, v(λ)〉 > 0 for all α ∈ J \ J ′.
(i) For λ1 ∈ Λ+ such that v(λ)− v(λ1) ∈

∑
β∈J ′ Q≥0β

∨, we have 〈γ, v(λ1)〉 > 0 for all
γ ∈ Φ+

J \ Φ+
J ′.

(ii) Suppose λ ∈ Λ+ and x ∈WJ ′ with x ≤J ′ λ. Then `(x) = `(xwJ ′wJ) + `(wJ ′wJ).

Proof. (i) For α ∈ J \ J ′ and β ∈ J ′, we have 〈α, β∨〉 ≤ 0 hence 〈α, v(λ)〉 ≤ 〈α, v(λ1)〉. Let
γ ∈ Φ+

J \ Φ+
J ′ . There exists α ∈ J \ J ′ such that γ − α is a sum of roots in Φ+. Since

λ1 ∈ Λ+, 〈γ − α, v(λ1)〉 ≥ 0 hence 〈α, v(λ1)〉 ≤ 〈γ, v(λ1)〉 and 〈α, v(λ)〉 ≤ 〈γ, v(λ1)〉. Hence
〈γ, v(λ1)〉 > 0 for γ ∈ Φ+

J \ Φ+
J ′ .

(ii) There exists λ1 ∈ Λ+,J ′ such that x ∈ WJ ′,0λ1WJ ′,0 and v(λ) − v(λ1) ∈
⊕
β∈J ′ Q≥0β

∨

(Lemma 4.28, v = −ν). In particular, 0 ≤ 〈α, v(λ)〉 ≤ 〈α, v(λ1)〉 for α ∈ J \J ′, hence λ1 ∈ Λ+.
We write x = λxvx with λx = v1 · λ1 ∈ Λ and v1, vx ∈WJ ′,0.

As Φ+
J \ Φ+

J ′ is stable by WJ ′,0 and 〈γ, v(λ1)〉 > 0 for γ ∈ Φ+
J \ Φ+

J ′ by (i) we have
〈γ, v(λx)〉 > 0 for γ ∈ Φ+

J \ Φ+
J ′ .

By the length formula (4.4), `(xwJ ′wJ) = `(λxvxwJ ′wJ) is equal to
`(xwJ ′wJ) = `(λx)− `(vxwJ ′wJ) + 2|{α ∈ Φ+

a ∩ vxwJ ′wJ(Φ−a ), 〈αa, v(λx)〉 ≤ 0}|.
As vx ∈ WJ ′,0 we have `(vxwJ ′wJ) = `(wJ) − `(vxwJ ′) = `(wJ) − `(wJ ′) + `(vx) = `(vx) +
`(wJ ′wJ). Hence `(λx)− `(vxwJ ′wJ) = `(λx)− `(vx)− `(wJ ′wJ). We have
Φ+
a ∩vxwJ ′wJ(Φ−a ) = Φ+

a ∩[(Φ−a \Φ−a,J)∪(Φ+
a,J\Φ

+
a,J ′)∪vx(Φ−a,J ′)] = (Φ+

a,J\Φ
+
a,J ′)∪(Φ+

a ∩vx(Φ−a )),
and 〈αa, v(λx)〉 > 0 for αa ∈ Φ+

a,J \ Φ+
a,J ′ . Hence

`(xwJ ′wJ) + `(wJ ′wJ) = `(λx)− `(vx) + 2|{αa ∈ Φ+
a ∩ vx(Φ−a ), 〈αa, v(λx)〉 ≤ 0}| = `(x). �

Proposition 4.30. For J ′ ⊂ J ⊂ ∆ and z ∈ Z+ of image λ̃ ∈ Λ+(1) and λ ∈ Λ+ such that
〈α, v(λ)〉 > 0 for all α ∈ J \ J ′,

EoJ′ (zn(wJwJ ′)−1) =
∑

x∈WJ′ ,x≤J′λ
cJ
′,∗(λ̃, x̃)T (x̃n(wJwJ ′)−1)

for any lifts x̃ ∈WJ ′(1) of x ∈WJ ′.

Proof. We have `(λ) = `(λwJ ′wJ)+ `(wJ ′wJ) by Lemma 4.29, and the multiplication formula
in §4.2 gives

EoJ′ (z) = EoJ′ (zn(wJwJ ′)−1)EoJ′ ·wJ′wJ (n(wJwJ ′)).
The orientation oJ ′ · wJ ′wJ of Weyl chamber wJwJ ′(DoJ′ ) = wJ(D−) = DoJ is oJ and
EoJ (n(wJwJ ′)) = T (n(wJwJ ′)) [Vig16, Example 5.32], so

EoJ′ (z) = EoJ′ (zn(wJwJ ′)−1)T (n(wJwJ ′)).
Applying (4.17) and Lemma 4.29

EoJ′ (zn(wJwJ ′)−1)T (n(wJwJ ′)) =
∑

x∈WJ′ ,x≤J′λ
cJ
′,∗(λ̃, x̃)T (x̃n(wJwJ ′)−1)T (n(wJwJ ′)).
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In HQ, the basis element T (n(wJwJ ′)) is invertible and we deduce

EoJ′ (zn(wJwJ ′)−1) =
∑

x∈WJ′ ,x≤J′λ
cJ
′,∗(λ̃, x̃)T (x̃n(wJwJ ′)−1).

This remains true in HZ. �

Remark 4.31. Comparing with (4.5), (4.7), Proposition 4.30 implies

coJ′ (λ̃n(wJwJ ′)−1, x̃n(wJwJ ′)−1) = cJ
′,∗(λ̃, x̃)

for J ′ ⊂ J ⊂ ∆ and λ̃, x̃ ∈W (1) lifting λ ∈ Λ+, x ∈WJ ′ , x ≤J ′ λ.

4.7. ψ(c(s)) for a simple affine reflection. Let ψ : Z0 → C× be a character. It is trivial
on Z0 ∩M ′∆′

ψ
(Definition 2.1) by the following lemma.

Lemma 4.32. For J ⊂ ∆, the group Z0 ∩M ′J is generated by Z0 ∩M ′α for α ∈ J .

Proof. Let 〈∪α∈JZ0∩M ′α〉 denote the group generated by the Z0∩M ′α for α ∈ J . This group
is contained in Z0 ∩M ′J and Z0 ∩M ′J is contained in the kernel of ν. The group Z ∩M ′J is
generated by Z ∩M ′α for α ∈ J [AHHV17, II.6 Prop.] and the group Z ∩M ′α is generated
by Z0 ∩M ′α and aα (Definition 2.1) [AHHV17, §III.16]. The group Z normalizes M ′α and Z0

hence
Z ∩M ′J = 〈∪α∈JZ0 ∩M ′α〉

∏
α∈J

aZα.

The group Z0 is contained in the kernel of ν and ν(aα) = α∨a . The α∨a for α ∈ J are
linearly independent, hence an identity

∑
α∈J n(α)α∨a = 0 with n(α) ∈ Z implies n(α) = 0

for all α ∈ J . We get Z ∩M ′J ∩ Ker ν = 〈∪α∈JZ0 ∩M ′α〉, hence Z0 ∩M ′J is contained in
〈∪α∈JZ0 ∩M ′α〉. �

As in §2.1, Z0 ∩M ′J denotes the image of Z0 ∩M ′J in Zaff
k .

Remark 4.33. For α ∈ ∆, the group Z0 ∩M ′α is different from the group Zk,sα defined in
Remark 4.6. The group Z0 ∩M ′α is generated by Zk,sα and another group Zk,sαa−1 such
that for an admissible lift s̃αa−1 of sαa−1 the value c(s̃αa−1) ∈ HC is given by a formula
like (4.6) for c(s̃α) with Zk,sαa−1 instead of Zk,sα [AHHV17, IV.24 Claim, IV.25–28]. The
group Z0 ∩M ′α is also generated by Zk,sα and sα(Zk,sαa−1) because Z0 ∩M ′α and Zk,sα are
normalized by sα. The set ∆′ψ (Definition 2.1) is therefore contained in the set

(4.18) ∆(ψ) := {α ∈ ∆ | ψ is trivial on Zk,sα}.

Lemma 4.34.
(i) Let J ⊂ ∆ and τ̃ ∈ 1SJ . Then c(τ̃) ∈ Z [Z0 ∩M ′J ]. When J ⊂ ∆′ψ, we have

ψ(c(τ̃)) = −1.
(ii) Let α ∈ ∆ \∆′ψ. Then ψ(c(s̃α) c(s̃αa−1)) = ψ(c(s̃α) (sα · c(s̃αa−1))) = 0.

Proof. (i) This follows from Remark 4.6 applied to the Levi subgroup MJ of G. (Recall that
cJ(w) = c(w).)

(ii) By hypothesis ψ is not trivial on the image of Z0 ∩M ′α in Zaff
k , hence if ψ is trivial on

Zk,sα , then ψ is not trivial on Zk,sαa−1 and on sα(Zk,sαa−1). By formula (4.6) and Remark
4.33, ψ(c(s̃α)) = 0 (resp. ψ(c(s̃αa−1)) = 0, resp. ψ(sα · c(s̃αa−1)) = 0) if and only if ψ is not
trivial on Zk,sα (resp. Zk,sαa−1 , resp. sα(Zk,sαa−1)). �
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4.8. ψ(cxw) for dominant translations. Let ψ : Z0 → C× be a character and x̃, w̃ ∈W (1)
lifting x,w ∈ Λ+ such that x̃ ≤ w̃. To compute ψ(cx̃w̃) we need some knowledge of the reduced
expressions of the elements of Λ+. This is obtained in the following lemmas.
Lemma 4.35. Let α ∈ ∆, λ ∈ Λ+ such that λαλ ∈ Λ+ and let λ = s1 · · · snu with si ∈
Saff , u ∈ Ω be a reduced expression. Then there exist k1 < k2 such that

• λαλ = s1 · · · sk1−1sk1+1 · · · sk2−1sk2+1 · · · snu is a reduced expression, and
• {(s1 · · · sk1−1) · sk1 , (s1 · · · sk1−1sk1+1 · · · sk2−1) · sk2} = {sα, sαλα} or {sα, λαsα}.

Proof. As in Lemma 4.4 we have
λαλ < sαλαλ < λ

because `(sαλαλ) = `(λ−1λ−1
α sα) = `(λαλ) + 1 = `(λ)− 1 (using (4.4)), and we have sαλα =

sαa+1 ∈ S. By the strong exchange condition there exists i such that sαλαs1 · · · si = s1 · · · si−1
and there exists j such that either of the following hold:

(1) j < i, sαs1 · · · sj = s1 · · · sj−1: hence (s1 · · · sj−1) · sj = sα and (s1 · · · sj−1sj+1 · · · si−1) ·
si = (sαs1 · · · si−1) · si = sα · sαλα = λαsα; we take k1 = j, k2 = i.

(2) j > i, sαs1 · · · si−1si+1 · · · sj = s1 · · · si−1si+1 · · · sj−1: hence (s1 · · · si−1) ·si = sαλα and
(s1 · · · si−1si+1 · · · sj−1) · sj = sα; we take k1 = i, k2 = j. �

Remark 4.36. We will apply Lemma 4.35 as follows. For a choice of lifts in W (1), we have
cλ̃λ̃α
λ̃

= t(s1 · · · sk1−1 · c(s̃k1)) (s1 · · · sk1−1sk1+1 · · · sk2−1 · c(s̃k2)) for some t ∈ Zk, by definition
of cxw. Hence, as λαsα = sαa−1, sαλα = sαsαa−1sα, we have

cλ̃λ̃α
λ̃
∈ c(s̃α) (sα · c(s̃αa−1))Z[Zk] or c(s̃α)c(s̃αa−1)Z[Zk].

By iteration of the lemma, we get:

Lemma 4.37. Let λ ∈ Λ+, J ⊂ ∆, n(α) ∈ N for α ∈ J such that λ
∏
α∈J λ

m(α)
α ∈ Λ+ for all

m(α) ∈ N,m(α) ≤ n(α), and let λ = s1 · · · snu with si ∈ Saff , u ∈ Ω be a reduced expression.
Then there exist 1 ≤ i1 < i2 < · · · < ir ≤ n such that

• λ
∏
α∈∆ λ

n(α)
α = si1 · · · siru is a reduced expression, and

• (si1 · · · sij ) · sk lies in W aff
J ⊂W aff for any 0 ≤ j ≤ r and ij < k < ij+1.

Here we let i0 = 0, ir+1 = n+ 1.

Proof. We proceed by induction on
∑
β∈J n(β). Let α ∈ J such that n(α) > 0. Then

λ1 = λ
∏
β∈J λ

n(β)
β = λ2λα and λ2 ∈ Λ+. By the inductive hypothesis, there exist i1 < i2 <

· · · < ir such that λ2 = si1 · · · siru is a reduced expression and (si1 · · · sij ) · sk lies in W aff
J

for any 0 ≤ j ≤ r and ij < k < ij+1. From Lemma 4.35 there exist a < b such that λ1 =
si1 · · · sia−1sia+1 · · · sib−1sib+1 · · · siru is a reduced expression and τ1 = (si1 · · · sia−1) · sia , τ2 =
(si1 · · · sia−1sia+1 · · · sib−1)·sib are inW aff

J . We prove that (i′1, . . . , i′r−2) = (i1, . . . , ia−1, ia+1, . . . , ib−1, ib+1, . . . , ir)
satisfies the conditions of the lemma. Take 0 ≤ j ≤ r − 2 and i′j < k < i′j+1. Then
(si′1 · · · si′j ) · sk lies in W aff

J . Indeed, if k = ia or ib this is the condition on a and b. Otherwise,
take j′ such that ij′ < k < ij′+1. Then

(si′1 · · · si′j ) · sk =


(si1 · · · sij′ ) · sk if j′ < a (hence j = j′),
(τ1si1 · · · sij′ ) · sk if a ≤ j′ < b (hence j = j′ − 1),
(τ2τ1si1 · · · sij′ ) · sk if b ≤ j′ (hence j = j′ − 2).

In any case, this is in W aff
J by the inductive hypothesis and because τ1, τ2 are in W aff

J . �
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Remark 4.38. We will apply Lemma 4.37 as follows. Keep the notation of the lemma, so
ij < k < ij+1. Let αk ∈ Φ be a reduced root such that sk is the reflection in an affine
hyperplane of the form αk+r = 0 (r ∈ R). We have si1 · · · sij (αk) ∈ ΦJ , where ΦJ ⊂ Φ denotes
the root subsystem generated by J . Choose lifts s̃i1 , . . . , s̃ij , s̃k ∈ 1W

aff of si1 , . . . , sij , sk
with s̃k admissible. Writing M ′β = 〈Uβ, U−β〉 for any reduced root β ∈ Φ, we have that
s̃k lies in the image of N ∩M ′αk in W (1). It follows that s̃i1 · · · s̃ij · s̃k lies in the image of
N∩M ′si1 ···sij (αk) inW (1), so s̃i1 · · · s̃ij · s̃k ∈ 1W

aff
J ∩S(1) = 1SJ . Hence by Lemma 4.34 we see

that si1 · · · sij ·c(s̃k) = c(s̃i1 · · · s̃ij · s̃k) lies in Z[Z0 ∩M ′J ]. Therefore ψ(si1 · · · sij ·c(s̃k)) = −1
if ψ is trivial on Z0 ∩M ′J .

We are now ready to compute ψ(cx̃w̃) when x̃, w̃ are elements of the inverse image Λ+(1) of
Λ+ in W (1).
Theorem 4.39. Let x̃, w̃ ∈ Λ+(1) lifting x,w ∈ Λ+ such that x ≤ w. Then

ψ(cx̃w̃) =

(−1)`(w)−`(x) if x̃ ∈ w̃
∏
α∈∆′

ψ
aNα,

0 if x 6∈ w
∏
α∈∆′

ψ
λNα.

Proof. We have x = w
∏
α∈∆ λ

n(α)
α with n(α) ∈ N (Proposition 4.3). For λ̃ ∈ Λ+(1),

cx̃λ̃
w̃λ̃

= cx̃w̃ (Proposition 4.22), so by Lemma 3.5 we may assume without loss of generality
that w

∏
α∈∆ λ

m(α)
α ∈ Λ+ for any 0 ≤ m(α) ≤ n(α).

Assume n(α) > 0 for some α ∈ ∆ \ ∆′ψ. Let w̃′ = x̃λ̃−1
α for some lift λ̃α of λα, so x̃ =

w̃′λ̃α ≤ w̃′ ≤ w̃. Then cx̃w̃ ∈ c
w̃′λ̃α
w̃′ Z[Zk] by Proposition 4.22, so cx̃w̃ ∈ c(s̃α) (sα · c(s̃αa−1))Z[Zk]

or c(s̃α)c(s̃αa−1)Z[Zk] by Remark 4.36. Therefore ψ(cx̃w̃) = 0 by Lemma 4.34.
Assume now n(α) = 0 for all α ∈ ∆ \ ∆′ψ and that x̃ ∈ w̃

∏
α∈∆′

ψ
a
n(α)
α . Take a reduced

expression w̃ = s̃1 · · · s̃nũ where s̃1, . . . , s̃n ∈ 1S
aff are admissible and ũ ∈ Ω(1). Let J = ∆′ψ.

By Lemma 4.37 and Remark 4.38, there exist i1 < i2 < · · · < ir such that
• x = w

∏
α∈∆ λ

n(α)
α = si1 · · · siru is a reduced expression,

• s̃i1 · · · s̃ij · s̃k ∈ 1SJ for any 0 ≤ j ≤ r and ij < k < ij+1, and
• si1 · · · sij · c(s̃k) = c(s̃i1 · · · s̃ij · s̃k) ∈ Z[Z0 ∩M ′J ] and ψ(si1 · · · sij · c(s̃k)) = −1 for
any 0 ≤ j ≤ r and ij < k < ij+1.

We have x̃ = ts̃i1 · · · s̃iru for some t ∈ Zk. Taking the product of all s̃i1 · · · s̃ij · s̃k ∈ 1SJ

we deduce that (w̃u−1)(t−1x̃u−1)−1 = w̃x̃−1t ∈ 1W
aff
J . Since x̃−1w̃ =

∏
α∈J a

−n(α)
α ∈ 1W

aff
J ,

it follows by normality that w̃x̃−1 ∈ 1W
aff
J . Thus t ∈ Zk ∩ 1W

aff
J = Zaff,J

k , so ψ(t) = 1.
Therefore, from the definition of cx̃w̃ we get that ψ(cx̃w̃) = (−1)n−r. �

5. Inverse Satake theorem when ∆(V ′) ⊂ ∆(V )

5.1. Value of ϕz on a generator. Let V, V ′ be two irreducible representations of K with
parameters (ψV ,∆(V )), (ψV ′ ,∆(V ′)) such that ∆(V ′) ⊂ ∆(V ), let ιop : V U0

op ∼−→ V ′U
0
op , ι :

VU0
∼−→ V ′U0 be compatible linear isomorphisms (2.8), and let (2.10)
z ∈ Z+

G(V, V ′) = {z ∈ Z+ | z · ψV = ψV ′ , 〈α, v(z)〉 > 0 for all α ∈ ∆(V ) \∆(V ′)}.
The Satake transform SG : HG(V, V ′)→ HZ(VU0 , V ′U0) is injective (cf. Definition 2.11). After

showing that τ
VU0 ,V ′

U0 ,ι
z belongs to the image of SG we will compute the value of the unique
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antecedent ϕz on a generator of the representation c-IndGK V of G (Proposition 5.1). As a
generator we take the function fv ∈ c-IndGK V of support K and value at 1 a non-zero element
v ∈ V U0

op . This generator fv is fixed by the pro-p Iwahori group I = K(1)U0
op and its image

by a G-intertwiner c-IndGK V → c-IndGK V ′ is also fixed by I. The space (c-IndGK V ′)I of I-
invariants of c-IndGK V ′ is a right module for the pro-p Iwahori Hecke C-algebra HC . We will
show that ϕz(fv) = fv′hz where fv′ ∈ c-IndGK V ′ has support K and value v′ = ιop(v) at
1, and hz ∈ HC ; then, we will describe hz using the elements T ∗w and Eo∆(V ′)(w) of HC for
w ∈W (1).

Proposition 5.1. Suppose z ∈ Z+
G(V, V ′). There exists ϕz ∈ HG(V, V ′) such that SG(ϕz) =

τ
VU0 ,V ′

U0 ,ι
z . The value of ϕz on fv is fv′hz where

hz = Eo∆(V ′)(zn(w∆(V )w∆(V ′))−1)T ∗(n(w∆(V )w∆(V ′))).

Note that EoJ (zn(w)−1)T ∗(n(w)) does not depend on the choice of the lift n(w) ∈ N of
w ∈ W because another choice differs only by multiplication by t ∈ Z0 and for n, n′ ∈ N ,
EoJ (nt−1)T ∗(tn′) = EoJ (n)T (t−1)T (t)T ∗(n′) = EoJ (n)T ∗(n′).

5.2. Embedding in X = IndGB(c-IndZZ(1) 1C). Proposition 5.1 is essentially the same as
Theorem [AHHV17, IV.19 Thm.] which implies the easier part of the change of weight theorem
[AHHV17, IV.I Thm. (i)]. (See the end of §5.2 for an explanation why it is essentially the
same.) The first step of the proof is to embed the two representations c-IndGK V and c-IndGK V ′
of G in the same representation

X = IndGB(c-IndZZ(1) 1C).

For a C-character ψ of Z0 let eψ ∈ c-IndZZ(1) 1C denote the function of support Z0 and equal
to ψ on Z0. For v ∈ V U0

op \ {0} of image v ∈ VU0 , let fv ∈ c-IndGK V (resp. ev ∈ c-IndZZ0 VU0)
denote the function of support K with fv(1) = v (resp. of support Z0 with ev(1) = v). We
recall the injective intertwiner [HV12, Def. 2.1]

IV : c-IndGK V ↪→ IndGB(c-IndZZ0 VU0)
such that IV (fv)(1) = ev. We have the injective Z-intertwiner

jv : c-IndZZ0 VU0 ↪→ c-IndZZ(1) 1C
sending ev to eψV .

Definition 5.2. For v ∈ V U0
op \ {0}, let Iv : c-IndGK V ↪→ X be the injective G-equivariant

map such that Iv(fv)(1) = eψV .

The intertwiner Iv is the composite of IV and the injective G-intertwiner
IndGB(jv) : IndGB(c-IndZZ0 VU0) ↪→ X

induced by jv. For ϕ ∈ HG(V, V ′), the diagram

c-IndGK V
IV //

ϕ

��

IndGB(c-IndZZ0 VU0)

SG(ϕ)
��

c-IndGK V ′ IV ′
// IndGB(c-IndZZ0 V ′U0)
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is commutative [HV12, §2]. For z ∈ Z, let τ(z) be the characteristic function of zZ(1) seen as
a Z-intertwiner c-IndZZ(1) 1C → c-IndZZ(1) 1C . This makes c-IndZZ(1) 1C into a left C[Z/Z(1)]-
module. Let v′ = ι(v). The diagram

c-IndZZ0 VU0
jv //

τ
V
U0 ,V

′
U0 ,ι

z ��

c-IndZZ(1) 1C

τ(z)
��

c-IndZZ0 V ′U0
jv′
// c-IndZZ(1) 1C

is commutative. By functoriality, the diagram

IndGB(c-IndZZ0 VU0)
IndGB(jv)

//

τ
V
U0 ,V

′
U0 ,ι

z ��

X

τ(z)
��

IndGB(c-IndZZ0 V ′U0)
IndGB(jv′ )

// X

is also commutative.

Proposition 5.3. Suppose z ∈ Z+
G(V, V ′). In the (C[Z/Z(1)],HC)-bimodule XI we have

τ(z)Iv(fv) = Iv′(fv′)hz, hz = Eo∆(V ′)(zn(w∆(V )w∆(V ′))−1)T ∗(n(w∆(V )w∆(V ′))).

This proposition implies Proposition 5.1, as we now explain: we see in particular that
τ(z)Iv(fv) ∈ Iv′(c-IndGK V ′), so τ(z)Iv(c-IndGK V ) ∈ Iv′(c-IndGK V ′). Thus there exists a unique
ϕz ∈ HG(V, V ′) such that the following diagram commutes:

c-IndGK V
Iv //

ϕz
��

X

τ(z)
��

c-IndGK V ′ Iv′
// X.

By the above discussion and injectivity of IndGB(jv′) we deduce that τ
VU0 ,V ′

U0 ,ι
z ◦ IV = IV ′ ◦ϕz.

We also have SG(ϕz) ◦ IV = IV ′ ◦ ϕz. From the discussion of [HV12, §2] it follows that
SG(ϕz) = τ

VU0 ,V ′
U0 ,ι

z (both correspond to the map IV ′ ◦ ϕz under the adjunction [HV12, (2)],
where we take P = B and W = c-IndZZ0 V ′U0).

Proposition 5.3 is a variant of [AHHV17, IV.19 Theorem]. In loc. cit. one assumes ψV =
ψV ′ = ψ, ∆(V ) = ∆(V ′)t{α} and the representation X ofG is replaced by Xψ = IndGB(c-IndZZ0 ψ).
Identifying VU0 ' ψV , V ′U0 ' ψV ′ via our bases v, v′ we have the embeddings IndGB(jv) :
XψV ↪→ X, IndGB(jv′) : XψV ′ ↪→ X. We need to explain why certain arguments of [AHHV17]
remain valid or can be adapted to our more general setting.

5.3. Proof in XI . We start the proof of Proposition 5.3. For n(w) ∈ N 0 lifting w ∈ W0,
the double coset Bn(w)I does not depend on the choice of n(w); we write BwI = Bn(w)I.

Definition 5.4. For a C-character ψ of Z0, the function fψ,n(w∆) ∈ XI has support Bw∆I

and its value at n(w∆)−1 is eψ.
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The function fψ,n(w∆) is the image of the function f0 ∈ XIψ of [AHHV17, IV.7 Definition]
for a fixed choice of n(w∆). As announced earlier, we first show Iv(fv) ∈ fψV ,n(w∆)HC .

Lemma 5.5. We have Iv(fv) = fψV ,n(w∆)T (n(w∆)n(w∆(V ))−1)T ∗(n(w∆(V ))).

Proof. This is obtained from [AHHV17, IV.9 Proposition] by applying the embedding Xψ ↪→
X, for a certain choice of n(w∆) and n(w∆(V )). This is valid for any choice because for
t ∈ Z0, the product T (nt−1)T ∗(tn′) for n, n′ ∈ N does not depend on t, and neither does
fψV ,tn(w∆)T (tn) = tfψV ,n(w∆)T (t)T (n), recalling

(5.1) fh =
∑

x∈I\G
h(x)x−1f for h ∈ HC , f ∈ XI ,

hence fT (t) = t−1f . �

Lemma 5.6. For a C-character ψ of Z0 and z ∈ Z+ we have

τ(z)fψ,n(w∆) = fz·ψ,n(w∆)T (n(w∆) · z).

Proof. When z · ψ = ψ this is obtained from [AHHV17, IV.10 Proposition] by applying
the embedding Xψ ↪→ X. By loc. cit., the support of fz·ψ,n(w∆)T (n(w∆) · z) is Bw∆I

and its value at n(w∆)−1 is fz·ψ,n(w∆)(n(w∆)−1(n(w∆) · z−1)) = fz·ψ,n(w∆)(z−1n(w∆)−1) =
z−1fz·ψ,n(w∆)(n(w∆)−1) = z−1ez·ψ = τ(z)eψ. Therefore τ(z)fψ,n(w∆) = fz·ψ,n(w∆)T (n(w∆) ·
z). �

Lemmas 5.5 and 5.6 imply

τ(z)Iv(fv) = fz·ψV ,n(w∆)T (n(w∆) · z)T (n(w∆)n(w∆(V ))−1)T ∗(n(w∆(V ))).

We want to show that the right-hand side is equal to

Iv′(fv′)Eo∆(V ′)(zn(w∆(V )w∆(V ′))−1)T ∗(n(w∆(V )w∆(V ′))).

This is a problem entirely in (the image in XI of) the HC-module XIψV ′
which is solved

implicitly by [AHHV17, IV.19 Theorem] for a special choice of lifts in N 0 of w∆, w∆(V ), w∆(V ′)
and when ψV = ψV ′ ,∆(V ) = ∆(V ′) t {α}. Checking the homogeneity, the choice of the lifts
does not matter, but the hypothesis on the parameters of V and of V ′ forces us to analyze the
proof of [AHHV17, IV.19 Theorem]. The sets ∆(V ) and ∆(V ′) appear together only when
the proof uses [AHHV17, IV.19 Lemma]. But this lemma is valid when ∆(V ) is any subset
of ∆ containing ∆(V ′). With our notation this lemma is:

Lemma 5.7. For ∆(V ′) ⊂ J ⊂ ∆ we have
Iv′(fv′) = fz·ψV ,n(w∆)T (n(w∆)n(wJ)−1)T ∗(n(wJ)n(wJw∆(V ′))−1)T (n(wJw∆(V ′))).

We now consider the characters. The equality ψV = ψV ′ appears only when the proof uses
[AHHV17, IV.14 Theorem] for w = 1, but we can replace it by:

Lemma 5.8. For a C-character ψ of Z0, J ⊂ ∆ and z ∈ Z we have

fz·ψ,n(w∆)T (n(w∆)n(wJ)−1)EoJ (n(wJ) · z) =
{
τ(z)fψ,n(w∆)T (n(w∆)n(wJ)−1) if z ∈ Z+

0 if z 6∈ Z+.
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Proof. The formula of Lemma 5.6 multiplied on the right by T (n(w∆)n(wJ)−1) is
τ(z)fψ,n(w∆)T (n(w∆)n(wJ)−1) = fz·ψ,n(w∆)T (n(w∆) · z)T (n(w∆)n(wJ)−1).

Suppose z ∈ Z+. In the pro-p Iwahori Hecke algebra,
T (n(w∆) · z)T (n(w∆)n(wJ)−1) = T (n(w∆)n(wJ)−1)EoJ (n(wJ) · z).

This follows from [AHHV17, IV.15] applied to n(wJ) · z instead of λ and to n(w∆)n(wJ)−1

instead of nwJ and n(wJ)−1 instead of νwJ . We get the formula of the lemma for z ∈ Z+.
Suppose now z 6∈ Z+. As in [AHHV17, IV.15] we take z1 ∈ Z+ such that 〈α, vZ(z1)〉 > 0

for any α ∈ Φ+ and we multiply on the right by EoJ (n(wJ) · z) the formula that we just
established for z1 ∈ Z+. Using EoJ (n(wJ) · z1)EoJ (n(wJ) · z) = 0 we deduce

0 = τ(z1)fψ,n(w∆)T (n(w∆)n(wJ)−1)EoJ (n(wJ) · z),

and then we multiply on the left by the inverse τ(z−1
1 ) of τ(z1) in C[Z/Z(1)]. The result is

valid for any ψ and we replace ψ by z · ψ to get the lemma for z 6∈ Z+. �

By induction on `(w) for w ∈WJ,0, Lemma 5.8 is a particular case of a more general result,
as explained in [AHHV17, IV.16–18] (again we see that the choice of representatives n(w) for
w ∈W0 is irrelevant):

Lemma 5.9. For a C-character ψ of Z0, J ⊂ ∆, z ∈ Z and w ∈WJ,0, we have

fz·ψ,n(w∆)T (n(w∆)n(wJ)−1)T ∗(n(w))EoJ (n(w)−1n(wJ) · z)

=
{
τ(z)fψ,n(w∆)T (n(w∆)n(wJ)−1)T ∗(n(w)) if z ∈ Z+

0 if z 6∈ Z+.

Now applying the proof of [AHHV17, IV.19 Theorem] we get Proposition 5.3. (Note
that we still get `(zn(w∆(V )w∆(V ′))−1) = `(n(w∆(V )w∆(V ′)) · z) − `(n(w∆(V )w∆(V ′))), as
z ∈ Z+

G(V, V ′).) This ends the proof of Proposition 5.1.

5.4. Expansion of ϕz in the basis (Tx) of HG(V, V ′). We now give the expansion in
the basis (T V,V ′,ιz )z∈Z+

G(V,V ′)/Z0 of HG(V, V ′) (Proposition 2.5) of the function ϕz given in
Proposition 5.1 by its value on a generator fv of c-IndGK V :
(5.2) ϕz(fv) = fv′Eo∆(V ′)(zn(w∆(V )w∆(V ′))−1)T ∗(n(w∆(V )w∆(V ′))).

Recall that Z+
z (V, V ′) = Z+∩z

∏
α∈∆′(V ′) a

N
α is finite and contained in Z+

G(V, V ′) (Lemma 2.13).

Proposition 5.10. Let z ∈ Z+
G(V, V ′). The function ϕz ∈ HG(V, V ′) is equal to∑

x∈Z+
z (V,V ′)

T V,V
′,ι

x .

Clearly Propositions 5.1 and 5.10 imply Theorem 3.6.

Proof. Two elements ϕ1, ϕ2 ∈ HG(V, V ′) such that ϕ1(fv)|Z+ = ϕ2(fv)|Z+ are equal. This
follows from two properties:

(i) a basis of HG(V, V ′) is T V,V
′,ι

z′ for z′ running through a system of representatives of
Z+
G(V, V ′)/Z0. So ϕ1 =

∑
z′ a1(z′)T V,V

′,ι
z′ for some a1(z′) ∈ C.

(ii) ϕ1(fv)(z′) = a1(z′)v′ for z′ ∈ Z+
G(V, V ′) because of the lemma below.
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Lemma 5.11. For z′ ∈ Z+
G(V, V ′) the function T V,V

′,ι
z′ (fv) ∈ c-IndGK V ′ vanishes outside

Kz′K and is equal to v′ at z′.

Proof. For y ∈ G, the value of T V,V
′,ι

z′ (fv) at y,

T V,V
′,ι

z′ (fv)(y) =
∑

g∈Kz′K/K
T V,V

′,ι
z′ (g)(fv(g−1y))

is 0 if Kz′−1Ky ∩ K = ∅ (hence T V,V
′,ι

z′ (fv) vanishes outside Kz′K) and T V,V
′,ι

z′ (fv)(z′) =
T V,V

′,ι
z′ (z′)(fv(1)) = ιop(v) = v′. �

Therefore it is enough to prove that ϕz(fv)|Z+ =
∑
x∈Z+

z (V,V ′) T
V,V ′,ι
x (fv)|Z+ , or equivalently,

(5.3) ϕz(fv)(x) =
{
v′ x ∈ Z+

z (V, V ′),
0 x ∈ Z+ \ Z0Z+

z (V, V ′).

We now write J ′ = ∆(V ′) and J = ∆(V ). We prove (5.3) in two steps. In the first step we
prove (5.3) assuming two claims which are proved in the second step.
A) By the congruence modulo q of the Iwahori-Matsumoto expansion of EoJ′ (zn(wJwJ ′)−1)

(Propositions 4.23 and 4.30), we have

fv′EoJ′ (zn(wJwJ ′)−1) =
∑

x∈WJ′ ,x≤J′λ
(−1)`J′ (λ)−`J′ (x)ψ−1

V ′ (c
x̃,J ′

λ̃
) fv′T (x̃n(wJwJ ′)−1),

where λ̃ is the image of z in Λ+(1) and λ the image of z in Λ+. We used that fv′c = ψ−1
V ′ (c)fv′

for c ∈ Z[Zk], as fv′T (t) = t−1fv′ = ψV ′(t−1)fv′ for t ∈ Zk (5.1). We claim that

(5.4) fv′T (x̃n(wJwJ ′)−1)T ∗(n(wJwJ ′))|Z+ 6= 0 =⇒ x ∈ Λ+.

Now for x ∈ Λ+ we have x ≤J ′ λ if and only if x ∈ Λ+∩λ
∏
α∈J ′ λ

N
α (Proposition 4.3), and we

know the value of ψ−1
V ′ (c

x̃,J ′

λ̃
) (Theorem 4.39). Obviously ∆′ψV ′ = ∆′

ψ−1
V ′

and J ′∩∆′ψV ′ = ∆′(V ′)

hence x ∈ Λ+ ∩ λ
∏
α∈∆′(V ′) λ

N
α (Proposition 4.3) if ψ−1

V ′ (c
x̃,J ′

λ̃
) 6= 0. Together with (5.2) we

obtain

ϕz(fv)|Z+ =
∑

x̃∈Λ+(1)∩λ̃
∏
α∈∆′(V ′) a

N
α

fv′T (x̃n(wJwJ ′)−1)T ∗(n(wJwJ ′))|Z+ .

We claim also that

(5.5) fv′T (x̃n(wJwJ ′)−1)T ∗(n(wJwJ ′))|Z+ = fv′T (x̃n(wJwJ ′)−1)T (n(wJwJ ′))|Z+ .

Assuming the claim, the braid relations and `(x) = `(xwJ ′wJ) + `(wJwJ ′) (Lemma 4.29)
imply

ϕz(fv)|Z+ =
∑

x̃∈Λ+(1)∩λ̃
∏
α∈∆′(V ′) a

N
α

fv′T (x̃)|Z+ .

We finally compute fv′T (x̃)|Z+ .

Lemma 5.12. For z ∈ Z, the function fv′T (z) ∈ (c-IndGK V ′)I vanishes on Z+ if z 6∈ Z+,
and fv′T (z) is the function of support KzI with value v′ at z if z ∈ Z+.
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Proof. The map z 7→ KzI : Z → K\G/I factors to a bijective map Λ ∼−→ K\G/I. We have
KzI ∩ Z+ = zZ0 if z ∈ Z+ and KzI ∩ Z+ = ∅ if z ∈ Z \ Z+ and

(fv′T (z))(z) =
∑

x∈I\IzI
fv′(zx−1).

The support of fv′T (z) is contained in KzI hence fv′T (z) ∈ (c-IndGK V ′)I vanishes on Z+

if z 6∈ Z+. In the displayed formula fv′(zx−1) 6= 0 implies zx−1 ∈ K ∩ zIz−1I. Consider
the Iwahori decomposition I = U0

op(I ∩ B). If z ∈ Z+, we have U0
op ⊂ zU0

opz
−1 ⊂ Uop

and z(I ∩ B)z−1 ⊂ I ∩ B. By intersecting with K we get U0
op = K ∩ zU0

opz
−1. Hence

K ∩ zIz−1I = K ∩ zU0
opz
−1I = I, so (fv′T (z))(z) = fv′(1) = v′. �

B) We prove the two claims (5.4) and (5.5). There are weak braid relations in HC valid
for any pair of elements in W (1).

Lemma 5.13. For w1, w2 ∈ W (1) there exists w′2 ∈ W (1) with w′2 ≤ w2 and Tw1Tw2 ∈
C[Zk]Tw1w′2

.

Proof. This is done by induction on `(w2). When s̃ ∈ Saff(1) we have Tw1Ts̃ = Tw1s̃ if
w1 < w1s̃ and Tw1Ts̃ = Tw1s̃−1T 2

s̃ = Tw1s̃−1c(s̃)Ts̃ = (w1 · c(s̃))Tw1 if w1s̃ < w1. �

As an application, for w̃1, w̃2 ∈W (1) lifting w1, w2 ∈W , the triangular Iwahori-Matsumoto
expansion of T ∗w̃2 and the weak braid relations imply

Tw̃1(T ∗w̃2 − Tw̃2) ∈
∑

y∈W,y<w2

C[Zk]Tw̃1Tỹ ⊂
∑

y∈W,y<w2

C[Zk]Tw̃1ỹ,

where ỹ ∈ W (1) lifts y. We use this result as follows: fv′Tw̃1T
∗
w̃2 |Z+ = fv′Tw̃1Tw̃2 |Z+ if

fv′Tw̃1ỹ|Z+ = 0 for all y ∈W with y < w2. The two claims (5.4) and (5.5) follow from:

Lemma 5.14. Suppose w̃1 ∈ W (1) lifts w1 = xwJ ′wJ with x ∈ WJ ′ , x ≤J ′ λ, λ ∈ Λ+, and
ỹ ∈W (1) lifts y ∈WJ,0 with y ≤ wJwJ ′. Then fv′Tw̃1ỹ vanishes on Z+ except if x ∈ Λ+ and
y = wJwJ ′.

Proof. Let λx ∈ Λ and vx ∈WJ ′,0 such that x = λxvx. We have 〈γ, v(λx)〉 > 0 for γ ∈ Φ+
J \Φ

+
J ′

by the proof of Lemma 4.29(ii).
We have w1y = λxvxwJ ′wJy where vxwJ ′wJy ∈ WJ,0, the support of fv′Tw̃1ỹ is con-

tained in Kn(λx)n(vxwJ ′wJy)I = K(n(vxwJ ′wJy)−1 · n(λx))I and recalling the bijection
Λ → K\G/I, we have Z ∩ K(n(vxwJ ′wJy)−1 · n(λx))I = Z0(n(vxwJ ′wJy)−1 · n(λx)). We
have 〈(vxwJ ′wJy)−1(γ), v((vxwJ ′wJy)−1 · λx)〉 = 〈γ, v(λx)〉. If vxwJ ′wJy 6∈WJ ′,0 there exists
γ ∈ Φ+

J \ Φ+
J ′ with (vxwJ ′wJy)−1(γ) < 0, hence fv′Tw̃1ỹ vanishes on Z+. Hence we may

assume that vxwJ ′wJy ∈WJ ′,0.
We recall:

Lemma 5.15 ([Bou02, IV.1, Exercise 3]). Let J ⊂ ∆. Every coset wWJ,0 in W0 has a unique
representative d of minimal length. We have `(du) = `(d) + `(u) for all u ∈WJ,0. An element
d ∈W0 is the representative of minimal length in dWJ,0 if and only if d(J) ⊂ Φ+.

The element wJwJ ′ is the representative of minimal length of the coset wJWJ ′,0. Since
vxwJ ′wJy ∈WJ ′,0, we have y ∈ wJWJ ′,0, so y = wJwJ ′ , as y ≤ wJwJ ′ by assumption.

We deduce that fv′Tw̃1ỹ vanishes on Z+ if y 6= wJwJ ′ .
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Assume y = wJwJ ′ . Then x̃ = w̃1ỹ lifts x = λxvx. If fv′Tx̃ does not vanish on Z+, then by
above we have v−1

x ·λx ∈ Λ+. If v−1
x ·λx ∈ Λ+ then `(x) = `(vx(v−1

x ·λx)) = `(vx)+ `(v−1
x ·λx),

and by the braid relations fv′Tx̃ = fv′TṽxTv−1
x ·λx .

The element fv′ ∈ (c-IndGK V ′)I generates a subrepresentation of K isomorphic to V ′.
The parameter of the character of HC(K, I) acting on Cfv′ is (ψ−1

V ′ , J
′) (Lemma 4.11). By

(4.8), fv′Tṽx = 0 for vx ∈ WJ ′,0 − {1}. We deduce that fv′Tx̃ = 0, except if x ∈ Λ+ and
y = wJwJ ′ . �

This ends the proof of (5.3) hence of Proposition 5.10. �

6. A simple proof of the change of weight theorem for certain G

In this section, we give a simple proof of the change of weight theorem (Theorem 2.2) when
G is split. For GLn (and more generally for any split group, see §6.6) this gives a more
elementary proof than the one in [Her11a] and [Abe13], avoiding the Lusztig-Kato theorem.

Since G is split, Z is equal to S and vZ gives an isomorphism X∗(S) ' S/S0 = Λ, and
Bruhat-Tits theory gives a Chevalley group scheme G with generic fiber G and such that
G(O) = K is the special maximal compact open subgroup of G fixing x0 [Tit79, 3.4.2]. We
have G(k) = Gk, the root system Φ of (G,S) identifies canonically with the root system of
(Gk, Sk).

Lemma 6.1. Assume that G is F -split. For α ∈ ∆, we have Z ∩M ′α = α∨(F×), Z0 ∩M ′α =
α∨(O×), and Zk ∩M ′α,k = α∨(k×).

Proof. Note that Mder
α is a semisimple group of rank 1 and that M ′α ⊂Mder

α . Hence the first
two equalities are reduced to the case where G is semisimple of rank 1 and hence isomorphic
to SL2 or PGL2 [Spr09, Thm. 7.2.4]. In either case the first two equalities are easily verified
by hand, noting that Z ∼= Gm and so the parahoric Z0 is the maximal compact O× ⊂ F×.
For the third equality, the same proof as for the first one works, but now one works over k
instead of F . �

By the lemma, for a character ψ : Zk → C×, which is also regarded as a character of Z0 by
the quotient map Z0 � Zk, ψ is trivial on Zk ∩M ′α,k if and only if ψ is trivial on Z0 ∩M ′α.
Hence ∆(V ) = ∆′(V ) for any irreducible representation V of K.

In this section we prove Theorem 2.3. We will first focus on the case when the center of G
is a torus (i.e. smooth and connected) and the derived subgroup of G is simply connected. In
fact, just as in the first proof of Proposition 2.17 we prove a stronger version which we now
state. Fix α, V, V ′ as in Theorem 2.3.

Theorem 6.2. Suppose that G is a split group whose center is a torus and whose derived
subgroup is simply-connected. Let z ∈ Z+ such that 〈α, vZ(z)〉 > 0, i.e. z ∈ Z+

G(V, V ′). Then
there exist G-equivariant homomorphisms ϕ : c-IndGK V → c-IndGK V ′ and ϕ′ : c-IndGK V ′ →
c-IndGK V satisfying

SG(ϕ) = τ
V ′
U0 ,VU0

z , SG(ϕ′) = τ
VU0 ,V ′

U0
z − τ

VU0 ,V ′
U0

zaα .

If moreover 〈β, vZ(z)〉 = 0 for β ∈ ∆(V ′), then ϕ = T V
′,V

z and ϕ′ = T V,V
′

z .

Remark 6.3. Recall that we fixed an isomorphism of vector spaces ι : VU0 ' V ′U0 (2.8). This
is also an isomorphism of representations of Z0 because ψV = ψV ′ . We have isomorphisms
HZ(VU0 , V ′U0) ' HZ(V ′U0 , VU0) ' HZ(V ′U0 , V ′U0) = HZ(V ′U0) ' HZ(VU0 , VU0) = HZ(VU0) and
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for x ∈ Z, τVU0
x , τ

V ′
U0

x correspond to each other under the isomorphism HZ(VU0) ' HZ(V ′U0),
and we will just denote them by τx. We remark that since Z = S is commutative, HG(VU0)
is commutative.

The basic idea of the proof is the following. We construct many G-representations π that
contain the weight V but not the weight V ′. This implies that χ⊗ c-IndGK V 6' χ⊗ c-IndGK V ′
for any homomorphism χ : HG(V ) ' HG(V ′) → C that occurs in HomK(V, π). This in
turn implies that χ(T V,V ′z ∗ T V ′,Vz ) = 0 for such χ. When z is as in Theorem 6.2 and chosen
minimally, i.e. 〈α, vZ(z)〉 = 1 and 〈β, vZ(z)〉 = 0 for β ∈ ∆ \ {α}, then it turns out that
SG(T V,V ′z ∗T V ′,Vz ) is so constrained that it is forced to be equal to τz2 − τz2aα . By Lemma 3.1
we have SG(T V ′,Vz ) = τ

V ′
U0 ,VU0

z , and we deduce that SG(T V,V ′z ) = τ
VU0 ,V ′

U0
z − τ

VU0 ,V ′
U0

zaα . Using
properties of SG it is then not difficult to deduce the theorem.

6.1. The case of GL2. To warm up, in this section we illustrate the proof strategy by
showing that SG(T V,V ′z ∗ T V ′,Vz ) = τz2 − τz2aα when G = GL2, V is the trivial representation
1K of K, V ′ is the Steinberg representation StK of K, and z = diag($, 1) where $ is a
uniformizer. We note that τα = τdiag($−1,$), so τz2aα = τdiag($,$). The Satake homomorphism
SG satisfies (see [Her11a, proof of Prop. 6.3] or Lemma 2.9):

• SG(T V ′,Vz )(z′) 6= 0 implies vZ(z′) ∈ vZ(z) + R≤0∆∨.
• The coefficient of τ

V ′
U0 ,VU0

z in SG(T V ′,Vz ) is 1.

This also holds after switching V and V ′. This means that SG(T V ′,Vz ) ∈ τ
V ′
U0 ,VU0

z +
∑
n<0Cτ

V ′
U0 ,VU0

diag($n+1,$−n),
similarly after switching V and V ′, and SG(T V,V ′z )◦SG(T V ′,Vz ) ∈ τz2 +

∑
n<0Cτdiag($n+2,$−n).

The support of SG(f) ∈ HZ(1Z0) is contained in Z+ for any f ∈ HG(1K). For n < 0, if
diag($n+2, $−n) ∈ Z+ then n = −1, so

SG(T V,V ′z ◦ T V ′,Vz ) = τ2
z + cτdiag($,$)

for some c ∈ C. Let χ1 : HZ(1Z0)→ C be the character such that χ1(τz) = χ1(τdiag($,$)) = 1.
We also denote by χ1 the character χ1 ◦SG of HG(1K) ' HG(StK). The algebra HG(1K) acts
on the line HomG(c-IndGK 1K , 1G) by the character χ1 because the embedding 1G ↪→ IndGB 1Z
implies

HomK(1K , 1G) ↪→ HomK(1K , IndGB 1Z) = HomK(1K , IndKB0 1Z) ' HomZ0(1K |Z0 , 1Z |Z0),

and the isomorphism HomK(1K , 1G) → HomZ0(1K |Z0 , 1Z |Z0) is HG(1K)-equivariant via SG
[Her11a, Lemma 2.14]. Hence 1G is a quotient of χ1 ⊗ c-IndGK 1K and

χ1 ⊗ c-IndGK 1K 6' χ1 ⊗ c-IndGK StK .

(If these are isomorphic to each other, then we have a non-zero homomorphism c-IndGK StK →
χ1 ⊗ c-IndGK StK ' χ1 ⊗ c-IndGK 1K → 1G which gives StK → 1G|K by Frobenius reciprocity.
This is a contradiction.) For a character χ : HZ(1Z0)→ C such that χ(τ2

z + cτdiag($,$)) 6= 0,
we have χ⊗ c-IndGK V ' χ⊗ c-IndGK V ′. Therefore χ1(τ2

z + cτdiag($,$)) = 0, hence c = −1 as
desired.
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6.2. Reducibility and change of weight. Until the end of §6.5, fix G, α, V, V ′ as in
Theorem 6.2.

Let χ : HZ(VU0) → C be a character. Since Z0 ⊂ Z is normal, c-IndZZ0 VU0 is a free
HZ(VU0)-module of rank 1. The character χ ⊗HZ(VU0 ) c-IndZZ0 VU0 of Z is z 7→ χ(τz−1)
because τz−1 = z as endomorphisms of c-IndZZ0 VU0 ; its restriction to Z0 is ψV because τz−1 =
ψV (z)τ1 = ψV (z) in HZ(VU0) for z ∈ Z0. Since ψV is trivial on Z0 ∩M ′α, τα is well-defined.

Assume that χ(τα) = 1. The character z 7→ χ(τz−1) of Z is trivial on Z ∩M ′α = α∨(F×),
hence we can extend it to a character ofMα that is trivial on U∩Mα ([Abe13, Proposition 3.3],
[AHHV17, II.7 Corollary 1]). We denote this extended character by σχ.

Lemma 6.4 ([AHHV17, III.18 Proposition]). Assume that χ : HZ(VU0)→ C satisfies χ(τα) =
1. Then HomK(V, IndGPα σχ) 6= 0 and HomK(V ′, IndGPα σχ) = 0.

Proof. By Frobenius reciprocity, the Iwasawa decomposition G = PαK and using P 0
α = M0

αN
0
α

we have
HomK(V1, IndGPα σχ) = HomK(V1, IndKP 0

α
σχ) ' HomM0

α
((V1)N0

α
, σχ)

for any irreducible representation V1 of K. The parameter of VN0
α
is (ψV , {α}), the parameter

of V ′N0
α
is (ψV ,∅) [AHHV17, III.10 Lemma]. On the other hand, the parameter of the character

σχ|M0
α
is (ψV , {α}) [AHHV17, III.10 Remark]. �

Lemma 6.5. Assume that χ : HZ(VU0)→ C satisfies χ(τα) = 1. Then

χ⊗HG(V ) c-IndGK V 6' χ⊗HG(V ) c-IndGK V ′.

Proof. By definition of σχ we have an Mα-equivariant map σχ ↪→ IndMα
B∩Mα

(χ ⊗HZ(VU0 )
c-IndZZ0 VU0). By exactness of parabolic induction we get

HomK(V, IndGPα σχ) ↪→ HomK(V, IndGB(χ⊗HZ(VU0 ) c-IndZZ0 VU0))

' HomZ0(VU0 , χ⊗HZ(VU0 ) c-IndZZ0 VU0),

and this map is HG(V )-linear with respect to SG. The latter space is one-dimensional and
the Hecke algebra HZ(VU0) acts on this line by the character χ. Hence a non-trivial homo-
morphism c-IndGK V → IndGPα σχ (which exists by Lemma 6.4) factors through c-IndGK V �
χ⊗HG(V ) c-IndGK V . If χ⊗HG(V ) c-IndGK V were isomorphic to χ⊗HG(V ) c-IndGK V ′, we would
have a non-zero homomorphism c-IndGK V ′ � χ ⊗HG(V ) c-IndGK V ′ → IndGPα σχ contradicting
HomK(V ′, IndGPα σχ) = 0 (Lemma 6.4). �

6.3. Proof of Theorem 6.2 (minuscule case). The hypothesis that the center of G is
a torus is equivalent to ZΦ being a direct summand of X∗(S), for example by [Mil, (154)].
Hence, for each α ∈ ∆ we have a fundamental coweight µα ∈ X∗(S). Namely we have
〈α, µα〉 = 1 and 〈β, µα〉 = 0 for any β ∈ ∆ \ {α}. In this section we consider z ∈ Z such that
vZ(z) = µα.

The element τα−1 ∈ HZ(VU0) is irreducible, since the derived subgroup of G is simply con-
nected [Abe13, Remark 2.5 and Lemma 4.17] (alternatively, one can argue as in Lemma A.12).
Put f = SG(T V,V ′z ∗ T V ′,Vz ) in HZ(VU0). Lemma 6.5 implies that χ(f) = 0 for any character
χ : HZ(VU0) → C such that χ(τα) = 1. By the Nullstellensatz, we see that f is contained in
the radical of the ideal (τα − 1), hence as τα − 1 is irreducible and HZ(VU0) is a UFD, we
deduce that f = f ′(1− τα) for some f ′ ∈ HZ(VU0). We will prove that f ′ = τz2 .
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Consider any z′ ∈ supp f ′. We claim that both z′ and z′aα lie in Z+ and that vZ(z′) ∈
2vZ(z) + R≤0∆∨. To see this, pick r, s ≥ 0 maximal such that z′aiα ∈ supp f ′ for −r ≤ i ≤ s.
Then z′a−rα , z′as+1

α ∈ supp f , so they both lie in Z+. By convexity of the dominant region
we deduce that z′, z′aα ∈ Z+. Similarly, as recalled in §6.1, we know that vZ(z′aiα) ∈
2vZ(z) + R≤0∆∨ for i ∈ {−r, s+ 1}, hence by convexity we have vZ(z′) ∈ 2vZ(z) + R≤0∆∨.

There exist nβ ∈ R≥0 for β ∈ ∆ such that vZ(z′) = 2µα −
∑
β∈∆ nββ

∨. Recalling
vZ(aα) = −α∨, we have vZ(z′aα) = 2µα − α∨ −

∑
β∈∆ nββ

∨. Let γ ∈ ∆. If γ 6= α,
then

∑
β∈∆ nβ〈γ, β∨〉 = −〈γ, vZ(z′)〉 ≤ 0. If γ = α, then

∑
β∈∆ nβ〈γ, β∨〉 = 2 − 〈α, α∨〉 −

〈α, vZ(z′aα)〉 = −〈α, vZ(z′aα)〉 ≤ 0. Hence
∑
β∈∆ nβ〈γ, β∨〉 ≤ 0 for any γ ∈ ∆. Since

(dγ〈γ, β∨〉)β,γ∈∆ is positive definite for some dγ > 0, we have nβ = 0 for any β ∈ ∆. We
deduce that z′ ∈ z2Z0 (as Z0 is the kernel of vZ). So f ′ ∈ C×τz2 . Since the coefficient of τz2

in f is 1, we get f = SG(T V,V ′z ∗ T V ′,Vz ) = τz2 − τz2aα .
By Lemma 3.1 we have SG(T V ′,Vz ) = τ

V ′
U0 ,VU0

z , hence we deduce that SG(T V,V ′z ) = τ
VU0 ,V ′

U0
z −

τ
VU0 ,V ′

U0
zaα . This completes the proof of Theorem 6.2 when vZ(z) = µα.

6.4. Proof of Theorem 6.2 (general case). We consider now z ∈ Z+ such that
〈α, vZ(z)〉 > 0. Take z0 ∈ Z such that vZ(z0) = µα. Then zz−1

0 ∈ Z+ and from (2.2)
we deduce the existence of θ ∈ HG(V ′) such that SG(θ) = τzz−1

0
. Letting ϕ = θ ∗ T V ′,Vz0 and

ϕ′ = T V,V
′

z0 ∗ θ, we see from §6.3 that SG(ϕ) = τz and SG(ϕ′) = τz − τzaα .
In the special case that 〈β, vZ(z)〉 = 0 for β ∈ ∆(V ′), we have ∆(V ′) ⊂ ∆z ⊂ ∆zz−1

0
, so

Lemma 3.1 shows that θ = T V
′,V ′

zz−1
0

. From Lemma 3.2 we then deduce that ϕ = T V
′,V

z and

ϕ′ = T V,V
′

z .

6.5. A corollary.

Corollary 6.6. Suppose that V is an irreducible representation of K and that z ∈ Z+ satisfies
〈α, vZ(z)〉 6= 1 for all α ∈ ∆(V ). Then the image of Tz ∈ HG(V ) under the Satake transform
SG is given by

SG(Tz) = τz
∏

α∈∆(V )\∆z

(1− τα).

Proof. We induct on #(∆(V ) \ ∆z). If ∆(V ) ⊂ ∆z, then SG(Tz) = τz by Lemma 3.1 and
we are done. Otherwise we choose α ∈ ∆(V ) \∆z and take z0 such that vZ(z0) = µα. Then
zz−2

0 ∈ Z+, as 〈α, vZ(z)〉 ≥ 2 by assumption. Define V ′ by the parameter (ψV ,∆(V ) \ {α}).
Applying Lemma 3.2 twice (using that ∆(V ′) ⊂ ∆z0) we get that T V,Vz = T V,V

′
z0 ∗T V

′,V ′

zz−2
0
∗T V ′,Vz0 .

As ∆(V ′) \ ∆zz−2
0

is a proper subset of ∆(V ) \ ∆z we get by induction that SG(T V
′,V ′

zz−2
0

) =

τzz−2
0

∏
∆(V ′)\∆z

(1 − τβ). On the other hand, by Theorem 6.2 we have SG(T V ′,Vz0 ) = τz0 and
SG(T V,V ′z0 ) = τz0(1− τα). By combining these formulas we get the corollary. �

Remark 6.7. It is not hard to deduce the corollary from Theorem 2.12, noting that z
∏
β∈X aβ ∈

Z+ for any subset X ⊂ ∆(V ) \∆z.

6.6. The general split case. We now use two reduction steps to extend the above proof
of Theorem 6.2 to the case of general split groups G.



48 N. ABE, F. HERZIG, AND M.-F. VIGNÉRAS

(1) We remove first the assumption on the center. Suppose that G is split with simply-
connected derived subgroup.

Let G1 be the quotient of G × Z by the normal subgroup {(z, z−1) : z ∈ ZG}, where ZG
is the center of G, as in [DL76, 5.18]. Then the natural map G→ G1 is a closed embedding
that induces an isomorphism on derived subgroups. The natural map Z→ G1 to the second
coordinate induces an isomorphism Z ∼−→ ZG1 . In particular, G1 is as in Theorem 6.2. It
follows that Z1 := Z · ZG1 = (Z × Z)/{(z, z−1) : z ∈ ZG} is a minimal Levi (i.e. maximal
F -torus) of G1. Let K1 be the hyperspecial parahoric subgroup of G1 fixing the special point
x0. Then we have K = K1 ∩G, see Lemma A.15. We have (as in [Abe13, §3.2]):

Lemma 6.8. The following hold:
(i) The restriction to K of any irreducible representation of K1 is irreducible. Con-

versely, any irreducible representation V of K extends to K1.
(ii) Let V1, V

′
1 be irreducible representations of K1 and V, V ′ their restrictions to K. Then

the restriction map ϕ1 7→ ϕ1|G gives an isomorphism between {ϕ1 ∈ HG1(V1, V
′

1) |
suppϕ1 ⊂ K1ZK1} and HG(V, V ′). We have SG(ϕ1|G) = SG1(ϕ1)|Z for any ϕ1 ∈
HG1(V1, V

′
1) with suppϕ1 ⊂ K1ZK1. Moreover, we have T V

′
1 ,V1

z |G = T V
′,V

z for any
z ∈ Z+

G(V, V ′).

Given α, V , V ′, z ∈ Z+
G(V, V ′) as in Theorem 6.2 we choose extensions V1, V

′
1 of V, V ′ to

K1-representations and let ϕ1, ϕ′1 denote the Hecke operators provided by Theorem 6.2 for
G1, V1, V ′1 , z. Then, as the supports of τz, τz − τzaα are contained in Z(Z1 ∩K1), we deduce
from the lemma that the supports of ϕ1, ϕ′1 are contained in K1ZK1. Hence we can take
ϕ = ϕ1|G, ϕ′ = ϕ′1|G. Similarly, Corollary 6.6 continues to hold for G.
(2) To remove the assumption on the derived subgroup, we use a z-extension. (See [CT08,
§3] for more on z-extensions.) Suppose that G is any split reductive group. Choose a split
z-extension r : G̃→ G, i.e. an F -split group G̃ with simply connected derived subgroup which
is a central extension of G and the kernel of r is an (F -split) torus. In particular, part (1)
above applies to G̃. Set Z̃ = r−1(Z); it is a maximal torus of G̃. Let K̃ ⊂ G̃ be the special
(maximal compact open) parahoric subgroup fixing x0; the map K̃ → K is surjective [Abe13,
Lemma 2.1], [HV15, §3.5].

Lemma 6.9. Let V1, V2 be irreducible representations of K and denote by Ṽ1, Ṽ2 their in-
flations to K̃. Then there exist algebra homomorphisms ΘG : H

G̃
(Ṽ1, Ṽ2) → HG(V1, V2) and

ΘZ : H
Z̃

((Ṽ1)U0 , (Ṽ2)U0)→ HZ((V1)U0 , (V2)U0) such that

(i) SG ◦ΘG = ΘZ ◦ SG̃;
(ii) for z̃ ∈ Z̃+, ΘG(T Ṽ2,Ṽ1

z̃
) = T V2,V1

z and ΘZ(τ (Ṽ2)U0 ,(Ṽ1)U0

z̃
) = τ

(V2)U0 ,(V1)U0
z , where

z = r(z̃).

To construct the algebra homomorphism ΘG, we identify the category of representations
of G with the category of representations of G̃ trivial on the kernel of the surjective ho-
momorphism r : G̃ → G, and we note that Frobenius reciprocity (applied twice) induces
a natural isomorphism HomG(c-IndGK V, σ) ' Hom

G̃
(c-IndG̃

K̃
Ṽ , σ) for representations σ of G

(for any irreducible K-representation V with inflation Ṽ ). In particular we get a G̃-linear
map jV : c-IndG̃

K̃
Ṽ → c-IndGK V corresponding to the identity map. By Yoneda’s lemma
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the above adjunction gives for any ϕ ∈ H
G̃

(Ṽ1, Ṽ2) a unique ΘG(ϕ) ∈ HG(V1, V2) such that
jV2 ◦ϕ = ΘG(ϕ)◦ jV1 . We leave the details of the end of the proof of the lemma to the reader.

The lemma shows that Theorem 6.2 holds even for G since it holds for G̃: as r : Z̃ → Z
is surjective, we can choose z̃ with r(z̃) = z. Suppose ϕ̃, ϕ̃′ are the Hecke operators provided
by Theorem 6.2 for G̃, Ṽ , Ṽ ′, z̃. Then we can take ϕ = ΘG(ϕ̃), ϕ′ = ΘG(ϕ̃′). Similarly,
Corollary 6.6 continues to hold for G.
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Appendix A. A simple proof of the change of weight theorem for quasi-split
groups

N. Abe and F. Herzig

The purpose of the appendix is to show that the simple proof of §6 extends to quasi-split
groups.

Suppose that G is a quasi-split connected reductive group over F . As in §2.4, recall that if
H is any connected reductive F -group, then H ′ denotes the subgroup of H generated by the
unipotent radicals of all minimal parabolics. By Kneser–Tits (see e.g. [AHHV17, II.3 Prop.])
we know that H ′ = Hder if Hder is simply connected with no anisotropic factors. (Note that
the second condition is automatic if H is quasi-split.) Similarly we define H ′ for H connected
reductive over k and know that H ′ = Hder if Hder is simply connected.

We also recall that all special parahoric subgroups K in this paper are associated to special
points in the apartment of S. We let red : K � Gk denote the natural reduction map whose
kernel is the pro-p radical (i.e. largest normal pro-p subgroup) of K.

Theorem A.1. There exists a special parahoric subgroup K of G such that the following
holds.

Suppose that V , V ′ are irreducible representations of K and α ∈ ∆ such that ψV = ψV ′ and
∆(V ) = ∆(V ′)t{α}, and let z ∈ Z+ such that 〈α, vZ(z)〉 > 0. Then there exist G-equivariant
homomorphisms ϕ : c-IndGK V → c-IndGK V ′ and ϕ′ : c-IndGK V ′ → c-IndGK V satisfying

SG(ϕ) = τz, SG(ϕ′) = τz − τzaα .

If moreover 〈β, vZ(z)〉 = 0 for β ∈ ∆(V ′), then ϕ = T V
′,V

z and ϕ′ = T V,V
′

z .
Any choice of K works, provided the adjoint quotient Gad of G does not have a simple

factor isomorphic to ResE/F PU(m+ 1,m) for some E/F finite separable and m ≥ 1.

Remark A.2. This is enough to establish Theorems 1–3 of [AHHV17] for quasi-split G, avoid-
ing [AHHV17, §IV], since the proofs given there only require one choice of K.
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Remark A.3. There exist quasi-split groups G and special parahoric subgroups K for which
the conclusion of Theorem A.1 fails. We claim that it suffices to show that ψV (Z0 ∩M ′α) 6= 1
for some G, K, V , α as in Theorem A.1. Under this condition, Theorem 2.12 tells us that
the image SG(HG(V ′, V )) has C-basis τz, where z runs through a system of representatives of
Z+
G(V ′, V )/Z0 in Z+

G(V ′, V ). If Theorem A.1 were true, then for z ∈ Z+
G(V ′, V ) the element

τz − τzaα would lie in SG(HG(V ′, V )), so zaα ∈ Z+
G(V ′, V ). However, for large n we have

zanα 6∈ Z+.
For example, if G = SU(2, 1) defined by a ramified separable quadratic extension of F ,

then we can choose K such that Gk
∼= PGL2 and if #k is odd, then red(Z0 ∩M ′α) = Zk

strictly contains Zk ∩M ′α,k (where ∆ = {α}). Or, suppose that G = SU(2, 1) defined by
the unramified separable quadratic extension. Then for any non-hyperspecial K we have
Gk
∼= U(1, 1), and then red(Z0 ∩M ′α) = Zk strictly contains Zk ∩M ′α,k (where ∆ = {α}). In

either case we can therefore choose V such that ψV (Z0 ∩M ′α) 6= 1.

A.1. On special parahoric subgroups.

Proposition A.4. There exists a special parahoric subgroup K of G such that for any α ∈ ∆
the image of M ′α ∩K in Gk is equal to M ′α,k. Any choice of K works, provided the adjoint
group Gad does not have a simple factor isomorphic to ResE/F PU(m+ 1,m) for some E/F
finite separable and m ≥ 1.

Proof. Step 1: We show that for any quasi-split G such that Gder simply connected we can
choose a special parahoric subgroup K such that red(G′ ∩K) = G′k.

Since G, and hence Mα, have simply-connected derived subgroups and G is quasi-split, we
know that G′ = Gder and M ′α = Mder

α . Note that the pro-p radical of G′ ∩K = Gder ∩K is
normal in K and hence contained in the pro-p radical of K. Hence we obtain a commutative
diagram with injective horizontal arrows as follows:

Gder ∩K �
� //

����

K

����
(Gder)k �

� // Gk

Note that the bottom map induces an isomorphism (Gder)′k
∼−→ G′k (since U and Uop are

contained in Gder). It thus suffices to show that the inclusion (Gder)′k ⊂ (Gder)k is an equality,
and hence it’s enough to show that (Gder)k is semisimple and simply connected (for a suitable
choice of K).

Note in the following that our choice of special K is given by a subset X ⊂ ∆loc of the
relative local Dynkin diagram of G [Tit79, 1.11], or equivalently of Gder, consisting of one
special vertex in each component of ∆loc. (We write ∆loc, ∆1,loc instead of ∆, ∆1 in [Tit79]
in order to avoid confusion.)

We first determine for which K we have that (Gder)k is semisimple. The absolute rank of
(Gder)k is the relative rank of Gder over the maximal unramified extension, i.e., it’s |∆1,loc|
minus the number of components of ∆1,loc. On the other hand, the absolute semisimple
rank of (Gder)k equals the number of absolute simple roots of (Gder)k, i.e., the cardinality of
∆1,loc − ∪v∈XO(v) in the notation of Tits, by [Tit79, 3.5.2]. It thus suffices to show that for
any v ∈ X, O(v) contains precisely one point of each component of ∆1,loc (it always contains
at least one).
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Looking at the tables in [Tit79] and keeping in mind the reduction steps to the absolutely
almost simple case in [Tit79, 1.12], we see that any choice of X works, as long as it does not
contain any non-hyperspecial vertices in type 2A′2m (in which case we can take the hyperspecial
ones). In other words, we can always choose a special parahoric K such that (Gder)k is
semisimple, and any K works in case the adjoint group Gad does not have a simple factor
isomorphic to ResE/F H, where H ∼= PU(m+ 1,m) is unramified and E/F is finite separable.

Next we recall from [Tit79, §3.5] that, since Gder is semisimple and simply connected, the
residual group (Gder)k has simply connected derived subgroup, provided we let K correspond
to a subset X satisfying the condition in the last sentence of [Tit79, §3.5], i.e. ∪v∈XO(v)
contains a “good special vertex” out of each connected component of ∆1,loc. Note that by
Tits’ tables this is always possible (in fact even if G isn’t quasi-split). Now note from Tits’
tables that when G is quasi-split, his condition on X is always satisfied, except when Gad
has a factor of type 2A

(1)
2m,m and the special vertex at the long end is chosen. (In other words,

Gad has a simple factor isomorphic to ResE/F H, where H ∼= PU(m + 1,m) is ramified and
E/F is finite separable.) In this case we choose the special vertex at the other end.

By combining the above, we see that we can always choose a special parahoric K such that
(Gder)k is semisimple simply connected (and hence red(G′ ∩K) = G′k), and any K works in
case the adjoint group Gad does not have a simple factor isomorphic to ResE/F PU(m+ 1,m)
and E/F is finite separable (or equivalently when the root system Φ is reduced).

Step 2: We prove the proposition in the case where Gder simply connected.
From Step 1 we know that red(M ′α ∩K) = M ′α for α ∈ ∆, provided Mα,ad isn’t isomorphic

to ResE/F PU(2, 1) for some E/F . By considering indices of quasi-split groups, for example
in [Tit66], it follows that there is at most one exceptional α in each component of ∆, namely
the exceptional α are precisely the multipliable simple roots in components of ∆ of type BCr.

Suppose first that Gder is almost simple, and suppose that there is an exceptional α ∈ ∆,
i.e. Mα,ad ∼= ResE/F PU(2, 1) for some E/F . Then the choice of a special point for Mα coming
from Step 1 corresponds to a choice of α-wall Hα in the reduced building of G. (By α-wall
we just mean an affine hyperplane parallel to ker(α).) Now choose arbitrary β-walls Hβ for
β ∈ ∆ − {α}. Then the special parahoric subgroup defined by the special point ∩β∈∆Hβ

works for this proposition.
In general the reduced apartment of G (for S) is a product of reduced apartments for all

the almost simple factors of Gder, and we obtain a desired special point by taking a product
of special points that work for the almost simple factors (previous paragraph).

Step 3: We deduce the proposition in general.
Suppose that G is any quasi-split group. Pick a z-extension π : G̃ → G of G. Then

G̃ and G have the same reduced building, and by Step 1 above we can choose a special
point x corresponding to a special parahoric K̃ of G̃ such that red(G̃′ ∩ K̃) = G̃′k. We will
show that red(G′ ∩ K) = G′k. The argument showing that red(M̃ ′α ∩ K̃) = M̃ ′α,k implies
red(M ′α ∩K) = M ′α,k is completely analogous.

We have π(G̃′) = G′. If K denotes the special parahoric of G corresponding to x, then
we also have π(K̃) = K (see part (d) of the proof of [HR08, Proposition 3]). We claim that
π(G̃′∩K̃) = G′∩K. Suppose that g ∈ G′∩K and pick g̃ ∈ G̃′ such that π(g̃) = g. Then g̃ fixes
the special point x and it is in the kernel of the Kottwitz homomorphism (since G̃′ is contained
in that kernel). Hence g̃ ∈ K̃, proving the claim. Similarly we see that π(Ũ ∩ K̃) = U ∩K
and π(Ũop ∩ K̃) = Uop ∩K.
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Now note that the image under π of the pro-p radical of K̃ is contained in the pro-p radical
of K. Hence we get a commutative diagram

K̃
π // //

red ����

K

red
����

G̃k
π // // Gk

and by the previous paragraph we see that π(G̃′k) = G′k. It follows that red(G′ ∩ K) =
red(π(G̃′ ∩ K̃)) = π(red(G̃′ ∩ K̃)) = π(G̃′k) = G′k. �

Remark A.5. Surely the map (Gder)k → Gk in Step 1 of the proof arises from a closed
immersion (Gder)k → Gk of algebraic groups, but we do not know a reference.
Corollary A.6. For any K for which Proposition A.4 holds, we have that red(Z0 ∩M ′α) =
Zk ∩M ′α,k for any α ∈ ∆.

Proof. Choose K as in Proposition A.4. Let K(1) := ker(K → Gk). Then Z0K(1) =
red−1(Zk) and we deduce by the proposition that Zk ∩M ′α,k = red(Z0K(1)∩M ′α) = red(Z0∩
M ′α), noting that we have an Iwahori decompositionMα∩K(1) = (Z∩K(1))(Uα∩K(1))(U−α∩
K(1)) and that Uα, U−α are contained in M ′α. �

A.2. Setup for the proof of Theorem A.1. In Sections A.2–A.4 we will assume that Gder

is simply connected and G/Gder is coflasque. In Section A.5 we will reduce the general case
to that one by using a suitable z-extension.

We recall that an F -torus T is said to be coflasque if we have H1(F ′, X∗(T)) = 0 for all
finite separable extensions F ′/F [CT08, §0.8]. Note that any induced torus is coflasque. We
remark that if T is coflasque, then H1(F ′′, X∗(T)) = 0 for any separable algebraic extension
F ′′/F (because by inflation-restriction it equals H1(F ′′ ∩ F (T), X∗(T)), where F (T) is the
splitting field of T).

We now observe that our assumptions on G imply that Z is a coflasque torus since (i)
Z ∩Gder is an induced torus because Gder is simply connected and G is quasi-split, and (ii)
any extension of a coflasque torus by an induced torus is split (by Shapiro’s lemma).

Let ΓF = Gal(F sep/F ) with inertia subgroup IF and σ a topological generator of ΓF /IF .
Let L denote the fixed field of IF , i.e. the maximal unramified extension of F . Let Φabs (resp.
∆abs) denote the set of absolute (resp. absolute simple) roots.
Lemma A.7. Under the above assumptions, we have:

(i) the group X∗(Z)IF is torsion-free;
(ii) the group Λ = Z/Z0 is a finite free Z-module;
(iii) any special parahoric K of G is maximal compact.

Proof. We first show that if Γ is a profinite group acting smoothly on a finite free Z-module X,
then the finite groups H1(Γ, X) and HomΓ(X,Z)tor are dual. By inflation-restriction, as X is
torsion-free, we reduce to the case where Γ is finite (replacing Γ with the finite quotient that
acts faithfully on X). As H1(Γ, X) = Ĥ1(Γ, X) and HomΓ(X,Z)tor = Ĥ−1(Γ,Hom(X,Z)),
we conclude by [NSW00, Prop. 3.1.2].

For our coflasque torus Z we conclude that (X∗(Z)IF )tor = 0, as it is dual toH1(IF , X∗(Z)).
Hence Λ ∼= X∗(Z)σIF [HR10, Cor. 11.1.2] is a finite free Z-module. This implies that any K is
maximal compact [HR10, Prop. 11.1.4]. �
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By [Kot97, §7.2] we have a σ-equivariant commutative diagram

(A.1)

Z(L) wZ // //

vZ ''

X∗(Z)IF
qZ
��

Hom(X∗(Z)IF ,Z),

where qZ([λ])(µ) = 〈λ, µ〉 and vZ(z)(µ) = ordF (µ(z)) (where the valuation ordF is normalized
so that ordF (F×) = Z). By Lemma A.7(i) and [Kot97, §7.2], qZ is an isomorphism. Since
the composite map j : X∗(Z)IF ↪→ X∗(Z) � X∗(Z)IF becomes an isomorphism after ⊗Q,
we get a σ-equivariant isomorphism (qZ ◦ j)⊗ R : (X∗(Z)⊗ R)IF ∼−→ Hom(X∗(Z)IF ,R). Let
ω : Hom(X∗(Z)IF ,Z) ↪→ (X∗(Z) ⊗ R)IF denote the restriction of the inverse of (qZ ◦ j) ⊗ R
to the lattice Hom(X∗(Z)IF ,Z).

By taking σ-invariants in diagram (A.1) composed with ω we obtain

Z
wZ // //

vZ
%%

X∗(Z)σIF� _
qZ
��

(X∗(Z)⊗ R)ΓF = X∗(S)⊗ R,

where wZ is the Kottwitz homomorphism and vZ is as in §2.1. Explicitly, for λ ∈ X∗(Z),

(A.2) (ω ◦ qZ)([λ]) = 1
#(IF · λ)

∑
λ′∈IF ·λ

λ′ ∈ (X∗(Z)⊗ R)IF .

A root α ∈ Φ determines a finite separable extension Fα/F : it is the fixed field of the
stabilizer of any lift α̃ ∈ Φabs. (All lifts are ΓF -conjugate, so the choice doesn’t matter. Cf.
[BT84, 4.1.3].) Let εα = e(Fα/F ) denote the ramification degree.

Lemma A.8. The image of Z ∩ M ′α in Λ is a direct summand. Its image under vZ in
X∗(S)⊗R is identified with Z · 1

εα
α∨0 , where α0 is the greatest multiple of α that is contained

in Φ.

Proof. Note thatX∗(Z∩Mder
α ) is a permutation module (a basis is given by all absolute simple

coroots that restrict to α), i.e. Z∩Mder
α is an induced torus. Similarly, (Z∩Gder)/(Z∩Mder

α )
and Z ∩Gder are induced tori. Therefore, as Z/(Z ∩Gder) is coflasque by assumption, we
deduce that Z/(Z ∩Mder

α ) is coflasque and hence that the sequence 1 → Z ∩Mder
α → Z →

Z/(Z ∩Mder
α )→ 1 is split exact. The natural map j : Z ∩Mder

α → Z is compatible with the
induced map j∗ : X∗(Z ∩Mder

α )σIF → X∗(Z)σIF with respect to the functorial Kottwitz maps
wZ∩Mder

α
, wZ . The map j∗ is clearly a split injection of finite free Z-modules.

As X∗(Z∩Mder
α ) has Z-basis all α̃ ∈ Φabs lifting α, the image of X∗(Z∩Mder

α )σIF in X∗(Z)σIF
is generated by [

∑
Φ′ α̃

∨] ∈ X∗(Z)σIF , where Φ′ ⊂ Φabs is a set of representatives for the IF -
orbits on the set of roots lifting α. Using (A.2) we see that it is identified with 1

εα

∑
α̃∨ in

X∗(S)⊗R, where α̃ ∈ ∆abs now runs through all lifts of α. By the lemma below this is equal
to 1

εα
α∨0 . �

Lemma A.9. Let us drop temporarily all assumptions in §A.2 about G, and only assume
that it is a quasi-split connected reductive F -group. Suppose that α ∈ ∆. Then α∨0 =

∑
α̃∨

in X∗(Z), where the sum is over all lifts α̃ of α in Φabs.
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Proof. We may replace G with Mder
α and hence assume that G is semisimple and ∆ = {α}.

Then ∆abs = {α̃1, . . . , α̃n} for the lifts α̃i of α in Φabs and the cocharacters α̃∨i spanX∗(Z)⊗Q.
In particular, as ΓF acts transitively on ∆abs, we see that α∨ = c

∑
α̃∨i for some constant

c ∈ Q. Note that 2α ∈ Φ if and only if α̃1 +α̃i ∈ Φabs for some i > 1 if and only if 〈α̃1, α̃
∨
i 〉 < 0

(hence equal to −1) for some i > 1.
If 2α 6∈ Φ, then the α̃i are pairwise orthogonal and 〈α, α∨〉 = 2 yields c = 1. Otherwise,

since ΓF acts transitively on ∆abs and the Dynkin diagram has no loops, it follows that
〈α̃1, α̃

∨
i 〉 = −1 for a unique i > 1. Then 〈α, α∨〉 = 2 yields c = 2. �

Remark A.10. Lemma A.8, together with [AHHV17, III.16 Notation], shows that vZ(aα) =
− 1
εα
α∨0 . Recall that in §2.4 we also defined integers eα. By comparing with [AHHV17, IV.11

Example 3] we deduce that eα = 2εα if 2α ∈ Φ and eα = εα otherwise. Alternatively, we can
see this by comparing [BT84, 4.2.21] with [Vig16, (39)].
A.3. Basic case. We assume that 1 → ZG → Z → Z/ZG → 1 is a split exact sequence of
F -tori. In particular, the center ZG of G is a torus. We continue to assume that Gder is
simply connected and G/Gder is coflasque, as in §A.2.

Suppose that K is any special parahoric subgroup for which Proposition A.4 holds.
Fix an F -splitting θ : Z � ZG of the exact sequence 1 → ZG → Z → Z/ZG → 1. Since

X∗(Z/ZG) = ⊕∆absZα̃, we have a canonical absolute fundamental coweight λ
β̃
∈ X∗(Z) for

any β̃ ∈ ∆abs, normalized by demanding that it be orthogonal to θ∗X∗(ZG). These are
permuted by the action of ΓF . Thus for any simple root β ∈ ∆ we obtain a canonical relative
fundamental coweight λβ ∈ X∗(S) = X∗(Z)ΓF by taking the sum of λ

β̃
∈ X∗(Z) for all lifts

β̃ ∈ ∆abs of β. (It is the unique fundamental coweight for β that is orthogonal to θ∗X∗(ZG).)
Lemma A.11. We have Λ = Z 1

εα
λα ⊕ kerα inside X∗(S)⊗ R.

Proof. Note that X∗(Z) =
⊕

Zλ
β̃
⊕ (ZΦabs)⊥, where β̃ runs through ∆abs. It follows that

X∗(Z)σIF is the direct sum of Z[
∑

Φ′ λα̃], where Φ′ is as in the proof of Lemma A.8, and a
module that is orthogonal to α. As in the proof of Lemma A.8 we see that [

∑
λα̃] is identified

with 1
εα
λα ∈ X∗(S)⊗ R. �

As α ∈ ∆(V ), Corollary A.6 shows that ψV (Z0 ∩M ′α) = 1. In particular, τα ∈ HZ(ψV ) is
well-defined.
Lemma A.12. The element 1− τα of HZ(ψV ) is irreducible.
Proof. As the character ψV : Z0 → C× is trivial on Z0 ∩M ′α, we can extend it to a character
η : Z → C× that is trivial on Z ∩M ′α. We get an isomorphism ι : HZ(ψV ) ∼−→ HZ(1) = C[Λ],
defined by ι(f)(z) = η(z)−1f(z) for z ∈ Z. In particular, ι(τz) = η(z)−1τz. Thus it suffices
to show that ι(1 − τα) = 1 − τaα is irreducible in C[Λ]. By Lemma A.8 and freeness of Λ
we can extend x1 := aα to a Z-basis x1, . . . , xr of Λ. Obviously, 1 − x1 is irreducible in
C[x±1

1 , . . . , x±1
r ]. �

Recall that for any z ∈ Z+ with 〈α, z〉 > 0 we have intertwining operators T V ′,Vz :
c-IndGK V → c-IndGK V ′ and T V,V

′
z : c-IndGK V ′ → c-IndGK V supported on the double coset

KzK.
Proposition A.13. Suppose z ∈ Z such that vZ(z) = 1

εα
λα. Then SG(T V ′,Vz ) = τz and

SG(T V,V ′z ) = τz(1− τα) in HZ(ψV ).
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Proof. We have that SG(T V ′,Vz ) = τz by Lemma 3.1 and the coefficient of τz in SG(T V,V ′z ) is
1. It thus suffices to show that ψ ∈ Cτz2(1−τ 1

εα
α∨0

), where ψ = SG(T V,V ′z ∗T V ′,Vz ) ∈ HZ(ψV ).
Pick any algebra homomorphism χ : HZ(ψV ) → C. Then as in §6.2 we know that the

character σχ := χ⊗HZ(ψV ) c-IndZZ0 ψV of Z is given by z 7→ χ(τz−1), and that the restriction
of σχ to Z0 equals ψV . Assume now that χ(τα) = 1. We know that σχ is trivial on the
image of Z0 ∩M ′α by above. Moreover, Z ∩M ′α is generated by Z0 ∩M ′α and aα, so σχ is
trivial on Z ∩M ′α, as σχ(aα) = χ(τ−1

α ) = 1. As Mα = 〈Z,U±α〉, we have an isomorphism
Z/(Z ∩M ′α) ∼= Mα/M

′
α, so σχ extends to a smooth character of Mα, which we still denote

by σχ. By Frobenius reciprocity, the induced representation IndGPα σχ contains V but not V ′,
and the Hecke eigenvalues of V in IndGPα σχ are given by χ via SG (see Lemma 6.4 and the
proof of Lemma 6.5). As in §6.3 we deduce that χ(ψ) = 0.

We saw that χ(1 − τα) = 0 implies that χ(ψ) = 0. By the Nullstellensatz we get that
ψ is contained in the radical of the ideal (1 − τα), hence by Lemma A.12 and the fact that
HZ(ψV )(≈ C[Λ]) is a UFD, we see that ψ = ψ′(1− τα) for some ψ′ ∈ HZ(ψV ).

As in §6.3, by Lemma 2.9, we now see that if z′ ∈ Z is in the support of ψ′, then

z′ ∈ Z+, z′aα ∈ Z+;(A.3)
vZ(z′) ≤R

2
εα
λα, vZ(z′aα) ≤R

2
εα
λα.(A.4)

(This follows since for z′ ∈ suppψ we have z′ ∈ Z+ and vZ(z′) ≤R
2
εα
λα.) From (A.4) we can

write

(A.5) vZ(z′) = 2
εα
λα −

∑
∆ nββ

∨

for some nβ ∈ R≥0. Hence by Remark A.10,

(A.6) vZ(z′aα) = 2
εα
λα − 1

εα
α∨0 −

∑
∆ nββ

∨.

For γ ∈ ∆− {α} we pair (A.5) with γ and deduce that
∑

∆ nβ〈γ, β∨〉 ≤ 0.
Case 1: 2α 6∈ Φ, so α∨0 = α∨. We pair (A.6) with α and deduce that

∑
∆ nβ〈α, β∨〉 ≤ 0.

Hence as in §6.3 we get that nβ = 0 for all β ∈ ∆, so ψ′ is a scalar multiple of τz2 , as required.
Case 2: 2α ∈ Φ, so α∨0 = 1

2α
∨. The above proof goes through, provided we show

(A.7) 〈α, vZ(z′)〉 ≥ 1
εα
, 〈α, vZ(z′aα)〉 ≥ 1

εα

for any z′ ∈ suppψ′. For this it is enough to show that 〈α, vZ(z′)〉 ≥ 1
εα

for any z′ ∈ suppψ.
As SG(T V ′,Vz ) = τz by Lemma 3.1 it suffices to show that 〈α, vZ(z′)〉 ≥ 0 for any z′ ∈
suppSG(T V,V ′z ). In fact, we will show that 〈α, vZ(z′)〉 ≥ 0 for any z′ ∈ suppSG(ϕ) and any
ϕ ∈ HG(V1, V2) (where V1, V2 are irreducible representations of K).

By [HV15, §7.9], it suffices to show that z′−1(Uα∩K)z′ is a proper subgroup of Uα∩K+ for
z′ ∈ Z such that 〈α, z′〉 < 0. Using notation as in [HV15, §6] we can write z′−1(Uα ∩K)z′ =
Uα,g(α)−〈α,z′〉U2α,g(2α)−2〈α,z′〉 and Uα∩K+ = Uα,g∗(α)U2α,g∗(2α). Recall that g∗(β) = g(β)+ if a
jump occurs in the Uβ,u-filtration (modulo U2β if 2β is a root) at u = g(β) and g∗(β) = g(β)
otherwise. Also note the set of jumps of the Uβ,u-filtration (modulo U2β) are invariant under
shifts by 〈β, z′〉 (as Z acts on the apartment with all its structures). For any fixed β ∈ {α, 2α}
it follows that Uβ,g(β)−〈β,z′〉 ⊂ Uβ,g∗(β) and if equality holds, then the Uβ,u-filtration (modulo
U2β) jumps precisely at the elements u ∈ g(β) + 〈β, z′〉Z. Thus z′−1(Uα ∩K)z′ ⊂ Uα ∩K+
and if equality holds, then the Uβ,u-filtration (modulo U2β) jumps precisely at the elements
u ∈ g(β) + 〈β, z′〉Z for β ∈ {α, 2α}; in particular, g(2α) = 2g(α) from the definition of g.
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By [BT84, 4.2.21] the jumps in the U2α,u-filtration occur when u ∈ ordF (F 0
α − {0}) and

in the Uα,u-filtration (modulo U2α) occur when u ∈ 1
2 ordF (`) + ordF (F×α ). Here, F 0

α denotes
the elements of Fα that are of trace 0 in the separable quadratic extension Fα/F2α, ` ∈ Fα
denotes an element of trace 1 of maximum possible valuation. Note that F 0

α−{0} is principal
homogeneous under the F×2α-action, so the spacing of the jumps in the U2α,u-filtration is
ordF (F×2α). The spacing of the jumps in the Uα,u-filtration (modulo U2α) is ordF (F×α ).

So if equality holds above, then Fα/F2α is ramified and g(2α) = 2g(α). We finish by
showing that this is impossible. By the previous paragraph we can pick `′ ∈ F 0

α − {0}
of the same valuation as `. As Fα/F2α is ramified we can scale `′ by an element of O×F2α
such that ordF (` − `′) > ordF (`). This contradicts that ` has maximum possible valuation
among elements of trace 1. (Alternatively, from Tits’ tables in [Tit79] the affine root system
can only be non-reduced if the adjoint group has a factor isomorphic to ResE/F H, where
H ∼= PU(m+ 1,m) is unramified and E/F is finite separable and in that case the extension
Fα/F2α is unramified.) �

We can now deduce Theorem A.1 from Proposition A.13 exactly as in §6.4, replacing µα
there by 1

εα
λα. (It is still true, by Lemma A.11, that if z ∈ Z+ with 〈α, vZ(z)〉 > 0 and

vZ(z0) = 1
εα
λα then zz−1

0 ∈ Z+.)

A.4. First reduction step. We continue to assume that Gder is simply connected and
G/Gder is coflasque. We now reduce to the basic case (§A.3).

Proposition A.14. There exists a quasi-split connected reductive group G1 containing G as
a closed normal subgroup such that

(i) Gder
1 = Gder;

(ii) the torus G1/Gder
1 is coflasque;

(iii) 1→ ZG1 → Z1 → Z1/ZG1 → 1 is a split exact sequence of F -tori.
Here, Z1 denotes the minimal Levi Z · ZG1 = CG1(Z) of G1.

Proof. We define G1 and Z1 exactly as in §6.6(1), so in particular (i) holds. The exact
sequence 1 → ZG1 → Z1 → Z/ZG → 1, where the second map is induced by the first
projection, has a canonical splitting induced by Z→ Z× Z, z 7→ (z, z−1). This implies (iii).
Finally, consider the short exact sequence 1→ G/Gder → G1/Gder

1 → Z/ZG → 1. The first
term is coflasque by assumption and the last term is induced because it is the maximal torus
in the quasi-split adjoint group G/ZG. Hence G1/Gder

1 is coflasque and (ii) follows. �

Hence the group G1 is as in §A.3. The reduced buildings of G and G1 are canonically
identified with each other (as the reduced building only depends on the adjoint group), in
particular there is a natural bijection between special parahoric subgroups of these two groups.
Denote byK1 any special parahoric subgroup ofG1 and letK denote the corresponding special
parahoric subgroup of G.

Lemma A.15. We have K = K1 ∩G.

Proof. Consider the commutative diagram given by functoriality of the Kottwitz homomor-
phism. (Note that the codomains simplify, since Gder = Gder

1 is simply connected. See [Kot97,
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§7.4].)

G
wG //

� _

��

X∗(G/Gder)σIF

��
G1

wG1 // X∗(G1/Gder
1 )σIF

We claim that the vertical arrow on the right is injective. The first term in the short exact
sequence 1 → G/Gder → G1/Gder

1 → Z/ZG → 1 of F -tori is coflasque, so X∗(G/Gder)IF is
torsion-free, as noted in the proof of Lemma A.7. Let Γ be a finite quotient of IF through
which it acts on the character groups of the tori in the sequence. Then H1(Γ, X∗(Z/ZG))
is torsion, as Γ is finite, so X∗(G/Gder)IF → X∗(G1/Gder

1 )IF is injective, which implies the
claim.

Since the reduced buildings of G and G1 are naturally identified and parahoric subgroups
are the fixers of facets in the kernel of the Kottwitz homomorphism, it follows that K =
K1 ∩G. �

Lemma A.16. The restriction to K of any irreducible representation of K1 is irreducible.
Conversely, any irreducible representation of K extends to K1.

Proof. Note that as KCK1, the pro-p radical of K is normal in K1, so we get a commutative
diagram as follows:

(A.8)

K �
� //

����

K1

����
Gk
� � // G1,k

Note that G′1,k ⊂ Gk ⊂ G1,k. It is enough to show that any irreducible representation of G1,k
restricts irreducibly to G′1,k, and hence to Gk. (Then if V is an irreducible representation of
Gk, any irreducible quotient of IndG1,k

Gk
V extends V to G1,k.)

We will prove more generally that if H is any connected reductive group over k and V an
irreducible representation of H, then the restriction of V to H ′ is irreducible. Suppose first
that the derived subgroup Hder is simply connected. Then H ′ = Hder. We know that we can
lift V to an irreducible representation of H with q-restricted highest weight (where q = #k),
cf. [Her09, Appendix, (1.3)]. Then its restriction to Hder is still irreducible with q-restricted
highest weight (noting that H is generated by its center and Hder). Hence V restricted to
Hder remains irreducible by the result we just cited.

For the general case pick a z-extension π : H̃� H, so R := kerπ is an induced torus and
H̃der is simply connected. We have a commutative diagram with exact rows:

1 // R ∩ H̃ ′ //
� _

��

H̃ ′ //
� _

��

H ′ //
� _

��

1

1 // R // H̃ // H // 1

By inflation we can consider V as irreducible representation Ṽ of H̃ that is trivial on R. By
above we know the restriction of Ṽ to H̃ ′ is irreducible, and hence so is the restriction of V
to H ′. �
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Remark A.17. As in Remark A.5 we expect that the map Gk → G1,k arises from a closed
immersion Gk → G1,k.

Lemma A.18. Proposition A.4 holds for (G,K) if and only if it holds for (G1,K1). More
precisely, we have red(M ′α ∩ K) = M ′α,k inside Gk if and only if red(M ′1,α ∩ K1) = M ′1,α,k
inside G1,k.

Proof. Fix α ∈ ∆. We note that MαCM1,α for the Levi subgroups defined by α and that by
Lemma A.15 we have Mα∩KCM1,α∩K1 for the corresponding special parahoric subgroups.
Hence, restricting the top row of diagram (A.8) (applied to Levi subgroups defined by α), we
get a commutative diagram

M ′α ∩K
� � //

��

M ′1,α ∩K1

��
Mα,k

� � // M1,α,k

Note that the top row is an isomorphism (by Lemma A.15, as M ′α = M ′1,α) and that the
bottom row induces an isomorphism between the vertical images, as well as between M ′α,k
and M ′1,α,k. The lemma follows. �

Choose now any K such that Proposition A.4 holds for (G,K); equivalently, Proposi-
tion A.4 holds for (G1,K1), by Lemma A.18. From Corollary A.6 and since α ∈ ∆(V ), we
see that ψV (Z0 ∩ M ′α) = 1. Now we deduce in exactly the same way as in §6.6(1) that
Theorem A.1 holds for (G,K), since we know it holds for (G1,K1) by §A.3.

A.5. Second reduction step. Suppose now that G is any quasi-split group. We will reduce
to the previous case. The following result is proved by Colliot-Thélène [CT08, Prop. 4.1].

Proposition A.19. The group G has a (quasi-split) z-extension G̃ such that G̃/G̃der is a
coflasque torus.

Hence the group G̃ is as in §A.4. Now choose any special parahoric subgroup K̃ of G̃ for
which Proposition A.4 holds. Let K denote the corresponding special parahoric subgroup of
G. It follows from Step 3 of the proof of Proposition A.4 that Proposition A.4 holds also for
(G,K). From Corollary A.6 and since α ∈ ∆(V ), we see that ψV (Z0 ∩M ′α) = 1. Now we
deduce in exactly the same way as in §6.6(2) that Theorem A.1 holds for (G,K), since we
know it holds for (G̃, K̃) by §A.4.

Acknowledgments. We thank Tasho Kaletha and Marie-France Vignéras for some helpful
discussions.
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