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Abstract

Let p be a prime number and K a finite unramified extension of Q,. When p is large
enough with respect to [K : Q] and under mild genericity assumptions, we proved in our
previous work that the admissible smooth representations 7 of GLy(K) that occur in Hecke
eigenspaces of the mod p cohomology are of finite length. In this paper we obtain various
refined results about the structure of subquotients of 7, such as their Iwahori-socle filtrations
and Kj-invariants, where K is the principal congruence subgroup of GL2(Of). We also
determine the Hilbert series of 7 as Iwahori-representation under these conditions.
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1 Introduction

1.1 The main results

Let p be a prime number, F' a totally real number field and D a quaternion algebra of center
F which is split at all p-adic places and at exactly one infinite place. In order to simplify this
introduction we assume that p is inert in F' (in the text we only need p unramified in F') and
denote by v the unique p-adic place of F. Let A%"" denote the ring of finite prime-to-v adéles
of F' and F a sufficiently large finite extension of F,. To any absolutely irreducible continuous
representation 7 : Gal(F/F) — GLy(F) and V" a compact open subgroup of (D @p A%"")*, we



associate the admissible smooth representation of GLy(F},) over F:

=i Hom g, 7 o) (7 Hy (Xvov, xp F,F)), .
Vi

where the inductive limit runs over compact open subgroups V, of (D ®p F,)* = GLo(F,) and
Xyy, is the smooth projective Shimura curve over F' associated to D and V"V,,. Throughout this
introduction we fix 7 as in such that m # 0. We assume moreover that 7 is sufficiently generic
and that a standard multiplicity one assumption holds (commonly referred to as “the minimal
case”).

In our previous work we established that 7 is of finite length. More precisely we showed that
m is irreducible if ﬂGal(FU/FU) is irreducible [BHH a, Thm. [3.4.4.6(i)] and that 7 is of length at
least 3 (if F' # Q,) and at most [F), : @,] + 1 if 7 is reducible [BHH"b, Thm. 1.1.1]. We moreover
showed in loc. cit. that 7 is uniserial with distinct irreducible constituents if ?|Gal(fv /R, 18 nonsplit
reducible. The goal of this paper, which is a continuation of our previous aforementioned paper,
is to investigate the irreducible constituents of 7 when 7| al(Fo/F) is reducible, especially in the

more difficult case when F’Gal(fv /F,) is nonsplit. (We remark that all but two of the irreducible

constituents are supersingular.) In particular, for any subquotient 7’ of = we determine its Iwahori-
socle filtration, its invariants under the first principal congruence subgroup, and the dimension
of its associated cyclotomic (g, I')-module, showing in each case that the answer is local, i.e. only
depends on ﬂGal(Fv/Fv) (as expected).

Let us describe our most important results in more detail.

def

Weset KEF,, f& [K : Q] and ¢ & pf . We denote by w the mod p cyclotomic character of
Gal(K/K) (that we consider as a character of K* via local class field theory, where uniformizers
correspond to geometric Frobenius elements), and by wy, way Serre’s fundamental characters of
the inertia subgroup I of Gal(K/K) of level f, 2f respectively. In this introduction, we say that

7 is generic if the following conditions are satisfied for N = max{12,2f + 3}:

(i) 7| Gal(F/F( 1)) 1S absolutely irreducible;

(ii) for wtp such that either D or 7 ramifies at w, the framed deformation ring of ﬂGal(Fw/Fw)
over the Witt vectors W (F) is formally smooth;

(iii) 7|7, is up to twist of form

I (rg+1)p?
Wy *| with N <r; <p—-3-N
0 1

or

q(same) N+1<rg<p—2-—N.

f-1 ;
o (rj+1)p ‘ _a9_ ;
(szjo ) with {N<’"J<P 3—-N,  j>0

Note that implies p > max{27,4f +9} and that|(ii)|can be made explicit ([Shol6], [BHH™23,

def

Rk. 8.1.1]). We say that T is strongly generic if the above conditions are satisfied with N =



max{12,4f + 1}. By [BHH"23, Thm. 1.9] (for ﬂGal(F/K) semisimple) and [Wan23, Thm. 6.3(ii)]
(for ﬂGal(? /) non-semisimple) for 7 generic there is a unique integer » > 1 (the “multiplic-
ity”) such that, for any (absolutely) irreducible representation o of GL2(Of) over F, we have

dimp Homgp, 0, )(0, 7) € {0,7} (the notation 7 and r is somewhat unfortunate but is consistent
with [BEE23, § 8]).

In the sequel we let p < 7V| Gal(R/x)» Where 7V is the dual of 7.

Let I (resp. I1) be the subgroup of GLo(Ok) of matrices which are upper triangular modulo p
(resp. upper unipotent modulo p) and K | +pMy(Ok) C I;. Let Z1 = 14 pOk be the center
of Iy (or K1). For any admissible smooth representation 7’ of GLo(K), we consider 7'/t (resp.
7'K1) as finite-dimensional representation of I/1; = FY x FX (resp. GLa(Ok)/K1 = GLy(F)).

Suppose from now on that 7 is generic, that » = 1 and that p is nonsplit reducible. Then,
as we recalled above, m is uniserial with distinct irreducible constituents, so any subquotient
7' is uniquely a quotient 7} /m; for some subrepresentations 73 C 7 C 7. There is a strictly
increasing filtration Do(p)<; (—1 < i < f) of Do(p) = 751 defined in [Hul6, Prop. 5.2], and by
[BHH™b, Thm. there exist unique integers —1 < ig < iy < f such that 7' = Dg(p)<i,

def

and 7['1K1 = Do(ﬁ)gia. Let Do(ﬁ)l = Do(ﬁ)gi/Do(ﬁ)gi_l for0 << f. If D()(ﬁss) denotes the

analog of Dy(p) for p*, then there exists a decomposition Dy(p*) = @zfzo Dy(p*); [BP12, Thm.
15.4] such that Do(p); € Do(p*); for all i. The following is one of our main results.

Theorem 1.1.1 (Corollary [6.3.9). Assume that T is generic, that v = 1 and that p is nonsplit
reducible. Then for any nonzero subquotient @ of m we have

751 2 Do(5%)i941 DDy ()i 11 (Po(P)<iy /Do(P)<io)

as GL2(Ok)-representations.

Note that if p is split reducible, we prove a stronger result in Proposition [5.1

Using the theorem it is not hard to determine the Ij-invariants and the GLa(Of)-socle of
any subquotient 7/, as described in Theorem below. In fact we do not know how to prove
Theorem directly but rather deduce it with the help of Theorem [I.1.2]

To state Theorem we recall some more standard notation (for more details, see §
The set & parametrizes JH(Dg(p)"t) and likewise &% O & parametrizes JH(Do(p*)!t), where
JH(-) denotes the set of Jordan-Hélder factors (which are 1-dimensional here since /1 is com-
mutative). Given A € % let x) : I[/I; — F* denote the corresponding character and let
¢(\) € {0,1,..., f} be the unique integer ¢ such that x\ € JH(Dy(p**);). Let W (p) denote the set
of Serre weights of p (cf. [BDJ10]), i.e. the irreducible subrepresentations of Dy(p), and similarly
define W (p*) (which contains W(p)). In other words, W(p) = JH(socgr, (o) (Do(p))), where

S0CGL,(0x) () denotes the GL2(Ok)-socle. For o € W(p*) we let £(o) (N, where A € 2
parametrizes o/t C Dy(p™)!L.

Theorem 1.1.2. Assume that T is generic, that r = 1 and that p is nonsplit reducible. Then for
any nonzero subquotient ™ of ™ we have:



(i) JHE) = {xa: A€ P, ig < L(\) < il or A€ P\ P, ((\) = ig + 1};
(if) socaL,(ox) (') = (@UEW(ﬁ),io<€(o)§i6 o ) @ (@oeW(ﬁss)\W(ﬁ),Z(G):ingl o )

Here part (i) is proved in Corollary and part (ii) in Corollary

By Theorem we can relate the rank of the (¢, ')-module of a subquotient 7’ to the K;-
invariants 751, generalizing a result of Yitong Wang [Wan, Thm. 1.2] from subrepresentations to
subquotients:

Corollary 1.1.3. Assume that T is generic and that r = 1. Then for any subquotient @’ of m we
have

dimg(x) D¢ (r') = | JH(x"™1) N1 W (5*)],
where DY (') is the cyclotomic (p,T')-module associated to ©' in [BHH"d, § .

This is proved in Corollary if p is semisimple and Corollary [6.3.10] otherwise.
The key in proving Theorem (and hence Theorem [1.1.1)) is the following result which

determines the (dual of the) socle filtration of 7’ as an I-representation. To explain, let A ]

F[1,/Z1] denote the Iwasawa algebra of I;/Z7, which is a (noncommutative) noetherian local ring
of Krull dimension 3f. We denote by m its maximal ideal. Since 7 has a central character, any
subquotient 7’ of 7 is an admissible smooth representation of GLy(K)/Z; and hence its linear
dual 7'V & Homp (7/,F) is a finitely generated A-module. For any A € &2 there are explicit graded
ideals
a() =af() Caf 1N S Cal(M) C ot (V) = ara(A)

of gry,(A) (with commutative quotient rings of dimension f), cf. [BHH'D, eq. (75)]. If M is a
graded module and k € Z, we let M(k) denote M with shifted grading M (k), & M, for all
n € Z. (With our conventions, note further that gr,,(A) and gr,,(7"V) are supported in non-positive
degrees, i.e. the degree d part of gr,(7'"V) equals m~47/V /m~4+17/V )

Theorem 1.1.4 (Corollary [6.1.7). Assume that T is strongly generic, that r = 1 and that p is
nonsplit reducible. Then for any subquotient © of ™ we have an isomorphism of graded gr,(A)-
modules with compatible 1/I-actions,

20 )\
g™ = @ it e T
A a’ (M)

(=d»), (2)
where dy = max{ig + 1 — £(\),0}.

For p semisimple the analogous result is [BHHb, Cor. [3.2.7(ii)]. We remark that 7 generic,
rather than strongly generic, is sufficient in case 7’ is a quotient of 7.

Theorem should be compared with [BHH'h, Cor. [4.4.6], which shows (under slightly
weaker hypotheses) that

_ alo (A
ng(W/V) = @ X,\1® 11/( )7 (3)
reP a’(A)

5



where F' denotes the subquotient filtration induced by the m-adic filtration on V. It also gener-
alizes [BHH"b, Thm. [2.1.2] (when n/ = 7) and [BHH"b, Cor. 4.4.5] (when 7’ C 7), though under
stronger genericity assumptions.

We point out the following interesting consequence of Theorem when f = 2. Let 75 be
defined analogously to 7 by using a global Galois representation 75 such that p% = FSY]GM(? JK):
As f = 2 we know that 7 is uniserial of the form my — m — mo by [HW22, Thm. 10.37] and
that ms & 7o @ 7} @ m2 by [BHHTal, Cor. [3.4.4.6(ii)] for explicit principal series g, 72 and some
irreducible supersingular representations 7y, 7j. Optimistically one may hope that 73 = 7}. By
comparing Theorem and [BHH'b, Cor.[3.2.7(ii)] we can provide the nontrivial evidence that
gro(m) = gry,(71"), cf. Remark (which also gives a weaker result for f > 2). Moreover,
7l = 7/ a5 GLo(Ok )-representations by comparing Theorem with (the Kj-invariants in)
Proposition 5.1

In another direction, we determine the m%l—invariants of subquotients in case p is split re-
ducible, where mg, denotes the maximal ideal of the local ring F[K;/Z;]. We find, in particular,
some weak evidence for the hope that 7 is semisimple in this case:

Proposition 1.1.5 (Proposition . Assume that T is generic, that r = 1 and that p is split re-
ducible. For any subrepresentations w1 C mo of m the induced sequence of GLo(K)-representations

0— m[m%(l] — 71'2[111%(1] — (Wg/ﬂl)[m%ﬁ] —0

1s split exact.

Finally, we determine the Hilbert series of the associated graded module gr,,(7"), namely
the series hn(t) = S0 dimp(mrY /m™HxV)en e Z[t]. If p is nonsplit reducible let dp €
{0,1,..., f — 1}, so that 2% = |W(p)|.

Theorem 1.1.6 (Theorem . Assume that T is generic and that r = 1.

)
(i) If p is irreducible, then h.(t) = H _1
)
(ii) If p is split reducible, then h,(t) = Eil)) i— tif +1.
1 f—d> d-
(iii) If p is nonsplit reducible, then h.(t) = 2/ =% . (14+1)! 7% (3 +1) 4

(1—1t)/

This follows from the special case of Theorem when 7/ = 7, which we established earlier
[BHHTD, Thm. [2.1.2]. We also determine the Hilbert series of h.(t) for subquotients ' of m, in
case p is split reducible. (It is possible to determine h,(t) for nonsplit p, but we did not find nice
formulas in general.)

In fact, all of our results do not just apply to the global representation m defined in , but
to an arbitrary smooth representation of GLg(K) that satisfies axioms |(i)H(v)| in section In
section [7| we verify that a globally defined representation 7(p) satisfies all of these axioms. (By
using [BD14l, § 3|, as improved in [EGS15, § 6.5], we can (almost) eliminate item at the
beginning of the introduction, by replacing 7 in by a suitable subrepresentation.)



1.2 Sketch proof of Theorem

For the proof of the key Theorem we assume for simplicity that 7/ =7 /71 is a quotient
of 7, which is where the main difficulty lies. Let Nj denote the graded gr,(A)-module on the
def Clllo ()\)

right-hand side of the theorem, i.e. N} = @,c» X5 ® oy (—da) (as it = f). Let m denote the
unique maximal graded ideal of gr,, (A). The proof of Theorem breaks into three steps:

(a) Show that there exists a surjection gr,,(my) — Nj/m>.
(b) Show that gr,,(7y)/m3 = N} /m3.
(c) Lift the isomorphism in (b) to an isomorphism gr,,(my) = NJ.
For part (a), we let ©,, = mr[m"] /71 [m"] C mp[m™] C my for some integer n > 1. Hence 1y — OV
as A-modules and so gr,, (73) — gr,(©,/). By using our previous work [BHH"b, Lemma [2.4.2
we can determine 7w[m"], and hence ©,,, completely explicitly as an I-representation, provided p

is sufficiently generic relative to n. For n sufficiently large (in fact, n =ip +4 < f + 4 suffices) a
computation shows that gr,,(OY)/m> = N} /m? and (a) follows.

For part (b) we use some filtered and graded techniques. We first have an exact sequence of
filtered A-modules,
0—C—my/m?—7¥/m® = ) /m3 -0, (4)
where C' = coker(Tord(A/m3,7V) — Tor}(A/m?,m)). On the other hand, the exact sequence
0 — grp(my)/m® — gr,(7V)/m® — gr,(7y)/m® — 0 of graded gr,,(A)-modules, where F denotes
again the induced filtration on 3y, gives rise to the following exact sequence:

0= C" — grp(my) /M = gry(r) /@ — gy (n)) /@ — 0, (5)
where C’ is an analogous cokernel of graded modules, cf. .

We now compare dimensions of corresponding terms in the two exact sequences. By a subtle
spectral sequence argument we see that gr(C) is a subquotient of C’ (for a suitable filtration on
), so

dim]}?(C) < dimF(C"). (6)

On the other hand,
dinp (73 /m?) = dimp(gry () /M) > dimg (N /W°) = dimg(grp(m3) /@), (7)

where the inequality results from (a) and the last equality from (3). As the third (resp. fourth)
nonzero terms in and evidently have the same dimensions, we deduce that dimp(C) —
dimp(7y /m?) = dimp(C”) — dimp(grp(7y ) /m?), hence equality holds in () and (7)), so (b) follows
(using (a)).

For part (c), we start with the map of graded modules f : Nj — gr,(7y)/m? from (b). By
showing that N} admits a presentation of the form gr(A)(1)® @ gr(A)(2)% — gr(A)®* — Nj — 0
for some integers 7,5,k > 0 we can lift f to f: N} — grn(ny). The map f is surjective by
Nakayama’s lemma and injective by a computation of cycles, using that N} is Cohen—-Macaulay
(and computing cycles using )



1.3 Sketch proof of Theorem and Theorem [1.1.2

Part (i) of Theorem follows directly from Theorem by evaluating both sides in degree
0. Part (ii) follows relatively easily by building on part (i), using that every irreducible GLa2(Ok)-
representation has nonzero I-invariants.

The proof of Theorem in subsection [6.3]is technically the most involved argument of this
paper. Again the essential difficulty is when «’ ' risa quotient of 7, which we assume from
now on.

It is relatively straightforward to understand the right-hand side of Theorem as GLa(Ok)-
representation, namely Dy = Do(7=)iy+1 ®po(r). 1 (Do(P)/Dop)iy) (a5 i = 1), and to relate

it to 741

(a) D;, is multiplicity free;
(b) D, < 74" as GLg(Ok )-representations;

(c) the embedding in (b) induces isomorphisms on I;-invariants and GLa(Of)-socles.

(Here we use Theorem [1.1.2(i) and (ii) for (c).)

The main thrust for showing that the embedding in (b) is an isomorphism is the fact that
7o[m3] is multiplicity free (which follows from Theorem [1.1.4)).

Suppose that the embedding in (b) is not an isomorphism and take a minimal subrepresenta-
tion V of 7751 that strictly contains D;,, so in particular 7/ o V/D;, is irreducible. We first show
that 7/ € W(p*) (Corollary [6.3.7). By definition of V' there exists a subrepresentation V' C V,
V' & D;, such that the cosocle of V' is isomorphic to 7. Note that [V’ : 7] € {1,2} by (a) and
that V' 22 7/ by (c).

Suppose first that [V’ : 7/] = 1, and to simplify notation we also assume that f = 1 (the
argument easily generalizes to f > 1). In a first step we show that the radical rad(V’) of V'
is semisimple (Lemma |6.3.8](iii)). By known Ext! results there are 3 possibilities: (i) rad(V’) =
pio (') or (i) rad (V") 2 pg (7) or (iii) rad(V') = pg (7') @ g (7') for certain Serre weights u (77)
associated to the Serre weight 7/ as defined in §. Case (i) is ruled out by the equality of I;-
invariants in (c) above. In cases (ii) and (iii) we enlarge V' slightly to V', where V/ C V/ C i

and V//V is irreducible (in general of length at most f). In cither case V' (but not V'!) is a
GL2(Ok)

quotient of Ind; W, where W is the I-representation
Xug ()
W = _— Xt >
Xpug ()

where we write x, := ¢!t for any Serre weight 0. By Frobenius reciprocity we get a nonzero map
W — my[m?] whose image is not contained in D;,. On the other hand, we show that 7/ € JH(D;,)
and by following the same reasoning as above we obtain another nonzero map W — m3[m?] whose



image is contained in D;,. This shows that [m2[m?] : x] > 2, contradicting the multiplicity
freeness of ma[m?].
The case where [V’ : 7/] = 2 is similar but more involved, using multiplicity freeness of mo[m?]
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1.4 Notation and preliminaries

We normalize local class field theory so that uniformizers correspond to geometric Frobenius
elements. We fix an embedding ko : F; < F and let &; koo @I, where ¢ is the arithmetic

Frobenius on F,. Given J C {0,...,f — 1} we define J¢ < {0,1,...,f —1}\ J. We let [ =

X
(p%K g§> C GL2(Of) denote the (upper) Iwahori subgroup of GLo(K), I; the pro-p radical
K K

of I, Z; the center of I, and K; =] +pM2(Ok) C 1. Welet T & GLy(F,) = GL2(Ok)/ K.

Let p: Gal(K/K) — GL2(F) be a continuous representation. We will say that p is n-generic
for some integer n > 0 if, up to twist, ﬁﬁi{ 2 w @ 1 and either (using the notation of §

F-1 ;
o (ri+1)p?
Pl = | Y ’; withn <r;<p-3—-nforall0<j<f-1 (8)
or
F-1, ;
N wzjzo(”ﬂ)pj . n<r;<p—3-—-n for0<j < f—1,
Dl = |2 ; with , 9)
wgf(same) n+l1<rg<p—2-n forj=0.

In particular, if p is n-generic then it is n-generic in the sense of [BHHT23, Def. 2.3.4], and p is
O-generic precisely when p is generic in the sense of [BP12, Def. 11.7] (note that the condition
plT,. # w @ 1 precisely rules out that (ro,...,rr-1) € {(0,...,0),(p —3,...,p — 3)} when p is
reducible).

Attached to a 0-generic p we have a set W (p) of Serre weights, i.e. irreducible representations
of I" over F, defined in [BDJ10, § 3], and a finite length I'-representation Dy(p) over F, defined in
[BP12| § 13], which is of the form Do(p) = @,cw ) Do, (p), where each Dy - (p) is indecomposable
and multiplicity free with socle the Serre weight 7 ([BP12), § 15]).

Suppose that p is O-generic. Recall the set & parametrizing JH(Do(p)"), see [Breld, § 4]
(and denoted there by PP, resp. £ I 9P, if p is reducible, resp. irreducible). Recall also the
subset 2 C & parametrizing (the I -invariants of) the set of Serre weights in W (p) (denoted in



loc. cit. by 9 or £ 2 if p is reducible or irreducible respectively). We let % C 7% denote the
corresponding sets for the semisimplification 7° of p, so & C &% and ¥ C Z°5.

Since we will be using this many times, we recall more precisely that if p is reducible, &7
denotes the set of f-tuples (Ao(20),...,Ar—1(x¢—1)) such that:

(i) if Aj(zj) € {zj,x; + 1,z; + 2}, then Ajp1(xj41) € {zjr1,Tj41 +2,p — 2 — xj41};

(iii) if N\j(zj) e {p—3—zj,p—2—z;,p—1—x;}, then A\j11(zj41) € {zj1+1,p—3—zj41,p—
1 -1}

and Z* is the subset such that \;(z;) € {z;,z;+1,p—3 —xj,p—2—x;}. Moreover, there exists
a unique subset J; C {0, ..., f — 1} such that

7 ={xe 7" N(w)) € {a;+ L,p -3 -2} = j € S5},
93:{)\69’55:Aj(a:j)e{xj+2,p—3—:cj}:>jejﬁ}. (10)
In particular, |W (p)| = 2177

For A € & we denote by x) the character of H corresponding to A. (More precisely, in
[Breldl, § 4] a Serre weight o) is associated to A € & and ) is the action of H = I/I; on the
1-dimensional subspace Uﬁl.) Set

INEGe{0,.. ., f—1}: N(xy) € {zj+ 1,2+ 2,p— 3 —x;}} (11)

def

and let ¢/(A\) = |J)|. By [BP12, § 11] the map A — J induces a bijection between 2 and

the set of subsets of {0,..., f —1}. Sometimes we will abuse notation and write J- < J\ and

0(T) = 4N if 7 € W(p®) is parametrized by A € 2. Given A\ € 2% with corresponding subset
def

J =Jy CA0,...,f — 1} we write 6(\) € 2% for the f-tuple defined by §(\); = Aj41 for all
je{0,...,f =1}, and 6(J) C{0,..., f — 1} for the subset corresponding to J(\).

As in [BP12, § 1], given f integers ro,...,7¢—1 € {0,...,p — 1} we denote by (ro,...,77_1)
the Serre weight
SYmToFZ QF (SymrlFQ)Fr Q- QF (Symrf71F2)Frf_1’

where GLy(F,;) acts on (Sym" 1 F2)F yia kj : Fy — F. Following [HW22, § 2], we say that
a Serre weight is m-generic for some integer m > 0 if, up to twist, ¢ = (ro,...,7_1), where
m < r; <p—2—mforall je€{0,...,f—1}. We say that an F-valued character x of I is
m-generic if x = ot for some m-generic Serre weight . For any smooth character y : I — F* we
define x* < x(II(-)IT~1) with IT & (2 (1)
I/I on ¢ and ols! for the unique Serre weight distinct from o such that X5l = X5 Finally, if
X, X' : I — F* are smooth characters such that Ext} 17 (X', x) # 0 we let E, ,/ denote the unique

) . If o is a Serre weight, we write x, for the character of

nonsplit extension of x’ by x, i.e. 0 = x — E, ,» — X’ — 0. (The uniqueness follows from [Hul0),
Lemme 2.4].)
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Let mg, denote the maximal ideal of the Iwasawa algebra F[K;/Z;] and let
I € F[GLy(Ok)/Z1]/ m%ﬁ (a finite-dimensional F-algebra). We use the terminology “I'-represen-
tations” and “I-modules” interchangeably.

We write Dg(p) for the finite-dimensional f;representation over F constructed in [HW22,
Prop. 4.3]. It is the unique (up to isomorphism) I'-representation which is maximal with respect
to the following two properties:

(i) socz Do(p) = Bpew ) 0
(i) any Serre weight of W (p) occurs in Do(p) with multiplicity one.
def

Let A = F[I,/Z], a complete noetherian local ring with maximal ideal m mIl /71, and let

gr(A) € gr (A) = D,>0 m"/m" 1 be the associated graded ring of A with respect to the m-adic
filtration on A. The rings A and gr(A) are Auslander regular (see [BHH™23, Thm. 5.3.4] with
[LvO96, Thm. 111.2.2.5]). Recall ([BHHa, §[3.1]) that we have an isomorphism of (noncommu-
tative) algebras

gI‘(A) = ® F<ij Zjs h]) (12)
with relations [y;, z;] = hj, [hj, 2] = [yi,h;] = 0 for all i,j € {0,..., f — 1}. We use increasing
filtrations throughout, i.e. F;,,A = m™" for n <0, and the degrees of y; and z; (resp. h;) are —1
(resp. —2). Define the graded ideal J & (hj,yjzj : 0 <j < f—1)of gr(A). As in [BHH a, §
we define

def . ~ .
R=gr(A)/(hj :0<j<f—1)=Fly;,2:0<j < f—1]

which is the largest commutative quotient of gr(A). We also define the following quotient of R:

R=gr(A)/J = R/(yjz:0<j < [ —1).

We recall from [BHHTal, Def. [3.3.1.1] that given A € &2 we have an associated ideal a(\) =
(to,...,tf—1) of R, where the t; = t;(\) are defined as follows:

zj if Aj(zy) € {zj,p—3—=x;} and j € J;
poder ) Y if /\](ar:]) e{r;+2,p—1—-z;}and je J; (13)
J yjz; if ANj(zj) e{zj,p—1—2;}and j ¢ J;
yjz; if Nj(zy) € {zj+1,p—2 —x;}.
Note that (y;z; : 0 < j < f—1) C a()), so we often think of a()\) as ideal of R.
def ]FX 0 . X 0
Let H = O F = [/I;. We write oj : H — F* for the character defined by O s

kj(ad™1). We recall that for any j € {0,...,f — 1} the element y; (resp. zj, resp. h;) is an
H-eigenvector with associated eigencharacter oy (resp. ozj_l, resp. the trivial character).

Suppose that H' is a compact p-adic analytic group and that 7y, 2 are smooth representations
of H' over F. We write Ext}y (m1,m2) for the i-th Ext group computed in the category of smooth

11



[[ﬂ(

computed in the abelian category of pseudocompact F[H']-modules. (See for example [Emel0),
§ 2].) If o has finite length, we write JH(o) for its set of irreducible constituents up to isomorphism.

representations of H' over F. Dually, the functors Tor, my, 7)) and Ext%ﬂH,ﬂ (m),7y) are

Throughout this paper, if R is a filtered (resp. graded) ring, a morphism of filtered (resp.
graded) R-modules f : M — N will always be a filtered (resp. graded) morphism of degree
zero, i.e. satisfying f(M;) C N; for all i € Z. If R is any ring and M any left R-module, we
recall that Exti R(M,R) for i € Z>¢ is a right R-module (for i = 0 the right R-action is given

y (fr)(m) € f(m)r for r € R, f € Homp(M,R) and m € M) and we use the notation
E’ i.(M) = Extih (M, R).

2 Preliminaries

We establish structural results on finite-dimensional smooth mod p representations of GL2(Ok)
which will extensively be used in section § [6]

If o is a Serre weight, we write Projo (resp. Injp o) for a projective cover (resp. injective
envelope) of o in the category of F[I']-modules. The objects Projzo and Injzo are defined
similarly.

2.1 Extension graph and I'-representations

We collect a number of results on the combinatorics of Serre weights and injective envelopes for
which we use the formalism of the extension graph.

We recall the formalism of the extension graph of Serre weights in [BHH"23, § 2.4]. Let T
denote the diagonal maximal torus of (Resp, /z, GL2j0,) Xz, W(F) = o, ww) GL2 and let
X*(T)(= (Z*)') denote its character group. Given u € X*(T) we have a subgraph Al of Z/
and an injective map t, : A, — X*(T)/(p — 7)X°(T), hence an injective map from A}, to the
set of Serre weights defined by Afj, 3 w = F(t,(w)). (Recall that the graph structure on Z/ is
defined as follows: two element w,w’ € Z/ are adjacent if Zf o lwj — Wi =1, and that F(v)
is the notation for the Serre weight of highest weight v € X*( ), cf. [BHH+23 § 2.2].) Given

+(1,0
e X*(I) we write 7(1, 4+ n) for the I -representation w? Pt Ik — GLy(F). Given
J €10,...,f — 1} we write 7; for the element of Zf characterized by (77]')1‘ =0if i # j and

(m;); = 1. Moreover for J C {0,...,f —1} we define 7j; & > e -

Lemma 2.1.1. Suppose that p>|1,. = 7(1, u+n) is semisimple and 0-generic, with 0 < pij1—pj2 <
p—3 forallj. If o € W(p*), then o = F(t,(7,,))-

See also [DL21], Prop. 3.5] (using different normalizations) and compare with [BHH'23, Prop.
2.4.2].

Proof. For 0 < j < f—11let 0; = 1if j € Js, §; = 0 otherwise. Let A € &° correspond to o,
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which means that
:Ej+(5j ifj+1¢<]o-,

14
p—2—:cj—6j ifj+1e€eJ,. ( )

Aj(zg) = {
After a twist we may assume that u = (r;,0); for some integers 0 < r; < p — 3. Using [BHH'23,
(14)] with a; = rj, bj = n; = 0 and §; defined above we obtain F(t,(7; )) = F(v), where

ri+9;,0 if ;1 =0,
Vj=(’/j,1,l/j,2)={( i+ ,0) o

(—1,rj+5j—p+ 1) 1f(5j+1 =1.
Using we see that vj 1 —vj2 = \j(r;) for all j, i.e. that o and F'(t,(77;,)) agree up to twist. A
calculation shows that indeed 3- ;.5 P/ (rj+0;—p+1) agrees with the integer e(\)(ro,...,7f_1)
in [BP12, § 2] modulo pf — 1. O

Recall from [BP12, Cor. 3.12] that given 7 € JH(Inj o) there exists a unique finite-dimensional
I-representation I (o, 7) such that socr I(o,7) = o, cosocr I(o,7) =7 and [[(o,7) : 0] = 1.

Lemma 2.1.2. Assume that p is 1-generic. Let o,7 € W(p*). Then 7 € JH(Injp o). Moreover,
| JH(I(o,7))| = 217277 and

JH(I(o,7)) = {7 e W(p*): JpNJr C Jp C Jp U Jr} (15)
= {7'/ € W(ﬁsb) tJe AJ C s A JT}

In particular, Exti(o,7) # 0 if and only if |J, A J.| = 1.

def

Proof. Write p%|r, = 7(1,p+n) with 1 < pj1 — pjo <p—4forall j. Let J = J,, J' < J., so
that o = F(t,(7,)), 7 = F(t.(7,)) by Lemma [2.1.1} Since [, =7 ;| <1forall0 <j < f—1
we deduce from [BHHT23, Rk. 2.4.7] (applied with w = 7;) and [BHH'23, Lemma 6.2.1(ii)]
(applied with F'(A) = o and noting that \ satisfies the hypothesis of loc. cit. since o is 1-generic,
see § that 7 € JH(Injp o). It remains to prove , which implies the remaining assertions.
By [BHH'23, Lemma 6.2.1(iii), Rk. 2.4.7], the Jordan—Hélder factors of I(o,7) are given by all
F(t,(w)), where w € Ay, satisfies min{7,; ;, 7, ;} < wj < max{7;;,7, ;} forall 0 <j < f—1.
Equivalently, 7,4, ; < wj <7y ; for all j, ie. w =7,/ for some JNJ" C J" C JUJ'. This

proves by Lemma m O
Recall from [BHHTD, § [3.1] and [BHHTDH, Rk. [3.1.1] that given a character y : I — F* with
X # x°, there is an injective parametrization JH(Ind?L2 Ox) X) < P (where P et P(xo,...,xf-1)

is defined in [BP12| § 2]), which is bijective if x is 1-generic. Moreover, P is in bijection with the

subsets of {0,..., f — 1} via the map & — S(§) of [BHH' b, eq. (35)]. With this parametrization,

the socle of Ind?LQ(OK) X corresponds to the empty subset. For J C {0,1,..., f —1} let o; denote

the constituent of Ind?h(oK ) X parametrized by £ € P such that S(§) = J, if such a £ exists.

Finally, if o € JH(Ind?L2(0K ) x) is parametrized by ¢ € P we write S(0) = S(€).

Lemma 2.1.3. With the above notation assume that x is 1-generic and choose u € X*(T') such
that oy = F(pn). Then o5 = F(t,(—=7;)) for each J C {0,1,..., f —1}.
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Proof. Note that x = xj,. After a twist we may assume that u = (r;,0);€ (Z*)!, where the
integers rj satisfy 1 <p—1—-r; <p—-3,ie.2<r; <p—-2. For0<j< f—-1letd; =1ifj€ J,
0; = 0 otherwise. By our parametrization, o corresponds to {; € P, where

xj— 0 itj+1¢J,
(e =17 A

p—2—z;+9; ifj+1lel,
ie. o5 = (&(ro),...,&f—1(ry—1)) up to twist. Using [BHH'23, (14)] with a; = r;, b; = 0,
nj = —0; and J; as above we obtain F(t,(—7;)) = F(v), where

(T‘j, 5j) if (5j+1 =0,
(5j - l,T'j —p+ 1) if 5j+1 =1.

vi = (Vj1,Vj2) = {

Using (|16]) we see that v;1 — v;2 = £(r;) for all j, i.e. that o and F(t,(—7;)) agree up to twist.
A calculauon shows that indeed 3.5 0P8 + > )6, +171;07( —p+ 1) agrees with the integer

e(€7)(ro,...,rg—1) in [BP12 § 2] modulo pf —1. 0

Lemma 2.1.4. Assume that x is 2-generic. Let J,J' C{0,1,...,f—1}. Then oy € JH(Injpoy).
Moreover, | JH(I(o,05))| = 2/"27' and

JH(I(oy,05)) :{O'JwiJﬂJ/gJ”g JUJ/}
:{O'JNZJAJ”gJAJ/}.

In particular, Exti(o7,05) # 0 if and only if |J A J'| = 1.

Proof. Choose again 1 € X *( ) such that oy = F'(u ) The proof follows by the same argument as
in Lemma [2.1.2} using o7 = F(t,(-7;)) (Lemma instead of o = F(t,(7,,)) (Lemma [2.1.1)).
O

Recall from [BP12| § 3] that given a Serre weight o, there is an injective parametrization
JH(Injp o) < T (where T = Z(xq, .. ., xf_1) is defined in [BP12, § 4]), which is bijective if o is
1-generic. We say 71,70 € JH(Injp o) are compatible (relative to o) if the corresponding elements
U1, 2 € I are compatible in the sense of [BP12 Def. 4.10].

Lemma 2.1.5. Let o be a 1-generic Serre weight and 11,70 € JH(Injp o). Assume that 11,12 are
compatible (relative to o). Then 1o € JH(Injp 1) and JH(I (1, 72)) C JH(Injp o).

Proof. Let pui1, s € I correspond to 11, T respectively. Since puq, o are compatible, one checks
that there exists a unique element in Z, denoted by p1 N ua (resp. p1 U p2), which is compatible
with g1 and pg such that S(p1 Npe) = S(1) NS(p2) (resp. S(p1 U pa) = S(p1) U S(p2)), where
S(—) €H0,..., f —1} is the subset defined in [BP12, § 4]. (See also [BP12, § 12] for the explicit
construction of gy N p2.)

Let 19,73 € JH(Injp o) correspond to pyg C Moo, 3 = U ps € T respectively. We
first assume 79 = o, equivalently S(u1) NS(u2) = 0. We have 7,7 € JH(I(0,73)) by [BP12,
Cor. 4.11], and the genericity assumption on o implies that I(o, 73) has length 21S(m3)l - We deduce
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from [HW18, Lemma 2.20(iii)] that JH(I(o,13)) = JH(I(71,72)) (T2 = 7{ with the notation used
there).

To treat the general case, we note that I(ry,73) exists and that 7,72 € JH(I(70,73)) by
[BP12, Cor. 4.11], so we may view 71,72 as Jordan—Holder factors of Injp7g. Let Aj, A2, A3 €
Z(yo,---,yf—1) be the element corresponding to 7i, 7,73 € JH(Injp79). Using [HW22, Lem-
mas 2.1, 2.7] we get \; o ugp = p; for i = 1,2,3. By [HW22, Lemma 2.6(i)] we have S(u;) =
S(Ai) A S(po) or equivalently S(A\;) = S(ui) A S(uo) = S(i) \ S(wo), so S(A1) NS(A2) = 0 and
S(A1)US(A2) = S(A3). Moreover, since p1, pg, 3 are compatible, A1, A2, A3 are also compatible by
the table in the proof of [HW22, Lemma 2.6] (writing \; = p; o ,ual, where ual € 7 is the unique
element defined by demanding ,u&l o po = (xo,...,2f-1)), so that A3 = Ay U Aa. Hence, by the
previous paragraph we get JH(I (71, m2)) = JH(I(19,73)), in particular JH(I(71,72)) C JH(Injr o)
as I(1p,73) is a quotient of (o, T3). O

2.2 More I'-representations

Recall from [HW22, Def. 2.9] that given j € {0,...,f — 1} and * € {+, —} we define an f-tuple

K € @lf;ol(Z + ;) as follows: if f > 1 then (u});j-1(zj-1) Ep—2—xj 4, (15)j(z5) il

and ()i () gy for i ¢ {j — 1,5}, while if f =1 then p(xo) & p—2 — (1) —xo. If o is a
0-generic Serre weight corresponding to a tuple (s, . ..,s¢-1) € {0,...,p— 1}/ we write p; (o) for
the Serre weight u}((s0,...,57-1)) ® det®#5)(057-1) here e(uf) €2 G}Zf:_ol Zzx; is defined in
[BP12| § 3]. (Note that u; (o) is undefined if f > 2 and s; = 0 and ,uj(a) is undefined if f =1
and s; =p—2.)

The following lemma is well known, but we state it for lack of convenient reference.

Lemma 2.2.1. Suppose that o = (ro,...,7¢_1)®n is any Serre weight such that p; (o) is defined.
If f =1 we moreover suppose that 0 < ro < p—1. Then the (unique up to isomorphism) nonsplit

GL2(Ok)/Z;-extension 0 — p; (0) - V. — o — 0 is a quotient of Ind?LQ(OK) Xo (hence is a
I-representation), equivalently x, — V.
Proof. This follows from [BP12, Thm. 2.4(iii) and Cor. 5.6(ii)]. O

Lemma 2.2.2. Let o be a 1-generic Serre weight. Let () be a quotient of Projpr o such that

(i) socr(Q) = o®" for somer > 1;

(ii) radp(Q)/socr(Q) is nonzero and does not admit o as a subquotient.

Then radr(Q)/ socr(Q) is semisimple and there exists a subset J C {0,1,...,f — 1} such that
radr(Q)/ socr(Q) = P (i (0) ® 17 (0))-

1€J

Proof. By the same argument as in the proof of [HW22, Cor. 2.32] (using [HW22, Cor. 2.3]
for I-representations instead of [HW22, Cor. 2.26] for I'-representations), we prove an injection
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radr(Q)/socr(Q) — @Z 0 (ul (0) @ p; (0)) (in particular, radr(Q)/socr(Q) is semisimple). It
thus suffices to show that (o) € JH(Q) if and only if p; (o) € JH(Q). Note that @, surjects
onto @, where Q, is the largest quotient of Projp o/ radf(Projp ) whose socle is o-isotypic.

We now determine (), more explicitly. Let A;,i (0 <i < f—1) denote the I'-representation of
[HWIS, Def. 2.5], which has socp (AL ;) = cosocr(AL ;) = o and radr (4} ;)/ socr (A, ;) = pi (o) &
p; (o). Let A” denote the fiber product of all A/, over their common cosocle o. (Up to twist this is
dual to the notation A/ in [HW18].) Note that the natural injection radr(Af,) — @, radr (A ;) is
an isomorphism. (It surjects onto every factor, as radp(-) preserves surjections, hence surjects onto
the cosocle of the direct sum, which is multiplicity free.) Hence the cosocle of AL is still . Also we
obtain a surjection v : Q, — AL, and its kernel is o-isotypic, because ¢ induces an isomorphism
after applying the functor radp(-)/ rad%(+), e.g. by [BP12, Cor. 5.6(i)]. As Exti (o, 0) = 0 we have
a surjection socr (1) : socr(Qy) — socr(AL) = ¢®f. On the other hand, socr(Qy) = o®f by the
dual version of [HW18| Prop. 2.11] (alternatively, see [AJL83, Thm. 4.3]), hence Q, = AL.

Write 0 — L — Al — @Q — 0, with L being the corresponding kernel. If pf(0) € JH(L),
then L has to contain the unique subrepresentation of radr(4; ;) C Aj with cosocle pf (o). In
particular, the natural map radr (A;Z) — A’ — @ has to vanish on the socle, and hence is zero

(by condition (i)). This proves that p; *(o) € JH(L), as desired. O

Recall again from [HW22| Def. 2.9] that given j € {0,...,f — 1} and * € {+, —} we define
an f-tuple 47 € EB (Z + x;) by (07);(z;) o zj* 2 and (07);(w;) <z for i # j. If o is a Serre
weight correspondlng to a tuple (sg,...,s7-1) € {0,...,p— 1}f we write 67 (o) for the Serre weight
T (50, .-, 85-1)) ® det?®)(02=1) (which is defined only if s;+ 2 € {0,...,p — 1}). It follows

from the definition that Xst(o) = Xoozj1

Lemma 2.2.3. Assume that p is 1-generic and let o € W(p*). For any 0 < j < f — 1, there
exists * € {£+} such that

{1 (0), 115 (0), 6 (0), 65 (0)} "W (™) = {45 (o)} (17)
Moreover, JM;(J) =J, A{j}.

Proof. Let 0¢ € W (p®) be determined by Jye = JS. Then JH(I (0, 0¢)) = W (p*) by Lemmal[2.1.2]
Recall from §that JH(Injp o) is parametrized by the set Z. Slnce 5;: ¢ T we deduce by [HW22],
Lemmas 2.1, 2.7] that 6;5(0) does not occur in Injp o for any 0 < j < f—1, hence 5;-5(0) ¢ W (p*®).

Viewing ¢¢ as a constituent in Injpo, it is parametrized by an element A € Z. Since
| JH(I(0,0°))| = 2f, [BP12, Cor. 4.11] implies that S()\) (defined above [BHHTb, Lemma |4.1.2))
equals {0,..., f—1}. Foreach 0 < j < f—1, there is a unique * € {£} such that p} is compatible
(in the sense of [BP12l Def. 4.10]) with A. By [BP12 Cor. 4.11] again and [HW22, Lemmas 2.1,
2.7], we deduce that exactly one of ,uji(a) occurs in JH(I(o,0¢)). The final claim is a direct
check. O

16



2.3 Some f-representations

Fix a 2-generic Serre weight 7 and let x & y, (so x is 2-generic). For 0 < i < f — 1 and a sign
x € {£} let W = W7(x) denote the unique uniserial I/Z;-representation of the form x — ya;!-
— x. (It is a quotient of the I/Z;-representation Wy 3 in [HW22, § 3.1], see also § below.)

Let QF = Q;(7) denote the largest quotient of Ind?L2(0K )W with T-isotypic socle. Then Q7

7

is a ['-representation by [HW22 Cor. 3.3]. Note that socx(Qf) =7 for each x € {*}, as
[Ind?Lz(OK) W : 7] =2 and dimg Homf(lnd?LQ(OK) W ) =1.

Lemma 2.3.1. Suppose that i € {0,...,f —1}.

(i) The T-representation Q; is uniserial of the form T — u; (T) — 7.

(ii) The T-representation QF has the form

p (1)
T /
\

i (7)

We remark that Lemma does not determine ker(Q;” — d; (7)) uniquely up to isomor-
phism (this kernel is a suitable amalgam of the uniserial representations 7—y; (7)—7, 7—put (1) -7,
and this amalgam depends on a parameter in F*), but this will not matter for us.

Proof. (i) Let Y;~ denote a uniserial T-representation of the form 7 — u; (1) — 7, which exists
by taking a suitable quotient of the representation ©, in [HW22, Prop. 3.12] (see also [HW22,
Cor. 3.16]). By [HW22, Lemma 2.10] it is easy to see that Y, is unique up to isomorphism
(alternatively it follows once this lemma is proved). Note that p~(7) does not occur in the

cosocle of Ind?LQ(OK IW;, as Ind?L"’(OK ) xa; * (resp. Ind?m(oK ) X) has cosocle 0; (7) (resp. 7).

2

We check below that W,” < Y;™ |, which implies IndIGL2(OK ‘W Y (if the map is not sur-

1 1
jective, it has image 7 by considering cosocles, hence is trivial on Ind?LQ(OK ) x € Ind?LQ(OK ) W,

contradiction), hence Y;” = Q; by definition of @); , concluding the proof.

Let x/ o Xai_l and let E, s be the I/Z;-representation which is the unique nonsplit extension
of X’ by x (see § By [BHHTa, Lemma (ii)] (applied with o = 7 and Y ~%v = Y; ')
there is an injection E, ,» — 7|f <= Y, |;. As dimp(7) < ¢, we know that 7|; is multiplicity
free by [BP12, Lemma 2.7]. Let u € 7t (resp. v € 7) be an H-eigenvector with eigencharacter
X (resp. X' = Xai_l), so Ey v = Fu® Fv. On the other hand, let w € Y;” be an H-eigenvector
with eigencharacter x, such that its image in Y;~/socz(Y;”) is Ii-invariant. This is possible by

A
Lemma 2.2.11

We will prove that Fu @ Fv & Fw is I-stable (equivalently I;-stable) and isomorphic to W, .
Note that (g—1)w € socx(Y;”) = 7 for all g € I (by the choice of w), and that w itself is not fixed
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L2(Ok)

by I, since otherwise there would be a surjection Ind? X — Y;~, which is impossible as 7 has
GL2(0Ok)

multiplicity 1 in Ind; X- As Fu®Fv is [;-stable it is enough to prove that (¢—1)w € Fu®Fv
for g € I;. It then suffices to show that (note that Z; acts trivially on Y™ ):

(a) (g —1)w—0forallge(101<)’
() (g —Dw e =X =TFu for all g € (1+%OK(1));

(¢) (9— 1w e rHX =Fuvforall g€ (,d, ).
def _pJ .

To prove (a), let Y; = 2 acky @ pj((l) [‘11]) € F[(§ 9 )] for 0 < j < f —1, so that F[(} 9% )] =
F[Yo,...,Y;—q]. It is direct to check that Yjw is an H-eigenvector with eigencharacter yo;.
However, we see from [BP12, Lemma 2.7] that xo; ¢ JH(7|r) forall 0 < j < f—1. Thus Yjw =0
for all j, so (a) holds.

Part (b) is obvious.

To prove (c), let X; = Y eF> a*pj([tll](f) € Fl(o, )] for 0 < j < f—1. Write 7 =

(70, -+, 7f-1) up to twist. By another application of [BP12, Lemma 2.7] we see that xa; (rj+1) ¢

JH(Y, |7) for all j # i — 1, so using the GLy(Of)-action on Y;” we conclude that XT‘J+l =0
and hence Xfw = 0 for all j # i — 1. On the other hand, Xpow =0 for all j, j/, as Y, is

)

a T-representation. As F[(,é, 9)] = F[X},.. X7 ], we deduce that (g — 1)w € FX? jw, on

/

which H acts by xa; ? = X

(ii) Using (i) we determine the submodule structure of IndGLQ(OK ) W completely. This is

done in Step 1 to Step 3 below. Write S & {O 1,...,f — 1} in what follows. For J C S let o9
GL2(0k) X (resp.
onz, resp the top IndGLQ(OK ) X), (see § 1{for this parametrization). In particular, we

write O'J = O'J = O'J and note that og = 7. Note that the constituents ¢ ; occur with multiplicity
2, and that the o}, L occur with multiplicity 1, c¢f. [BHHTh, Lemma [4.3.3].

(resp. o} J, resp. o J) denote the constituent parametrized by J in the bottom Ind;
I dIGL2(OK)

For s € {0,1} write Vj for the unique subrepresentation of Ind?LQ(OK) Eyya; C
of §

In dGLz(OK) W with cosocle % (not to be confused with the Serre weight Uff]

GL2(Ok) Ey ya;- Write V7 for the image of

GL2(Ok) W+

equivalently for the image of any map Projz o5 — Ind;

some map ¢ : PI‘OJF o5 — IndGLz(OK) W+

Ind?LQ(OK ) X is nonzero. We claim that the V?# are independent of the choice of ¢ (equivalently,
V9 C V?). Indeed, as we recall at the beginning of § . 2.3, W, is a quotient of W,.3. Using

[HW22, Cor. 3.3] we see that IndGLQ(OK)
GLa(

such that the composite PrOJF oy > Ind;

W,z is a I- representation, so we can lift ¢ to ¢ :

Projzo; — Ind; Or) 77 W3 such that the composite with IndGLQ(OK) Wys — IndGLQ(OK) X is
nonzero. By [HW22 Prop 3.10(i)] (and its proof) we get [coker(qb) cog] = 0 hence by [HW22,
Prop. 3.10(ii)] the image of ¢ is independent of any choices, and consequently the image V7 of ¢
is well defined. Thus, to determine the submodule structure, it suffices to determine all minimal
(proper) containments between the submodules of the form V9, V} VZ. Here we say that a

containment of two such modules is minimal if no other V7 lies strictly in between.
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Step 1. By [BP12, Thm. 2.4] and [HW22, Lemma 3.7] the minimal containments among the
V}) and VJ1 are given by

1% gVﬁu{k}, Vic V}u{k} for any k ¢ J,; (18)

Vi GV if i ¢ J. (19)

Likewise, [HW22, Lemma 3.8] shows that the minimal containments between submodules of the
form V} and VJQ, are given by

Vi S Vi ifi¢J. (20)

Likewise, by [BP12, Thm. 2.4], the minimal containments among the VJ2 are given by

Vic V}u{k} for any k ¢ J. (21)

=

Step 2. We show that the minimal containments between submodules of the form V}) and
VJQ, are given by
Vi G Vi if i ¢ J. (22)

1

By dualizing (i) and replacing x by x~ " we deduce that the largest subrepresentation of

Ind?LQ(OK ) W with cosocle oy (and socle o) is uniserial of the form

o — O'?i} —0p. (23)
(Note that the middle constituent cannot be in} by (21]).)

Consider the statement

A(Jy, J2) - V), C V} is a minimal containment.
Note by that
A({k},0) holds if and only if k = 1. (24)
Also note that
AN, Jo) = |[J1ALRl=1 = (Ji CJ)or (J2C.J), (25)

because if A(Jq,J2) holds, then 0 # Ethll:(O'JQ,O'Jl) = Ext}(0y,,07 ), where the equality follows
from [BP12, Cor. 5.6(ii)], so that |J; A J5| =1 by Lemma [2.1.4]

We now show that A(Jy,J2) = A(J1 U {k}, o U {k}) if Jy D Jy and k ¢ J;. By A(Jy, Jo)
and we deduce that V}]l - VJQ2 - VJQQI_,{,C}. In particular, V}QM{k} admits a quotient Q
with socle o, and we may suppose that [Q : o] = 1 by passing to a further quotient. Then
Q = I(o,,05,u(k) Which is of length 4 by , so that by Lemma @ @ surjects onto the
nonsplit extension o, (x}y — Uk}, 1.6 there is a minimal containment ‘/Jslu{k} C Viu{k} for
some s € {0,2}. As J; D Jy we deduce by that s = 0.

By induction we deduce from and the preceding paragraph that A(J U {i},J) holds
whenever i ¢ J. If i € J, then we have containments V}) C V}\{i} C VJ2 by and . Ifi¢ J,
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then we have containments V}] - V}]I_l (i} - VJ?, where the first inclusion holds by and the
second holds by A(J U{i},J). As a consequence, we can reverse the argument of the preceding
paragraph to deduce that A(Jy, JJ2) <= A(Jy U{k}, Jo U{k}) whenever J; D Jy and k ¢ J;. In
particular, from we deduce that A(J U {k},J) holds (for k& ¢ J) if and only if k = 1.

In the preceding paragraph we dealt with all cases when J; 2 Jo. If J; © Js, then we have

= -

V})I - V}’Z - Vi, so that V}]l - VJz2 is not a minimal containment. We have thus confirmed the

= = =

list of minimal containments between submodules of the form V}) and VJQ, in (22).

Step 3. Recall that Q;F is the largest quotient of Ind?Lz(OK ) Wf with socle 7 = og. As

Vg C VSZ , we have SOCF(Q;F) = 7 and the submodules of Q;r having irreducible cosocle are the

images of the submodules V} of Ind?LQ(OK ) Wf that contain V3. From Steps 1 and 2 we obtain

precisely the following such submodules and containments:

Vi
W
\ /

\

1
Va\iy

This determines the submodule structure of Q;” by Lemma [2.3.2| (taking M = Ind?LQ(OK ) Wi,
M = @, and all possible o) below. It remains to observe that ag\{i} = (1), 0‘19\{1.} >~ it (1),

oL =5 (7). O

Lemma 2.3.2. Suppose that M is a finite length module over an artinian ring A, and that
m: M — M is a quotient morphism. Suppose that o and T are simple A-modules and that M,
(resp. M;) is a submodule of M having cosocle o (resp. 7). If the set of submodules of M having
cosocle o is totally ordered and w(My) # 0, then

M, C M, <= n(M,) C n(M,).

def

Proof. Let N = ker(r). For the nontrivial direction, we need to show that M, C M, + N implies
M, C M,. Let Proj, o be the projective cover of o in the category of A-modules (which exists as
A is artinian). Pick f : Proj4 0 — M that has image M,, and consider the commutative diagram

Hom 4 (Proj4 o, M, & N) Hom 4 (Proj, o, M; + N)

.

Hom 4 (Proj 4 o, M;) ® Hom 4 (Proj, o, N)

Hom 4 (Proj 4 0, M)

As M, € M; + N and Proj, o is projective there exist f; : Proj, o — M, and f3 : Projyo — N
such that f = f1 + f2. By the condition on the submodules of M, we know that im(f1) C im(f3)
or im(f2) C im(f1). In the first case, im(f) C im(f2) C N, contradiction. Hence M, = im(f) C
im(f1) € M, as desired. O
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Recall from [HW22 Thm. 2.23] that given a 2-generic Serre weight o and 7 € JH(Injx o), there

exists a unique finite-dimensional I-module (o, 7) such that socg I(0,7) = 0, cosocg [(0,7) =T
and [I(o,7) : 0] = 1. (Note that this agrees with the definition of I(c, 7) in §[2.1]if 7 € JH(Injp 0).)

Let W; = W;() denote the fiber product of W;" and W,~ over their common cosocle . Let
Q: = Qi(7) denote the fiber product of Q;” and Q; over their common quotient I(u; (7),7) (cf.
Lemma [2.3.1). We draw a diagram for W; and @);, but keep in mind that the submodule structure

is more complicated since the socle has multiplicities in each case:

p; (7)
Wi X Qi : T

Xixai_l T

X — X T i (1)
55 ()

Lemma 2.3.3. The representation Ind?Lz(OK) W; has a unique quotient QQ with socle 7% and

such that [Q : 7] = 3, and this quotient is isomorphic to Q;. Moreover, we have JH(Q;) =
{r,p; (1), i (7),6; (1)} and Qi/ socx(Qs) is multiplicity free.

Proof. By exactness of induction, Ind?LZ(OK ) W; is the fiber product of Ind?LQ(OK) Wt over

1
Ind?LQ(OK ) X. We have a commutative diagram with exact rows:

0 —— Ind™ %) W, s a2 O it md O - s d$ O s
i g
0 Qi QF xQ; = I(p; (1), 7) —=0

(For the right square, note that the natural map Ind?LQ(OK)W»* —- QF — I(p; (1),7) fac-

GL2(Ok) GLQ(O[’L()

tors through the Kj-coinvariants Ind; (W})k,) = Ind; (W} /x), and hence through
mdCl2(©x) | G2 (O pp+ . o _ GL2(Ox)

7 X because Ind; (W;/x) is multiplicity free and p; (7) € JH(Ind X)-)
By the snake lemma, since no constituent of ker(f) occurs in Ql?t (by Lemma [2.3.1)), the left
vertical map is surjective. Note that the map o sends SOCF(Q;F x Q;) to 0, so socs(Q;) =
SOCF(Qf) x socx(Q; ) = 792 As [Q; : 7] = 3, we deduce the existence of Q. Uniqueness of Q is
clear, since [Q; : 7] = [Ind?’LQ(OK ‘W . 7] = 3. The last statement follows from Lemma O

Note that each @; surjects onto 7. For a nonempty subset 7 C {0,1,..., f—1}let Q7 = Q7(7)
denote the fiber product of all Q; (i € J) over 7. Let x = x, and let W7 = W (x) denote the
fiber product of all W; (equivalently of all Wii) for ¢ € J over their common cosocle x.

Lemma 2.3.4.

(i) The radical filtration of Wy is given by x®2JI| — Dicr(xa; & Xoafl) — x. Moreover,
socy (W) = rad2(W) = #2171,
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(ii) The Ki-coinvariants of Wz fit in a short exact sequence 0 — @;c 7 x; — (Wg)x, — x — 0
with cosocle x.

Proof. (i) By construction of W7 as a fiber product we have an inclusion ¢ : ;¢ 7, rad;(W}") —
W. Its image is contained in rad;(Wy) because rad;(W;*) € Wy is the unique subrepresen-
tation with cosocle xya! and rad;(Wy) — rad;(W;). For length reasons, ¢ has to be an iso-
morphism onto rad;(W), which shows that cosoc;(Wy7) = x. We also deduce the claims about
rad;(W7)/ rad3(Wy) and rad?(Wr), as radr(W;) = (x — xa;1). The last assertion easily follows
as radj(Wy) C soc;(Wy) C socr (s Wi) = x®2I1 (note that rad? (W) = 0).

(ii) By (i) it is clear that W7 has a unique quotient, say £, which fits in a short exact sequence
as in the statement. By [Hul(, Lemma 2.4(ii)] £ is annihilated by mg,, so that (Ws)g, — &.
We prove that this is an isomorphism. Since (W)g, has cosocle x by (i), we have a surjection
Proj; /g, x = (W7)Kk,, which kills socr(Proj;/k, x) = x because dimp(Wy7)r, < 4[J[+1 <
pl = dimp (Proj;/, x). Since Proj;/x, x/socr(Proj/k, x) is multiplicity free [BHH™ 23, Lemma
6.1.3], it follows that (W)g, is multiplicity free, hence (W)g, is a quotient of W/ rad?(W)
by (i). To conclude it suffices to prove that ya; ' does not occur in (W) g, . Otherwise, (W) g,
would surject onto E -1 which is not annihilated by mg, by [Hul0, Lemma 2.4(ii)] again,

i

contradiction. O

Lemma 2.3.5. The representation Ind?LQ(OK) W has a unique quotient Q) with socle 9271

and such that [Q : 7] = 2|J| + 1, and this quotient is isomorphic to Q7. Moreover, JH(Q7) =
{r, 1= (1), 6 (1) i € T} and Q7 /s0ci(Q7) is multiplicity free.

Proof. We have a commutative diagram with exact rows:

0 Ind?Lz(OK) Wj H Ind?L2(OK) W 5 (Ind?LQ(OK) X)@(‘ﬂfl) >0
ieJ
g i f
0 Qs e SR

eJ

We claim that the left vertical map ¢ is surjective. As coker(g) is a quotient of ker(f) and
JH(ker(f)) NVJH([[;er Qi) = {p; (1) : i € J} it follows that all the constituents of coker(g) are of
the form p; (7) for some i € J, hence it suffices to show that Q7 cannot surject onto any p; (7),
i € J. This is true, as p; (7) occurs with multiplicity one in [[;c 7 Q; (by Lemma and
Qg — Qi > Q; — I(p; (1), 7). By construction, the components of the map « are obtained as
composition @Q; — Q; — 7 (or are zero), so the map sends [[;c 7 soci:(Qi) to 0 (by Lemma m
for Q;). Hence socx(Q7) = [lie 7 s0c(Qi) = 792171 and together with [lics Qi : 7] = 3|T| we
deduce [Q7 : 7] = 3|T| — (|J] — 1) = 2|J| + 1, hence we obtain the existence of @ (by taking
@ = Q7). Uniqueness and the last statement again follow easily. O

Recall that J is a fixed subset of S = {0,..., f—1}. Let © 7 = © 7(7) C Q7 denote the largest
subrepresentation such that cosocx(0©7) = 7. (This exists and [O7 : 7] = [Q7 : 7] = 2|J| +1: by
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[HW22, Prop. 3.10], Ind?LQ(OK ) Ws has a largest subrepresentation with cosocle 7; the same is

then true for any quotient representation, in particular for Ind?LQ(OK ) W7 — Q7.) We note that
JH(O7) = {r,uf () : i € T}, with ©7/ socg(©7) multiplicity free. For i € J let U; = W;(1) C
Q7 be the unique subrepresentation such that cosocx(V;) = 6 (7). Then ¥; = I(1,8; (7)), which
is uniserial of shape 7 — u (1) — §;(7), as

I(7,05 (1)) = ker(Qf — I(u; (1),7)) = ker(Q; - 7) — Q7
(the first inclusion coming from Lemma [2.3.1(ii)). In particular, rad=(¥;) C ©7 for all i € J.

Lemma 2.3.6. The representation Q7 is the colimit of the diagram (© 7 <= radf(\:[fi) — W,)icr
(with 2| T |+ 1 objects and 2|J| morphisms).

Proof. We claim that cosocx(Q7) = 7 ® @ics 67 (7). Suppose first that Q7 — o for some
irreducible o. Then

0 # Homgy, (o, (Indy %) W5, o) = Hom (W, o) = Hom;(Wy) s, ,0).

But (Wg7)k, is an extension of x by @;c s Xai_l by the last assertion in [Hul0, Lemma 2.4(ii)].
Hence o € {r,6; (1) : i € J}. Conversely, it is enough to note that Q7 — Q; — Qi — 5 (1) &7
for all i € J by Lemma [2.3.1(ii).

Hence Q7 =07+ c7 V. Write 7 = {0 < iy < --- <ip < f—1}. Let Ry, o G)‘y—i-Z?:l Wi,
with the convention Ry = O 7. We will prove by induction that Ry = Rj_; @rad;(‘l’ik) v, for
1 < k < n, which will complete the proof. It suffices to show that Rx_; N¥;, = radf(\l'ik). This
is clear, as ,u;}: (1) € JH(©7), which gives the inclusion 2O, and as 5;; (1) ¢ JH(Rg—1). (Recall that
these constituents occur with multiplicity one in @ 7.) O

3 Abstract setting

Let p : Gal(K/K) — GLg(F) be a continuous 0O-generic representation as in § and let 7
denote a smooth representation of GLy(K) over F. In this section we introduce and study certain
assumptions on 7 (relative to p) that play a key role in our work.

3.1 Assumptions

From now until the end of this paper, we assume that 7 satisfies assumptions (i) (with » = 1) and

(i) in [BHH al §[3.3.2) and assumption [(iv)| (with » = 1) in [BHH'D] §[2.1], i.e.

(i) we have 751 = Dy(p) as GL2(Of )-representations (in particular, 7 is admissible) and 7 has

central character det(p)w™?;

(ii) for any A\ € & we have [r[m?] : x»] = [7[m] : xu];
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(iv) for any smooth character x : I — F* and any i > 0, Extif/z1 (x,m) # 0 only if [r[m] : x| # 0,
in which case

. . p
dimp Exty , (x,7) = ( zf>

For later reference we also recall assumption (iii) of [BHHTal § [3.3.5], though we will not
assume it until §[5

(iii) there is a GLa(K)-equivariant isomorphism of A-modules
By (rV) 2 7V @ (det(p)w ™),

where Eif(ﬂ'v) is endowed with the GLa(K)-action defined in [Koh17, Prop. 3.2].

Finally, we introduce a further assumption which will be used only in § |§| (namely to verify
equation @ in the introduction).

(v) We have
dimp Tor%r(A) (gr(A)/m?, gr,, (7)) = dimg Tory (A/m?, 7¥),
where m = (y;j,2; : 0 < j < f — 1) denotes the unique maximal graded ideal of gr(A) (see

(12)).

We first note the following consequence:

Lemma 3.1.1. Suppose assumptions and hold. Let x : I — F* be a character such that
x & JH(7!') and Q be a quotient of Ind?’LQ(OK) x. Then ExtELQ(OK)/Zl(Q,W) =0 fori e {0,1}.
In particular, this result holds when Q = T is a Serre weight such that x, ¢ JH(z™t) by taking

X = Xr-

Proof. Using [Breldl Prop. 4.2], the assumption on y implies that JH(Ind?LQ(OK ) X)NW(p) =
GL2(Ok)

(. Thus for any subquotient @ of Ind; x we have Homgr,,)(@Q,7) = 0, as
Homgr, (0, (0, ™) # 0 if and only if o € W(p) by assumption
Consider the short exact sequence 0 — V — Ind?LQ(OK ) X — @ — 0, where V is the corre-
sponding kernel. It induces a short exact sequence
H 1% Ext. Q Ext. (nd$™O%) 7y =0
omgr, (o) (V. m) — Ex GLQ(OK)/Zl( ,m) — Ex GLo(Ok)/z, AT X, ) )

where the first term vanishes by the last paragraph and the last term vanishes by assumption
using Shapiro’s lemma. The result follows. O

Remark 3.1.2. Even if it is not needed for this paper, it is natural to ask if ExtéLQ(OK)/Zl (r,7m) =
0 for any Serre weight 7 ¢ W (p). It is possible to prove this for a globally defined representation
7(p) as in [BHH b, §, in a similar way to [BHH™ b, Prop. [2.6.2], but we don’t know how to

deduce this property using only assumptions |(i)H(iv)
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3.2 Consequences of the assumptions

Recall from § that mg, denotes the maximal ideal of the Iwasawa algebra F[K,/Z;] and T =
F[GL2(Ok)/Z1] /m%, (which is a finite-dimensional F-algebra). Let m be an admissible smooth
GL2(K)-representation satisfying assumptions and above with 2-generic underlying
p. In this subsection we explicitly determine the finite-dimensional I-module mr[m% ].

Consider the I-representation Dy(p) from § As p is 2-generic, Do(p) is multiplicity free
by [HW22, § 4.1] and has a direct sum decomposition

Do(p)= P Doo(p),

oW (p)

where 5070@) is the largest subrepresentation of Injy o containing o with multiplicity one and no
other Serre weights of W(p) (see also [BHH"23, Thm. 8.4.2]). In particular, socf(ﬁoﬂ(ﬁ)) =o.

Lemma 3.2.1. Let 7' be a Serre weight.
(i) If ' ¢ W(p), then Exti(r, Do(p)) = 0.

(i) If 7' € JH(Do(p)) \ W (p), then Extép, 0,02, (7' Do(p)) = Ext»ll:(T’, Dy(p)) = 0.

Proof. (i) This follows from the maximality of Dy(p) recalled above.

(ii) The first isomorphism is a general fact, because both 7" and Dy(p) are annihilated by m,
(so any extension between them is automatically annihilated by m%ﬁ). The second one follows

from (i) and the fact that Homy(7/, Do(p)/Do(p)) = 0 (as Do(p) is multiplicity free). O

Let 7 be a Serre weight and x I Forn > 1let Wy o (ProjI/Z1 X)/m™, where Proj;,z, x is
the linear dual of the injective envelope Inj; /7, (x~ 1) (a projective cover of  in the dual category).
It is a finite-dimensional representation of I/Z; over F. We let W, 3 be the smallest quotient of
W, 3 such that [W, 3 : x] = [Wy 3 : x]. It is shown in [HW22, Lemma 3.2] that W, 3 fits into a
short exact sequence

0= P By = Wys = x =0, (26)
Y
where the direct sum is taken over the characters x’ such that Ext} /Zl(X/ ,X) # 0. Then W, 3,
and hence also Ind?LZ(OK ) Wy.3, is annihilated by m% [HW22, Cor. 3.3].

If moreover 7 (hence x) is 2-generic, by [HW22, Prop. 3.10(i)], for any Jordan-Hélder factor

7’ of Ind?LZ(OK ) W, 3 there exists a GLy(Of )-equivariant morphism

¢ Projer’ — Ind; O (27)

such that [coker(¢./) : 7] = 0. Note that by [HW22 Prop. 3.10(ii)], the image im(¢,/) is unique
(even though ¢, need not be unique up to scalar).

For the following, we emphasize that ¢, depends on 7 (we always take x = )
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Lemma 3.2.2. Assume that 7 € W(p), so 7 is 2-generic. Then JH(coker(¢,)) "W (p) =0, and

EthGLQ(OK)/Z1 (7'/, T) =0

for any " € JH(coker(¢,)).

Proof. The first assertion is proved in [HW22, Cor. 4.14] (taking xy = 7! there). The second
is essentially a consequence of [HW22, Cor. 3.11]. To see this, let 7/ be a Serre weight such
that Ex‘céLQ(OK)/Z1 (7/,7) # 0 (this is equivalent to Exth(7/,7) # 0 by [BHHb, Lemma ,
noting that 7’ is automatically 0-generic by [BP12, Cor. 5.6(ii)]). We need to prove that 7’ ¢
JH(coker(¢,)). By [HW22, Prop. 3.12(ii)] (where &(7) in loc. cit. is the set of Serre weights 7"
such that Ext].(7”,7) # 0), we know that 7' is a Jordan-Hélder factor of Ind?LQ(OK ) W3, so we
have a morphism ¢,/ as in (27)). Since [coker(¢,/) : 7] = 0, it suffices to prove that im(¢,) C
im(¢;). But this follows from [HW22, Cor. 3.11(a), (c)]. Indeed, if 7" € JH(Ind?L2(OK) X),
then we conclude by [HW22l, Cor. 3.11(a)], as J(7) = {0,..., f — 1} in the notation of loc. cit.;
if 7 € JH(Ind?L2(0K)X’) for some x' € JH(W,3) with x’ # x, then we conclude by [HW22|
Cor. 3.11(c)]. O

Corollary 3.2.3. If 7 € W(p), then

Ext%(coker@T), Do(p)) = Ext%(cokeer), ) = 0.

Proof. Using EX‘G%(T’,T) = ExtéLQ(OK)/Zl (7/,7) for any Serre weight 7/, the first term is 0 by
dévissage from Lemma [3.2.1{i) and the first assertion in Lemma and the second term is 0
by dévissage from the second assertion in Lemma [3.2.2 0

Lemma 3.2.4. Assume that 7 € W(p). Then coker(¢,) has a direct sum decomposition

f-1
coker(¢,) = @ coker(¢r);, (28)
J

0

where coker(¢;); is a quotient of Ind?LQ(OK) xa; for 0 < j < f—1. Moreover,

(i) if xa; € JH(x™), then EXt%}LQ(OK)/Zl (coker(¢r);, Do(p)) = 0;

(ii) if xa; ¢ JH(7!1), then EXt%}LQ(OK)/Z1 (coker(¢,)j,m) = 0.

Remark 3.2.5. Although it will not be used in this paper, we have the following explicit descrip-
tion of coker(¢,);: it is the unique quotient of Ind?LQ(OK ) xcj consisting of the Jordan-Hélder

factors parametrized by the subsets of {0,..., f — 1} that contain j.

Proof. By construction, im(¢;) contains the image of any morphism Projz 7 — Ind?LQ(OK ) Wys,

and in particular contains the subrepresentation Ind?LQ(OK ) X2 C Ind?LZ(OK)WX,g (recall
that x®2/ C W, 3 by and that cosocr (Ind?h(om x) = 7). Thus, the quotient map
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Ind?LQ(OK ‘W W, 3 — coker(¢;) factors through IndGLZ(OK )

fits into a short exact sequence

Wy.2 — coker(¢-). Recall that W, o

f-1
0— @(Xaj & Xoaj_l) — Wy2 — x — 0.
Jj=0

We have a commutative diagram with exact rows

—=0

0 ———ker(q) Projz 7 — IndGLQ(OK)

LQST
-1

00— P md> O yo ! - maf= O gy, O g
j=0

1 GL2(O +1
/5 Indg 2 (Ox)

so that we have a surJectlon v: P X = coker(¢;) by the snake lemma. As

@5:& I dIGLQ(OK)

is multiplicity free (for instance by |[BHH™b, Lemma |4.3.3]) we deduce

an isomorphism coker(¢;) = EBf 0 coker(¢T) £ where coker(qﬁT)i def (IndGL2(OK)

XOé;»tl) (in par-
ticular it is a quotient of IndGLQ(OK ) Xajcl). If coker(¢); # O then coker(¢;) and a fortiori
In d?LQ(OK) Wy,2 would surject onto ¢, (7) (the cosocle of Ind L2(0k) XQ; ~1). But this is not
true by Frobenius reciprocity, as one checks that HomI(Wxg,éj (T)) = 0 by [BHH a, Lemma
( i)]. We thus get the decomposition (28) by taking coker(¢,); = coker(qu) .

(i) By Lemma [3.2.1]ii) and the first statement in Lemma it suffices to show that
JH(coker(¢,);) € JH(Do(p)) when ya; € JH(w!t). In fact, we prove the following stronger
statement: if x/ € JH(w!t) then JH(Ind?LQ(OK)X’) C JH(Do(p)). By [BHH'bL eq. (52)] we
have JH(Projp o) C JH(Do(p)) for any o € W(p). Now, since x' € JH(rw!t), we have
JH(Ind?LQ(OK) X)) N W (p) # 0 by [Breldl, Prop. 4.2]. Thus it suffices to prove that

JH(Ind$™ (%) /) € JH(Projp o) (29)

for any o’ € JH(IndGLQ(OK) M.

We prove for any character X' : I — F* satisfying x" # x"*. Let Projy ) o’ be the
projective cover of ¢’ in the category of W (F)[I']-modules. Let [x'] : I — W(F)* be the Teich-
miiller lift of x’. Since ¢’ € JH(IndGL2(OK )
Ind; (]

X'), there is a non-zero morphism 7y : Projy )y o’ —

. Inverting p, the latter representation is irreducible over W (IF)[1/p] as [x'] # [x
so 7 is surjective after inverting p. We conclude by the Brauer—Nesbitt theorem.

/s]
’

(ii) It is a direct consequence of Lemma O

Lemma 3.2.6. Let 7 € W(p) and Q be a quotient of Projx 7 such that radx(Q) C Do(p) (hence
rad=(Q) is multiplicity free). Then Q is a quotient of im(¢-).
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Proof. In this proof, if M is a finite-dimensional I-module, we write rad(M), soc(M)
and cosoc(M) for radz(M), socx(M) and cosocx(M) respectively. We may assume that @ # 0.
Since rad(Q) is multiplicity free by assumption, we have [rad(Q) : 7] < 1 and [@ : 7] < 2. Since

rad(Q) C Dy(p) = Docw ) 507(,@) (which is multiplicity free), we have a decomposition

rad(Q) = @ Vy

ocW(p)

for some subrepresentations V, C ﬁoja(ﬁ). If V, # 0, let Q, be the quotient of @ by its largest
subrepresentation in which o does not occur, so soc(Q,) = o (even if o = 7, as cosoc(Qy) = T)
and 0 - V, = Q, — 7 — 0. Assume first o # 7 and V, # 0. By [HW22| Lemma 4.10], the
natural morphism

Extil:(T, o) = EXtil:(T, V) (30)

is an isomorphism. Since (), has cosocle 7, we deduce that V,, = 0. Assume next that ¢ = 7 and
also V; # 0. Then [HW22, Cor. 4.9] implies that the natural inclusion Dy () < Dy () induces
an isomorphism B

EX‘C%(T, Dy - (p)) = Ext»II;(T, Do +(p))- (31)

Letting A Lv.n Dy -(p) # 0, we obtain a commutative diagram with exact rows

0

Extl(, 4) Ext(r, V;) Ext(r, V7 /A)

| | |

0 — Extl(r, Do 1 (7)) — Exti(r, Do+(7)) — Exti(r, Do(7)/ Do, (7))

where all the vertical arrows are easily seen to be injective (as 15077(5) is multiplicity free). A
diagram chase together with shows that the class of @), in EX‘U%(T, V;) lies in the image of

EXt%(T, A). Since @, has cosocle 7, we have A = V, namely V; C Dg (p). Altogether we get
rad(Q) € Do(p).

Now we prove the lemma. If 7 does not occur in rad(Q), then [@Q : 7] = 1 and V; = 0.
Moreover, the discussion in the last paragraph implies that rad(Q) = @,eynsoc()) ¢ (provided
rad(Q) # 0). Thus @ is a [-representation by [BHH" b, Lemma (and the first sentence in
its proof), and [HW22|, Cor. 3.14] (applied with m = 0) implies that @ is a certain quotient of O,
where © in loc. cit. is a quotient of im(¢,) constructed in [HW22] Prop. 3.12]. As a consequence,
Q is a quotient of im(¢,).

If 7 occurs in rad(Q), then 7 must occur in soc(Q) as rad(Q) € Dy(p) and 7 € JH(soc(Dy(p))).
In this case ) satisfies the following conditions:

(1) [Q:7] =2, T soc(Q), and cosoc(Q) = T;

(2) rad(Q) is a subrepresentation of Dy(p).

It is proved in the last paragraph of the proof of [HW22), Prop. 4.18] that such a representation is
a quotient of O, hence of im(¢;). The argument goes as follows. Firstly, by [HW22, Lemma 4.10]
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condition (2) implies that JH(soc(Q)) is contained in {7} U &(7), where &(7) denotes the set of
Serre weights 7/ such that Ext:(7/,7) # 0. Secondly, using (1) and the fact Ext%(T, 7) = 0, one

shows that the socle of C'* Q/ is contained in &(7) and that C fits in a short exact sequence
0=85—=C—=7—0

for some subrepresentation S of @,/cg(,) 7'. Then we conclude by [HW22, Cor. 3.14]. O]

Lemma 3.2.7. Assume that T € W(p). Then Homgy,(o)(Projs 7,m) has dimension 1 over F.

Proof. Step 1. We prove that Homgr, (o, (7, 7/7[mk,]) = 0. Suppose by contradiction that
Homgr, (0, (T, 7/7[mk,|) # 0. The pullback of 7 gives a subrepresentation V' C 7|qr,, (0, ) which
(using assumption fits into a nonsplit extension

0— Do(p) =V =17 —0. (32)

Note that V is a f—representation but not a I'-representation. By the projectivity of Proj 7, there

exists a f—equivariant morphism q : PI‘Oj’I:T — V' whose composition with V' — 7 is the natural
surjection Projz7 — 7. Let V; denote the image of ¢, which has cosocle 7. Clearly V; satisfies
the conditions (on @) in Lemma so there exists a surjection im(¢,) — V; and we denote
by 8 the composition im(¢,) — V; < V.

We introduce a 3-step filtration on M = Ind?LQ(OK)WX;) as follows. Let S C {0,...,f —1}

be the set of indices j such that ya; € JH(x't). Put M, “im(¢,) € M and

My = ker (M — B coker(¢-);),

jgs
where we used . Then 0 C My C M; C M with
My /M, = @coker(gbf)j, M/M; = @coker(gé.r)j. (33)
JES JjEs

By Lemma Lemma (1) and (32), we have Ext%}LZ(OK)/Zl(Ml/Mg,V) =0, so
the natural morphism Homgr, o, )(M1,V) — Homgr, (o, (M2, V) is surjective. Thus we can
lift 8 to B’ : My — V, which we view as a morphism ' : M; — 7 (as V C 7). Next, since
ExtéLQ(OK)/Zl(M/Ml,ﬂ) = 0 by Lemma (ii) and , we can further lift 5’ to a morphism
3" : M — m. By Frobenius reciprocity, we obtain an I-equivariant morphism Wxﬁ — 7|7, which
must factor through Wy 3 — x < 7|; by assumption Correspondingly, 3" itself factors
through M — Ind?LQ(OK)X — m, so im(B") is contained in w[mg,]. But this is not true by
construction of 8", contradiction.

Step 2. Suppose by contradiction that dimp HomGL2(@K)(PrOjFT, m) > 2. By [HW22|
Prop. 4.18], which requires p to be 2-generic and condition (a) at the beginning of [HW22, § 4.3]
to hold, we also have dimp Homqr,0,)(0-,7) > 2. (Recall from [HW22, § 3.3] that ©; is the

smallest quotient of Projz 7/ rad% (Projz7) such that [Projx7/ rad% (Projz7) : 7] = [©; : 7]
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and that ©, fits into a short exact sequence

0>EPE~ =6, 570,
T/

where the direct sum is taken over the Serre weights 7/ such that Extf(7/,7) # 0; see [HW22,
Cor. 3.16].) Thus, there exists a GLa(Og)-equivariant morphism « : ©, — 7 which does not
factor through the cosocle of ©. Since m[mg,] = Do(p) is multiplicity free and 7 = cosocx(©r)
oceurs in socqr, (o) (), we deduce that im(y) is not contained in 7[mg,|. However, rad=(©;) is
annihilated by mg, (by [HW22, Cor. 3.16]), so the image U of rad(©) is contained in 7[my,].
The inclusions U C w[mg,] C 7 induce natural maps

ExtGr, 050720 (1 U) = Bxtér, 002, (T T ) = Extér, 0,02, (T 7)-
The first map is injective, because by assumption ((i)| either Homgrp, (0, (7, 7[mg,]/U) = 0 (if
7 € JH(U)) or the map Homgr, (o, (7, 7[mk,]) — Homgr, o) (7, 7lmg,]/U) is surjective (if
7 ¢ JH(U)). The second map is also injective by Step 1. However, viewing im(y) as a (non-zero)
element in ExtéLQ(OK)/Zl (r,U), it is sent to 0 in ExtéLQ(OK)/ZI (r,7) as im(y) C w. This gives
the desired contradiction. O

Proposition 3.2.8. Suppose that w satisfies assumptions and with a 2-generic un-
derlying p. Then

rlm%,] = Do (p). (34
Proof. Tt follows from Lemmathat [r[m %( | : o] = 1forany o € W(p). From the construction
of 150( ) we deduce an inclusion 7T[I'(1K | C D o(p). Suppose the inclusion is strict, and choose a
Serre weight 7 < Dy(p) /m[m% ]. Let Vr C Do(p) be a subrepresentation with cosocle 7 and
such that the composition V; < Dg(p) — Do(p)/m[m% ] coincides with the chosen inclusion
T < ﬁo(ﬁ)/ﬂ'[m%ﬁ] As Do( ) C wlm%, ] by assumption |(i . we have 7 € JH(Do(p)) \ JH(Do(p)),
so in particular x, ¢ JH(w!t). Applying Homgr,(oy)/z, (= 7) to 0 — rad=(Vz) = V; = 7 = 0
and using Lemma we obtain an isomorphism

Homgr, o) (Vr, ) = Homgr,,(0,) (radf(VT), ).

Thus, the natural inclusion radx(V- ) C m lifts to an embedding V; — 7, whose image is contained

in w[m% ] as V; is annihilated by m% . This gives a contradiction as 7 ¢ JH(w[m% ]) (Do(p) being
multiplicity free). O

4 On the Hilbert series of 7

Let 7 be a smooth mod p representation of GLa(K) over F satisfying assumptions and
of §[3l In this section we compute the Hilbert series of gr,, (7).

It M = @,,<o M, is a graded F-vector space with dimp M,, < +oo for all n, we define the

Hilbert series
har() =) dimp(M_,)t" € Z[t].
n>0
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In particular, if IT is any admissible smooth representation of GLy(K) the Hilbert series hyy(t) o

hgrm(HV)(t) S Z[[t]] is defined.

Theorem 4.1. Assume that p is 9-generic and that ™ satisfies assumptions (md of
§[3

(3+1t)f

(1—t)f

(341t)7
(1—t)f

(i) If p is irreducible, then h.(t) =

(ii) If p is split reducible, then h.(t) = + 1.
(iii) If p is nonsplit reducible and dj o |J5| (so dz < f, see (10) for J5), then hr(t) = 2f =45 .
(1+ )% (34 1)%
1-t)f

Remark 4.2. Note that the denominator of h,(t) equals (1 — t)/ expresses the fact that the
Gelfand—Kirillov dimension of 7 equals f. (By [BHH"23, Lemma 5.1.3], the Gelfand—Kirillov
dimension of 7 equals the dimension of gr,,(7") as an R-module, hence equals the dimension of
(grn(m))w as an Rg-module by [BH93, Ex. 1.5.25], hence equals the exponent of (1 —¢) in the
denominator of h,(t) by [Mat89, Thms. 13.2, 13.4], cf. the discussion on [Mat89 p. 97].)

Remark 4.3. Note that if we put t = 0 we recover the dimension formula for Dy(p)* = 7't in
[BP12, Thm. 1.1].

Proof. We first recall that, under our assumptions, by [BHH™b, Thm. [2.1.2] we have

Ndef@x ®R/a
AP

where a()) is the ideal of R associated to A € & in (13). It remains to determine hy (t).

We note the following elementary but useful formulas. First, if M, M’ are two graded F-vector
spaces, then

haron (t) = har(t) b (t). (35)
Second, we have for any integer n > 0:
1 n n N\ gn—i_i
§[(2+ge) —@2-2)" = > ()2 at, (36)
0<i<n, i odd v

% (@+a+2-2)"] = 3 (?) 2", (37)

0<i<n, i even

By definition of N, we have hn(t) = > \c o hr/ar) (). Recalling a(\) = (£;0 < j < f—1)
with t; € {y;, z;,y;%;} and noting that

ety (8) = s (8) = 1/ (1= 1), hsfyz /(e () = (L+1)/(1 = 1),
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we obtain by that
, . (1 + t)ANI
R/a() () = I

where A(X\) = {j : t; = y;z;}. Hence, we are reduced to counting the cardinality of A € & such
that |A(X)| = s for a given 0 < s < f.

(i) Given A € &, we define an element \ € Z as follows:

o — 1 if )\o(ZL‘Q) € {:L’o—l,:L’o—Fl},
Xo(xg) et p—2—1‘0 if )\0(&?0) S {p—2—$0,p—$0},
Ao(zo) otherwise
and if j # 0,
Z; if )\j(l‘j) S {l‘j,l’j + 2},
Nj(wj) Ep—3—m; if \j(x;) € {p—1—xj,p—3—a;},
Aj(xj) otherwise.

It is easy to see that A € 2. By [BHHTal Def. [3.3.1.1], we have t; = y;z; if and only if

Aj(xj) €{xj+1,p—2—a;} if j # 0 (resp. Ao(zo) € {z0,p— 1 —x0}), thus A(A) = A(}). On the
other hand, given X € 2, there exist exactly 2{0--/=INANI elements A € £ giving rise to X. As
a consequence we have hy(t) = Qn(t)/(1 — t)! with

MO zf—s.2<f>(1 +1)5=B+t) —1—1t),
0<s<f, s odd s

where the first equality follows from Lemma below and the second from (with z = 1+1¢).
The result follows.

(ii) The proof is similar to (i) using Lemma [4.5{ii) below and (37).

(iii) Let & C & be the subset introduced in the proof of [BHHal Prop. 3.3.1.5], namely
A € Z if and only if

/\j(:L‘j)G{xj,xj—i-l,p—1—$j,p—2—$jap—3_33j} (38)

and \j(z;) = p—1—x; implies j ¢ J5 (recall fronL that A;(z;) = p—3—x; implies j € J5). In
the proof of [BHH " al Prop.|3.3.1.5] a map & — £, A\ — ) is defined, which satisfies A(\) = A())

and for any A € 2, there exist exactly 2H{0-/ NN elements A in 2 giving rise to X. Using
Lemma (iii) below (with |A(\)| = f — d5 + s), we then obtain hn(t) = Q'y(t)/(1 — t)/, where

e . _ df —d— —d— —d— _
NOEIDY 2d”‘8'2f_d”<sp><1+t><f B = 2T (14 ) (3 + 1)
0<s<d5
recall d; = |J5|), proving the result. O
Z P

Remark 4.4. We note that our proof determines hy(t) in each case without any genericity
conditions on p.
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Lemma 4.5.

(i) If p is irreducible, then |A(N)| is odd for all A € 2. For any subset J C{0,...,f — 1} with
|J| odd, there exist exactly 2 elements N\ € P such that A(\) = J. As a consequence, for
any 0 < s < f which is odd, the set of \ € @ with |A(\)| = s has cardinality 2(%).

(ii) If p is split reducible, then |A(X)| is even for all X € 9. For any subset J C {0,...,f —1}
with |J| even, there exist exactly 2 elements A € 9 such that A(X\) = J. As a consequence,
for any 0 < s < f which is even, the set of X € 2 with |A(N)| = s has cardinality 2(1;)

(iii) If p is nonsplit reducible, then J5 < A(N) for any A € P (where P is defined in the proof of
Theorem (m)), and for any J C J5 the set of A € 2 with A(\) = J U J3 has cardinality
2= In particular, we always have f — ds < |AN)| < f, and for any 0 < s < dj the set
of X € P with |A(\)| = f — d5 + s has cardinality 2f_dﬁ(df).

Proof. (i) By the definition of A()), we have
AN) ={j: Nj(zj) e {zj + 1, p—2—a;}if j #0, or Ng(zo) € {zo,p — 1 — 0} if j =0}. (39)

By definition of Z (see [BP12, § 11]) and of A(X), we check that A;(z;) is determined by Aj_q(z;—1)
and the value of 14y (j) for any j. For example, if A\o(zo) = zo and f > 2, then \i(71) = 71
(resp. M(z1) =p—2—xq) if 1 ¢ A(N) (resp. 1 € A(N)). This implies that A € Z is determined
by Ao(zo) and A(\). Moreover, one checks that:

o |[AN)N{L,..., f—1}isevenif Ao(zg) € {zo,p—1—x0} (by showing that [{j # 0: \;(z;) =
p—2—xj} = [{j #0: X(zj) = z; +1}|), and is odd if Ao(zg) € {zo —1,p — 2 — x0}
(by showing that [{j # 0: Xj(z;) =p—2—2;} = {7 #0: \j(zj) =2; +1}| £1). As a
consequence, |A(\)| is always odd by (39).

o Conversely, if A\o(zg) € {xo,p — 1 — x0} (resp. Ao(xo) € {zg — 1,p — 2 — x0}) and J C
{1,..., f—1} is even (resp. odd), then there exists a unique A\ € Z with given value at j = 0
and such that J = AN N{L,..., f—1}.

Thus, for any J C {0, ..., f— 1} with |J| odd, there exist exactly two A\ € Z with A(\) = J. The
result follows from this.

(i) The proof is similar to (and simpler than) (i). In this case, one has A(X) = {j : \j(z;) €
{z;+1,p—2—x;}} and it follows directly from the definition of 2 that the subsets [{j : A\j(z;) =
xzj + 1} and [{j : N\j(zj) = p—2 — x;}| of Z/fZ are interlaced, i.e. between any two distinct
elements of one subset there exists an element of the other, and hence of the same cardinality.

(iii) By the proof of [BHH &, Lemma [3.3.1.3], there is a bijection between & and 2 as
follows: A € & corresponds to u € 2% defined by

aef | D=3 — x5 if \j(z;) =p—1—xj,
pi(zj) = :
Aj(z5) otherwise.
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One checks that A(\) = (A(p) N J5) U J3, so in particular J$ C A(A). Thus for a given J C J5,
NE T2 AW) = JUJSY = [ € 7 A(u) N Jy = T},

where A(p) is formed with respect to p*. If [J| is even, then for any J' C JS with |J'| being
even, there exist exactly 2 elements p € 2% such that A(u) = J U J’ by (ii), so the cardinality
of u € P satistying A(u) N J5 = J is Po<i<f—a, i even Q(f_.dﬁ) = 2/=9% . Similarly, if |J| is odd,

P (2
then the cardinality of € 2 satisfying A(u)NJ5 = J is 2 0<i<f—ds, i odd 2(f_id5) = 2/=95, This

proves the second statement and the last one easily follows. O

In the rest of this section, we assume that p is split reducible. For A € &, recall the set
Jy CH{0,..., f — 1} defined in . For i € {0,..., f} put

Noy= @D xi'®@R/a(N).
)\Ef’?,‘.]ﬂ:i

The following result computes the Hilbert series of N;).
Proposition 4.6. Assume p is split reducible. Then for any 0 <i < f,
2 ¥ (Uma+y®
0<s<t
T

hg (8) =

Remark 4.7. Together with [BHH"b, Cor. [3.2.7](ii), Proposition gives the Hilbert series
h(t) for any subquotient " of 7 if p is split reducible and max{9,2f + 1}-generic.

Proof. Since p is split reducible, [A(A)| = 2|{j : Aj(z;) = 2; + 1}| by the proof of Lemma [4.5(ii).
Since {j : A\j(x;) = x; + 1} C Jy, we deduce |A(N)[/2 < |Jy]. Fix 0 <4 < f. As in the proof of
Theorem we have

 Yo<s<i | Pisl(1+ )%

where 2, , © {\ € & : |Jy| =i, A(N)| = 2s}. Thus, it suffices to show the equality |2 ;| =
2 S0<si (3) (23
Let A € &5 (with 0 < s < i < f) and write A(A) = {0 < j1 < j1 < -+ <js < jL. < f}

Assume first \j, (z;,) = =, +1; we call it case +. Then one checks that X is uniquely determined
by (A(X), JJy \ A(N)) as follows:

« Ajp =, +1and Ay (zj) =p—2—ay for 1 <k < s by the proof of Lemma {4.5(ii);

o if ji < j < jj for some k, then \j(z;) € {z;,x; + 2}, and A\j(z;) = x; + 2 if and only if
J € I\ AR);

o if ji. < j < jgq1 for some k (in Z/fZ), then X\j(z;) € {p —1 — zj,p — 3 — z;}, and
Aj(zj) =p—3—x; if and only if j € Jy \ A(X).
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Conversely, an element A\ € & satisfying the above conditions belongs to ;¢ with i = |{j :
Nj(xj) ={x; +1,2; +2,p — 3 — x;}}|. Similar statements hold if \j, (z;,) =p — 2 — z;,; we call
it case —.

The above discussion implies that sending A to (A(X),case =+, Jy \ A())) gives a bijection
between Z; ; and the set of triples (J, %, J') satisfying

JCH{0,....f—1}, |J|=2s, JCJ |J|=i—s.

Thus |Z; 5| = 2> 0<s<i (1) (/%) as desired. O

1—S

5 On the structure of subquotients of 7 in the semisimple case

We determine the m%ﬁ—torsion of any subquotient of 7, where 7 is any smooth mod p represen-
tation of GLa(K) satisfying assumptions |(i)H(iv)| of § 3| and the underlying Galois representation
p: Gal(K/K) — GLg(F) is semisimple and sufficiently generic. By [BHH"a, Cor. and
Proposition [3.2.8] we may and will assume that p is split reducible.

Proposition 5.1. Assume that p is split reducible and max{9,2f + 1}-generic.

(i) Let 7" be a subquotient of w. Then there exists a (unique) subset ¥’ C {0,..., f} such that

wh(l 6}9190

ey’
where Do(p)i = Bpew ), 4,1=i Doo(p) for 0<i < f.
(ii) Let w1 C ma be subrepresentations of w. Then the induced sequence of [ -modules
0— Wl[m%ﬁ] — 7['2[111%(1] — (71'2/7'('1)[‘['(1%(1] —0
is split exact.

Remark 5.2. As a consequence of Proposition (ii), if m; C mo are subrepresentations of T,
then the induced sequence of I'-representations

0— it 5 7l o (my/m) K = 0

is split exact. This strengthens [BHH™ bl Lemma |3.2.6].

Proof. We first prove (i) for any subrepresentation #’ = 7;. Let ¥’ = ¥; be the unique subset
such that 80CGL, (04 ) (1) = Dy(o)ex, o- First, since m [mK ] C w[m¥%, ], we deduce from Proposi-

tion [3.2.8| that
nU(1 6}9 l)o

1€

Denote by @ the quotient (P;cyx, Do(p)i)/m1 [m% J; we want to prove @ = 0. By [HW22, Thm.
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4.6], Do(p) is multiplicity free, so JH(Q) N W (p) = 0. Consider the natural morphisms
Q = mmi, ] /m[mi,] = (7/m)[m,] = 7/m

which induce an embedding socqr,(0,)(Q) — s0cqL, (k) (T/m1). But JH(socqr, o) (7/m)) C
W (p) by [BHH'b, Lemma [3.2.6], so we must have socgr,,(0,)(Q) = 0, equivalently @ = 0.

(ii) As in the proof of [BHHTD, Cor. [3.2.5], it suffices to treat the special case my = m. We
again define ¥y by the equality socqr,(o)(T1) = @yr)ex, 0, 80 T1 [m%,] = @ies, Do(p)i by the
preceding paragraph. Thus there is an inclusion @;¢x, Do(p); = wlm% |/m[m% ] C (7 /m)[mF .
Suppose that this is not an equality. Then (7/m)[m% ] contains a subrepresentation V' which fits
into a nonsplit -extension

0= @ Do(p)i >V =710 (40)
¢Sy
for some Serre weight 7. (The extension is nonsplit by [BHH b, Lemma[3.2.6].) We have 7 € W (p)
by Lemma (1) and we let again y = 711,

By the projectivity of Projx 7, there exists a f‘—equivariant morphism 3 : Projz7 — V whose
composition with V' — 7 is the natural projection PI‘Oj'I:T — 7. Let V3 denote the image of f,
which has cosocle 7. By , Vj satisfies the conditions in Lemma so it is a quotient of
im(¢.), namely (3 factors through im(¢,) — V.

By Corollary we have Ext%(cokerﬁm), V) = 0 by dévissage using (40). Hence, using

the short exact sequence 0 — im(¢,) — Ind?LQ(OK ) W3 — coker(¢;) — 0, we can lift the map
im(¢,) — V of the previous paragraph to

G Ind?LQ(OK)W%g =V (= 7/m).

The splitting statement in [BHHh, Cor. [3.2.5] with n = 3 implies that the natural sequence

0— Hom[(WX73,7T1) — HOII]](WX73, 7T) — Hom[(WX73,7T/71’1) —0
is exact, so combined with Frobenius reciprocity we obtain a morphism
A" : Ind$ T, o 7

whose composition with 7 — w/m gives 8. By |[BHH'23, Prop. 6.4.6], any I-equivariant

morphism W, 3 —  factors through W, 3 — x, hence 3" factors as Ind?LQ(OK)WX,g —

Ind?L2(OK ) x — 7. In particular, the image of 5” is contained in 751 and has cosocle 7. Since T
occurs in socqgr, (o) (7) and not elsewhere in 7K1 (as 781 is multiplicity free), the image of 3"
(hence also the image of ) is just 7. This gives a contradiction, proving (ii), as V' is a nonsplit

extension by assumption and Vj has cosocle 7.

Finally, (i) is a direct consequence of the first paragraph of the proof and of (ii). O

We can now prove Theorem [1.1.3|in the semisimple case.
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Corollary 5.3. Assume that p is semisimple and max{9,2f + 1}-generic. Then for any subquo-
tient ™ of ™ we have

dlmF((X)) D%/(’ZT/) = | JH(T(,Kl) N W(ﬁ)|

Proof. We have dimp(x) D¢ (n') = | JH(socqr,(o,) ™) by [BHH™b, Cor. (1)} (if p is split
reducible) and [BHH al Prop. [3.3.5.3(ii)] (if p is irreducible, noting that 7’ = 7 by [BHHTa,
Thm. (1)] in that case). It suffices to show that JH(x'51) "W (p) = JH(socgr,(0,) 7). 1 P
is irreducible this is clear, as /%1 = 751 = Dy(5) by assumption If 7 is split reducible, then
751 = @, 50 Do(p); by Proposition keeping the notation there, and the result follows. O

6 On the structure of subquotients of 7 in the non-semisimple
case

We prove many results on the structure of subquotients of 7 as I- and GLy (O )-representations.

From now on 7 denotes an admissible smooth representation of GLa(K) over F satisfying
assumptions [(i)H(v)| of § |3} with underlying Galois representation p which is nonsplit reducible
and 0-generic.

The main results of this section include the description of the I1- and Ki-invariants as well
as of the GLya(Of)-socle of any subquotient of 7. These results all depend on determining the
I1-socle filtration of any subquotient 7’ of 7 (equivalently, the associated graded module of 7’V
for the m-adic filtration), which is the subject of subsection [6.1]

We again suppose that m; C 7 is a subrepresentation of 7 and let o e w/m. Let ig e
io(m) € {=1,..., f}, cf. [BHH"D, Thm. 4.3.15]. To simplify notation, for A\ € 2 we let dy &
max{ig + 1 — |Jx[,0}.

6.1 The graded module of subquotient representations of 7

We describe gr,,(7'V), where 7’ is any subquotient of m (Corollary [6.1.7]). We start with quotients
mg = m/m of m:

Theorem 6.1.1. Assume that p is max{9,2f + 3}-generic. We have an isomorphism of graded
gr(A)-modules with compatible H-actions,

VA~ - aio(/\)
Bl (my ) = /@Xxl ® ;()\) (—dy).

The grading shifts are such that all nonzero direct summands contribute in degree 0, but
vanish in degree 1. Note also from the definitions that a®(\)/a(\) = 0 if |[{j € JE o Nj(zy) €
{p—1—=j,z;}}| < dx (The converse is also true, by comparing equations [BHH "D, and
(B0)], or alternatively see the proof of [BHH*b| Cor. [4.4.7].)
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Remark 6.1.2. Theorem implies that gry (3') is Cohen-Macaulay or zero as gr(A)-module.
(By [BHHTD, Prop. |4.4.3] and [BHHTD, Cor. |4.4.5], each nonzero a%°()\)/a()\) is Cohen-Macaulay,

as the Cohen—Macaulay property is closed under direct summands, shifts in grading, and direct
sums. )

Remark 6.1.3. Theorem shows that gr,,(r3) is killed by the ideal J, i.e. is an R-module.
This is a priori not obvious. A similar comment applies to Corollary

Remark 6.1.4. When iy = f, Theoremis trivially true, because m = 0 and a{ (A) = a(A) for
all \ € #. (By [BHH'D| Lemma[.1.4] we have f + 1 — |[Jy| = [Ji| + |Jo| + |Jae| + 1 > |Ji| + | 2],
where A — \* is the involution of & defined in [BHHTa, Def. [3.3.1.6].) When iy = f — 1,
Theorem [6.1.1] has an easier proof (and holds when 7 is max{9,2f + 1}-generic). By [BHH'b)

Thm. |4.4.8(ii)], 7o is irreducible in this case, so 7 is the principal series Indg%;(()K)(Xl ® xow™ 1)
f-1 ;
. SIS
by [HW22, Prop. 10.8], where p = (% ,) and hence x1|7, = w} s=o (IR Xelre = 1.

(Here B(K) denotes the Borel subgroup of upper-triangular matrices of GLo(K).) We apply the
combinatorial Proposition [6.1.10] below (or argue directly) to deduce

L al(x o _
@ X)\l ® ;(()\ >(_d>\) = X)\/1® D X)\Nl® (41)

A )
where X', \" € &% are given by \(z;) = p — 3 — z;, \j(z;) = x; + 2 for all j. We calculate
v = (X2l )w™ @ xilie and xar = X1l ® (xalrx)w™t. We conclude by [BHHTal, Prop.

3.3.3.4(ii)].
def

Lemma 6.1.5. Suppose that M is a graded gr(A)-module. Let N == (a®(X)/a()\))(—dy) for some
A€ . Then the natural map

R R
(zj:0< < f=1) (y;: 0<j<f-1)

HOMg,(2) (N, M)o — HOMg,(p) (N, M/ gr<_3 M)o

s an isomorphism.
Recall that HOM(N, M)y denotes the graded morphisms N — M (of degree 0).

Proof. Step 1. Suppose for the moment that S is a graded ring and N any finitely presented
graded S-module. For any subset D C Z we say that N has relations in degrees D as S-module
if there exists a graded exact sequence of the form @} ; S(—d;) — S®™ — N — 0 with d; € D
for all ¢ (in particular, N is generated by its degree 0 part).

We claim that if N has relations in degrees D as S/I-module, where I is an ideal of S that is
generated by finitely many homogeneous elements s; whose degrees are contained in D, then the
same is true as S-module.

To see this, by assumption we can find a surjective graded homomorphism (S/I)®™ — N — 0,
whose kernel is generated by finitely many homogeneous elements x; whose degrees are contained
in D for all j. Lift each x; to a homogeneous element Z; of S®™ of the same degree. By
composition we have a surjective morphism S®™ — N — 0 of graded S-modules. Its kernel is
generated by all s;e, (where e denotes the standard F-basis of S®) and all Z;, as desired.

38



Step 2. We show that N = (a'°(\)/a(\))(—dy) has relations in degrees {—1, —2} as gr(A)-
module. Since N is a graded R/a(\)-module and R/a()) is obtained from gr(A) by quotienting
by an ideal generated by homogeneous elements of degrees —1 and —2, by Step 1 it suffices to
show that N has relations in degrees {—1,—2} as R/a(\)-module.

Note that j € Ji U Js implies that ¢; = y;2; and let d & d, for short. By interchanging y; and
z;j for some j and permuting {0,1,..., f — 1}, we may assume that

N:(yl1yld0§ll<<2d<€)(—d)

as graded R/a()\)-module, for some 0 < e < f. This module is generated by the elements
def

X1 = [Licr vi (of degree 0) for subsets I C E ©40,1,...,e — 1} with |I| = d. We claim that the
relations are generated by

zXr=0 for all 7 € I;

42
yiXmgy =YXy foralli#jinI' CE, [I'=d+1. (42)

Note that R/a(A) has as F-basis all monomials of the form []; wjzo with w; € {y;, z;} \ {t;}. If
Sy f1 X1 = 0 with fr € R/a()\), then using relations , without loss of generality, f; does not
contain any z; (i € I) and y; (¢ € E\ I, i < minI). The map fr — frX; is injective for such
f1, and moreover for every monomial term in f; Xy, I is the set of d largest elements ¢ of E such
that y; divides it. This shows that f; = 0 for all I, proving that we have found all relations, and
indeed the relations are in degree —1.

Step 3. By Step 2 we have an exact sequence @}~ ; gr(A)(—d;) — gr(A)®™ — N — 0 with
d; € {—1,—2} for all i. We get a commutative diagram

0 —— HOM,,(p) (N, M)g — HOMy, ) (gr(A), M)§™ — @ HOMg, () (gr(A)(—d;), M)o
=1
v

0—— HOMgr(A) (N, M)O e HOMgr(A) (gI‘(A), M)(?m e @ HOMgr(A) (gr(A) (—di), M)o
=1

where M < M/ gr<_3 M. As HOM,,p)(gr(A)(—i), M)o = M; for all i € Z, the middle and right
vertical arrows are isomorphisms, hence so is the left one. ]

Fix n > 1, which we will specify later, and assume that p is (2n—1)-generic. Recall 7 ) C
7 from [BHH b, §, 50T = @cp T With 7y & /(\n) and socz (1)) = ya. Let 7 = 7[m"] = 7[m”]
(last statement of [BHH'h, Lemma ] and 7y = 7[m"] for A € P, 50 T = Pycp 7. Let O
denote the image of 7 in . As 7 is multiplicity free by [BHHTD, Cor. [2.4.3(1)] (for r = 1), we
have TN = Prer(TaNm) and © = @, c5» Oy, where O, is the image of 7y in 7. For the
same reason,

F_0V=m'7"NneY = ( &y m’?ﬁ{) NeY =@ m7ynoY) =P F_0y (43)
\eP A\eP A\EP
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for all i € Z>o, where F (resp. F)) denotes the filtration on ©V (resp. ©Y) induced from the

m-adic filtration on 7" (resp. 7). In particular, grp(0Y) = @,c» grp, () and F_,0Y = 0.

Suppose that n > 1 and that p is (2n — 1)-generic. The following lemma determines the sub-
module structure of T)(\n) [m”] (and hence of 7[m”] = 7" [m"] if » = 1 by [BHH bl Cor. (ii)]),
since @y c» T)(\n) is multiplicity free by [BHH™ Db, Cor. (1)] (as p is (2n — 1)-generic).
Lemma 6.1.6. Suppose that p is (n — 1)-generic and keep the above notation. Suppose that
A€ P. Forany x,X € JH(T)(\n) [m"]) with Ext}/z1 (x,X') # 0, upon perhaps interchanging x and
X', there exist £; € Z for 0 < j < f—1, e € {1}, and 0 < jo < f — 1 such that

. 0

(i) x =xalljaf and x' = xa5,;

(ii) Ej >0 iftj =Yj, fj <0 iftj = Zj, and Zj M]‘ <n;
(iii) [€5, + el < [€ol;

(iv) Ey . (the unique nonsplit extension of x by X', see § is a subquotient of T>(\n) [m”].
In particular, either E, ,+ or E,/ . occurs as subquotient of 7'>(\n) [m"].

Proof. By construction of T)(\n) (cf. the proofs of [BHH b, Lemma and [HW22, Prop. 9.19)),
as x € T/&n)[m"] we can write x = xa[l; aﬁj for some ¢; € Z satisfying condition (ii). As
Ext}/Zl(X,x’) # 0 we have X' = xaj, for some ¢ € {£1} and some 0 < jo < f — 1. By the
genericity condition we deduce that condition (ii) holds for (fo,...,¢;, +¢&,...,€y—1). (As p
is (n — 1)-generic, |{;| <n < p%l, and ep’o + Zf;& lip) = Z;;& E;p7 (mod p/ — 1) for integers
|€5] < p%l implies (£o, ..., 4jo+¢,...,Lf—1) = (£, ..., €;_1).) Interchanging x and X', if necessary,

. . . . 45 4
we may assume that (iii) holds. Then (iv) holds, as the nonsplit extension of o/’ by ajz)OJrs occurs

in the jp-th tensor factor defining T)(\n). O

Proof of Theorem [6.1.1 By Remark we can assume throughout the proof that ig < f — 2.
) def

Let N3 denote the right-hand side of the theorem, i.e. N3 = @)c» N; , with

o _ alo(\
Va0 Ty

Step 1. We show that gr,(my)/m3 — Nj/m3 as graded gr(A)-modules with compatible
H-actions.
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Consider the commutative diagram

0N _ R _
0 @XA1® é(}\) @X/\I(X)T) > @X/\I(X)

AeP a( AeP ay’(A)

ii iE J{g

00— grp 773/) _— gr(ﬂ'v) gr(m

=<

0

D a(7X) —— P ex((anm)) —=0
Ae Ae Ae

of graded gr(A)-modules with compatible H-actions, where F’ denotes the filtration on 73 induced
by the m-adic filtration on 7" and we recall that I denotes the filtration on ©" induced by the
m-adic filtration on 7. The top vertical maps are isomorphisms by [BHH™h| Cor. (see also
the proof of [BHH D, Prop. [£.4.3]). From 7 = 7[m"] we get (7 N m1)[m"] = m1[m"]. Hence the
middle and right vertical maps are isomorphisms in degrees > —n, and so the same is true of the
left vertical map. The middle vertical composition @ e x5 @ (a2 (V) /a(N) = Drep er(FY) is
an isomorphism in degree 0, respecting the direct sum decomposition (by H-equivariance). As
its domain is generated by its degree 0 part as gr(A)-module, it follows that the middle vertical
composition respects the direct sum decomposition, and hence the same is true for the left and
right vertical maps. We deduce that for each A € & the morphism

(V)
a()

Njy(dy) =x3'® — grp, (63) (44)

of graded gr(A)-modules is an isomorphism in degrees > —n.

‘We now show that
F)\,—d)\—i(@}\/) = m’@}\/ for any A € &, i > 0. (45)

To see this, note that if dy = 0, then a’io()\) = R, hence the \-part of the above commutative
diagram shows that the natural map grp, () < gr(7y) is an isomorphism, which implies that
the natural map ©) — 7Y of filtered A-modules is an isomorphism, as desired. Suppose now that
dy > 0. We first obtain from the previous diagram the following diagram:

0 e a’(A) + m” vle R e
AT a(A) +mn AT a(A\) +mn A 0(\) +m"
0 ——grp, (©5) gr (7)) —————gr((hnm)’) ——0
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By the definition of a()) the middle isomorphism shows that
JH(TY) = {XXl Haﬁj RS L},
J

where
L {ﬁ:(eﬂ?;& S0ty =y, 4 2 00t =25, 3161 <”}’
J

as well as

JH(m'7Y) = {X,(l Haf" lEL, i<y \Ej\}.
J J
By the definition of a’()\) the left isomorphism shows that
vy — )1 4 - . ; .
JH(OY) = {XA [[of tel |{Gehi:t;>0+|{je:t; <0} > dA},
J

where we recall that J; = {j € J5 : )\j(a:j) =p—1- gvj}, Jo={j € J5: Aj(zj) = x;}. In
particular, ©Y C m®7) and hence m'©Y C ©Y N m®+7 for all i > 0. Conversely, to show
Oy NmM+FY C mi@Y, by multiplicity freeness it suffices to show that JH(OY) N JH(mH 7)) C
JH(m'©Y). Take x = x; ' [1; oz? with £ € L, [{j € J1: 4; > O} + |{j € J2 : £; < 0} > d), and
dx+1i < 37, [¢;]. With the help of Lemma it is easy to show that there exist characters
xi € JH(OY) (0 <4 < i) with xo £\ and such that the unique nonsplit extension By, xy (of
xir by xi7—1) occurs as subquotient of ©Y for all 0 < ¢ <i. (If i > 0 then we find x; as follows: if
there is j ¢ Ji U Jy such that £; # 0, choose such a j; otherwise, choose j such that |[¢;| > 0 and is
as small as possible. Then y; & X0 sen(ls) i still an element of JH(©Y), and we have decreased
> 14;] by 1. Proceed inductively to find all x;».) We deduce that x occurs in rad’ ©) = m‘0Y,

proving .

We now let n & io+4. Asdy <ig+1 < n—2 we obtain from and an isomorphism
of graded gr(A)-modules

Né,,\/ﬁg = Nj,/gre 3Ny = grp (OX(—dy))/ grp, < 3(0X(—dy)) = gr(ey)/m".

Hence

gr(my)/m° — gr(0V)/m* = (P gr(0))/m* = Ny /m°, (46)
AP

as desired.

Step 2. We show that gr,(my)/m> = Nj/m3 as graded gr(A)-modules with compatible H-
actions.

From the cohomology long exact sequence we get
0 — coker (Torf (A/m? V) — Torf(A/m?, 1)) — w3 /m? = 7¥/m3 — o)/ /m® — 0. (47)
We let

C ¥ coker (Tory(A/m? ) — Tor}(A/m® w)))
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and give it the induced filtration as quotient of Tory(A/m3, 7Y).

First we show that gr(C) is a subquotient of
C" % coker (Tor%r(A) (gr(A)/m?, gr (7)) — Tor%r(A) (gr(A)/m?, gro(7)))). (48)
Notice that gr(C) is a quotient of
coker (gr(Tord (A/m? 7)) — gr(Tor (A/m?, m)))),

because if we have a filtered exact sequence X — Y — C' — 0 with C carrying the induced
filtration, then coker(gr(X) — gr(Y')) surjects onto gr(C) by [LvO96, Thm. 1.4.2.4(1)]. Then,
as in the proof of [BHH" b, Prop. , we consider the morphism of spectral sequences that
converges to this morphism:

ET —— TorM(A/m?, V)

| |

El" — TorM(A/m?, x)).

(Referring to that proof, we have EY = gr(A/m® @5 M;) = gr(A/m?®) @4, () gr(M;) by [LvO96,

Lemma 1.6.14], so E} = Torzgr(A) (gr(A)/m3, gr,(7")).) Assumption says that dimp Ef° =
dimp E}. Tt easily follows that coker(E]™ — E*1) is a subquotient of coker(E] — E{") for any
r > 1 (recall that E{™ is a subquotient of F{’, while E{™" = ET by the preceding sentence).
This implies the claim by taking r sufficiently large.

From the sequence (47)) we see that

dimp(C) = dimp(my /m3) — dimp (7" /m3) 4 dimp(7) /m?)

49
= dimp (gry, () /m°) — dimp(gr(r”) /m?) + dimp(gr(my ) /m?). )
By Step 1 we know that
dimp (gt (m3) /M) > dimp(N3/m®) = Y dimp (N, /T°)
AeP (50)
= 3 dims(Ny,y/m*) = dimg(grpo (n)) /%),

AeP

where Ny ) o @ @\ /a(N) = N5 5 (dy) and we used [BHH™D, Cor. | for the last
equality. Combining equations , together with the fact that gr(C) is a subquotient of C”
(cf. (48)) we obtain

dimp(C") > dimg(C) > dimg(gr g (73 ) /Mm?) — dimg(gr(7")/m*) + dimg(gr(ry ) /m?). (51)
The exact sequence
0— C' — grp(my)/m — gr(r¥)/m> — gr(n))/m> —= 0

shows that equality holds in , and hence in . As equality holds in , the surjection
gry(my)/m® — Nb/m3 in has to be an isomorphism.
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Step 3. By Lemma we get a graded morphism (of degree 0) Nj — gr(my), which
has to be surjective by the graded Nakayama lemma. Recall that N} is Cohen—Macaulay by
Remark By Step 4 of the proof of [BHHb, Prop. we have Z(N}) = Z(NX) =
Z(gr(my)). Using the same argument as in the last paragraph of the proof of [BHHTh,
Prop. (i.e. N3 is Cohen-Macaulay and the two modules have the same cycle), we deduce
that the morphism Nj — gr,,(7y) is an isomorphism. O

Corollary 6.1.7. Assume that p is (4f + 1)-generic. Suppose ©' = 7} /71 is any nonzero subquo-
tient, where Ty C ) C w. Then we have an isomorphism of graded gr(A)-modules with compatible
H-actions,

_ alo(\
g (@)= P X' ® 5( )
AP a10<)\)

(—=dx), (52)
. def . .y def . / def .
where —1 < iy = ip(m) <ig = io(m)) < f and dy = max{ip +1 — |J)[,0}.

Proof. We first assume that f > 2. Then 4f + 1 > max{9,2f + 3}, so we may assume that
iy < f —1 by Theorem Let N’ denote the right-hand side of (52)). Let 72 & 1 /m1 and
) def /
Ty = /7], SO
0— 7' = m—7mh—0.
Let dj < max{i} + 1 — |Jy],0}.
Step 1. We show that N//m" = gr(x’V)/@", where n < max{if, — ig,2} + 1(< f +1).

Let n' < n+if +1(< 2f +1) and let 7= 70")[m™]. Note that by assumption 7 is (2n' — 1)-
generic. Define © = @,c5» Oy (resp. O = Pyc» O)), as the image of 7 in my (resp. 75). Then
OY C Oy for all A € Z. By applied to ©Y and ©% we have

m'OY NOY = m*h7Y NneY = mith-hel (53)
for all ¢ € Z.

From and we have

gr(@y\)(d)\) =grp, (QX) = <X)\1 ® a(f(()\);)>2n/+1 ’

using the notation (-)>_,/41 as in [BHH"b, Lemma [2.2.7], hence

H(OVY) =~ -1 alio(/\) _
gr(6X) = (m ® L d»)z_wdm (54)

and likewise for gr(©4). Asig+1 > d, by Theorem [6.1.1the natural surjection gr(ry) — gr(6")
is an isomorphism in degrees > —n’ + iy + 2, and likewise for gr(w}’) in degrees > —n' + if, + 2.
As —n+1=—n'+i),+ 2> —n'+ip+ 2, we obtain that the natural surjections 735 — ©" and
7h’ — ©"Y induce isomorphisms

~

7r2V/mi7r2V = @V/mi@v, ﬂév/miwév AN @/V/miGIV (55)
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for all 0 < i < n.

Suppose 0 < i < n. From the exact sequence 75’ /miry — 7y /miny — «'V/mix"V — 0
3 2 2
and ., we obtain that . ‘
7V /m'n" = 6 /(0 + m'ey).
AP

By the line above together with (55) we see that the kernel of my /m’my — «'V /m’n’" is identified
with

D (03 + mey)mey = @ of mith ey

N AeZ
where the isomorphism follows from , and hence we have an exact sequence

0— P ey /mth-hel » @ ey /mey - ¥/m'n" — 0.
AP AP

Therefore the filtration on the left term induced by the m-adic filtration on the middle term is
the m-adic filtration up to a shift by d\ — dy. Taking graded pieces for i = n, we obtain

0— @ gr(ey /yrH'dA M(dy —dy) — @ gr(0Y)/m" — gr(z’V)/m" =0
AP AP

By and its analogue for gr(©Y’) we obtain

a0
— (A@]m ® a()\)( dx))z_n+1 (@x

~

Therefore, gr(a’V)/m" = (N')>_pny1 = N’/m" (the second isomorphism holds since N’ is gen-
erated by its elements of degree 0, which follows from the definition of the ideal ai’())), as we
wanted to show.

P (—d,\)) — gr(7’V)/m" = 0.
>-—n+1

Step 2. We lift the isomorphism N’/m" — gr(7’V)/m" = (gr(7"V))>_n4+1 to a homomor-
phism N’ — gr(n’V). Consider the short exact sequence of graded gr(A)-modules,

,L'/

ay’(A)

a(\) (—dy) — o1 () (=d\) = ——

0—

Going back to the proof of Lemma we know that the middle term has relations generated
in degrees —1, —2, and the left term has generators in degree dy — d\. As 0 < d\ — d) < i, — o,
the right term has relations in degree —1, —2, ..., —max{i{, — ip,2} = —n+ 1. (Note that when
dy —dy = 0 then d) = dy = 0 by definition since ig < i), and hence a’°(\) = a()\) = R.) By
Step 3 of the proof of Lemma we deduce the desired lifting N" — gr(z').

Step 3. Using Steps 1 and 2, we conclude that the homomorphism N’ — gr(n’V) is an
isomorphism exactly as in Step 3 of the proof of Theorem (Note that N' is Cohen-Macaulay
by [BHHTD, Cor. [4.4.6]. Also note that Z(gr(7"V)) = Z(gr(my)) — Z(gr(ry)) = Z(N2°) —
Z(Ny) = Z(N').)



Finally we assume that f = 1, and we just assume that p is O-generic. We prove that 7 has
length 2 and fits into a short exact sequence 0 — mg — ® — m; — 0, where my, 71 are irreducible
principal series as in [BHH a, Cor. |3.3.5.8], namely they are dual to each other in the sense that

B3 () = my_; @ (det(p)w™). (56)

Indeed, by assumption |(i)| we know that W (p) = {o¢} is a singleton and it is easy to see that
mo = (GLy(K) - 0¢) is an irreducible principal series (as in the proof of [BHHTal, Cor. 3.3.5.8])
and that mp = socqr, k) (). Using assumption and , we deduce that m has a quotient

isomorphic to ;. We need to prove that V = 0, where V < ker(r — m)/m. By [BHHTa,
Thm. 3.3.2.1] (with r = 1) there is a surjection of gr(A)-modules with compatible H-action

N= P xi' ® R/a(N) — grp(nY) (57)
\eP

and m(gr, (7)) < 4 by [BHHa, Cor. [3.3.2.5), where m(—) denotes the total multiplicity of
R-modules. On the other hand, [BHH a, Prop. [3.3.3.4((ii)] implies that gr,(r)) is an R-module
and m(gry, (7)) = 2 for i = 0,1, so we deduce m(V) = 0 by the additivity of m(—), equiv-
alently dimp V' < +o0. However, this forces ExtéLQ(K)(V, m9) = 0 by [Emel0, Lemma 4.3.9,
Prop. 4.3.32(1)], hence V' = 0 (as mo = socqr,(x)(m)). In all, we deduce that 7 has length 2
and that is an isomorphism (as the graded module N in is Cohen—Macaulay) which
determines gr,, (7). Moreover, using [BHHTal Prop. [3.3.3.4(ii)] again we check that gr, (7'V) is

as in for any proper subquotient 7’ of . ]

Corollary 6.1.8. Assume p is max{9,2n+2f + 1}-generic for some n > 1. If 7’ = 7 /71 is any
subquotient, where w1 C 7y C m, then 7' [m"™] is multiplicity free as I-representation.

Proof. Since 7’ injects into my = /7 and hence 7'[m"] C m[m”] we are reduced to the case

where 7' = 5. We need to show that gr(my)/m" is multiplicity free. By Theorem [6.1.1} and as
ai’(A)/a(N) is generated by elements of degree —d) for each A\ € &, it is equivalent to showing

that
P x'e (

r\eZ

@)
a(y) (‘d“)H

is multiplicity free. Hence it is sufficient that

R

—1
D xte ( )
AP a(A) >—(n+dy)

is multiplicity free. This follows from [BHH™D, Lemma [2.3.7], as n +dy < n +ip + 1 and as
N/Z(+i0+tD N surjects onto N/m" ot N= N, 11y (as h; kills N). O

Remark 6.1.9. Just like in Remark [6.1.4] there is an easier proof when io(7m1) € {f —1, f} with p
being max{9,2n — 1,2f + 1}-generic. In the first case, the multiplicity freeness follows from ,
by applying [BHHb, Lemma [2.3.6(ii)] with m = 2n — 2 and A = X’ € 2% (so t; = y; for all j);
in the second case it is trivial.
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We conclude this section with a further result regarding the structure of w. Let ms be an
admissible smooth representation satisfying assumptions |(i)H(v)| with respect to p**. The most
optimistic expectation, at least for globally defined m = 7(p) and 7 = 7(p*) as in §[7.1] (cf. the
comments after [BP12, Thm. 19.10]), is that 7% = 7y and moreover that 7 and 75 both have
length f + 1. (In fact, the first expectation implies the second by Remark below.) The
following proposition provides new evidence for this expectation. For any \' € 9% we let a*(\)
denote the ideal of R generated by all 3 = t;-s(/\’ ) € {y;j,2j,yj2}, which are defined as in (13)
but for the Galois representation p**. Recall a®()\') D ker(R — R), so we often think of it as ideal
of R.

Proposition 6.1.10. For any —1 < ig < f — 1 we have an isomorphism

-1 ailo()‘) ~ -1 R
ke AV AW 1o -
@ X & a ( >\) @ X\ ® ass()\/)

i0+1
ez 1 (/\) NePss L(N)=ip+1

of graded gr(A)-modules with compatible H-actions.

; def

Remark 6.1.11. For any —1 < iy < f — 1 let 7/ = 7} /71, where ig(m1) = ig and ig(7]) = ip + 1
(if such 1, 7} exist) and let 7, denote the subquotient of 74 corresponding to the subset &2/ o
{N e 2%, (X)) =i+ 1} in [BHH'D, Cor. [3.2.7(ii)] (if it exists). If 7’ and 7/ exist (for example,
if 7 and 7, have length f 4 1), then by Corollary and [BHH*D, Cor. [3.2.7(iii)] (provided
that p is max{9,4f + 1}-generic), Proposition asserts that

gl (") = gry () (58)

as graded gr(A)-modules with compatible H-actions. If ip+1 € {0, f}, we even know that 7’ = 7,
are isomorphic principal series (compare [HW22], Prop. 10.8] with [BHH a), Cor. ) More
interestingly, if f = 2 and 9 = 0 we know that 7’ and 7/, exist (and are supersingular) by [HW22,
Thm. 1.7], [BHH al, Cor. [3.3.5.8], and hence holds (provided p is max{9,4f + 1}-generic).

Proof. Fix A € 2. As usual, let J; & {j € Jg: Aj(zj) =p—1—a;} and Jo e J5 Aj(zj) =
def

xj}, and let J = J; U Jo. We show that

X\ ® i0+1 (_d)‘) = @ X (g ® ss ’ (59)
alo+ ()‘) J'CJ, |Ia|+|J|=io+1 ") a ()\/(J/))

where X (J') € &% is defined by

p—3—xz; ifjet; =T N,
N(Ij(x) =y +2 if j e Jy < J' N,
Nj(xj) otherwise.

It is easy to check that this implies the proposition, by taking a direct sum over all A € Z.
If ig + 1 — |Jy| < 0, then trivially holds: by definition, a®(A) = a®**(\) = R, so both

sides are zero.
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Suppose that ig+1—|Jy| > 0, so dy = ig+1—|Jx|. Note that X;,I(J,) = XXI HjeJi a; Hjng aj_l,

and [[;¢ 7 Q I1;e 7, aj_l gives the action of H on the degree dy polynomial
def ~ )
pr= 11w 1] %€ R=Fly;2:0<j < f-1].
JjeJ;  jed,

Therefore, by twisting both sides by x(d)), it suffices to show that

a®(\) R
ST Pr O ST
Cl10+1(/\) J’gjﬁ?’d,\ a ()\/(J/))
We have
a’(\) o (N, J,dy) +a(h) I(Jy, Jo, dy)

a0\~ I(J1, Jaydy + 1) +a(A)  I(J1, Ja.dy + 1) + I(J1, Ja,dy) Na(X)

(recall the ideals I(J1,Jo,dy) from [BHHTD, Def. [£.2.4]). Note that I(J1,J2,dy\) = (py : J' C
J, |J'| = dy) and a(A) = (t; : 0 < j < f—1) with ¢; = y;jz; for all j € J (see equation
(13)). By [HHI1I, Prop. 1.2.1] the ideal I(Jy, J2,dy) Na(A) is generated by the monomials p  z;
(5 € J)), pry; (7 € J3), and pypt; (j ¢ J'), where J* C J runs through all subsets with
|J'| = dx. Hence the ideal I(J1, Ja,dy + 1) + I(Jy, J2,dy) Na(A) is generated by the monomials
przi (7€ JLU (J2\ J3)), pry; (5 € J5U(Ji\ J7)), and ppt; (j ¢ J), where again J' C J
runs through all subsets with |J'| = d). Since, from equation and the definition of \'(J'),
aB®(N(J)=aN) +(z5: € J U2\ J5)) + (y;: 4 € J5U(J1\ Jp)) we deduce that

I(J1, Ja,dy + 1)+ I(J1, Jo,dy) Na(A) = > py-a®™(N(J)).
JICJ, |J!|=dy
In particular,
I(Jl,JQ,d)\) ~ ZJ'QJ,U’\:CIAPJ/R

I(J1, Joydy + 1) + I(J1, Jo,dx) N a(N) X ey =y e (N ()
so for each index .J/, multiplication induces a homomorphism

R . I(Jy, Jo,dy)
as(N(J")  I(Jr, J2,dx+ 1) + I(J1, J2, dy) Na(A)

Py &

and passing to the direct sum induces a surjective homomorphism

R I(Jy, Ja,dy)
@ pJ/®SS/\’J’ I, ey dy + 1)+ I(J1, o, d )’
FCa T =d as(N(J)  I(J1, Ja dy+ 1) + I(J1, J2,dx) Na(d)
which we need to show is an isomorphism. Suppose that we have an element f = (py ® [fr])s
in the kernel, or equivalently that >, pyfr = >y pygy in R for some gy € a®(N(J')). By
replacing fy by f — gy we may assume that g = 0 for all J', i.e. that Yy py fr = 0. Fix J'

and let b(J') = (2 : j € Jo\Jy) + (y; : j € J1\J}) C a®(N(J)). From py fyr = =gz D
we deduce that pyfy € b(J'). As multiplication by py is injective on R/b(J’) (a polynomial
ring), it follows that f; € b(J') C a*(X'(J")), so f = 0, as desired. O
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6.2 [j-invariants and GLy(Ok)-socle of subquotient representations of 7

We describe the I1-invariants of subquotients of 7. We deduce that 7 is multiplicity free and give
a description of the GL2(Of)-socles of subquotients of .

We start with the I-invariants of quotients mo = 7/ of 7

Proposition 6.2.1. Assume that p is max{9,2f + 3}-generic. Let ig = io(m) with —1 <ig < f
be as in [BHH™ Y, Thm. . Then 73" is multiplicity free and

JH(mS) = {xa 1 A€ P, |Jy| >dp or X € P\ P, |J\| = ig + 1}.

Proof. As H-representations 7r£1 is dual to the degree 0 part of gry, (7)), namely, F ®gy(a) 8l (75).
Comparing Theorem and [BHH™b, Cor. , we see that there is an isomorphism F ®,,(s)
g (7m3) = F @gy(p) grp(my ) compatible with H-actions (but not gradings), where F denotes the
filtration on 7y induced by the m-adic filtration on 7¥. The result then follows from [BHHTh,

Cor. 4.4.7]. O

We can generalize to subquotients:

Corollary 6.2.2. Assume that p is max{9,2f + 3}-generic. Suppose ©’ = /71 is any nonzero
subquotient, where w1 C 7} C m. Let ig = ig(m1), if = io(n}), so —1 <ig < iy < f. Then n'" is
multiplicity free and

JH(r') = {xr: A€ P, ig < |J5| < il or A€ P=\ P, |J\| =g+ 1}.

Proof. Since we have injections (mf)1/nlt < 7't — (n/m)", we deduce from [BHHTD,

Cor. 4.3.16] and Proposition that

{xa: A€ Pig < |Jy| < ip} € JH(x')
- {XA:)‘G P, iy < ’J)\| or A € QSS\WAJ)\’ :i0+1}.

In particular, 7'/t is multiplicity free. On the other hand, note that 7'/t is the kernel of the natural
map (7/71)t — (7/7})!1. For any A € 2%\ & with |J)| = io + 1, x € JH((r/m1)*) and maps
to zero in (7/7} )" by Proposition so xx € JH(7'1t) for such \.

To finish the proof it remains to show that xy for A\ € 2, |Jy| > i does not occur in 7'/t

By [BHHTDb, Cor. 4.3.16], x» does not occur in 7r'1[1 and W{l, and by Proposition it occurs
in (7/71)" with multiplicity 1. Hence the xj-eigenspace of (7/71)"t is the image of the -
eigenspace of 7/t and so maps to zero in H'(I;/Zy, 7). The following diagram then shows that

X\ cannot occur in o' = (Wi/m)ll, since it does not occur in 77’1]1:
0 7T{1 ﬂfl (ﬂi/f)h —— HY(I1/Z1,m)
O 11 Il Il H—Hl I Z
™ ™ (m/m1) (I1/Zy,m1). O
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Remark 6. 2 3. Let 74 be an admissible smooth representation satisfying assumptions|(i)H(v)| with
respect to p° We remark that if 7 = 7, (as one might hope is true in analogy with GL2(Q,)) or
even just 7rSS = 7%, then 7 and 74 have length exactly f+ 1 provided p is max{9,2f + 3}-generic.
(Sketch proof: we calculate (7%%)"t using Corollaryand (7)1 using [BHH b Cor. [3.2.5]. If
¥ C{0,1,..., f} denotes the subset of elements of the form ig(71) + 1 for some subrepresentation
w1 € m, then we deduce that 7% = P U {\ € &% : |J)] € £}. As p is non-semisimple,
J5 #{0,1,..., f — 1} and one easily shows that for any 1 < k < f there exists A € 2%\ & with
|Jx| = k. We deduce that ¥ = {0,1,..., f}, i.e. m has length f +1.)

Corollary 6.2.4. Assume that p is max{9,2f + 3}-generic. Suppose ©’ = /71 is any nonzero
subquotient, where m C ) C m. Let ig = io(m1), ih = io(n}), so —1 <ig < iy < f. Then

S0CGLy(0x) (1) = Ph oD D o. (60)

oEW (), io<t(o)<il, oEW (F5)\W (5),6(0)=io+1

In particular, socqry (o, (') is multiplicity free.

For the proof, recall from [BHH"b, § |4.3.4] that Dy(p) admits an increasing filtration 0 =
Do(p)<—1 € Do(p)<o S -+ € Do(p)<i S -+ € Do(p)<s = Do(p), where Dy(p)<; is the largest

= =

I'-subrepresentation of Dy(p) not containing any 7 € W (p**) with ¢(7) > i as subquotient. We set
def def def
7*)

DO( )1 = DO( )<1/D0( )<7, 1, DOO’( )<z = Dy O’( )ﬂD()( )<i and DO,T(i)z = DO( ) ﬂDD,r(PSS
for 0 € W(p) and 7 € W(p*) (see loc. cit).

Proof. By Corollary SOCGL, (0 ) (') is multiplicity free. We prove the inclusion “2". If
o€ W(p),ip < £(o) < ig, then o C 7r1]GL2(OK) but o Z m1|Gr,(0,) by [BHHTD, Cor. 4.3.17], so
o C m'lgLy0x) If 0 € W(p®),l(0) = ig+ 1, then o € Dy(p)ip+1 by [BHHTD, eq. (64)], which by

[BHH™b, Thm. 4.3.15| injects into

o/t = Do(p)<ir / Do(p)<iy — '

(In particular, the right-hand side of (60) injects into S0CGL,(Ok) (7 1/7r )

Now we prove the inclusion “C”. Suppose that 7 is a Serre weight such that 7 C 7’|gp, (O)-
By Corollary |6 we know 7/t = y, where either A € 2, iy < |J\| < ij or A € P\ P,
‘J,\’ =19+ 1.

If A e 2, i < |Jx| <ily, then 77 lifts to =} by [BHHT D), Cor. 6] and hence 7 is the image
of a morphism Ind?LQ(OK) Xx = 7 — 7', In particular, 7 < 7% /77{(1 = Do(p)<iy /Do(p)<io, 50
by dévissage and [BHHD, eq. (64)], 7 € W(p*) with ig < £(7) < if. Suppose that 7 ¢ W (p)
(or we are done). By [BHH™h, Lemma we deduce that the image of the above morphism
IndGLQ(OK ) X)» — m C  is isomorphic to I(o,7), where o € W(p) is determined (via equation
(11)) by Jo = J5NJy. As the image of the composition is 7, it follows that radr(I(o, 7)) C 7rK1 =
Do(p)<ig, SO from [BHH"b, Lemma (taking 7" such that |J/| = |J;| — 1) and [BHH+b
eq. (64)] we deduce that ¢(7) = io + 1 as desnred.

Suppose that A € 2%\ &, |J\| =ip+ 1. From the proof of Corollary we know that the
1-dimensional subspace (7/)/=X is the image of the morphism W (x,,x\) < 7 — 7', where Jj,
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Jo and p € & are defined as in equations [BHH™ D, eq. , eq. ] By Frobenius reciprocity

we have a corresponding morphism Ind?LQ(OK W (xu, x») = m; and we denote by V its image.

Note that V/(V n7) = 7. By [BHHb, Lemma 4.3.9(i)] we have socgr,(o,)(V) = o, where
o € W(p) is determined by J, = J5N J,, and by [BHHb, Lemma [4.1.1] and [BHH"b, eq. (59)]
it has parameter

S(o) =1j: pj(zy) e {zj,z;+1,p—2—x;,p—3 —z;}}

inside Ind?b(oK ) Xy (see §ﬂ for S(o)). Here we use the convention (from the proof of [BHH b,
Lemma ) that an underlined entry is only allowed when j € J3, and similarly that an entry
with a dotted underline is only allowed when j ¢ J5. Let 7/ € W (p*) be determined by J = Jy,
and by [BHH'b, Lemma it has parameter

S(T')={j: Aj(z)) € {wj,zj+1,p—2—aj,p—3—x;}}
inside Ind?LQ(OK ) Xx. As
(S(@)U i)\ Jo = {j: Nj(z;) € {wj, 2+ 1,p =2 —xj,p = 3 —x;}} € S(7),

and Jo C S(o) \ S(7') (and since S(o) N Jy = S(7') N J» = 0) we deduce from [BHHTb,
Prop. ii), Prop. that 7/ € JH(VEL). Since £(7') = ig + 1, it follows from [BHH'D,
Thm. 4.3.15] that 7/ ¢ JH(7X?), so 7/ 2= 7. Thus 7 € W (5*) and £(1) = ig + 1, i.e. T appears in
the right-hand side of , as desired. O

Remark 6.2.5. The proof shows that socgr, (o) (7') = socGLQ(OK)(W/lK1 J7E1), but by it is
bigger than socqr,, (0, )(71)/80CaL,(0) (1), in general.
Recall from subsectionthe T-representation Dy (p) and from Proposition that we have

mm,] 2 Do(p).

We now define the increasing filtration (Eo(ﬁ)gz‘)qgig f on Do(p) by letting Do(p)<; be the
largest I'-subrepresentation of Dg(p) that does not contain any 7 € W(p*) with 4(7) > i as
subquotient. Equivalently, it is the largest subrepresentation V' of Injff(socGLQ(OK) 7) such that

(i) [V:o]=1forall o € W(p), £(0) < i;
(ii) [V : 7] =0 for all 7 € W(p*®), (1) > 1.

Then Do (p)<;i = Docw i) Do o(p)<i for a unique subrepresentation Dy ,(p)<; € Do(p)<i.

We remark (though will not need) that Dy(p)<; N Do(p) = Do(p)<i and that all properties of
the filtration Dy(p)<; before BHH b, Lemma |4.3.14] generalize to the filtration Dy(p)<;.

Corollary 6.2.6. Assume that p is max{9,2f + 3}-generic. Let ig = io(m) with —1 <ig < f be

as in [BHH"b, Thm. . Then

1 [m%ﬁ] = IN)O (ﬁ)ﬁio .
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Proof. (Cf. the proof of Proposition [p.1[i).) By [BHH¥H, Thm. [£.3.15] we have m[mg,] =
Do(p)<ip, and as w[m% ] is multiplicity free we deduce from the injection mi[m% ]/m[mg,] <
m[m%, ]/7[mg, ] that no element of W (p*) occurs in m1[m% ]/mi[mg,]. As a consequence,

mm¥ ] € Do(p)<io-

Let Q = Do (p)<iy/m1[m%, ], which injects into 7[m%. ]/m[m%, ] and hence into mo[m% ]. If @ # 0,

pick an irreducible subrepresentation o C Q C m2|gr,(0)- Then o € W(p*) and £(o) > ig by

Corollary (with i, = f), contradicting that o contributes to Dy (P)<io- Hence Q =0, as we
wanted to show. O

6.3 Kj—invariants of subquotient representations of 7

We describe the Kj-invariants of subquotients of w (Corollary [6.3.9)). The proofs in this section
are subtle (zagld sometimes technical), in particular use the results of the preceding two sections
and certain I'-representations that are not multiplicity free (Lemma .

We start with the Kj-invariants of quotients my = 7 /m of 7

Theorem 6.3.1. Assume that p is max{9,2f + 3}-generic. Let iy = ig(m1) with —1 < iy < f be
as in [BHH"b, Thm. . We have

o 22 Do(p™)ig 41 B Do(B)sy 11 (Do(P)/Do(P)<io)-

To prepare for the proof, we first need some lemmas.

Recall from § that Do(p) = @Dyew ) Doo(p), and from [BP12, § 13] that Do, (p) is
maximal (for the inclusion) with respect to the two properties socqr,(o,) (Do (p)) = o and
JH(Dy»(p)/o) N W (p) = 0. In particular, Dy ,(p**) C Dg»(p).

We now define and study the important subrepresentation W = @,y 5 Wo C Do(p) as well
as its image Wa = @gcw 3 Waz € Do(p)/Do(P) <io-

Lemma 6.3.2. Assume that p is 0-generic. There exists a unique subrepresentation W C Dq(p)
such that JHW) = W(p*). Moreover, W has a direct sum decomposition W = @gcw z) W
where socqr, (o) Ws) = 0 and JHW,) = {7 € W(p*¥) : J30 Jr = J,} (in particular, W, C
Do (p) for all o € W(p)). The cosocle 6 of Wy is irreducible and we have J; = J, U J3.

Proof. This is a direct consequence of [BHH™ b, Lemma |4.1.3]. O

For o € W(p) let ¢ € W(p*) be the element such that J; = J, U J3, thus W, = I(0,0).
Clearly, o+ o gives a bijection between W (p) and {r € W (p*) : J. 2 J5}. For convenience, we

. def
write W = W,.

Let W5 C my (resp. W, 5) be the image of W (resp. W) in Do(p)/Do(p)<iy = ok pk ol
In particular, JHOWs) = {7 € W(p*) : £(7) > ip + 1}. As W is multiplicity free, we have
Wa = @oew(p) Waz (note that, contrary to W5, o ¢ JH(W, ) in general).
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Lemma 6.3.3. Assume that p is 1-generic and that o € W (p).

(i) We have
JH(WQE) = {7’ c W(pss) : Jﬁﬂ Jr=J, g(T) > io 4+ 1}'

Moreover, if £(o) > ig + 1, then W, 5 = W= = I(0,0).

(ii) Suppose that 7,7 € JHOWs) are such that Exti(7/,7) # 0. Then the nonsplit extension
T — 71" occurs in Wa as a subquotient if and only if J. = J- U{j} for some j ¢ J5.

(iii) We have

socr(W,z) = @ {reW(@*): JsnJ; =Jy, (1) =max{ic+1,(c)}}.

Nea

Proof. (i) Note that JHOW, =) C JH(W>) N JH(V:), and equality has to hold since both sides
form a partition of JH(W,) as ¢ varies. The first formula follows, and it implies the second part,
as W, = is a quotient of Wx = I(0,0).

(ii) “«<=”: The nonsplit extension 7 — 7’ is isomorphic to I(7,7’). Assuming J» = J U {j} for
some j ¢ Jg, let o € W(p) be determined by J, = J;NJ; = J;N J». By [BHHTD) Lemma
we know that 7 occurs in I(o,7’) and that 7" occurs in I(o,5). From I(r,7") « I(o,7') —
I(0,0) - W,5 and the multiplicity freeness of W5 = I(0,5), we deduce that 7 — 7" occurs as
subquotient of WQ,E-

“=" if 7 — 7' occurs as subquotient, then 7,7" € JH(W,3) for some o € W(p). Thus
Jr A Jr C Jg by (i) and moreover |J; A Jr| = 1 by Lemma ie. Jo = JrU{j} or
Jr = J U{j} for some j ¢ J5. If we had J, = J U{j}, then 7/ — 7 would occur as subquotient
by “<”. This contradicts the fact that, by multiplicity freeness, at most one of 7 — 7/, 7/ — 7 can
occur. Hence J» = J- U{j}.

(iii) This follows from (i) and (ii). O

Lemma 6.3.4. Assume that p is 1-generic. Let 7" € W (p*®).

i) If o € W(p), then the natural morphism
(i) If p); P
Extl (77, socp(W,5)) — Extl (77, W,73) (61)
15 surjective.
i) If 0 > W,~ — V — 7 — 0 is a nonsplit extension of I'-representations and V' CV, V'
2,0

W, 5 is any subrepresentation with cosocle 7', then radr (V') is semisimple and [V’ : '] = 1.

Proof. Consider a nonsplit I'-extension 0 - W,> -V — 7 — 0, and let V' C V, V' € W, ~

be such that cosocp (V') = 7/. Write socp (V) = @, 7; and let m & max{ig + 1,¢(0)}. (Note
that, if £(o) > ip + 1, then n = 1 and 71 = o by the last statement of Lemma [6.3.3(i)l) As V is

nonsplit, socr (V) = socr(W, 5), so by Lemma we deduce that 7, € W(p*), ¢(1;) = m,
and the 7; are pairwise distinct.
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We claim that V' is multiplicity free, or equivalently that [V’ : 7] = 1. If not, then V' has
a quotient V' with socp(V') = 7/ and [V’ : 7/] = 2, and we get a contradiction by Lemmas
and applied with Q = V' and o = 7/, as JH(V) C W (p™).

By Lemma [6.3.3{(i)| and |(iii)| we know that

JH(radr (V")) € JH(W, 5) € {r € W(5™) : €(7) = m} (62)

and also that 7 € JH(socr(W, ;7)) implies £(1) = m. As Exti (7, radr(V')) # 0 we obtain by

dévissage that Extl(7/,7) # 0 for some constituent 7 of radp (V") and hence, by the last assertion
of Lemma and (62), we deduce that ¢(7') > ¢(1) =1 >m — 1.

We claim that ¢(7') # m. As V' is multiplicity free by above, V' admits a unique quotient
V' such that socp(V') = 7 (recall that 7 C socp(V’)), so V' 2 I(ry,7') by [BP12, Cor. 3.12].
Assume by contradiction that £(7") = ¢(m1) = m, and note that 7/ % 7 by multiplicity freeness of
V'. By Lemma applied to V' = T (11, 7"), we deduce that V' has a Jordan-Holder constituent
7" # 7' (e.g. that corresponding to J,, N J C Jr,) satisfying |J»| < |J- | = m. This contradicts
, proving the claim.

Arguing as in the previous paragraph (replacing 71 by 7; C socp(V’)), we have a surjection
V" — I(1;,7') and hence radr(V’) — radr(I(r;,7')) for each 1 < i < n. As radp(V') € W, >
we conclude that JH(radr(I(7;,7'))) € JH(W,3). By Lemma applied to I(7;, ') and
Lemma [6.3.3|(i) we deduce that

{J:JAJ;, CJp AJy, for someiand J # Ju} C{J:J, CJC J;, |J| >m}. (63)

Fix 1 <i<n. If J,NJs # Jy, then by applied to J;, N J» we deduce that |J;, N J/| >
m = |J,,|. Hence J;, N J equals J or J,, ie. Ju C Jy, or J, C J. for any .

If ¢(7") € {m—1,m+1}, then by above |J.+ AJ,| = 1 for all i, and it follows from Lemmal[2.1.2]
that I(7;,7') has length 2. The natural map V' — @, I(7;,7') is injective, as it is injective on
socles, so radp(V') — @, radr(I(r, 7)) = @,; 7. We conclude that radp(V’) is semisimple.
Hence the class [V] of V| which is by construction the image of [V'] under Extl(7/, radp(V')) —
Exti (77, W,5), is in fact the image of [V'] under the composition

Exth (7', radr (V') — Exth (7, socr(W,5)) — Exti (77, Wo5),

i.e. is in the image of .

We suppose finally till the end of that proof that ¢(7') > m + 1, and we will derive a contra-
diction (so that this case does not happen). Note that the assumption implies (J, C )J,, C J
for all i. If there exists j € J./\ J5, then J = J, LI{;j} belongs to the left-hand side of (using
{(7") # m + 1), but (obviously) not to its right-hand side, a contradiction. Hence J» C J5, and
thus 7" € JH(W, ;) (using Lemma W(l)) Let V" denote the unique subrepresentation of W,z
with cosocle 7’

We now show that V' = V”. As both V/ and V" are multiplicity free, it is enough to show that
socr (V') = socp (V") by (the dual of) [BP12, Prop. 3.6, Cor. 3.11]. (The references imply that
Projp 7/ admits a maximal multiplicity-free quotient R. As R is multiplicity free, the quotients of
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R are determined by their socles.) If /(o) > ig+1, this is obvious, as socr (W, 5) = o is irreducible.
If ¢(c) < io, then by Lemma [6.3.3(ii) and (iii) we have socr (V") = @, 7/, where the direct sum
runs over all the J C {0,..., f — 1} such that J, C J C J and |J| = iop + 1. (Here, 7; is the
element of W (p*) such that J;, = J, see §[1.4]) Thus socr (V') C socp(V"), since J;, C J,+ for all
1 <i < n. We claim that if 7; € JH(socp (V")) (for some J C {0, ..., f—1} such that J, C J C J
and |J| = ip + 1), then 7,030\ € JH(socp(V')) for any j € J \ J and any j' € J\ J,. To
see this: from JH(I(7;,7")) € JH(V') we get 75,4, € JH(radp(V')) and from Lemma (ii)
we deduce that 75,01\ € JH(socr(V’)), as desired. As |J,| < |J| =ig + 1 < [J| — 1, by
iteration of the claim above we conclude that any J C {0,..., f — 1} such that J, C J C J» and
|J| = iop + 1 satisfies 7; € JH(socr(V”)). Hence socp (V") C socp(V’), so indeed V! = V.

We next claim that radp (V') = radp(V"”) is indecomposable. We already know that radp(V”),
radr (V") are isomorphic subrepresentations of W, 3, and W, 5 is multiplicity free, so radp (V') =
radp(V”). The indecomposability is obvious if ¢(c) > ig + 1 as socr (V') = socp(V") is then
irreducible, so suppose £(0) < ig. Following the argument of the previous paragraph, we know that
the uniserial representations of the form 7, —7;,(;} and 7 ;)\ {j7} — TJu{j} occur as subquotients
of W, by Lemma |6.3.3(ii) and hence of radp(V”). This shows by the same iteration as in the
precedlng paragraph at all constituents of socp (V') lie in the same indecomposable component
of radp(V’). Therefore radr(V”) is indecomposable.

~

By the preceding two paragraphs, we can pick an isomorphism f : V/ — V”. By indecom-
posability of radr(V'), we may rescale f so that fl.aq.. (v is the identity on radp (V") = radr (V).
This means that V' and V" define the same class in Extl(7/,radp(V”)), up to scalar, so some
linear combination splits, implying 7’ € JH(socr(V)). Since socr(W,5) = socr(V) by definition
of V, this contradicts that £(7") > m + 1 (if 7 € JH(socr(W, 7)), then () = m). O
Proposition 6.3.5. Assume that p is max{9,2f + 3}-generic. Let ig = io(m) with —1 <ig < f
be as in (BHH' Y, Thm. and wy = 7t/m1. Then Do(p™)ig41 injects into 72| GLy (O ) -

Proof. Since Do(p*)io+1 = @rew 5) 4(r)=ig+1 Do, (p*) and is multiplicity free, it suffices to prove
that Do -(p*) injects into m2|qr,(0,) for any 7 € W(p®) with £(7) =ip + 1. Let A\ € ¥ be the
element corresponding to 7. As in Step 2 of the proof of [BHH b, Thm. [4.3.15| m we define
NE{jeJe @) =p—3—a;}, S ={j:N(xy) €{z;+1,p—2—x;}},
the element p € & by pj(z;) =p—1—x; if j € Jy and pj(z;) = Aj(z;) otherwise, and the
character x” by
// dcf H Oé

]EJlLJJl

We then have W (x,, x”) < 7|1, hence a GL2(Ok )-equivariant morphism as in Step 4 of the proof

of [BHHTD, Thm. [4.3.15):
_ GL(O
& : Ind; 2(Ox) W(X‘;,X”S) — T|GLy(0k)-

Let 01 € W(p) and 71 = §(7) € W(p™) be as in Step 4 of the proof of [BHHb, Thm. [4.3.15],
so that in particular im(%) has socle oy and I(oy,71) embeds into im(%)%'. By
[BHH™D, Lemma 4.1.3|, for any 7" € JH(I(o1,m1)) with 7/ # 71, we have 7/ € W (p*) with
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(") < l(11) = ig + 1, hence radr(I(o1,71)) C 71 and I(01,71) € m by [BHHTD, Thm. 4.3.15|
and [BHH'b| eq. (66)].

Consider the composite morphism

GLa (O
Indj () W X™) = Tlara o) = ™2lar05x);

we claim that it factors through

GL2(O s S
Ind ™ W (3, ") = T2|GLy(0k)- (64)

It suffices to prove that the image of W (x},, x""*) < 7|1 — m2|r has socle x§ or equivalently that
the image of W (xu,x") < m|r — m2|; has socle x). This follows from Proposition and the
following two facts:

(a) under the morphism W (x,, x") < m|r, rad;(W(x,, x»)) is sent into 71, as any constituent
is of the form y, with v € 2% ((v) <o+ 1 (this follows from [BHH"b, Lemma 4.3.1], the
recipe [BHH'D, eq. (59)], and since £(X) = ig + 1);

(b) by the discussion after [BHH bl eq. (71))] we have in particular that

(JHW (xa, X))\ {xa}}) N IH(Do(p®)™) = 0.

We note by [Breldl Prop. 4.2] that fact (b) is equivalent to

JH (1nd?L2<0K) W (x5, x"*)/ Ind 512 (@) xi) AW () = 0. (65)

Let V be the image of and V), C V be the image of Ind?’M(OK) X3 in 72, so that V/V} is
a quotient of Ind?LQ(OK) W(Xi,x”s)/lnd?LQ(OK) x5 and hence JH(V/Vy) N W (p*) = 0 by (65).
From the exact sequence 0 — S0CGL,(0,)(Va) = s0CaL,(0,) (V) — socar,0x)(V/V)), as

JH(socgr, (0x) (V) € JH(socgL, (o) (72)) € W(p™)

(by Corollary [6.2.4) and JH(socgr, (o) (V/Va)) N W (p*) = 0, we deduce that the natural map
socGLQ(OK)(V) — socGL2(@K)(V/V,\) is zero, i.e. socGL2(OK)(VA) = socGLz(OK)(V).

We claim that socgr,,o,)(Va) = socar,0x) (V) = 71. By the first paragraph, the representa-
tion 71 injects into socqr,, (o, )(V), hence into socqr,0,)(Va). Conversely, if 72 C socar, o, (Va),

then we obtain surjections Ind?LQ(OK ) X3 = Vi — (7, 7551) and the final representation surjects
onto I(5(7), 7)) by [BP12, Lemma 12.8(ii)] and [BP12, Lemma 15.2] (with S~ = St = § here).
As §(7) = 71 occurs in socgr,(0,)(Va), by multiplicity freeness of V) we deduce that 7o = 7.

As in Step 4 of the proof of [BHH b, Thm. 4.3.15], [BHH b, Lemma [4.3.13] and the preceding
paragraph imply that V' contains Dy 5(,)(p>), hence Dy 5.-(p*) injects into Tt As(6(T)) = £(T)
and 4(-) is periodic, we deduce that Dy, (5%) also injects into w5 ', as desired. O

def

We define the I'-representation Diy = Do(5*)ig+1 ® Dy (5),, 11 (Po(P)/Do(P)<io)-
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Lemma 6.3.6. Assume that p is max{9,2f + 3}-generic.

(i) D, is multiplicity free.
(ii) Dj, injects into mi*.

(iii) We have DZ-I; =~ rlt and S0CGL, (0 ) (Dig) = 80CqL,(0,)(T2). Both representations are mul-
tiplicity free. In particular, JH(socqr,0,)(Dip)) € W(p®).

(iv) We have Wa C D;, and JH(D;,/Ws) N W (p*) = 0.

v) Let 7' be a Serre weight. If Ext: (7', D;,) # 0, then either 7 € W (75%) or
r 0

€ U JH(Do(p%);)\ JH(Do(p);)-
j>i0+2

Proof. (i) By construction, D;, is a successive extension of the form

Do(P*)ig+1 — Do(P)ig+2 — -+ — Do(p) - (66)
More precisely, it inherits from [BHHDL eq. (63)] a filtration with graded pieces Do(p™)ig+1,
Do(p)ig+2, ---, Do(p)¢. Since Dy(p); injects into Dg(p>); for all j and Do(p*) is multiplicity

free, D;, is also multiplicity free.

(i) Clearly, 751 /7t 22 Dy(p)/Do(p)<i, injects into 74, Recall that

¥ “socp (Do(p™)ig+1) = socr(Do(P)ig+1)

and that JH(Dg(p*)i,+1/%) N W (p™) = (. Hence the restriction maps

Homgr, (o) (Do(p™)ig+1, m2) — Homar,0,) (Do(p)ig+1, m2) — Homgr,0,0) (X, 72).

are injective using Corollary (applied to m3), and therefore bijective by Proposition m
(for each 7 € W(p™) with ¢(7) = ip + 1 we have an injection Dy -(p**) < m2). Thus any injection
f: Do(p)/Do(P)<i, — ™' can be extended to a map f : D;, — mo. From the short exact
sequence

0 — Do(p)/Do(p)<io — Diy = Do(p*)ig+1/Do(p)ig+1 — 0,

together with socp(D;,) € W(p*) (which follows from (66)) and with W(p*) N
JH(Do(p*)ig+1/Do(p)ig+1) = @ (which follows from [BHHTD, eq. (64)]), we deduce that
socr(D;,) = socr(Do(p)/Do(p)<iy). We conclude that f is also injective and (ii) follows.

(iii) We claim that the inclusion D,L»IO1 C 71'51, deduced from (ii), is in fact an equality. Indeed,
[BHH™ Db, Cor. |4.3.16] and [BHH™b, Lemma |3.1.3] show respectively that

{xa: A€ 2, x| > o + 1} € JH ((Do(p)/Do(p)<ir)")

and
{xr i A€ 2%, || =i+ 1} € JH (Do(p™) 11,
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By the definition of D;, we obtain inclusions
XAt A€ P, |\ >ig or A€ P\ P, |Jy\| =ip+ 1} C JH(D]') € JH(m}),
so that equality holds by Proposition [6.2.1

The equality of socr(D;,) and socgr,, (o) (m2) follows from the chain of inclusions

socr(Do(p)/Do(p)<iy) C socr(Dy,) C socp(ma!) = soer(Do(5)/Do(p)<io)»

where the first inclusion follows from the construction of D;,, the second from part (ii) and the
last equality follows from Remark [6.2.5]

(iv) By definition, Wa C Dy(p)/Do(p)<i, € Di,. We have an exact sequence
0 = (Do(p)/Do(P)<in)/Wa = Dig/Wa = Do(p™)ig+1/Do(P)ig+1 — 0

and a surjection Dy(p)/W — (Do(p)/Do(p)<iy)/W2. As no constituents of Do(p**)iy+1/Do(P)ig+1
and Do(p)/W lie in W (p*), we deduce the final claim.

(v) By (66]), we have either Ext{ (7', Do(p*)ig+1) # 0 or Ext{(7/, Do(p);) # 0, where j > ig+2.
In the latter case, using the exact sequence 0 — Dy(p); — Do(p**); — Rj — 0, where R; is the
corresponding quotient, we see that either Ext}.(7/, Do(p*);) # 0 or Homp (7', R;) # 0.

Recall that Do(p%); = @rew @),0(r)=j Do,r(p%) for all 0 < j < f. By [HWIS| Lemmas 2.25,
2.26], if Exth (7', Do+ (p%)) # 0, then 7/ € W (p*). The result follows. O

The following result strengthens Lemma [6.3.6(v).

Corollary 6.3.7. Assume that p is max{9,2f + 3}-generic. If Exth(7, Dy,) # 0 for some Serre
weight 7', then " € W (p*).

Proof. By Lemma m(v), it suffices to show Ext{ (7', D;,) = 0 if 7/ € JH(Do(p*);)\ JH(Do(p);)
for some j > ip + 2. Fix such a Serre weight 7/, so 7/ ¢ JH(D;,) (and 7" ¢ JH(Dy(p))). By
contradiction let 0 — D;; — V' — 7/ — 0 be a nonsplit extension of I'-representations and V' C V|
V' ¢ D;, any subrepresentation with cosocle 7. Say 7' € JH(Dy . (p*)), for 7 € W (p*), £(7") =
j >0+ 1. Note that 7/ % 7, as 7/ ¢ W (p*) by [BHH'D, eq. (64)]. Pick any o € JH(socr(V")),
so 0 € W(p*) by Lemma [6.3.6(iii) and V' — I(o,7), so 7" € JH(I(o,7')) C JH(V’) by [BP12,
Lemma 12.8(ii)]. As 7" % 7", 7 even occurs in radp (V') C D, so 7" occurs in Wy C D;, by
Lemma [6.3.6(iv). Define o € W(p) by Jo = Jz N Jrr, so 7" € JH(W, ) (where Wy and W, >
are defined just before Lemma [6.3.3). We claim that 7' € JH(Injp o), which gives a contradiction
by [BHH"Db, eq. (65))] since JH(Injp o) € JH(Dy(p)) (cf. [BHHTD, eq. (52)]).

If /(o) > ip + 1, then by the last assertion of Lemma [6.3.3[(i) the socle of the unique sub-
representation of W, with cosocle 7 is o, so 0 — V' and hence V' — I(o,7’), which implies
7/ € JH(Injp o), as claimed.

If /(o) < ig, the socle of the unique subrepresentation of W, with cosocle 7”7 is the direct sum
of all 7; € W(p*) with {(7;) =io + 1, Jo € J C J»(C J, U JS), by Lemma and each such
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7y must inject into V’. (Again, 7, is the element of W (p*) such that J., = J.) We deduce as
before that 7/ € JH(Injp 77) for each such 7, equivalently 7; € JH(Injr- 7) by [BP12, Lemma 3.2].
To prove the claim it suffices to prove the following two statements:

(a) for any two subsets J,J' C {0,..., f — 1}, if 75,75 € JH(Injp 7'), then 75n, € JH(Injp 7);

def

(b) Ny J = Jo, where J runs over all elements in X = {J : J, CJ C Jn, |J| =ip+ 1}.

For (a), we first observe that by [BP12, Lemma 12.6] 77,7 are automatically compatible in the
sense that their corresponding elements in Z are compatible (relative to 7'). Thus Lemma [2.1.5
implies that JH(I(7;,7,)) C JH(Injp7’), in particular 7, € JH(Injp7') using Lemma [2.1.4]
For (b), we note that ¢(c) <ip and £(7") > ig+ 2,80 J, & J C J» for any J € X. Fix J € X

=
def

and j' € Jy» \ J. Then J; = (JU{j'}) \ {j} € X for any j € J\ J,. It is direct to check that
Jo = JN(N;J;), from Wthh (b) follows. O

For 0 € W(p) and 0 < ¢ < f let us define for convenience the I'-representations

e D a(p)<i —
Doalply ot = @ Dy,
DO,U(P)Si—l TEW (%) 4(7)=i,Jo=J5NJ

(using [BHH'b), eq. (68)]) and
Do.o(P) ) = b Do +(p*).

TEW (p%) 4(T)=1,Jo=J5NJ~

(Note that Do ,(p>)(;) depends on p, not just on p**!) Hence

= P Dosp and  Do(p®)i= B Doo(™)@)- (67)

ceW (p) aeW (p)

(In the second case, note that W (p*) = [I,ew@{m € W(p™) : J5N Jr = J5}.) Note that the
injection Dy(p); < Do(p*); (cf. above [BHH D, eq. (64))]) respects the direct sum decompositions
, as Doﬂ—(ﬁ% = l)[)(ﬁ)Z N Doﬂ—(ﬁsﬂ (Cf. above [BHHer, eq. ])

Lemma 6.3.8. Assume that p is max{9,2f + 3}-generic.

(i) There is a direct sum decomposition Diy = @, cw 5) Dio,o, where

Dig,e = Doo(0®)(ig41) @Dy 0 (3)sy 1) (P00 (P)/Doo(P)<io)  for o € W(p).
Moreover, Dy, o = Do »(p) if £(c) > ig+ 1.

(i) Fizo € W(p). We have a natural injection Wy 5 <= Dy o and JH(Djy,0 /W,y 7) "W (p*) = 0.

Moreover,
& T. (68)
TEW (p%),£(T)=max{io+1,6(0)},Jo=J5NJ7

12

socr(Dig,0)
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(ii) Fiz 0 € W(p) and let 7/ € W(p™). Suppose that 0 — D;, » — V — 7" — 0 is a nonsplit
extension of I'-representations and V! C V, V' ¢ D, , is any subrepresentation with cosocle
T If [V 7] = 1, then radr (V') ds semisimple and contained in Wy 5 C Dj 0. If [V :
7'l =2, then 7 =2 o and (o) > ig+ 1.

Proof. (i) Recall that Dy(p) = @scw (z) Do, (p), compatibly with filtrations. As Do(p)ig+1 —
Do(p*)iy+1, and the injection respects the direct sum decompositions @, the direct sum decom-
position claimed in (i) follows.

We now prove the last claim of (i). If (o) > ip + 1, then Do, (p)<i, = 0, and Do »(p)(ig+1) =
Do (p%)(ig41) = 0 if £(o) > o + 1. If l(0) = ig + 1, then it follows from the definitions
of Do»(p)<io+1 and of Do(p)<io+1 (cf. [BHHT D) §), and from the inclusion Dy ,(p*) C
Dy .»(p) (cf. the introduction to [BHH D, §) that Do (p*) C Do (p)<ig+1, 50 Do.o(P)(ig+1) =
Do,6(7*) (ig-+1) (= Do,o (P*))-

(ii) Consider the diagram of I-representations

W Dy(p)

| |

Wa—— Do (p)/Do(p)<iy— Di,

Each term in this diagram has a natural direct sum decomposition indexed by o € W (p). The
top horizontal arrow preserves the decompositions because of [BHH b, Lemma and Lemma
which implies that the bottom horizontal map preserves the decompositions. The property
JH(Dijg,0 /Wy 5) "W (p*) = () then follows from Lemma By Lemmal|[6.3.6(iii)| and |(iv)| we
know that socr(Ws) = socr(Dj,), and hence socr (W, 5) = socr(Di,,¢) for each . Formula q@gp

follows from Lemma [6.3.3|(iii)}

(iii) As V is a nonsplit extension, we have socr(V) = socr(Dj, ) hence JH(socr(V)) C

JH(socr (D)) € W(p*) by Lemma [6.3.6(1ii)l Since D;, , is multiplicity free by Lemma
for each 7 € JH(socr(V’)) there is a unique largest quotient V/ of V/ with socle 7 (and cosocle
7).

We first show that
socr(V): 7] =0 & [V i 7] =1 = radr(V') C W, (69)
= radr(V’) is semisimple.

If [socp(V') : 7] = 0 then [V’ : 7] = 1 for each 7 € JH(socr(V’)) as D, , is multiplicity free,
hence V; = I(7,7') by [BP12, Cor. 3.12]. As V' injects into @, cym(socy(v7)) Vr» we deduce that
radr (V') injects into @-cjp(socy (v7y) radr(Vy), so [radr(V’) : 7] = 0 as [radp(V7) : 7] = 0 for
all 7, i.e. [V/: 7] = 1. The converse of the first implication in is obvious. Still assuming
[socr(V') : 7] = 0, by Lemma we obtain JH(V)) C W(p*) for all 7 € JH(socr(V")),
thus JH(V') € W(p*). This implies that radr(V’') € W, by Lemma [6.3.6(iv), so radr(V’) is
semisimple by Lemma (applied to the pushout of 0 — radp(V’') = V' — 7/ — 0 along
the injection radp (V') C WQ,E’ which is still nonsplit, as it is contained in V' which is nonsplit by
assumption).
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To conclude, it suffices to show that 7" % o or ¢(c) < iy imply [socp(V') : 7/ hence

T =
(V':7]|=1.1f 7' 2% o0 and {(0) > iy +1, then D;, , = Dy »(p) by part (i), so socF(V’) = and we
are done. If (o) < ig, assume by contradiction that 7/ C socp(V’). Then 7/ C socF(V ) € Digy.os
so 7' C socr(W, 7) by part (ii), so 7" & W(p) and £(7') = ig + 1 by Lemma By [HW22,
Cor. 2.32], V!, has 3 socle layers, of the shape

7' —socy (V) — 7/,

and soci(V/,) contains at least one element of W (7*) by Lemmas [2.2.2| and [2.2.3] say 7”. Since
7 T” € W (p*) and 7" — 7" is a subquotient of D;, , (hence of W, by part (ii) and Lemma
6.3.6(iv)), we have J.» = J U {j"} for some j” ¢ J5 by Lemma (ii). On the other hand, as
7 ¢ W(p) there exists j' € J \ J5 (so j' # j”). Let 7 € W(p**) be the element corresponding
to Jy# \ {j'}. Then ¢(7) = ip + 1 and the extension 7 — 7”7 occurs in V' as a subquotient by
Lemma W(u) By part (ii) and Lemma we have 7 C socp(W,5) C socr(Djy,q). Thus
7 occurs in socp(V’) (using that D, , containing radp (V') is multiplicity free). As 7 # 7/ we have
[V': 7] =1 so 7 occurs in socp (V). As 7 # 7/, V' has quotient V/ which is isomorphic to I(7,7")
(arguing as in the case [socp (V') : 7] = 0). By Lemma and as J. = (J» U{;"H\ {j'},
it has length 4 and a constituent 7 € W (p*), with J.» = J; \ {j”} in soci(I(7,7')). But this

implies that the nonsplit extension 7 — 7 occurs in D;, , (hence in W, =), which is impossible

by Lemma [6.3.3|(ii). Hence [socr (V') : 7] = 0, as desired. O

Proof of Theorem [6.3.1 If ig = f this is trivial (both sides are zero). If igp = f — 1, then as in
Remark (6.1.4| we have 7y = IndGI(Q() )(x1® xow™1), where p & (0, )- Theorem|6.3.1/boils down
to showing Ind¥ (1 ® xaw ™) = Do(5*);. This is true by [BP12, Rk. 14.9(i)]. From now on we
will assume that ig < f — 2. Furthermore, if 49 = —1 the result is just assumption so we will
assume g > 0 and so f > 2.

Recall that D;, C 75* and that both representations have the same Ij-invariants and the
same GLy(Ok)-socle by Lemma [6.3.6{(ii), (iii).

For a contradiction, assume D;, C Kl with @ being the quotient. Pick a Serre weight 7/

which injects into Q. Then we obtain an extenswn of I'-representations

0— Djy =V =7 =0,

which is nonsplit by the above discussion, and moreover V C 775 !, In other words, V defines a

nonzero element in Extf (7', D;,). Hence, by Corollary we have 7/ € W(p*).

For 0 € W(p) let V, denote the quotient of V' defined as the pushout of V' <= D;; — D;, ,
so that V' — @,ew(p Vo (recall Diy = Doew(p) Dio,e from Lemma (1)) (We caution
the reader that, despite the notation, o ¢ JH(V,) in general.) If there exists o/ € W(p) such
that 7/ € JH(Dj, o) (there can be at most one such o’ by Lemma [6.3.6(i)) and [V,/] = 0 in
Ext}(7/, Dy o), then choose any splitting s : 7/ < V,s and let V' be the image of any morphism
Projp 7/ — V whose composition with V' — V,/ is the map Projp 7 — 7" 2 V,,. Otherwise, let
V' CV, V"¢ D,, denote any subrepresentation with cosocle 7. In either case, V' CV, V' € D;,
and cosocr (V') = 7/. Moreover, radr (V') C radp(V) C D;, is multiplicity free and

JH(socr (V")) C JH(socr(D;,)) € W (p%) (70)
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by Lemma [6.3.6[(i) and (iii).

For any 0 € W(p) let V. denote the image of V' — V — V,, so cosocr(V)) = 7' and
V! ¢ D;, ». We show that

[V,] = 0 in Ext{ (7', Dy, ») if and only if V/ = 7/ (71)

If V] =0 and 7" € JH(D;,,), then V] = 7/ by construction in the preceding paragraph. If
Vo] = 0and 7/ ¢ JH(D;, »), then V] = 7/ (the unique subrepresentation of D;, , ® 7" with cosocle
7'). Conversely, the “if” direction of is true, as V ¢ D;, » provides the splitting.

For later reference we show that

radr(V') =2 € radp(V)). (72)
o€W (p)

By construction, V' — @,cw(z Vs, so radr(V') = @yew ) radr(V;). As V' surjects onto
V., we deduce radr (V') surjects onto radp(V)) for all 0. Since the radr(V)) C D;,, for o €
W(p) have disjoint constituents, it follows that the injection radr (V') = @yew 5 radr(V,) is an
isomorphism.

We now distinguish cases.

Step 1. Assume [V’ : 7/] = 1. We will show that y,s contributes twice to m[m?], but this
contradicts Corollary

We claim that radp(V”) is semisimple. By it suffices to show that radp (V) is semisimple
for any o € W(p). If [V,] =0, then V! = 7/ by and we are done. If [V] # 0 we deduce that
radr (V) is semisimple by Lemma [6.3.8[(iii) (using the assumption [V’ : 7/] = 1). This establishes
the claim.

In the following three paragraphs we show that for any I'-subrepresentation V" C ﬂg(l such
that cosocp(V") = 7/ and radr(V") is semisimple there exist 7 C {0,...,f — 1} and a map
f:Q7=Qs(r") — 75 such that © 7 = © 7(7') surjects onto V", where Q 7 (') (resp. © 7(1'))
was defined just before Lemma (resp. Lemma [2.3.6)).

Note that 7 € JH(radr (V")) implies Exth(7/,7) # 0 and 7 € W (5*) (by , as radp(V") C
socp(V”)).  For € {+} define J* = {0<i< f—1:pir) = V"}, so that
radr (V") 2 @,c s+ 147 (7)) &Dic s 1 (7') by [BHH D, Lemmal[d.3.4]. We note that 7+NJ~ =0
by Lemma [2.2.3

Suppose that i € JT (or more generally that u (') < 7r2]GL2 0x))- We claim that the
nonsplit extension u; (7') — &; (') embeds into D;,. By Corollary (applied to m3) we have
two cases. If ui (7') € W(p) and £(u; (7')) > ig+1, then puf (') — 6, (7 ) embeds into Dy, +(T/)( D)

i

(by Lemma [2.2.3 and the definition of D +(T,)( p)), so into D;,. If w; (") € W(p*)\ W(p) and
((uf (7)) =g+ 1, then p (7') — 8 (') similarly embeds into Dy, - 7%) € Do(p*)ig+1 € Di,-
In either case we deduce from Lemma m (note pi (7') = p; (5+( )) that

7
)
Xs+(r1y € JH(zd) Vie JT, (73)
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and that
Xst (e € JH(T) ifi € J* and pf (') € W(p). (74)

def

Let 7 = JtUJ . Now we show that there exists a map ]?: Q7 = Qs(7) — 7r£(1 such
that ©7 = ©7(7') surjects onto V". Clearly there exists a surjection f : ©7/socx(07) - V7,
which is unique up to scalar (both sides are multiplicity free, with cosocle 7/, and we know all
their constituents) We show that f: ©7 — O7/socx(07) - V" C 751 can be extended to a

map Q7 — 7r2 . By Lemma [2.3.6| (with ¥; = ¥, (7)) it suffices to show that the map f|rad;(‘1fi)

extends to U; for all ¢ € J. (The extension is automatically unique, as 5i+ (') & T2|GLo(0x) DY

Lemma [2.2.3]) Note that flsc~(w,) = 0, as socx(¥;) C radz(¥;) € ©7 and f(socx(©7)) = 0.
T

IfieJ", fladw,) = 0, as wi (') o T2|GLy(0k) by Corollary [6.2.4f and Lemma [2.2.3) so the
r

extension to W; is trivial. If i € J%, flraa~(w,) factors through an injection of wi (') into 7r§(1
r
and by above this extends to an injection of p (7/) — 6; (') into 7&*.

By Lemma |2 the map f gives rise to a homomorphlsm IndGLQ(OK ) Wr— Qg — 7r , and

by Frobenius rempromty we get a map f : Wy — mot|;. Since f factors through W4 — (Wj) K
which is killed by m? by Lemma- 2.3.4(ii), we get f(W) C ma[m?]. In particular, as cosoc; (W) =
X+, we see that x,. contributes to o [mQ]

We now specialize to V" < V', in which case f(Wy) € Dy, If f(Wy) C mo[m] = 74!, then
fWy) C DZI; C D;, by the first statement of Lemma [6.3.6(iii), contradiction. Since f(W.y)

is Kj-invariant, by Lemma M(ii) we deduce that rad;(f(Ws)) C @ics Xrai. If xroi —

f(W4) C o, then Frobenius reciprocity gives us a nonzero map IndGLQ(OK ) xra; — im(f) C m,

and hence [im(f) : 57 (7")] # 0. By construction, [im(f) : §(7")] = 0 for all i € J~, so
rad;(f(Wz)) C @jcq+ xrai. (In fact, we have rad;(f(Ws)) = @jcs+ X+ i, but we will not
need this.)

Choose now i € J 1 such that ya; C f(Wy7). Let N € 9 correspond to 7 € W (p™), and

for i € Jt we let A\ € 2% correspond to i (') € W (5%) and N € 9% correspond to &;" (/).
(See §[1.4] for 2 and £7%5.) More precisely, note that
L =p—2— )\Ez)l = )\Z( )1, and

=X =X g G- L

In particular, it follows that
Ty = Tyw = Iv ALy, AD) = ¢NOD) = ¢(N) £ 1. (75)
Recall that the I-representations © = @,c» O, and T = @ ,,c» T, were defined just before
Lemma (taking n = ip + 4(< f + 2) and noting that by assumption p is (2n — 1)-generic).

Recall that in Step 2 of the proof of Theorem we showed that the natural map is
an isomorphism. Equivalently, ©[m3] = m3[m3], and hence m[m?] = D e ©,[m?]. Moreover,
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using the exact sequence 0 — 7, N7 — 7, — O, — 0 and the dual of (| . (recalling that
F,—i©) =m'T, N6y, . . we see that
T [m ]

Ou [m'] = (7 N ry) [mitdn]

for all ¢ > 0 (recall that d,, = max{io+1—¢(n),0}). By we have yna; = Xy € JH(m!) =
JH(m2[m]) = JH(©[m]), and moreover it occurs in 7 ), Where p € P is obtained from N as p
is obtained from A in [BHHTD), eq. . . As the I-representation 7 is multiplicity free ([BHH™ b,

Cor. ii)]) we deduce that xa; occurs in © ;) [m]. Since the nonsplit extension x,c; — X
is a quotient of f(W) C ma[m?] = O[m?], it follows again by multiplicity freeness of 7 that y,
occurs in the direct summand © ) [m?] of ©[m?] as well. Dually, x.,' occurs in grm7_1(9/\:(i)).

Define Jl(i), JZ(i) exactly as in [BHHTD, eq. (58)] (with A instead of \) and let

ff’“zef{'¢J~u§“=p—1—xj}={j¢J=x-“>e{p—3—:cj,p—1—:cj}},
TE ¢ Tl =y =5 ¢ T N € {ag,05+ 2},

so I C T C TP TP 0 T = 0. Note that ¢(u() = (V@) — 1] — 5] = ((A®) ~
\J1(2)| — |J21)|, where the first equality was noted just after [BHH'D, eq. (59)]. We claim that

dyo = |70+ 157, (76)

If pf (7') ¢ W(p), then £(A\D) = £(uF (7)) = ip + 1. If u (') € W(p) and £(\C >) > ig + 1, then
by above N € & (as Xs+(ry € JH(7!1) by ), so pd = XN and Jl() = 2( = (. The claim
follows. Z

As noted just after [BHH™ b, eq. ] we have Xy = X,,6) HJ’EJ{“ a;l HJEJS) o, Or equiva-
lently (using xx o = X ):

X;/IZX;(li)O[Z‘ H Oéj H ij_l. (77)

jes?  jegsy
Recall from and that grm7_1(®x(i)) = X;(li) ®E 1 a (a (@) /a(u®)) (using —1 —
m
di) > —n), and that
() 1T dy)
a(u(i)) I(j(i) j(i) d @) Na( (i))
1 »Y2 » 'u(l) ,U,

I

(78)

by [BHHTD, eq. (75)]. As x,' occurs in grm7_1(@x(i)), we deduce that there exists

a monomlal m € I(Jl(l), JQ( ), d, @), m ¢ a(u®) of degree d, + 1 that has H-eigencharacter
XX X () - By (77) the monomial

A U s ifd (4)

m/ d:ef yzHJEJl(z) y] H]EJ;L) Z] le ¢ J2()7
. . 7
HjGJy) Y HJ.EJQ(Z-)\{Z.} zj ifieJ;
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has the same H-eigencharacter. Since in addition m and m’ have degree at most 2 in each variable
(by [BHHTD, Def. [4.2.4] in the first case) and are not multiples of y;z; for any j (as m ¢ a(u?) in
the first case), we deduce using p—1 > 4 that m = m’. Hence m’ has degree d, i +1. Using it

follows that i ¢ JQ(i) and m = y; HjeJ“) Yj Hjej(“ zj. If i € J5, then u(i) = )\;(i) € {xi+2,p—1—x,~}
1 2

(by [BHHTD, eq. (58), eq. (59)]) and hence t; = y; (where t; = t;(1u(*)) is defined in ) so m is
a multiple of t; € a(,u( )), contradiction. Hence i € J3, and we deduce moreover that /\ 7é xi+2
from i ¢ J2 and [BHH"b) eq. (58)].

We are left with the case where \; 0 = p—1—ua;and ¢ € JZ. In this case J = J (r y U {i}

by (75) since A\; = p — 3 — x;, hence 7 ¢ W(p) (as i € J5). Moreover, as y; () — 7r2|GL2 (OK)>
we have 07" =L () +1>idp+ 1,80 7 € JHWs), so 7' € JH(W,3), where o € W(p) is
determined by J, = J5NJ (Lemma i)). We claim that the unique subrepresentation W’ of
WQ’;; C Wy C D;, having cosocle 7 has semisimple radical. We have two cases by Corollary
If p (7') € W(p) and £(uj (7')) > ig + 1, then o = pf (') and W’ = (u (7') — 7') by Lemma
‘. @ If pf (7') € W(p*) and £(u; (7)) = ig + 1, then £(0) = |J5 N, |< \J ol =0 +1
(using @ € J%) and £(7) = io + 2, so radp(W’) is semisimple by Lemma }7 (111) proving
the claim. By the third paragraph of Step 1 (applied with V" = V'  resp. W’), we obtain
two morphisms Qs — 715 ! that are linearly independent, as V' ¢ D;, and W’ C D;,. (Note
that the subset J C S may differ in the two cases, but Qs surjects onto any ()7, and likewise

Ws surjects onto any W.) Since we showed that the maps f : Ws — w2 corresponding to
Ind?LQ(OK)

Ws —» Qs — 7751 have images contained in ma[m?], we deduce that x,» contributes

twice to m[m?], as we wanted to show.

Step 2. Assume [V’ : 7/] = 2. We will show that y,s contributes twice to m[m3], but this
contradicts Corollary [6.1.8]

From and since radp(V’) C radp(V) C D, is multiplicity free we deduce that 7/ €
JH(radp(V)) for a unique o € W(p). By and the last statement of Lemma [6.3.8](iii) (applied
to V] C V,) it follows that 7 = o € W(p) and £(7') > ip + 1, hence [V, : 7] = 2. Using
radr(V/,) C Dj, » and £(7') > ig+1 it follows moreover from Lemma that socr (V) = 7/,
and hence 7/ < radp(V’) by (72). The natural surjection radp(V’) — radr(V’/7’) induces an
isomorphism radp (V') /7" — radp(V'/7"). We apply again to deduce that

radp (V') /7" = ED radp (V) & (radp(V),) /7). (79)
o#T!

As in the second paragraph of Step 1, radr(V,) is semisimple for all o # 7/, and radp(V/,)/7’ is
semisimple by Lemma In conclusion, radp(V’/7’) is semisimple. As cosocp(V'/7") = 7/ we
can write, as in the fourth paragraph of Step 1,

D radr(Vo) = D uf ()& D wi (1) (80)

o#T! eJt €eJ -
and (using moreover Lemma [2 ,
radr (V7)) /7" 2= @ (uf (7') & p7 (1)) (81)
ieJ’
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for some subsets J*, J~, J' of {0,1,...,f —1}. For i € J*, x € {+} we have pi (7)) = V' —
TalaLy o) by (72). Therefore 7+ N J~ = 0 by Corollary and Lemma and note that
(JtuJ )NJ =0 asradr(V') C D;, is multiplicity free. Let J L rugtuy J~, and write
QJ = QJ(T,)a @J = @j(T/), v, = ‘l/i(T/) as in Step 1.

We show that dimpHomgr,0,)(©7, m2lcr.0k)) = 2. It suffices to show that
dimp Homy(©7,V’) = 2. As [V’ : 7] = 2 and cosocz(©7) = 7/, the dimension is at most 2,
and we have a trivial map ©7 — 7/ < V' so it suffices to find a map whose image is not ir-
reducible. We follow the argument in [HW22) Cor. 3.14]. By (79), (80), and there exists a
surjection f: ©7/socx(©7) — V'/7" (just as in the sixth paragraph of Step 1). The same proof
as in [HW22 Cor. 3.13] shows that Ext%(@;,r’) = 0, so we can lift f to f: ©7 — V' whose

image is not contained in 7/ C V",

We show that the restriction map

Homgp,(0,)(Q7, T2l (0x)) = Homar,04) (07, m2lar. (o)) (82)

is surjective (even an isomorphism). By Lemma it suffices to show that the restriction map

Homar, (o) (Wi, T2laL, o)) = Homar, o) (rads(¥5), m2|aL, o)) (83)

is an isomorphism for any ¢ € J. The map is injective, as ¥; = (7' — pf (7') — 8 (7')) and
§(r) T2|GLy(0g) Py Lemma so it suffices to show that the map is surjective. By

Lemma [2.2.1} radg(W;) = (7' —p; (7)) is a quotient of Ind?LQ(OK) Xyt (1) (note that u; (u;F (1)) =

7 as f > 2), so by Lemma [6.3.6(iii) (and Frobenius reciprocity) we see that the right-hand side

of is at most 1-dimensional. It thus suffices to show that Homgr, 0, ) (Wi, m2lar,(0x)) # 0
forallie J.

Suppose i € J. If p (') <= m2|gL,(0k), then the nonsplit extension p; (7') — 6; (') embeds
into D;, C 7r§<1 exactly as in the fifth paragraph of Step 1, so we are done. Otherwise, i € J—
and hence p; (1) € W(p*). As 7/ € W(p) and £(7") > ip + 1 (see the second paragraph of
Step 2), the uniserial representation W; = (7' — u; (7') — §; (7)) injects into Dy(p) (by the
definition of Dy(p) in § noting that uf(7'),8;(7') ¢ W(p) by Lemma [2.2.3) and even into
ﬁo(ﬁ) / ﬁo(ﬁ)gio > Ta|qL,(0x), Where this last injection comes from Corollary [6.2.6, We have
proved that is an isomorphism.

As Ind?LQ(OK ) W s surjects onto @ 7 by Lemma m we deduce from the surjectivity of
and from dimg Homgr,,(0,)(©.7, T2lgr,(0x)) = 2 that
(IHd?LQ (OK)

dim]p HOmI(Wj,ﬂ'Qh) = dimF HomGLQ(OK) WJ,WQ‘GL2(OK)) > 2.

As cosoc; (W) = x,» and W is killed by m3, it follows that y,s occurs at least twice in mo[m?]
as we wanted to show. O

)

Corollary 6.3.9. Assume that p is max{9,2f + 3}-generic. Suppose ©’ = /71 is any nonzero
subquotient, where Ty C 7, C m. Let ig = ig(m1), ih = ig(m}), so —1 <ig < ih < f. Then

7512 Do (p™)ig11 ©py(@)ig 11 (Po(P)<it /Do(P)<io)-
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Proof. Note that 7K1 is the kernel of the natural map (7/m1)%t — (7/7})K1. Let us write
again Dy, = Do(5°)ig+1 ®po(p)s. 41 (Do(B)/Do(p)<is). By Theorem [6.3.1] the above natural map
is identified with a map

ig+1

9D10—>D16

Let 6y = 01 Do(5)/Do(p)<iy- We have S0CGL, (o) (T/T1) € {0 € W(p®) : (o) > iy + 1} by Corol-
lary and JH(Do(p%)i,+1) N W (p*) is disjoint from that set since iy < i, so Do(p**)ig+1 C
ker(6) and hence ker(6) = Do(p™)ig+1 ® Dy (p);, 1 ker(fo). On the other hand, by comparison with

7K1 = Dy(p) we see that g is the natural surjection Do(p)/Do(p)<iy, — Do(p)/ Do(ﬁ)g%. The
result follows. O

We can now extend [Wan, Thm. 1.2] to subquotients.
Corollary 6.3.10. Keep the notation and assumptions of Corollary[6.3.9. Then we have

dimp(x) D{ (x') = [JHE") nW(@®)| = <{>

T
10 <i<ig

Proof. By exactness of ng and [BHH™ Db, Cor. \ we know that the two outside terms are equal.

By Corollary (using (66]), [BHHTD, eq. (65)] and that W (p*) C JH(Dy(p))), we deduce that
JH(7"ED) N W (p%) = {0 € W(p™) 19 < £(0) < i}}, and the result follows. O

7 Global arguments

In this section we prove that certain globally defined smooth mod p representations of GLa(K)

satisfy assumption of § 3] (besides assumptions [D)H(iv)] of § [3).

7.1 Global setting

We define smooth mod p representations of GLo(K) that arise from the mod p étale cohomology
of suitable Shimura curves, and recall why they satisfy assumptions|[(D)H(iv)] of §[3] We then show
in § below that they furthermore satisfy assumption

Let F' be a totally real number field in which p is unramified, and let S, denote the set of
places of F' above p. For each finite place w of F' we denote by F}, the completion of F' at w. We
fix a quaternion algebra D over F, with center F' such that D splits at all places in S, and at
exactly one infinite place. We let Sp denote the set of places of F' at which D ramifies.

We fix a continuous representation 7 : Gal(F/F) — GL2(F) and define Sr to be the set of
places where 7 ramifies. We write 7, for 7| Gal(Fo/Fo)* We assume that:

. F|Gal(f /F( /1)) is absolutely irreducible;
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o if p =5, then the image of 7(Gal(F/F(¥/1))) in PGLy(F) is not isomorphic to As;
o for all w € S, 7, is 0-generic;

o for all w € Sp, 7, is non-scalar.

We now fix v € S, and let ¢ : Gp — W(F)* be the Teichmiiller lift of wdet(7). Following
[EGS15, § 6.5] with the corrections of [BHHT23, Rk. 8.1.3] (see also [BD14l, § 3.3, § 3.4]) we
have a compact open subgroup U" of (D ®@p A7")* and a smooth representation of U”(A%"")*
on a finite-dimensional F-vector space which we denote by M", and on which (AR")* acts by
¥~ (Following the notation of [EGSI5, § 6.5] this is the mod p-reduction of the inflation to
[Twes\ o} Kw Ilwgsugu} (Op)ey of the [],cs (v} Kw-representation L over W (F) of loc. cit., where
furthermore (A%"")* acts via ¥~!. Again, the representation L should be corrected following
[BHH™23, Rk. 8.1.3(i)], in particular ¢ in [EGS15] § 6.5] should be replaced everywhere by its
inverse.) We set 7 = 7Y and following [BD14, eq. (3.3)] (which treats the case where 7 is split at
all w € Sp, but generalizes to the remaining cases by [EGS15, § 6.5]) we define the “local factor”

w(p) = Homye (M", Hom,y 5y (7, limy HYy (Xy xp F, ) )], (84)
14

where Xy denotes the smooth projective Shimura curve over F' associated to V' constructed with
the convention “c = —1” (see [BD14} § 3.1] and [BDJ10, § 2]), the colimit runs over all compact
open subgroups of (D ®p A¥)*, and m. is the maximal ideal denoted m’ in [BD14l § 3.3] and
in [EGS15, p. 50] (though the context of loc. cit. is slightly different since they use patching
functors). We assume from now on that

. HomGal(F/F) (F, liglv Hélt(XV XF F, F)) #0.

In particular 7(p) # 0 by [BD14, Thm. 3.7.1] under the condition that 7 is reducible at all w € .Sp,
but the proof extends to the general case using the material of [EGS15] § 6.5].

We define the ring Ro, as in [BHHT23, § 8.1], with the set S in loc. cit. taken to be Sp U Sz
and the rings R;/i:“ (w e (SpUSy)\Sp) and Rgi’_l)’ﬂ”’ww (w € Sp\{v}) of loc. cit. replaced by the
rings R of [EGSTH, § 6.5]. By [EGSI5, Thm. 7.2.1] and [BD14, Lemma 3.4.1] the rings R™®
are formally smooth over W (F) (of dimension 3 or 3 + 3[F}, : Q] according to whether w € S, or
not), so that R is formally smooth over W (F) of relative dimension 4|Sp USz|+2[F, : Qp]+¢—1
for some integer ¢ > [F': Q.

We can now follow the construction of [EGSI5, § 6.4] (where the definition of S(o)m of
loc. cit. should be corrected as explained in [BHH"23, Rk. 8.1.3(iii)]). We obtain a patching
functor (in the sense of [EGSIH, § 6.1]) M defined on the category of continuous representations
of GL2(OF,) on finite type W (F)-modules with central character ¢»~!, and taking values in the
category of Ro.-modules of finite type, such that

Meo(0) /Mo = (Homr, (05, ) (00, 7(9)))

and which moreover satisfies dimp(Moo(0y)/Mso) < 1 for any Serre weight o, by [EGS15, § 6.5].
Furthermore the construction of [DL2I, Thm. 6.2] gives a finitely generated module M, over
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Roo[GL2(OF,)] such that My, /my = 7(p)Y and

Moo(0) = Hom{p (1, (0, )] Moo 00)

(where (=) < Hom{piky (—, E/W (F))).

Proposition 7.1.1. If 5 is 12-generic then 7(p) satisfies assumptions with “r =1"
Proof. The proofs of the results of [BHH"23, § 8.2, § 8.3, Thms. 8.4.1, 8.4.2, 8.4.3], [Wan23), § 6]
go through verbatim for our 7(p), replacing all occurrences of r in loc. cit. by 1. (Note that the
hypothesis [BHH'23| § 8.1, item (iii)(b)] and [Wan23} § 1, item (ii)] are satisfied as all R above
are formally smooth over W (IF).) In particular [BHH'23, Thm. 1.9], [Wan23, Thm. 6.3(ii)] hold,
with » = 1, for 7(p) so that m(p) satisfies assumption |(i)| and (for the latter, using [BHHT23,
Prop. 6.4.6] which holds for a not necessarily semisimple p). Similarly [BHH™23, Thm. 1.10],
[Wan23, Thm. 6.3(i)] hold for 7(p) so that 7 (p) satisfies assumption [(iii)| (via [HW22, Thm. 8.2]).
Finally the proofs of [BHH"b, Lemma Prop. go through verbatim replacing r and 7

in loc. cit. with 1 and 7 (p) respectively, so m(p) satisfies assumption (Note that assumption
is also satisfied by the main result of [LMS22, [HW18, [Lel8].) O

7.2 Verifying assumption

We keep the setup of § The goal of this section is to prove the following result:
Proposition 7.2.1. Assume that p is 9-generic. If w(p) satisfies assumptions and
of §@ then it also satisfies assumption .

To simplify notation we let 7 & 7(p) and assume that it satisfies assumptions and

in the remainder of this section.

Remark 7.2.2. In fact, we will even establish a canonical isomorphism
Torf"™ (gr(A)/m", g1 (7)) = gr(Tor (A/m", 7))

for n = 3. We remark that the n = 2 case can be proved by a similar, but significantly shorter,
argument. The n = 1 case was established in [BHH"b, Cor. [2.5.1(i)] (taking i = 1 there).

The proof of Proposition [7.2.1] requires a number of preliminary results.

Lemma 7.2.3. Assume that p is 0-generic. Then for any A € & we have
TH(Ind; ) xa) N W (p) = {r € W(p) : J™" € T € T,
where
J/min et {1eds:Nje{zj+2,p—3—x;}},
TG e Ty Ay ¢ {xyp— 1 —a}).
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Proof. Note that we can replace A with Al*) (see [BHHTD), eq. (50)]) without changing the validity
of the lemma. By [Brel4, Prop. 4.3] we have

JH(Ind ™ %) x3) AW (p) = {o : J™™ € J € ),

where o7 € W(p) denotes the Serre weight defined by v o g oA, with py € P determined by
py; €{p—2—xj,p—1—u;}ifand only if j € J. As 05 € W(p), we deduce that pyo X € Z by
[HW22| Lemmas 2.1, 2.7]. Also recall from [Brel4l Prop. 4.3] that

Jmin — 5({5 Ne{p—1—azjz;+2or (N\j=x;+1,j¢ J5}),

JPE=06({j: N E{p—3—zjzi}and (\j =p—2—x; = j € Jp)}).

Let J()\)d:ef{j:Aj e{p—3—-zj,p—2—xj,p—1—x;}}. Asv;=p o\, we have
jedJy,) = vyie{p—-3—z,p—2—x;} < jeJAJ\).
Equivalently,
Jy, =6 HJ)AK, where K= 5 Y (JN\)={j: N e{p—3—zj,p—1—xj,z;+1}}. (85)
From basic set theory, J™® C J C J™8 if and only if J'™" C §~1(J) A K C J'™3 where
7 () \ K U (K 67 (7)),
Jme (5 () K U (K 67N,
Finally, it follows from the definitions that
T =N =a;+2bU{j N =p -3 -1y},
Jmx={jeds:Njef{z;+2,p-2—z}}u{jez: \je{p—3—uxjz;+1}}. O

Lemma 7.2.4. Suppose that Ay = Flxy,...,x,] and A = Flay,...,z,]. If Iy, Jo are ideals of
A, then IpAN JoA = (Io N Jy)A as ideals of A.

Proof. This is a special case of [Mat89, Thm. 7.4(ii)], as A is flat over Ay. O

The following lemma follows exactly as in [LLHLM20, Lemma 3.6.2] and [EGS15, Prop. 8.1.1].

Lemma 7.2.5. Suppose V is a finite length smooth representation of GLa(Ok) over F that
is multiplicity free. Suppose that the scheme-theoretic supports of the Rs-modules My (o) (cf.
(BHHT™ b, §@/} are reduced and do not share any irreducible components for o running through
JH(V). Then
Annp M (V) = ﬂ Annp_ My (0).
oc€JH(V)

Lemma 7.2.6. Suppose R=TF[X;,YV; (1 <j<k)],I=(X;Y; 1<j<k), V;Yy (1<j<j <
k)). We have
1 ifi=0,

it ifi>o.

dimg Tor®(F, R/I) = {
i+1
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Proof. Note that R/I is the Stanley—Reisner ring F[A] associated to the simplicial complex A
whose minimal non-faces are {X;,Y;} (1 < j < k) and {Y;, Y} (1 <j < j < k) [BH93, § 5].
Also, dimp Tor®(F, R/I) is the rank of the degree 4 term in any minimal graded free resolution of
R/I as R-module. Let ¥ & {X;,...,Y;} denote the set of vertices. By [BH93, Thm. 5.5.1, Thm.
5.3.2] we have

dimg Torf(F, R/I) = Y dimp Hyy ;1 (|Ay|;F), (86)

Va4

where Ay denotes the subcomplex obtained by all faces of A whose vertices are contained in
W with geometric realization |Ay |, and where Efj denotes the j-th reduced homology group
(by convention, H_1(0;F) = F). By definition of A, if % contains at least two X, then |Ay | is
contractible (so the term indexed by # in vanishes). Similarly, if # contains X for precisely
one j, but it does not contain Y}, then |Ay/| is contractible. If # contains X for precisely one j
and it also contains Yj, then |Ay/| is homotopic to a disjoint union of 2 points. If #  contains no
X, then |Ay/| is a disjoint union of |#| points. If |Ay| is homotopic to a disjoint union of s > 2
points, the term dimp ﬁ|W‘_i_1(|AW|; F) equals s — 1 in degree i = |#'| — 1 and 0 otherwise.

Now let us compute dimp Tor®(F, R/I) via (86). If < > 0, the only contribution then comes
from the ( 1) subsets # of {Y1,...,Y;} of cardinality ¢ +1 (each contributing i) and the k- ( )
subsets # that contain precisely one X; and also Y; (each contributing 1). The lemma easily
follows. O

Recall that for n > 1 we denote Wy ,, = (Proj;/z, x)/m" = x ®r A/m". For A € & we let

def

kx=K0<j<f—1:t #y;zi.
(Recall that the ¢;, depending on A, are defined in ) We recall that Ro = Roo ®0 F.

Proposition 7.2.7. Assume that p is 2-generic. Then for any A € &2 we can find compatible
isomorphisms B
Roo 2 F[X;,Y; (1<) <), Zm (L <m < N)J

for some integer N > 2f and
Moo(mdS™2C W, V=R /(XY 1<5<0), ViY; (1<i<j<ky), Zm(l <m<2f)),

where { < |J5].

Proof. Let x < x, and Vy ' In dGL2(OK) Wy2. We have
Moo (Vy) /Moo = Homy((Projy 7, x)/m?, m)¥ = Hom(Projy/z, x, w[m?])", (87)

and this is one-dimensional by [HW22, Thm. 1.3(ii)], so M (V4 ) is a cyclic Roo-module.

We first show that

THV) NW (D) ={o e WD) : |(,\ ") AT <1}, (88)
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where J' < {j € J5: \j € {x; +2,p—3—a;}} and J" = {j € J5: \j € {z;+ 1,p— 2 — z;}},
Note that Lemma [7.2.3] applied to x gives J'™" = J" and J'™®* = J' 1 J”. On the other hand,
by [BHHTD, Lemma [2.3.6{ii)] (with m = 1), ¥’ = Xajd occurs in 71 if and only if j € J5 and
Aj€{xj,p—3—x;} (resp. \j € {z; +2,p—1—x;}) ‘if the sign is positive (resp. negative), and in
each such case Lemma applied to x’ gives J'™" = J" A {j} and J'™* = J' U J". In other
words,

TH(V) N W(p) = {0 e W(p): 3K CJp\J",|K| <1, AK CJ, C(J AK)UJ"}
={oeW(p) :IK CH\J K <1,I\J" =T AK}
:{JGW(ﬁ):EIKgJﬁ\J”,\K| < 1,(JU\J”)AJ’:K}7

which is equivalent to (88)).

As 7 is nonsplit, we may assume without loss of generality that 0 ¢ J; if f is odd. Let

at | (xo+1L,p—2—z1,220+1,p—2—23,...,p—2— x5 1) if fis even,
(o, p—2—z1, 20+ 1, p—2—23,...,p—2—xp 9, xp1 +1) if fisodd,

so € & and for all j € J; we have pu; € {x; + 1,p — 2 — x;}. Then [Breld, Prop. 4.3]

or Lemma imply that JH(Ind?LZ(OK) Xu) 2 W(p). Observe that if o € W(p), then o is
parametrized, in the notation of [Brel4], by the set

Jop = {jeven:jed(J,)U{jodd:j¢d(J,)}

(If f is odd we take 0 < j < f—1, not just j € Z/fZ!) On the other hand, in the same situation,
the minimal/maximal subsets in [Brel4, Prop. 4.3] equal

JU = §({j even: j ¢ J5,7 # 0 if f odd})
={jodd:j ¢ d(Jp)}

and

JU =5({jeven:j#0if f odd}U{j odd : j € J5})
={j odd}U{j even:j € d(J5)}.

In particular, we deduce that

Jopu \J™ = {j even:j € §(J,)}U{jodd:jed(J5\ J,)},

Jmax \ Jmin — 5(‘]?) (89)

Let 70 denote the lattice in a tame principal series type obtained by inducing the Teichmiiller
def

lift of x,, from I to GL2(Ok), and let 7 = 7°[1/p]. By [EGSI5, Thm. 7.2.1] the corresponding

7¢7D

fixed-determinant framed local deformation ring R% is isomorphic to Ofz;, y;, 2m : j € J™\

Jmin 1 < m < f4+3—0]/(z;y; : all j) (of relative dimension f+3), where £ = | Jmax\ Jmin| = | [,

The full fixed-determinant framed local deformation ring R%’D is a power series ring in 3f + 3
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variables. It is not hard to see that we can choose an isomorphism R%)’D = 0[X;,Y}, Zn -
jo€ Jma\ Jmin g < om < 3f + 3 — (] such that RZV'Y = RYV/((X;Y; « all j) + I7), where
def

17 % (Zo - € < m < 2f).
Hence by [EGS15, Thm. 10.1.1] we deduce that
Roo 2 O[X;,Yj, Zyy 2 j € J™\ J™0 ¢ < m < NJ,
Moo (") 2 Roo/((X;Y] : all j) + I7),
for some integer N > 3f 4+ 3 — ¢. From [EGS15, Thm. 7.2.1(4), Lemma 10.1.12] it follows that
Anng  Muyo(0) = (Xj: j € Jopu \ ™™, Yj:j € TN\ Jp ) + 2. (90)

(In fact, to compare with the conventions of [EGSI5] we have to replace (J™m, jmax j ) by
(Jmaxye (gminye ge 3 cf. the proof of [EGS15, Lemma 7.4.1], but this amounts to interchanging

1Yo,

X, and Yj for each j.)
By Lemma [7.2.5] we have

Anng Moo(Ind?LQ(OK) Xp) = ﬂ Anng M (o),
o€W(p)
I, = Anng Moo (Vy) = ﬂ Anng  Meo(0).
o€ TH(V3)NW ()

We will make several changes of variables, which will not affect the final result. Up to interchanging
X;’s and Y}’s, we deduce from equations and that

1

I, N ((Xj G E€8(Jy), Yy g €8(I5\ ) + IZ>.

cETH(V)NW (5)

Shifting the indices in X; and Y; by one (to get rid of the §(-)), and applying we get

I

I, N ((X5:5€d, Y55 € B\ ) +1z). (91)
JCT5, |(\JAT|<1

As J'NJ" =0 we have (J\ J")AJ = (JAJ)\ J". Interchanging variables X; and Y; for all
j € J', which has the effect of replacing J by J A J’ in we get

I

I, N (el YVijel\D)+1z).

JC 5, [J\J"|<1
By Lemma and [BH93, Thm. 5.1.4], this intersection equals
(X,Y;, Y;,Y;, s all j € J5; j1 < j2 both contained in J5\ J") + I. (92)

(The corresponding simplicial complex has facets {X; : j ¢ J,Y; : j € J}, hence minimal non-
faces {Z,,} for all m, {X;,Y;} for all j, and {Y},,Y},} for all j; < jo both contained in J5\ J".)
Asky=NjeJz: Nj¢{z; +1,p—2—a;}} = |J5\ J"|, we are done. O
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Proposition 7.2.8. Assume that p is 2-generic. Then for any A € & we have
1 ifi=0,
dimg Ext}; (Wi, 2,7) = $ 2f + (%) ifi=1,
224+ (K — k= 1)f — (™Y ifi=2.

Proof. Let x S xx and k &k, for short.

By [BHHTD, Lemma

2.6.1f, iEXti]/Zl(WX,Q,W) is dual to Tor®> (F, M. (Ind$™ %) W, 5))
hence by Proposition [7.2.7| to Torf%O (IF,EOO/]OO) where

R =F[X;,Y; (1<j<¥),Z
Io = (X;Y; (1 <5 <40), Y,
where ¢ = |J5|. Let

m (L <m < N,

YV; (1<i<j<k), Zm{t <m<2f)) C R,

def

R=TF[X;Y; (1<j<0),Z

(6 <m < N,
IE (XY, (1< <o),

ViV (1<i<j<k), Zn(t<m<2f))CR

As R, is flat over R and Reo/Is = Ro ®r R/I, by considering minimal graded free resolutions
we deduce an isomorphism

Torf(F, R/T) = TorR> (F, Roo /Ino).

It remains to compute Tor®(F, R/I) for i < 2. We let

R ER[X,,Y; (1<j<k),

[ IO (XY, (1<j<k), ViV (1<i<j<k)),
R S X, V), 129 & (X)),
RGB™ L R(7.1, I1Gm) £z ),
R(4,n) def F[Zn], I(4,n) def (O),
so that
RRYer Q R*er & RE™ep K R,
k<j<t (<m<2f n>2f
R/I = RW /1M @ ® R®29) /120) @p ® RG™) /1Bm) g ® R@n) /pn),
k<j<¢ l<m<2f

n>2f
By using the tensor product of a minimal graded free resolution of R(l)/ I and of the minimal
graded free resolutions

0 = R BN, pEd R4 12D g

0 — RGm) Zmy pBm) _, pBm) /1Gm) _

0 — RU™ g /1m
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we obtain that

2
dimg Tor®(F, R/I) = Z( /- k) dimg Tor®" (7, RO /1)),

2f k i. of —k\ [k +1
] i—j J\i+1
by Lemma [7.2.6] We conclude by a short calculation. O

Corollary 7.2.9. Assume that p is 3-generic. Then for any A € & we have

k 1
dimp Ext}/ZI(WXA,gﬂr) >2f24 f+ < A;‘ )

Remark 7.2.10. We will see below (in the proof of Proposition [7.2.1]) that equality holds, at
least under a stronger genericity condition. By the proof of this corollary, this implies in fact that
the natural map Ext%/zl(thg, ) — Ext%/z1 (xn ® m?/m3, 1) is injective.

Proof. Again let y < yy. By [HW22, Thm. 1.3], we have Homy,z (Wy 3, m) = Homy 7 (X, 7).
The exact sequence 0 — y @ m?/m3 — W3 — W, 2 — 0 thus gives rise to a long exact sequence

0 — Homy/z (x ® m?/m3 7) — Ext}/z1 (Wy2,m) — EXt}/Zl(Wxﬁv ) (93)
— EXt}/Z1 (x ® m?/m?, ) — EXt%/Z1 (Wy 2, 7).

def

Let J = {0 < j < f—1:1t; # yjzj} (where again the t; are defined in ) Let ¢; S
—1ift; = y;, & = 41 if t; = z;. Note that, by [BHH'D, Lemma (ii)] (with m = 2),
JH(x ® m?/m?) N JH(71) consists of x (occurring 2f times in y ® m?/m3) and all Xa?ajj for
{i < j} C J (each occurring once in x ® m?/m3). Hence by assumption we deduce that

2f + (%) if i =0,
2f(2f + (%)) ifi=1.
By Proposition we deduce that the first map in is an isomorphism, so

dimg Ext} , (x © m?/m®, 1) = {

dimp Ex‘c}/z1 (Wy3,m) > dimp Ext}/Z1 (x ® m?/m3, 1) — dimp Ext%/z1 (Wy2,)

—of <2f+ (?)) - <2f2+(k§—k,\—1)f— (kA;Ll))

—2f2 4 f+ (;@;1)

where we used Proposition [7.2.8] again. O

Lemma 7.2.11. Assume that p is (2n+1) -generic. Suppose that x : I — F*, J,J C{0,1,..., f—
1}, 5,45 € Z\ {0} for all j € J j' € J' such that 3 e ij] < n and Djey il < n. If

XHJEJa e JH(ml) andxl_[]e,,a € JH(nY), then
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(i) lij =45l <1 forallj € JNJ';

(i) XILjegray € JH(x™) for any JNJ'C J" C JUT, where if = i; if j € J and i =} if

jeJ\J.

def

Proof. Let ' & X [ljes a;j € JH(x") and x" = x[ljer oz;-j € JH(r'1). Write x' = x, for some

A€ Z. Since L 3
"no__ 1 ] —1j 5
VX I I e I o

jeJng’ JEINT’ JETNT

part (i) immediately follows from [BHH'b, Lemma [2.3.6(ii)] (with m = 2n). The same lemma
implies part (ii) as well, by noting that

I ey =x T o T1 o

jeJ” jeJ\J" JEINT

and since the assumptions imply that J”\ J C J'\ Jand J\ J" C J\ J". O

Proof of Proposition|7.2.1 1t suffices to establish a canonical isomorphism

Torf™ (gr(A) /M, g, (7)) 2 gr(Tord (A/m?, 7).

Just as in the proof of [BHH D, Cor. [2.4.8, Cor. [2.5.1] it suffices to show that

dimp Tor%r(A) (gr(A)/m3, gr, (7)) < dimg Tory (A/m?, V),
and then equality has to hold.

Step 1. We first show that

dimg Tor§™™ (gr(A) /@%, gro (7))
-y <4f3 (6= 4kn) 2 + (2K — 2 + 1) — %/ﬂ(/ﬂ _1)(2ky — 1)) .
AP

def

From [BHHTD, Thm. [2.1.2] we have grn(7Y) = @rep x5! @ R/a(A). Fix A € 2 and let J &
{(0<j<f—1:tj#yz}, k=|J| = kx. It will suffice to show that

dimg Tor® ™ (gr(A) /m?, R/a(\)) = 4f% + (6 — 4k) f2 + (2k% — 2k + 1) f — %k;(k —1)(2k —1). (94)

We will compute this Tor; using an explicit free resolution of R/a(\).

Recall from [BHH'D, eq. (18)] that gr(A) (resp. gr(A);) is the universal enveloping algebra of
the Lie algebra @f;& g; (resp. g;) over F, where g; has F-basis y;, 2;, hj, subject to [y;, z;] = hy,
h; is central, and [g;,g;/] = 0 for all j # j'. In the following we use the Poincaré-Birkhoff-Witt
bases for these Lie algebras, for the ordering yo,...,ys-1,20,...,2f-1,ho, ..., hy_1. In particular,
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gr(A)/m3 has F-basis given by all ordered monomials whose degree is at least —2, where y;, z;
have degree —1 and h; has degree —2, and its dimension equals 2f2 +4f + 1.

Note that R/a(A) is the tensor product of gr(A);/(t;, h;) over F for all 0 < j < f — 1. Recall
from [HW22, Lemma 9.6] the minimal gr-free resolution of gr(A);/(t;, h;) as gr(A),;-module:

tj

(=hjt;)

GY 0 gr(A); s gr(A); @ gr(A); — gr(A); — 0,

where we ignore the grading and H-actions. (Compared to [HW22, Lemma 9.6] we applied
the involution (o, ) — (—a — 3,5) to the middle term in case t; = y;z;.) Then
Tor%r(A) (gr(A)/m?, R/a(X)) is obtained as the first homology of the complex gr(A)/M? Qg () G,
where G, is the tensor product complex of all st), 0 <j < f—1. Note that Gog = gr(A),
G1 = @) er(A)%2, Go = @175 gr(A) © Bozicjcp—1(81(A)F2) Oga) (gr(4)F2),.

For the purpose of the calculation we may and it will be convenient to assume that t; = z;
for all j € J (by interchanging y; and z;, if necessary).

The morphism 9 : Gy /m> — Go/m? is given by (ZJ) in the j-th component, so its image in

J

gr(A)/m3 has F-spanning vectors given by

{yjzj, h;

tj Yity, zitj, hy
where 0 < i < f — 1 is arbitrary. As the term ¢;t; = t;t; gets counted twice for any {i < j} C J,
we see that

if j & J,
if j € J,

dimpim(01) = 2(f — k) + (2f + 2)k — (g) =2f(k+1)— (’;)

Since dimp G1/m® = 4f3 + 82 + 2f, we deduce that

dimp ker(d;) = 4f3 + 8f2 — 2k f + (’;)

The image of the morphism 9y : Go/m3 — G;/m3 is generated by (—h;,t;); for all j and
(t5,0); — (ti,0)5, (hj,0); — (0,;)4, (0,h;); — (0,h;); for all i # j as a gr(A)-module. (Here the
subscript j denotes the j-th component of G /m® & @f;é(gr(A) /m3)®2) As an F-vector space
we get spanning vectors

(hj,0); —(0,t;); 0<i,j7<f—1,
(t,0); — (;,0); 0<i<j<f-—1,
(0,hj)i —(0,h;); 0<i<j<f—1,
and
—(0,wt;); ifieJ, any j, (95)
(wt;,0); — (wt;,0); if {i <j} CJ, (96)
(wt;,0); ifi¢ J, jeJ, (97)



where w € {yo,...,Yf-1,%0,...,2f_1} is arbitrary. By the Poincaré-Birkhoff-Witt Theorem, the
only linear relations occur in (95]), where (0, ¢;t); is listed twice for any {j < ¢} C J and any i;
in (96)), where for any {i < j < £} C J the elements

(tet;,0); — (tet;,0)5, (tite,0)5 — (tit5,0)¢, (tt;,0)p — (tjte,0)s,

add to zero, and in (97)), where (¢;t¢,0); is listed twice for any {j < ¢} C J, i ¢ J. Therefore,

dimgim(8) = f2 + (‘;) + (g) +2f2k:+2f<§> +2fk(f—k)—f<§> - (g) —(f—k)<§>

— 2122k +1) —f(2k2+1)+2<k;:1>.

We finally check that dimp ker(0;) — dimp im(82) equals the right-hand side of (94), as desired.
Step 2. We show that
1
dimg Tord (A/m®,7¥) > 3 (4f3 (6 — 4hn) 2 + (202 — 2o + 1)f — ~ha(fn — 1)(2kx — 1)) .
AeZ 6
Note that

Tord (A/m?,7¥) = Tor, /A F[1/ 21 g A/mP, 7YY = @ Tor {2 (W 5,7, (98)
y:I—Fx

and this is dual to @,.;_px Ext}/zl(WX@,ﬂ) by [BHH'b, Lemma [2.6.1].

By assumption Ext}/Zl(ijg, 7) = 0 if JH(W, 3) NJH(71) = 0. Assume that JH(W, 3)N
JH(71) # 0 and let 0 < i < 3 be minimal such that JH(y ® m?/m*1) N JH(x1) # 0. From
Lemma (with n = 2) we deduce for this i that JH(x®m’/m*1)NJH(7 1) is a singleton. For
any A € & and 0 < i < 3 let X, ; be the set of all x such that JH(y @ m!/m*1)nJH(7"1) = {x,}

def

and JH(x ® m? /m/T1) N JH(7") = 0 for all 0 < j < i. Let Xy = [Jo<jes Xai- It will be sufficient
to show that

1
> dimpExty/; (Wys,m) > 4f% + (6 — 4k) f2 + (2k* =2k + 1) f — Ghlk = 1)(2k = 1),
XEX

where k & k) for short.

If x € X\, then x = x, and

) k+1
dlm]FEXt}/Z1<WX73,7T) >2f2 4+ f + ( 3 )

by Corollary Moreover, | Xy o| = 1.

Suppose that x € X, 1. Then the unique (up to scalar) nonzero morphism Proj; /71 XA —
Wy 3 factors through a morphism i : W,, o — W, 3, as the image is contained in rad W, 3 =
mW, 3. Moreover, i is injective by [BHH"23, Lemma 6.1.2] and any Jordan—-Holder factor
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of coker(i) is not contained in JH(w!') by Lemma [7.2.11| (with n = 2). (We know the con-
stituents of W, 3 and their multiplicities by [BHH"23, (44)].) Hence ¢ induces an isomorphism

Ext}/z1 (Wy3,m) — Ext}/z1 (Wy, 2, ™), which has dimension 2f + (g) by Proposition From
[BHH™b, Lemma [2.3.6{(ii)] applied with 33, |i;| <1 it follows that | Xy | = 2f — k.

If x € X2, then JH(W, 3) N JH(7') = {x,} (with multiplicity one), so EXt}/Zl(W%g,ﬂ') &
Ext}/z1 (xa, 7), which has dimension 2f by assumption We claim that | X, o| = 2f% — 2kf +
(k'gl) Let again J < {0 < j < f —1:t; # y;2;}, which depends on \. Let g; = —1 if t; = y;,
&j it tj = zj, and €; € {£1} arbitrary for j ¢ J. Note that for integersi; € Z (0 < j < f—1)
such that 37 |i;| < 2 we have xx [, ajjij € JH(r!1) if and only if i; € {0,1} if j € J and i; = 0 if
j & J, cf. [BHHTD, Lemma[2.3.6{ii)] (with m = 2). Using Lemma (with n = 2) we deduce

Xa2 =000 7, (i <5 C D), e Tadt( e g ¢ ),
a2 ¢ J), xaar s ({5 < 4’y € T,

which has cardinality

(k—2kl>+2k(f—k)+2(f_k)+4<f;k:> =2f2—2kf+<k;1>'

We conclude by

> dimpExty z (Wys, ) > <2f2 +f+ (k ; 1)) +(2f = k) <2f - <k>>

XEX 2
+ <<2f2 ~2kf (’“ : 1)) (2/)

:4f3+(6—4/<:)f2+(2k2—2k+1)f—ék(k—1)(2k—1). O
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