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Abstract

Let p be a prime number and K a finite unramified extension of Qp. When p is large
enough with respect to [K : Qp] and under mild genericity assumptions, we proved in our
previous work that the admissible smooth representations π of GL2(K) that occur in Hecke
eigenspaces of the mod p cohomology are of finite length. In this paper we obtain various
refined results about the structure of subquotients of π, such as their Iwahori-socle filtrations
and K1-invariants, where K1 is the principal congruence subgroup of GL2(OK). We also
determine the Hilbert series of π as Iwahori-representation under these conditions.
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1 Introduction

1.1 The main results

Let p be a prime number, F a totally real number field and D a quaternion algebra of center
F which is split at all p-adic places and at exactly one infinite place. In order to simplify this
introduction we assume that p is inert in F (in the text we only need p unramified in F ) and
denote by v the unique p-adic place of F . Let A∞,v

F denote the ring of finite prime-to-v adèles
of F and F a sufficiently large finite extension of Fp. To any absolutely irreducible continuous
representation r : Gal(F/F ) → GL2(F) and V v a compact open subgroup of (D ⊗F A∞,v

F )×, we
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associate the admissible smooth representation of GL2(Fv) over F:

π
def= lim−→

Vv

HomGal(F/F )
(
r,H1

ét(XV vVv ×F F ,F)
)
, (1)

where the inductive limit runs over compact open subgroups Vv of (D ⊗F Fv)× ∼= GL2(Fv) and
XV vVv is the smooth projective Shimura curve over F associated to D and V vVv. Throughout this
introduction we fix π as in (1) such that π ̸= 0. We assume moreover that r is sufficiently generic
and that a standard multiplicity one assumption holds (commonly referred to as “the minimal
case”).

In our previous work we established that π is of finite length. More precisely we showed that
π is irreducible if r|Gal(F v/Fv) is irreducible [BHH+a, Thm. 3.4.4.6(i)] and that π is of length at
least 3 (if F ̸= Qp) and at most [Fv : Qp] + 1 if π is reducible [BHH+b, Thm. 1.1.1]. We moreover
showed in loc. cit. that π is uniserial with distinct irreducible constituents if r|Gal(F v/Fv) is nonsplit
reducible. The goal of this paper, which is a continuation of our previous aforementioned paper,
is to investigate the irreducible constituents of π when r|Gal(F v/Fv) is reducible, especially in the
more difficult case when r|Gal(F v/Fv) is nonsplit. (We remark that all but two of the irreducible
constituents are supersingular.) In particular, for any subquotient π′ of π we determine its Iwahori-
socle filtration, its invariants under the first principal congruence subgroup, and the dimension
of its associated cyclotomic (φ,Γ)-module, showing in each case that the answer is local, i.e. only
depends on r|Gal(F v/Fv) (as expected).

Let us describe our most important results in more detail.

We set K def= Fv, f
def= [K : Qp] and q def= pf . We denote by ω the mod p cyclotomic character of

Gal(K/K) (that we consider as a character of K× via local class field theory, where uniformizers
correspond to geometric Frobenius elements), and by ωf , ω2f Serre’s fundamental characters of
the inertia subgroup IK of Gal(K/K) of level f , 2f respectively. In this introduction, we say that
r is generic if the following conditions are satisfied for N def= max{12, 2f + 3}:

(i) r|Gal(F/F ( p√1)) is absolutely irreducible;

(ii) for w ∤p such that either D or r ramifies at w, the framed deformation ring of r|Gal(Fw/Fw)
over the Witt vectors W (F) is formally smooth;

(iii) r|IK
is up to twist of formω∑f−1

j=0 (rj+1)pj

f ∗
0 1

 with N ≤ rj ≤ p− 3−N

or ω∑f−1
j=0 (rj+1)pj

2f
ω
q(same)
2f

 with
{
N ≤ rj ≤ p− 3−N, j > 0
N + 1 ≤ r0 ≤ p− 2−N.

Note that (iii) implies p ≥ max{27, 4f +9} and that (ii) can be made explicit ([Sho16], [BHH+23,
Rk. 8.1.1]). We say that r is strongly generic if the above conditions are satisfied with N

def=
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max{12, 4f + 1}. By [BHH+23, Thm. 1.9] (for r|Gal(K/K) semisimple) and [Wan23, Thm. 6.3(ii)]
(for r|Gal(K/K) non-semisimple) for r generic there is a unique integer r ≥ 1 (the “multiplic-
ity”) such that, for any (absolutely) irreducible representation σ of GL2(OK) over F, we have
dimF HomGL2(OK)(σ, π) ∈ {0, r} (the notation r and r is somewhat unfortunate but is consistent
with [BHH+23, § 8]).

In the sequel we let ρ def= r∨|Gal(K/K), where r∨ is the dual of r.

Let I (resp. I1) be the subgroup of GL2(OK) of matrices which are upper triangular modulo p
(resp. upper unipotent modulo p) and K1

def= 1 + pM2(OK) ⊆ I1. Let Z1 ∼= 1 + pOK be the center
of I1 (or K1). For any admissible smooth representation π′ of GL2(K), we consider π′I1 (resp.
π′K1) as finite-dimensional representation of I/I1 ∼= F×

q × F×
q (resp. GL2(OK)/K1 ∼= GL2(Fq)).

Suppose from now on that r is generic, that r = 1 and that ρ is nonsplit reducible. Then,
as we recalled above, π is uniserial with distinct irreducible constituents, so any subquotient
π′ is uniquely a quotient π′

1/π1 for some subrepresentations π1 ⊆ π′
1 ⊆ π. There is a strictly

increasing filtration D0(ρ)≤i (−1 ≤ i ≤ f) of D0(ρ) = πK1 defined in [Hu16, Prop. 5.2], and by
[BHH+b, Thm. 4.3.15] there exist unique integers −1 ≤ i0 ≤ i′0 ≤ f such that πK1

1 = D0(ρ)≤i0
and π′K1

1 = D0(ρ)≤i′0 . Let D0(ρ)i
def= D0(ρ)≤i/D0(ρ)≤i−1 for 0 ≤ i ≤ f . If D0(ρss) denotes the

analog of D0(ρ) for ρss, then there exists a decomposition D0(ρss) = ⊕f
i=0D0(ρss)i [BP12, Thm.

15.4] such that D0(ρ)i ⊆ D0(ρss)i for all i. The following is one of our main results.

Theorem 1.1.1 (Corollary 6.3.9). Assume that r is generic, that r = 1 and that ρ is nonsplit
reducible. Then for any nonzero subquotient π′ of π we have

π′K1 ∼= D0(ρss)i0+1 ⊕D0(ρ)i0+1 (D0(ρ)≤i′0/D0(ρ)≤i0)

as GL2(OK)-representations.

Note that if ρ is split reducible, we prove a stronger result in Proposition 5.1.

Using the theorem it is not hard to determine the I1-invariants and the GL2(OK)-socle of
any subquotient π′, as described in Theorem 1.1.2 below. In fact we do not know how to prove
Theorem 1.1.1 directly but rather deduce it with the help of Theorem 1.1.2.

To state Theorem 1.1.2, we recall some more standard notation (for more details, see § 1.4).
The set P parametrizes JH(D0(ρ)I1) and likewise Pss ⊇ P parametrizes JH(D0(ρss)I1), where
JH(·) denotes the set of Jordan–Hölder factors (which are 1-dimensional here since I/I1 is com-
mutative). Given λ ∈ Pss let χλ : I/I1 → F× denote the corresponding character and let
ℓ(λ) ∈ {0, 1, . . . , f} be the unique integer i such that χλ ∈ JH(D0(ρss)i). Let W (ρ) denote the set
of Serre weights of ρ (cf. [BDJ10]), i.e. the irreducible subrepresentations of D0(ρ), and similarly
define W (ρss) (which contains W (ρ)). In other words, W (ρ) = JH(socGL2(OK)(D0(ρ))), where
socGL2(OK)(·) denotes the GL2(OK)-socle. For σ ∈ W (ρss) we let ℓ(σ) def= ℓ(λ), where λ ∈ Pss

parametrizes σI1 ⊆ D0(ρss)I1 .

Theorem 1.1.2. Assume that r is generic, that r = 1 and that ρ is nonsplit reducible. Then for
any nonzero subquotient π′ of π we have:
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(i) JH(π′I1) =
{
χλ : λ ∈P, i0 < ℓ(λ) ≤ i′0 or λ ∈Pss \P, ℓ(λ) = i0 + 1

}
;

(ii) socGL2(OK)(π′) ∼=
(⊕

σ∈W (ρ),i0<ℓ(σ)≤i′0 σ
)
⊕
(⊕

σ∈W (ρss)\W (ρ),ℓ(σ)=i0+1 σ
)
.

Here part (i) is proved in Corollary 6.2.2 and part (ii) in Corollary 6.2.4.

By Theorem 1.1.1 we can relate the rank of the (φ,Γ)-module of a subquotient π′ to the K1-
invariants π′K1 , generalizing a result of Yitong Wang [Wan, Thm. 1.2] from subrepresentations to
subquotients:

Corollary 1.1.3. Assume that r is generic and that r = 1. Then for any subquotient π′ of π we
have

dimF((X))D
∨
ξ (π′) = | JH(π′K1) ∩W (ρss)|,

where D∨
ξ (π′) is the cyclotomic (φ,Γ)-module associated to π′ in [BHH+a, § 2.1.1].

This is proved in Corollary 5.3 if ρ is semisimple and Corollary 6.3.10 otherwise.

The key in proving Theorem 1.1.2 (and hence Theorem 1.1.1) is the following result which
determines the (dual of the) socle filtration of π′ as an I-representation. To explain, let Λ def=
FJI1/Z1K denote the Iwasawa algebra of I1/Z1, which is a (noncommutative) noetherian local ring
of Krull dimension 3f . We denote by m its maximal ideal. Since π has a central character, any
subquotient π′ of π is an admissible smooth representation of GL2(K)/Z1 and hence its linear
dual π′∨ def= HomF(π′,F) is a finitely generated Λ-module. For any λ ∈P there are explicit graded
ideals

a(λ) = af1(λ) ⊆ af−1
1 (λ) ⊆ · · · ⊆ a0

1(λ) ⊆ a−1
1 (λ) = grm(Λ)

of grm(Λ) (with commutative quotient rings of dimension f), cf. [BHH+b, eq. (75)]. If M is a
graded module and k ∈ Z, we let M(k) denote M with shifted grading M(k)n

def= Mn+k for all
n ∈ Z. (With our conventions, note further that grm(Λ) and grm(π′∨) are supported in non-positive
degrees, i.e. the degree d part of grm(π′∨) equals m−dπ′∨/m−d+1π′∨.)

Theorem 1.1.4 (Corollary 6.1.7). Assume that r is strongly generic, that r = 1 and that ρ is
nonsplit reducible. Then for any subquotient π′ of π we have an isomorphism of graded grm(Λ)-
modules with compatible I/I1-actions,

grm(π′∨) ∼=
⊕
λ∈P

χ−1
λ ⊗

ai01 (λ)
a
i′0
1 (λ)

(−dλ), (2)

where dλ
def= max{i0 + 1− ℓ(λ), 0}.

For ρ semisimple the analogous result is [BHH+b, Cor. 3.2.7(ii)]. We remark that r generic,
rather than strongly generic, is sufficient in case π′ is a quotient of π.

Theorem 1.1.4 should be compared with [BHH+b, Cor. 4.4.6], which shows (under slightly
weaker hypotheses) that

grF (π′∨) ∼=
⊕
λ∈P

χ−1
λ ⊗

ai01 (λ)
a
i′0
1 (λ)

, (3)
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where F denotes the subquotient filtration induced by the m-adic filtration on π∨. It also gener-
alizes [BHH+b, Thm. 2.1.2] (when π′ = π) and [BHH+b, Cor. 4.4.5] (when π′ ⊆ π), though under
stronger genericity assumptions.

We point out the following interesting consequence of Theorem 1.1.4 when f = 2. Let πs be
defined analogously to π by using a global Galois representation rs such that ρss ∼= r∨

s |Gal(K/K).
As f = 2 we know that π is uniserial of the form π0 − π1 − π2 by [HW22, Thm. 10.37] and
that πs ∼= π0 ⊕ π′

1 ⊕ π2 by [BHH+a, Cor. 3.4.4.6(ii)] for explicit principal series π0, π2 and some
irreducible supersingular representations π1, π′

1. Optimistically one may hope that π1 ∼= π′
1. By

comparing Theorem 1.1.4 and [BHH+b, Cor. 3.2.7(ii)] we can provide the nontrivial evidence that
grm(π∨

1 ) ∼= grm(π′∨
1 ), cf. Remark 6.1.11 (which also gives a weaker result for f > 2). Moreover,

πK1
1
∼= π′K1

1 as GL2(OK)-representations by comparing Theorem 1.1.1 with (the K1-invariants in)
Proposition 5.1.

In another direction, we determine the m2
K1

-invariants of subquotients in case ρ is split re-
ducible, where mK1 denotes the maximal ideal of the local ring FJK1/Z1K. We find, in particular,
some weak evidence for the hope that π is semisimple in this case:
Proposition 1.1.5 (Proposition 5.1). Assume that r is generic, that r = 1 and that ρ is split re-
ducible. For any subrepresentations π1 ⊆ π2 of π the induced sequence of GL2(K)-representations

0→ π1[m2
K1 ]→ π2[m2

K1 ]→ (π2/π1)[m2
K1 ]→ 0

is split exact.

Finally, we determine the Hilbert series of the associated graded module grm(π∨), namely
the series hπ(t) def= ∑

n≥0 dimF(mnπ∨/mn+1π∨)tn ∈ ZJtK. If ρ is nonsplit reducible let dρ ∈
{0, 1, . . . , f − 1}, so that 2dρ = |W (ρ)|.
Theorem 1.1.6 (Theorem 4.1). Assume that r is generic and that r = 1.

(i) If ρ is irreducible, then hπ(t) = (3 + t)f
(1− t)f − 1.

(ii) If ρ is split reducible, then hπ(t) = (3 + t)f
(1− t)f + 1.

(iii) If ρ is nonsplit reducible, then hπ(t) = 2f−dρ · (1 + t)f−dρ(3 + t)dρ

(1− t)f .

This follows from the special case of Theorem 1.1.4 when π′ = π, which we established earlier
[BHH+b, Thm. 2.1.2]. We also determine the Hilbert series of hπ′(t) for subquotients π′ of π, in
case ρ is split reducible. (It is possible to determine hπ′(t) for nonsplit ρ, but we did not find nice
formulas in general.)

In fact, all of our results do not just apply to the global representation π defined in (1), but
to an arbitrary smooth representation of GL2(K) that satisfies axioms (i)–(v) in section 3.1. In
section 7 we verify that a globally defined representation π(ρ) satisfies all of these axioms. (By
using [BD14, § 3], as improved in [EGS15, § 6.5], we can (almost) eliminate item (ii) at the
beginning of the introduction, by replacing π in (1) by a suitable subrepresentation.)
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1.2 Sketch proof of Theorem 1.1.4

For the proof of the key Theorem 1.1.4 we assume for simplicity that π′ def= π2 = π/π1 is a quotient
of π, which is where the main difficulty lies. Let N ′

2 denote the graded grm(Λ)-module on the
right-hand side of the theorem, i.e. N ′

2
def= ⊕

λ∈P χ−1
λ ⊗

a
i0
1 (λ)
a(λ) (−dλ) (as i′0 = f). Let m denote the

unique maximal graded ideal of grm(Λ). The proof of Theorem 1.1.4 breaks into three steps:

(a) Show that there exists a surjection grm(π∨
2 ) ↠ N ′

2/m
3.

(b) Show that grm(π∨
2 )/m3 ∼= N ′

2/m
3.

(c) Lift the isomorphism in (b) to an isomorphism grm(π∨
2 ) ∼= N ′

2.

For part (a), we let Θn
def= π[mn]/π1[mn] ⊆ π2[mn] ⊆ π2 for some integer n ≥ 1. Hence π∨

2 ↠ Θ∨
n

as Λ-modules and so grm(π∨
2 ) ↠ grm(Θ∨

n). By using our previous work [BHH+b, Lemma 2.4.2]
we can determine π[mn], and hence Θn, completely explicitly as an I-representation, provided ρ
is sufficiently generic relative to n. For n sufficiently large (in fact, n = i0 + 4 ≤ f + 4 suffices) a
computation shows that grm(Θ∨

n)/m3 ∼= N ′
2/m

3 and (a) follows.

For part (b) we use some filtered and graded techniques. We first have an exact sequence of
filtered Λ-modules,

0→ C → π∨
2 /m

3 → π∨/m3 → π∨
1 /m

3 → 0, (4)
where C = coker(TorΛ

1 (Λ/m3, π∨) → TorΛ
1 (Λ/m3, π∨

1 )). On the other hand, the exact sequence
0→ grF (π∨

2 )/m3 → grm(π∨)/m3 → grm(π∨
1 )/m3 → 0 of graded grm(Λ)-modules, where F denotes

again the induced filtration on π∨
2 , gives rise to the following exact sequence:

0→ C ′ → grF (π∨
2 )/m3 → grm(π∨)/m3 → grm(π∨

1 )/m3 → 0, (5)

where C ′ is an analogous cokernel of graded modules, cf. (48).

We now compare dimensions of corresponding terms in the two exact sequences. By a subtle
spectral sequence argument we see that gr(C) is a subquotient of C ′ (for a suitable filtration on
C), so

dimF(C) ≤ dimF(C ′). (6)
On the other hand,

dimF(π∨
2 /m

3) = dimF(grm(π∨
2 )/m3) ≥ dimF(N ′

2/m
3) = dimF(grF (π∨

2 )/m3), (7)

where the inequality results from (a) and the last equality from (3). As the third (resp. fourth)
nonzero terms in (4) and (5) evidently have the same dimensions, we deduce that dimF(C) −
dimF(π∨

2 /m
3) = dimF(C ′)−dimF(grF (π∨

2 )/m3), hence equality holds in (6) and (7), so (b) follows
(using (a)).

For part (c), we start with the map of graded modules f : N ′
2 ↠ grm(π∨

2 )/m3 from (b). By
showing that N ′

2 admits a presentation of the form gr(Λ)(1)⊕i⊕gr(Λ)(2)⊕j → gr(Λ)⊕k → N ′
2 → 0

for some integers i, j, k ≥ 0 we can lift f to f̃ : N ′
2 → grm(π∨

2 ). The map f̃ is surjective by
Nakayama’s lemma and injective by a computation of cycles, using that N ′

2 is Cohen–Macaulay
(and computing cycles using (3)).
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1.3 Sketch proof of Theorem 1.1.1 and Theorem 1.1.2

Part (i) of Theorem 1.1.2 follows directly from Theorem 1.1.4, by evaluating both sides in degree
0. Part (ii) follows relatively easily by building on part (i), using that every irreducible GL2(OK)-
representation has nonzero I1-invariants.

The proof of Theorem 1.1.1 in subsection 6.3 is technically the most involved argument of this
paper. Again the essential difficulty is when π′ def= π2 is a quotient of π, which we assume from
now on.

It is relatively straightforward to understand the right-hand side of Theorem 1.1.1 as GL2(OK)-
representation, namely Di0

def= D0(ρss)i0+1 ⊕D0(ρ)i0+1 (D0(ρ)/D0(ρ)≤i0) (as i′0 = f), and to relate
it to πK1

2 :

(a) Di0 is multiplicity free;

(b) Di0 ↪→ πK1
2 as GL2(OK)-representations;

(c) the embedding in (b) induces isomorphisms on I1-invariants and GL2(OK)-socles.

(Here we use Theorem 1.1.2(i) and (ii) for (c).)

The main thrust for showing that the embedding in (b) is an isomorphism is the fact that
π2[m3] is multiplicity free (which follows from Theorem 1.1.4).

Suppose that the embedding in (b) is not an isomorphism and take a minimal subrepresenta-
tion V of πK1

2 that strictly contains Di0 , so in particular τ ′ def= V/Di0 is irreducible. We first show
that τ ′ ∈ W (ρss) (Corollary 6.3.7). By definition of V there exists a subrepresentation V ′ ⊆ V ,
V ′ ̸⊆ Di0 such that the cosocle of V ′ is isomorphic to τ ′. Note that [V ′ : τ ′] ∈ {1, 2} by (a) and
that V ′ ̸∼= τ ′ by (c).

Suppose first that [V ′ : τ ′] = 1, and to simplify notation we also assume that f = 1 (the
argument easily generalizes to f > 1). In a first step we show that the radical rad(V ′) of V ′

is semisimple (Lemma 6.3.8(iii)). By known Ext1 results there are 3 possibilities: (i) rad(V ′) ∼=
µ−

0 (τ ′) or (ii) rad(V ′) ∼= µ+
0 (τ ′) or (iii) rad(V ′) ∼= µ−

0 (τ ′)⊕µ+
0 (τ ′) for certain Serre weights µ±

0 (τ ′)
associated to the Serre weight τ ′ as defined in § 2.2. Case (i) is ruled out by the equality of I1-
invariants in (c) above. In cases (ii) and (iii) we enlarge V ′ slightly to Ṽ ′, where V ′ ⊆ Ṽ ′ ⊆ πK1

2
and Ṽ ′/V is irreducible (in general of length at most f). In either case Ṽ ′ (but not V ′!) is a
quotient of IndGL2(OK)

I W, where W is the I-representation

W ∼=


χµ−

0 (τ ′)
χτ ′

χµ+
0 (τ ′)

 ,
where we write χσ := σI1 for any Serre weight σ. By Frobenius reciprocity we get a nonzero map
W → π2[m2] whose image is not contained in Di0 . On the other hand, we show that τ ′ ∈ JH(Di0)
and by following the same reasoning as above we obtain another nonzero mapW → π2[m2] whose
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image is contained in Di0 . This shows that [π2[m2] : χτ ′ ] ≥ 2, contradicting the multiplicity
freeness of π2[m2].

The case where [V ′ : τ ′] = 2 is similar but more involved, using multiplicity freeness of π2[m3].
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1.4 Notation and preliminaries

We normalize local class field theory so that uniformizers correspond to geometric Frobenius
elements. We fix an embedding κ0 : Fq ↪→ F and let κj

def= κ0 ◦ φj , where φ is the arithmetic
Frobenius on Fq. Given J ⊆ {0, . . . , f − 1} we define Jc def= {0, 1, . . . , f − 1} \ J . We let I def=(
O×
K OK

pOK O×
K

)
⊆ GL2(OK) denote the (upper) Iwahori subgroup of GL2(K), I1 the pro-p radical

of I, Z1 the center of I1, and K1
def= 1 + pM2(OK) ⊆ I1. We let Γ def= GL2(Fq) ∼= GL2(OK)/K1.

Let ρ : Gal(K/K)→ GL2(F) be a continuous representation. We will say that ρ is n-generic
for some integer n ≥ 0 if, up to twist, ρ|ssIK

̸∼= ω ⊕ 1 and either (using the notation of § 1.1)

ρ|IK
∼=

ω∑f−1
j=0 (rj+1)pj

f ∗
1

 with n ≤ rj ≤ p− 3− n for all 0 ≤ j ≤ f − 1 (8)

or

ρ|IK
∼=

ω∑f−1
j=0 (rj+1)pj

2f

ω
pf (same)
2f

 with
{
n ≤ rj ≤ p− 3− n for 0 < j ≤ f − 1,
n+ 1 ≤ r0 ≤ p− 2− n for j = 0.

(9)

In particular, if ρ is n-generic then it is n-generic in the sense of [BHH+23, Def. 2.3.4], and ρ is
0-generic precisely when ρ is generic in the sense of [BP12, Def. 11.7] (note that the condition
ρ|ssIK

̸∼= ω ⊕ 1 precisely rules out that (r0, . . . , rf−1) ∈ {(0, . . . , 0), (p − 3, . . . , p − 3)} when ρ is
reducible).

Attached to a 0-generic ρ we have a set W (ρ) of Serre weights, i.e. irreducible representations
of Γ over F, defined in [BDJ10, § 3], and a finite length Γ-representation D0(ρ) over F, defined in
[BP12, § 13], which is of the form D0(ρ) = ⊕

τ∈W (ρ)D0,τ (ρ), where each D0,τ (ρ) is indecomposable
and multiplicity free with socle the Serre weight τ ([BP12, § 15]).

Suppose that ρ is 0-generic. Recall the set P parametrizing JH(D0(ρ)I1), see [Bre14, § 4]
(and denoted there by PD , resp. PI D , if ρ is reducible, resp. irreducible). Recall also the
subset D ⊆P parametrizing (the I1-invariants of) the set of Serre weights in W (ρ) (denoted in
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loc. cit. by D or I D if ρ is reducible or irreducible respectively). We let D ss ⊆Pss denote the
corresponding sets for the semisimplification ρss of ρ, so P ⊆Pss and D ⊆ D ss.

Since we will be using this many times, we recall more precisely that if ρ is reducible, Pss

denotes the set of f -tuples (λ0(x0), . . . , λf−1(xf−1)) such that:

(i) λj(xj) ∈ {xj , xj + 1, xj + 2, p− 3− xj , p− 2− xj , p− 1− xj};

(ii) if λj(xj) ∈ {xj , xj + 1, xj + 2}, then λj+1(xj+1) ∈ {xj+1, xj+1 + 2, p− 2− xj+1};

(iii) if λj(xj) ∈ {p− 3−xj , p− 2−xj , p− 1−xj}, then λj+1(xj+1) ∈ {xj+1 + 1, p− 3−xj+1, p−
1− xj+1}

and D ss is the subset such that λj(xj) ∈ {xj , xj + 1, p− 3−xj , p− 2−xj}. Moreover, there exists
a unique subset Jρ ⊆ {0, . . . , f − 1} such that

D =
{
λ ∈ D ss : λj(xj) ∈ {xj + 1, p− 3− xj} ⇒ j ∈ Jρ

}
,

P =
{
λ ∈Pss : λj(xj) ∈ {xj + 2, p− 3− xj} ⇒ j ∈ Jρ

}
. (10)

In particular, |W (ρ)| = 2|Jρ|.

For λ ∈ P we denote by χλ the character of H corresponding to λ. (More precisely, in
[Bre14, § 4] a Serre weight σλ is associated to λ ∈ P and χλ is the action of H = I/I1 on the
1-dimensional subspace σI1

λ .) Set

Jλ
def= {j ∈ {0, . . . , f − 1} : λj(xj) ∈ {xj + 1, xj + 2, p− 3− xj}} (11)

and let ℓ(λ) def= |Jλ|. By [BP12, § 11] the map λ 7→ Jλ induces a bijection between D ss and
the set of subsets of {0, . . . , f − 1}. Sometimes we will abuse notation and write Jτ

def= Jλ and
ℓ(τ) def= ℓ(λ) if τ ∈ W (ρss) is parametrized by λ ∈ D ss. Given λ ∈ D ss with corresponding subset
J = Jλ ⊆ {0, . . . , f − 1} we write δ(λ) ∈ D ss for the f -tuple defined by δ(λ)j

def= λj+1 for all
j ∈ {0, . . . , f − 1}, and δ(J) ⊆ {0, . . . , f − 1} for the subset corresponding to δ(λ).

As in [BP12, § 1], given f integers r0, . . . , rf−1 ∈ {0, . . . , p − 1} we denote by (r0, . . . , rf−1)
the Serre weight

Symr0F2 ⊗F (Symr1F2)Fr ⊗ · · · ⊗F (Symrf−1F2)Frf−1
,

where GL2(Fq) acts on (SymrjF2)Frj via κj : Fq ↪→ F. Following [HW22, § 2], we say that
a Serre weight is m-generic for some integer m ≥ 0 if, up to twist, σ ∼= (r0, . . . , rf−1), where
m ≤ rj ≤ p − 2 − m for all j ∈ {0, . . . , f − 1}. We say that an F-valued character χ of I is
m-generic if χ = σI1 for some m-generic Serre weight σ. For any smooth character χ : I → F× we

define χs def= χ(Π(·)Π−1) with Π def=
(

0 1
p 0

)
. If σ is a Serre weight, we write χσ for the character of

I/I1 on σI1 and σ[s] for the unique Serre weight distinct from σ such that χσ[s] = χsσ. Finally, if
χ, χ′ : I → F× are smooth characters such that Ext1

I/Z1
(χ′, χ) ̸= 0 we let Eχ,χ′ denote the unique

nonsplit extension of χ′ by χ, i.e. 0→ χ→ Eχ,χ′ → χ′ → 0. (The uniqueness follows from [Hu10,
Lemme 2.4].)
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Let mK1 denote the maximal ideal of the Iwasawa algebra FJK1/Z1K and let
Γ̃ def= FJGL2(OK)/Z1K/m2

K1
(a finite-dimensional F-algebra). We use the terminology “Γ̃-represen-

tations” and “Γ̃-modules” interchangeably.

We write D̃0(ρ) for the finite-dimensional Γ̃-representation over F constructed in [HW22,
Prop. 4.3]. It is the unique (up to isomorphism) Γ̃-representation which is maximal with respect
to the following two properties:

(i) socΓ̃ D̃0(ρ) ∼=
⊕

σ∈W (ρ) σ;

(ii) any Serre weight of W (ρ) occurs in D̃0(ρ) with multiplicity one.

Let Λ def= FJI1/Z1K, a complete noetherian local ring with maximal ideal m def= mI1/Z1 , and let
gr(Λ) def= grm(Λ) = ⊕

n≥0 m
n/mn+1 be the associated graded ring of Λ with respect to the m-adic

filtration on Λ. The rings Λ and gr(Λ) are Auslander regular (see [BHH+23, Thm. 5.3.4] with
[LvO96, Thm. III.2.2.5]). Recall ([BHH+a, § 3.1]) that we have an isomorphism of (noncommu-
tative) algebras

gr(Λ) ∼=
⊗

j∈{0,...,f−1}
F⟨yj , zj , hj⟩ (12)

with relations [yj , zj ] = hj , [hj , zi] = [yi, hj ] = 0 for all i, j ∈ {0, . . . , f − 1}. We use increasing
filtrations throughout, i.e. FnΛ = m−n for n ≤ 0, and the degrees of yj and zj (resp. hj) are −1
(resp. −2). Define the graded ideal J def= (hj , yjzj : 0 ≤ j ≤ f − 1) of gr(Λ). As in [BHH+a, § 3]
we define

R
def= gr(Λ)/(hj : 0 ≤ j ≤ f − 1) ∼= F[yj , zj : 0 ≤ j ≤ f − 1]

which is the largest commutative quotient of gr(Λ). We also define the following quotient of R:

R
def= gr(Λ)/J ∼= R/(yjzj : 0 ≤ j ≤ f − 1).

We recall from [BHH+a, Def. 3.3.1.1] that given λ ∈ P we have an associated ideal a(λ) =
(t0, . . . , tf−1) of R, where the tj = tj(λ) are defined as follows:

tj
def=


zj if λj(xj) ∈ {xj , p− 3− xj} and j ∈ Jρ
yj if λj(xj) ∈ {xj + 2, p− 1− xj} and j ∈ Jρ
yjzj if λj(xj) ∈ {xj , p− 1− xj} and j /∈ Jρ
yjzj if λj(xj) ∈ {xj + 1, p− 2− xj}.

(13)

Note that (yjzj : 0 ≤ j ≤ f − 1) ⊆ a(λ), so we often think of a(λ) as ideal of R.

Let H def=
(
F×
q 0
0 F×

q

)
∼= I/I1. We write αj : H → F× for the character defined by

(
a 0
0 d

)
7→

κj(ad−1). We recall that for any j ∈ {0, . . . , f − 1} the element yj (resp. zj , resp. hj) is an
H-eigenvector with associated eigencharacter αj (resp. α−1

j , resp. the trivial character).

Suppose that H ′ is a compact p-adic analytic group and that π1, π2 are smooth representations
of H ′ over F. We write ExtiH′(π1, π2) for the i-th Ext group computed in the category of smooth
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representations of H ′ over F. Dually, the functors TorFJH′K
i (π∨

1 , π
∨
2 ) and ExtiFJH′K(π∨

1 , π
∨
2 ) are

computed in the abelian category of pseudocompact FJH ′K-modules. (See for example [Eme10,
§ 2].) If σ has finite length, we write JH(σ) for its set of irreducible constituents up to isomorphism.

Throughout this paper, if R is a filtered (resp. graded) ring, a morphism of filtered (resp.
graded) R-modules f : M → N will always be a filtered (resp. graded) morphism of degree
zero, i.e. satisfying f(Mi) ⊆ Ni for all i ∈ Z. If R is any ring and M any left R-module, we
recall that ExtiR(M,R) for i ∈ Z≥0 is a right R-module (for i = 0 the right R-action is given
by (fr)(m) def= f(m)r for r ∈ R, f ∈ HomR(M,R) and m ∈ M) and we use the notation
EiR(M) def= ExtiR(M,R).

2 Preliminaries

We establish structural results on finite-dimensional smooth mod p representations of GL2(OK)
which will extensively be used in section § 6.

If σ is a Serre weight, we write ProjΓ σ (resp. InjΓ σ) for a projective cover (resp. injective
envelope) of σ in the category of F[Γ]-modules. The objects ProjΓ̃ σ and InjΓ̃ σ are defined
similarly.

2.1 Extension graph and Γ-representations

We collect a number of results on the combinatorics of Serre weights and injective envelopes for
which we use the formalism of the extension graph.

We recall the formalism of the extension graph of Serre weights in [BHH+23, § 2.4]. Let T
denote the diagonal maximal torus of (ResOK/Zp

GL2/OK
) ×Zp W (F) ∼=

∏
OK→W (F) GL2 and let

X∗(T )(∼= (Z2)f ) denote its character group. Given µ ∈ X∗(T ) we have a subgraph ΛµW of Zf
and an injective map tµ : ΛµW → X∗(T )/(p − π)X0(T ), hence an injective map from ΛµW to the
set of Serre weights defined by ΛµW ∋ ω 7→ F (tµ(ω)). (Recall that the graph structure on Zf is
defined as follows: two element ω, ω′ ∈ Zf are adjacent if ∑f−1

j=0 |ωj − ω′
j | = 1, and that F (ν)

is the notation for the Serre weight of highest weight ν ∈ X∗(T ), cf. [BHH+23, § 2.2].) Given
µ ∈ X∗(T ) we write τ(1, µ+ η) for the IK-representation ω

∑
j
pj(µj+(1,0))

f : IK → GL2(F). Given
j ∈ {0, . . . , f − 1} we write ηj for the element of Zf characterized by (ηj)i = 0 if i ̸= j and
(ηj)j = 1. Moreover for J ⊆ {0, . . . , f − 1} we define ηJ

def= ∑
j∈J ηj .

Lemma 2.1.1. Suppose that ρss|IK
∼= τ(1, µ+η) is semisimple and 0-generic, with 0 ≤ µj,1−µj,2 ≤

p− 3 for all j. If σ ∈W (ρss), then σ ∼= F (tµ(ηJσ
)).

See also [DL21, Prop. 3.5] (using different normalizations) and compare with [BHH+23, Prop.
2.4.2].

Proof. For 0 ≤ j ≤ f − 1 let δj = 1 if j ∈ Jσ, δj = 0 otherwise. Let λ ∈ D ss correspond to σ,
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which means that

λj(xj) =
{
xj + δj if j + 1 /∈ Jσ,
p− 2− xj − δj if j + 1 ∈ Jσ.

(14)

After a twist we may assume that µ = (rj , 0)j for some integers 0 ≤ rj ≤ p− 3. Using [BHH+23,
(14)] with aj = rj , bj = nj = 0 and δj defined above we obtain F (tµ(ηJσ

)) ∼= F (ν), where

νj = (νj,1, νj,2) =
{

(rj + δj , 0) if δj+1 = 0,
(−1, rj + δj − p+ 1) if δj+1 = 1.

Using (14) we see that νj,1−νj,2 = λj(rj) for all j, i.e. that σ and F (tµ(ηJσ
)) agree up to twist. A

calculation shows that indeed ∑j:δj+1=1 p
j(rj+δj−p+1) agrees with the integer e(λ)(r0, . . . , rf−1)

in [BP12, § 2] modulo pf − 1.

Recall from [BP12, Cor. 3.12] that given τ ∈ JH(InjΓ σ) there exists a unique finite-dimensional
Γ-representation I(σ, τ) such that socΓ I(σ, τ) = σ, cosocΓ I(σ, τ) = τ and [I(σ, τ) : σ] = 1.

Lemma 2.1.2. Assume that ρ is 1-generic. Let σ, τ ∈ W (ρss). Then τ ∈ JH(InjΓ σ). Moreover,
| JH(I(σ, τ))| = 2|Jσ∆Jτ | and

JH(I(σ, τ)) = {τ ′ ∈W (ρss) : Jσ ∩ Jτ ⊆ Jτ ′ ⊆ Jσ ∪ Jτ} (15)
= {τ ′ ∈W (ρss) : Jσ ∆ Jτ ′ ⊆ Jσ ∆ Jτ}.

In particular, Ext1
Γ(σ, τ) ̸= 0 if and only if |Jσ ∆ Jτ | = 1.

Proof. Write ρss|IK
∼= τ(1, µ + η) with 1 ≤ µj,1 − µj,2 ≤ p − 4 for all j. Let J def= Jσ, J ′ def= Jτ , so

that σ ∼= F (tµ(ηJ)), τ ∼= F (tµ(ηJ ′)) by Lemma 2.1.1. Since |ηJ,j − ηJ ′,j | ≤ 1 for all 0 ≤ j ≤ f − 1
we deduce from [BHH+23, Rk. 2.4.7] (applied with ω = ηJ) and [BHH+23, Lemma 6.2.1(ii)]
(applied with F (λ) = σ and noting that λ satisfies the hypothesis of loc. cit. since σ is 1-generic,
see § 1.4) that τ ∈ JH(InjΓ σ). It remains to prove (15), which implies the remaining assertions.
By [BHH+23, Lemma 6.2.1(iii), Rk. 2.4.7], the Jordan–Hölder factors of I(σ, τ) are given by all
F (tµ(ω)), where ω ∈ ΛµW satisfies min{ηJ,j , ηJ ′,j} ≤ ωj ≤ max{ηJ,j , ηJ ′,j} for all 0 ≤ j ≤ f − 1.
Equivalently, ηJ∩J ′,j ≤ ωj ≤ ηJ∪J ′,j for all j, i.e. ω = ηJ ′′ for some J ∩ J ′ ⊆ J ′′ ⊆ J ∪ J ′. This
proves (15) by Lemma 2.1.1.

Recall from [BHH+b, § 3.1] and [BHH+b, Rk. 3.1.1] that given a character χ : I → F× with
χ ̸= χs, there is an injective parametrization JH(IndGL2(OK)

I χ) ↪→ P (where P def= P(x0, . . . , xf−1)
is defined in [BP12, § 2]), which is bijective if χ is 1-generic. Moreover, P is in bijection with the
subsets of {0, . . . , f − 1} via the map ξ 7→ S(ξ) of [BHH+b, eq. (35)]. With this parametrization,
the socle of IndGL2(OK)

I χ corresponds to the empty subset. For J ⊆ {0, 1, . . . , f−1} let σJ denote
the constituent of IndGL2(OK)

I χ parametrized by ξ ∈ P such that S(ξ) = J , if such a ξ exists.
Finally, if σ ∈ JH(IndGL2(OK)

I χ) is parametrized by ξ ∈ P we write S(σ) def= S(ξ).

Lemma 2.1.3. With the above notation assume that χ is 1-generic and choose µ ∈ X∗(T ) such
that σ∅ ∼= F (µ). Then σJ ∼= F (tµ(−ηJ)) for each J ⊆ {0, 1, . . . , f − 1}.
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Proof. Note that χ = χsµ. After a twist we may assume that µ = (rj , 0)j∈ (Z2)f , where the
integers rj satisfy 1 ≤ p− 1− rj ≤ p− 3, i.e. 2 ≤ rj ≤ p− 2. For 0 ≤ j ≤ f − 1 let δj = 1 if j ∈ J ,
δj = 0 otherwise. By our parametrization, σJ corresponds to ξJ ∈ P, where

ξj(xj) =
{
xj − δj if j + 1 /∈ J,
p− 2− xj + δj if j + 1 ∈ J,

(16)

i.e. σJ ∼= (ξ0(r0), . . . , ξf−1(rf−1)) up to twist. Using [BHH+23, (14)] with aj = rj , bj = 0,
nj = −δj and δj as above we obtain F (tµ(−ηJ)) ∼= F (ν), where

νj = (νj,1, νj,2) =
{

(rj , δj) if δj+1 = 0,
(δj − 1, rj − p+ 1) if δj+1 = 1.

Using (16) we see that νj,1 − νj,2 = ξj(rj) for all j, i.e. that σ and F (tµ(−ηJ)) agree up to twist.
A calculation shows that indeed ∑j:δj+1=0 p

jδj +∑
j:δj+1=1 p

j(rj − p+ 1) agrees with the integer
e(ξJ)(r0, . . . , rf−1) in [BP12, § 2] modulo pf − 1.

Lemma 2.1.4. Assume that χ is 2-generic. Let J, J ′ ⊆ {0, 1, . . . , f−1}. Then σJ ′ ∈ JH(InjΓ σJ).
Moreover, | JH(I(σJ , σJ ′))| = 2|J∆J ′| and

JH(I(σJ , σJ ′)) = {σJ ′′ : J ∩ J ′ ⊆ J ′′ ⊆ J ∪ J ′}
= {σJ ′′ : J ∆ J ′′ ⊆ J ∆ J ′}.

In particular, Ext1
Γ(σJ , σJ ′) ̸= 0 if and only if |J ∆ J ′| = 1.

Proof. Choose again µ ∈ X∗(T ) such that σ∅ ∼= F (µ). The proof follows by the same argument as
in Lemma 2.1.2, using σJ ∼= F (tµ(−ηJ)) (Lemma 2.1.3) instead of σ ∼= F (tµ(ηJσ

)) (Lemma 2.1.1).

Recall from [BP12, § 3] that given a Serre weight σ, there is an injective parametrization
JH(InjΓ σ) ↪→ I (where I def= I(x0, . . . , xf−1) is defined in [BP12, § 4]), which is bijective if σ is
1-generic. We say τ1, τ2 ∈ JH(InjΓ σ) are compatible (relative to σ) if the corresponding elements
µ1, µ2 ∈ I are compatible in the sense of [BP12, Def. 4.10].

Lemma 2.1.5. Let σ be a 1-generic Serre weight and τ1, τ2 ∈ JH(InjΓ σ). Assume that τ1, τ2 are
compatible (relative to σ). Then τ2 ∈ JH(InjΓ τ1) and JH(I(τ1, τ2)) ⊆ JH(InjΓ σ).

Proof. Let µ1, µ2 ∈ I correspond to τ1, τ2 respectively. Since µ1, µ2 are compatible, one checks
that there exists a unique element in I, denoted by µ1 ∩ µ2 (resp. µ1 ∪ µ2), which is compatible
with µ1 and µ2 such that S(µ1 ∩ µ2) = S(µ1) ∩ S(µ2) (resp. S(µ1 ∪ µ2) = S(µ1) ∪ S(µ2)), where
S(−) ⊆ {0, . . . , f − 1} is the subset defined in [BP12, § 4]. (See also [BP12, § 12] for the explicit
construction of µ1 ∩ µ2.)

Let τ0, τ3 ∈ JH(InjΓ σ) correspond to µ0
def= µ1 ∩ µ2, µ3

def= µ1 ∪ µ2 ∈ I respectively. We
first assume τ0 = σ, equivalently S(µ1) ∩ S(µ2) = ∅. We have τ1, τ2 ∈ JH(I(σ, τ3)) by [BP12,
Cor. 4.11], and the genericity assumption on σ implies that I(σ, τ3) has length 2|S(µ3)|. We deduce

14



from [HW18, Lemma 2.20(iii)] that JH(I(σ, τ3)) = JH(I(τ1, τ2)) (τ2 = τ c1 with the notation used
there).

To treat the general case, we note that I(τ0, τ3) exists and that τ1, τ2 ∈ JH(I(τ0, τ3)) by
[BP12, Cor. 4.11], so we may view τ1, τ2 as Jordan–Hölder factors of InjΓ τ0. Let λ1, λ2, λ3 ∈
I(y0, . . . , yf−1) be the element corresponding to τ1, τ2, τ3 ∈ JH(InjΓ τ0). Using [HW22, Lem-
mas 2.1, 2.7] we get λi ◦ µ0 = µi for i = 1, 2, 3. By [HW22, Lemma 2.6(i)] we have S(µi) =
S(λi) ∆ S(µ0) or equivalently S(λi) = S(µi) ∆ S(µ0) = S(µi) \ S(µ0), so S(λ1) ∩ S(λ2) = ∅ and
S(λ1)∪S(λ2) = S(λ3). Moreover, since µ1, µ2, µ3 are compatible, λ1, λ2, λ3 are also compatible by
the table in the proof of [HW22, Lemma 2.6] (writing λi = µi ◦ µ−1

0 , where µ−1
0 ∈ I is the unique

element defined by demanding µ−1
0 ◦ µ0 = (x0, . . . , xf−1)), so that λ3 = λ1 ∪ λ2. Hence, by the

previous paragraph we get JH(I(τ1, τ2)) = JH(I(τ0, τ3)), in particular JH(I(τ1, τ2)) ⊆ JH(InjΓ σ)
as I(τ0, τ3) is a quotient of I(σ, τ3).

2.2 More Γ-representations

Recall from [HW22, Def. 2.9] that given j ∈ {0, . . . , f − 1} and ∗ ∈ {+,−} we define an f -tuple
µ∗
j ∈

⊕f−1
i=0 (Z ± xi) as follows: if f > 1 then (µ∗

j )j−1(xj−1) def= p − 2 − xj−1, (µ∗
j )j(xj)

def= xj ∗ 1
and (µ∗

j )i(xi)
def= xi for i /∈ {j − 1, j}, while if f = 1 then µ∗

0(x0) def= p − 2 − (∗1) − x0. If σ is a
0-generic Serre weight corresponding to a tuple (s0, . . . , sf−1) ∈ {0, . . . , p−1}f we write µ∗

j (σ) for
the Serre weight µ∗

j

(
(s0, . . . , sf−1)

)
⊗ dete(µ

∗
j )(s0,...,sf−1), where e(µ∗

j ) ∈ Z⊕
⊕f−1

i=0 Zxi is defined in
[BP12, § 3]. (Note that µ−

j (σ) is undefined if f ≥ 2 and sj = 0 and µ+
j (σ) is undefined if f = 1

and sj = p− 2.)

The following lemma is well known, but we state it for lack of convenient reference.

Lemma 2.2.1. Suppose that σ = (r0, . . . , rf−1)⊗η is any Serre weight such that µ−
i (σ) is defined.

If f = 1 we moreover suppose that 0 < r0 < p− 1. Then the (unique up to isomorphism) nonsplit
GL2(OK)/Z1-extension 0 → µ−

i (σ) → V → σ → 0 is a quotient of IndGL2(OK)
I χσ (hence is a

Γ-representation), equivalently χσ ↪→ V |I .

Proof. This follows from [BP12, Thm. 2.4(iii) and Cor. 5.6(ii)].

Lemma 2.2.2. Let σ be a 1-generic Serre weight. Let Q be a quotient of ProjΓ σ such that

(i) socΓ(Q) ∼= σ⊕r for some r ≥ 1;

(ii) radΓ(Q)/ socΓ(Q) is nonzero and does not admit σ as a subquotient.

Then radΓ(Q)/ socΓ(Q) is semisimple and there exists a subset J ⊆ {0, 1, . . . , f − 1} such that

radΓ(Q)/ socΓ(Q) ∼=
⊕
i∈J

(µ+
i (σ)⊕ µ−

i (σ)).

Proof. By the same argument as in the proof of [HW22, Cor. 2.32] (using [HW22, Cor. 2.3]
for Γ-representations instead of [HW22, Cor. 2.26] for Γ̃-representations), we prove an injection
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radΓ(Q)/ socΓ(Q) ↪→ ⊕f−1
i=0 (µ+

i (σ) ⊕ µ−
i (σ)) (in particular, radΓ(Q)/ socΓ(Q) is semisimple). It

thus suffices to show that µ+
i (σ) ∈ JH(Q) if and only if µ−

i (σ) ∈ JH(Q). Note that Qσ surjects
onto Q, where Qσ is the largest quotient of ProjΓ σ/ rad3

Γ(ProjΓ σ) whose socle is σ-isotypic.

We now determine Qσ more explicitly. Let A′
σ,i (0 ≤ i ≤ f −1) denote the Γ-representation of

[HW18, Def. 2.5], which has socΓ(A′
σ,i) ∼= cosocΓ(A′

σ,i) ∼= σ and radΓ(A′
σ,i)/ socΓ(A′

σ,i) ∼= µ+
i (σ)⊕

µ−
i (σ). Let A′

σ denote the fiber product of all A′
σ,i over their common cosocle σ. (Up to twist this is

dual to the notation A′
σ in [HW18].) Note that the natural injection radΓ(A′

σ) ↪→⊕
i radΓ(A′

σ,i) is
an isomorphism. (It surjects onto every factor, as radΓ(·) preserves surjections, hence surjects onto
the cosocle of the direct sum, which is multiplicity free.) Hence the cosocle of A′

σ is still σ. Also we
obtain a surjection ψ : Qσ ↠ A′

σ, and its kernel is σ-isotypic, because ψ induces an isomorphism
after applying the functor radΓ(·)/ rad2

Γ(·), e.g. by [BP12, Cor. 5.6(i)]. As Ext1
Γ(σ, σ) = 0 we have

a surjection socΓ(ψ) : socΓ(Qσ) ↠ socΓ(A′
σ) ∼= σ⊕f . On the other hand, socΓ(Qσ) ∼= σ⊕f by the

dual version of [HW18, Prop. 2.11] (alternatively, see [AJL83, Thm. 4.3]), hence Qσ ∼= A′
σ.

Write 0 → L → A′
σ → Q → 0, with L being the corresponding kernel. If µ∗

i (σ) ∈ JH(L),
then L has to contain the unique subrepresentation of radΓ(A′

σ,i) ⊆ A′
σ with cosocle µ∗

i (σ). In
particular, the natural map radΓ(A′

σ,i) ↪→ A′
σ → Q has to vanish on the socle, and hence is zero

(by condition (i)). This proves that µ−∗
i (σ) ∈ JH(L), as desired.

Recall again from [HW22, Def. 2.9] that given j ∈ {0, . . . , f − 1} and ∗ ∈ {+,−} we define
an f -tuple δ∗

j ∈
⊕f−1

i=0 (Z ± xi) by (δ∗
j )j(xj)

def= xj ∗ 2 and (δ∗
j )i(xi)

def= xi for i ̸= j. If σ is a Serre
weight corresponding to a tuple (s0, . . . , sf−1) ∈ {0, . . . , p−1}f we write δ∗

j (σ) for the Serre weight
δ∗
j

(
(s0, . . . , sf−1)

)
⊗ dete(δ

∗
j )(s0,...,sf−1) (which is defined only if sj ∗ 2 ∈ {0, . . . , p − 1}). It follows

from the definition that χδ∗
j (σ) = χσα

∗1
j .

Lemma 2.2.3. Assume that ρ is 1-generic and let σ ∈ W (ρss). For any 0 ≤ j ≤ f − 1, there
exists ∗ ∈ {±} such that

{µ+
j (σ), µ−

j (σ), δ+
j (σ), δ−

j (σ)} ∩W (ρss) = {µ∗
j (σ)}. (17)

Moreover, Jµ∗
j (σ) = Jσ ∆ {j}.

Proof. Let σc ∈W (ρss) be determined by Jσc = Jcσ. Then JH(I(σ, σc)) = W (ρss) by Lemma 2.1.2.
Recall from § 2.1 that JH(InjΓ σ) is parametrized by the set I. Since δ±

j /∈ I we deduce by [HW22,
Lemmas 2.1, 2.7] that δ±

j (σ) does not occur in InjΓ σ for any 0 ≤ j ≤ f−1, hence δ±
j (σ) /∈W (ρss).

Viewing σc as a constituent in InjΓ σ, it is parametrized by an element λ ∈ I. Since
| JH(I(σ, σc))| = 2f , [BP12, Cor. 4.11] implies that S(λ) (defined above [BHH+b, Lemma 4.1.2])
equals {0, . . . , f−1}. For each 0 ≤ j ≤ f−1, there is a unique ∗ ∈ {±} such that µ∗

j is compatible
(in the sense of [BP12, Def. 4.10]) with λ. By [BP12, Cor. 4.11] again and [HW22, Lemmas 2.1,
2.7], we deduce that exactly one of µ±

j (σ) occurs in JH(I(σ, σc)). The final claim is a direct
check.
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2.3 Some Γ̃-representations

Fix a 2-generic Serre weight τ and let χ def= χτ (so χ is 2-generic). For 0 ≤ i ≤ f − 1 and a sign
∗ ∈ {±} let W ∗

i = W ∗
i (χ) denote the unique uniserial I/Z1-representation of the form χ− χα∗1

i -
− χ. (It is a quotient of the I/Z1-representation Wχ,3 in [HW22, § 3.1], see also § 3.2 below.)
Let Q∗

i = Q∗
i (τ) denote the largest quotient of IndGL2(OK)

I W ∗
i with τ -isotypic socle. Then Q∗

i

is a Γ̃-representation by [HW22, Cor. 3.3]. Note that socΓ̃(Q∗
i ) = τ for each ∗ ∈ {±}, as

[IndGL2(OK)
I W ∗

i : τ ] = 2 and dimF HomΓ̃(IndGL2(OK)
I W ∗

i , τ) = 1.

Lemma 2.3.1. Suppose that i ∈ {0, . . . , f − 1}.

(i) The Γ̃-representation Q−
i is uniserial of the form τ − µ−

i (τ)− τ .

(ii) The Γ̃-representation Q+
i has the form

µ−
i (τ)

τ τ

µ+
i (τ)

δ+
i (τ)

We remark that Lemma 2.3.1 does not determine ker(Q+
i ↠ δ+

i (τ)) uniquely up to isomor-
phism (this kernel is a suitable amalgam of the uniserial representations τ−µ−

i (τ)−τ , τ−µ+
i (τ)−τ ,

and this amalgam depends on a parameter in F×), but this will not matter for us.

Proof. (i) Let Y −
i denote a uniserial Γ̃-representation of the form τ − µ−

i (τ) − τ , which exists
by taking a suitable quotient of the representation Θτ in [HW22, Prop. 3.12] (see also [HW22,
Cor. 3.16]). By [HW22, Lemma 2.10] it is easy to see that Y −

i is unique up to isomorphism
(alternatively it follows once this lemma is proved). Note that µ−(τ) does not occur in the
cosocle of IndGL2(OK)

I W−
i , as IndGL2(OK)

I χα−1
i (resp. IndGL2(OK)

I χ) has cosocle δ−
i (τ) (resp. τ).

We check below that W−
i ↪→ Y −

i |I , which implies IndGL2(OK)
I W−

i ↠ Y −
i (if the map is not sur-

jective, it has image τ by considering cosocles, hence is trivial on IndGL2(OK)
I χ ⊆ IndGL2(OK)

I W−
i ,

contradiction), hence Y −
i = Q−

i by definition of Q−
i , concluding the proof.

Let χ′ def= χα−1
i and let Eχ,χ′ be the I/Z1-representation which is the unique nonsplit extension

of χ′ by χ (see § 1.4). By [BHH+a, Lemma 3.2.2.6(ii)] (applied with σ = τ and Y −iv = Y −1
i v)

there is an injection Eχ,χ′ ↪→ τ |I ↪→ Y −
i |I . As dimF(τ) < q, we know that τ |I is multiplicity

free by [BP12, Lemma 2.7]. Let u ∈ τ I1 (resp. v ∈ τ) be an H-eigenvector with eigencharacter
χ (resp. χ′ = χα−1

i ), so Eχ,χ′ = Fu ⊕ Fv. On the other hand, let w ∈ Y −
i be an H-eigenvector

with eigencharacter χ, such that its image in Y −
i / socΓ̃(Y −

i ) is I1-invariant. This is possible by
Lemma 2.2.1.

We will prove that Fu ⊕ Fv ⊕ Fw is I-stable (equivalently I1-stable) and isomorphic to W−
i .

Note that (g−1)w ∈ socΓ̃(Y −
i ) = τ for all g ∈ I1 (by the choice of w), and that w itself is not fixed
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by I1, since otherwise there would be a surjection IndGL2(OK)
I χ↠ Y −

i , which is impossible as τ has
multiplicity 1 in IndGL2(OK)

I χ. As Fu⊕Fv is I1-stable it is enough to prove that (g−1)w ∈ Fu⊕Fv
for g ∈ I1. It then suffices to show that (note that Z1 acts trivially on Y −

i ):

(a) (g − 1)w = 0 for all g ∈
( 1 OK

0 1
)
;

(b) (g − 1)w ∈ τH=χ = Fu for all g ∈
( 1+pOK 0

0 1
)
;

(c) (g − 1)w ∈ τH=χ′ = Fv for all g ∈
( 1 0
pOK 1

)
.

To prove (a), let Yj
def= ∑

a∈F×
q
a−pj( 1 [a]

0 1
)
∈ FJ

( 1 OK
0 1

)
K for 0 ≤ j ≤ f − 1, so that FJ

( 1 OK
0 1

)
K =

FJY0, . . . , Yf−1K. It is direct to check that Yjw is an H-eigenvector with eigencharacter χαj .
However, we see from [BP12, Lemma 2.7] that χαj /∈ JH(τ |I) for all 0 ≤ j ≤ f −1. Thus Yjw = 0
for all j, so (a) holds.

Part (b) is obvious.

To prove (c), let Xj
def= ∑

a∈F×
q
a−pj( 1 0

[a] 1
)
∈ FJ

( 1 0
OK 1

)
K for 0 ≤ j ≤ f − 1. Write τ =

(r0, . . . , rf−1) up to twist. By another application of [BP12, Lemma 2.7] we see that χα−(rj+1)
j /∈

JH(Y −
i |I) for all j ̸= i − 1, so using the GL2(OK)-action on Y −

i we conclude that Xrj+1
j w = 0

and hence Xp
jw = 0 for all j ̸= i − 1. On the other hand, Xp

jX
p
j′w = 0 for all j, j′, as Y −

i is
a Γ̃-representation. As FJ

( 1 0
pOK 1

)
K = FJXp

0 , . . . , X
p
f−1K, we deduce that (g − 1)w ∈ FXp

i−1w, on
which H acts by χα−p

i−1 = χ′.

(ii) Using (i) we determine the submodule structure of IndGL2(OK)
I W+

i completely. This is
done in Step 1 to Step 3 below. Write S def= {0, 1, . . . , f − 1} in what follows. For J ⊆ S let σ0

J

(resp. σ1
J , resp. σ2

J) denote the constituent parametrized by J in the bottom IndGL2(OK)
I χ (resp.

IndGL2(OK)
I χαi, resp. the top IndGL2(OK)

I χ), (see § 2.1 for this parametrization). In particular, we
write σJ

def= σ0
J
∼= σ2

J and note that σS ∼= τ . Note that the constituents σJ occur with multiplicity
2, and that the σ1

J occur with multiplicity 1, cf. [BHH+b, Lemma 4.3.3].

For s ∈ {0, 1} write V s
J for the unique subrepresentation of IndGL2(OK)

I Eχ,χαi ⊆
IndGL2(OK)

I W+
i with cosocle σsJ (not to be confused with the Serre weight σ[s]

J of § 1.4!), or
equivalently for the image of any map ProjΓ̃ σ

s
J → IndGL2(OK)

I Eχ,χαi . Write V 2
J for the image of

some map ι : ProjΓ̃ σJ → IndGL2(OK)
I W+

i such that the composite ProjΓ̃ σJ
ι−→ IndGL2(OK)

I W+
i ↠

IndGL2(OK)
I χ is nonzero. We claim that the V 2

J are independent of the choice of ι (equivalently,
V 0
J ⊆ V 2

J ). Indeed, as we recall at the beginning of § 2.3, W+
i is a quotient of Wχ,3. Using

[HW22, Cor. 3.3] we see that IndGL2(OK)
I Wχ,3 is a Γ̃-representation, so we can lift ι to ϕ :

ProjΓ̃ σJ → IndGL2(OK)
I Wχ,3 such that the composite with IndGL2(OK)

I Wχ,3 → IndGL2(OK)
I χ is

nonzero. By [HW22, Prop. 3.10(i)] (and its proof) we get [coker(ϕ) : σJ ] = 0, hence by [HW22,
Prop. 3.10(ii)] the image of ϕ is independent of any choices, and consequently the image V 2

J of ι
is well defined. Thus, to determine the submodule structure, it suffices to determine all minimal
(proper) containments between the submodules of the form V 0

J , V 1
J , V 2

J . Here we say that a
containment of two such modules is minimal if no other V s

J ′ lies strictly in between.
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Step 1. By [BP12, Thm. 2.4] and [HW22, Lemma 3.7] the minimal containments among the
V 0
J and V 1

J are given by

V 0
J ⊊V 0

J⊔{k}, V 1
J ⊊ V 1

J⊔{k} for any k /∈ J ; (18)
V 0
J⊔{i} ⊊ V 1

J if i /∈ J. (19)

Likewise, [HW22, Lemma 3.8] shows that the minimal containments between submodules of the
form V 1

J and V 2
J ′ are given by

V 1
J ⊊ V 2

J⊔{i} if i /∈ J. (20)

Likewise, by [BP12, Thm. 2.4], the minimal containments among the V 2
J are given by

V 2
J ⊊ V 2

J⊔{k} for any k /∈ J. (21)

Step 2. We show that the minimal containments between submodules of the form V 0
J and

V 2
J ′ are given by

V 0
J⊔{i} ⊊ V 2

J if i /∈ J. (22)

By dualizing (i) and replacing χ by χ−1 we deduce that the largest subrepresentation of
IndGL2(OK)

I W+
i with cosocle σ∅ (and socle σ∅) is uniserial of the form

σ0
∅ − σ

0
{i} − σ

2
∅. (23)

(Note that the middle constituent cannot be σ2
{i} by (21).)

Consider the statement

A(J1, J2) : V 0
J1 ⊊ V 2

J2 is a minimal containment.

Note by (23) that
A({k}, ∅) holds if and only if k = i. (24)

Also note that

A(J1, J2) ⇒ |J1 ∆ J2| = 1 ⇒ (J1 ⊆ J2) or (J2 ⊆ J1), (25)

because if A(J1, J2) holds, then 0 ̸= Ext1
Γ̃
(σJ2 , σJ1) = Ext1

Γ(σJ2 , σJ1), where the equality follows
from [BP12, Cor. 5.6(ii)], so that |J1 ∆ J2| = 1 by Lemma 2.1.4.

We now show that A(J1, J2) ⇒ A(J1 ⊔ {k}, J2 ⊔ {k}) if J1 ⊇ J2 and k /∈ J1. By A(J1, J2)
and (21) we deduce that V 0

J1
⊆ V 2

J2
⊆ V 2

J2⊔{k}. In particular, V 2
J2⊔{k} admits a quotient Q

with socle σJ1 and we may suppose that [Q : σJ1 ] = 1 by passing to a further quotient. Then
Q ∼= I(σJ1 , σJ2⊔{k}) which is of length 4 by (25), so that by Lemma 2.1.4, Q surjects onto the
nonsplit extension σJ1⊔{k} − σJ2⊔{k}, i.e. there is a minimal containment V s

J1⊔{k} ⊊ V 2
J2⊔{k} for

some s ∈ {0, 2}. As J1 ⊇ J2 we deduce by (21) that s = 0.

By induction we deduce from (24) and the preceding paragraph that A(J ⊔ {i}, J) holds
whenever i /∈ J . If i ∈ J , then we have containments V 0

J ⊆ V 1
J\{i} ⊆ V

2
J by (19) and (20). If i /∈ J ,
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then we have containments V 0
J ⊆ V 0

J⊔{i} ⊆ V 2
J , where the first inclusion holds by (18) and the

second holds by A(J ⊔ {i}, J). As a consequence, we can reverse the argument of the preceding
paragraph to deduce that A(J1, J2) ⇐⇒ A(J1 ⊔ {k}, J2 ⊔ {k}) whenever J1 ⊇ J2 and k /∈ J1. In
particular, from (24) we deduce that A(J ⊔ {k}, J) holds (for k /∈ J) if and only if k = i.

In the preceding paragraph we dealt with all cases when J1 ⊋ J2. If J1 ⊊ J2, then we have
V 0
J1

⊊ V 0
J2

⊊ V 2
J2

, so that V 0
J1

⊊ V 2
J2

is not a minimal containment. We have thus confirmed the
list of minimal containments between submodules of the form V 0

J and V 2
J ′ in (22).

Step 3. Recall that Q+
i is the largest quotient of IndGL2(OK)

I W+
i with socle τ ∼= σS . As

V 0
S ⊆ V 2

S , we have socΓ̃(Q+
i ) = τ and the submodules of Q+

i having irreducible cosocle are the
images of the submodules V s

J of IndGL2(OK)
I W+

i that contain V 0
S . From Steps 1 and 2 we obtain

precisely the following such submodules and containments:

V 2
S\{i} � t

''
V 0

S � t

''

* 

77

V 2
S

V 1
S\{i} � t

''

* 

77

V 1
S

This determines the submodule structure of Q+
i by Lemma 2.3.2 (taking M = IndGL2(OK)

I W+
i ,

M = Q+
i , and all possible σ) below. It remains to observe that σ2

S\{i}
∼= µ−

i (τ), σ1
S\{i}

∼= µ+
i (τ),

σ1
S
∼= δ+

i (τ).

Lemma 2.3.2. Suppose that M is a finite length module over an artinian ring A, and that
π : M ↠ M is a quotient morphism. Suppose that σ and τ are simple A-modules and that Mσ

(resp. Mτ ) is a submodule of M having cosocle σ (resp. τ). If the set of submodules of M having
cosocle σ is totally ordered and π(Mσ) ̸= 0, then

Mσ ⊆Mτ ⇐⇒ π(Mσ) ⊆ π(Mτ ).

Proof. Let N def= ker(π). For the nontrivial direction, we need to show that Mσ ⊆Mτ +N implies
Mσ ⊆Mτ . Let ProjA σ be the projective cover of σ in the category of A-modules (which exists as
A is artinian). Pick f : ProjA σ →M that has image Mσ, and consider the commutative diagram

HomA(ProjA σ,Mτ ⊕N) // // HomA(ProjA σ,Mτ +N)� _

��
HomA(ProjA σ,Mτ )⊕HomA(ProjA σ,N)

∼=

OO

+ // HomA(ProjA σ,M)

As Mσ ⊆Mτ +N and ProjA σ is projective there exist f1 : ProjA σ →Mτ and f2 : ProjA σ → N
such that f = f1 + f2. By the condition on the submodules of M , we know that im(f1) ⊆ im(f2)
or im(f2) ⊆ im(f1). In the first case, im(f) ⊆ im(f2) ⊆ N , contradiction. Hence Mσ = im(f) ⊆
im(f1) ⊆Mτ , as desired.
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Recall from [HW22, Thm. 2.23] that given a 2-generic Serre weight σ and τ ∈ JH(InjΓ̃ σ), there
exists a unique finite-dimensional Γ̃-module I(σ, τ) such that socΓ̃ I(σ, τ) = σ, cosocΓ̃ I(σ, τ) = τ
and [I(σ, τ) : σ] = 1. (Note that this agrees with the definition of I(σ, τ) in § 2.1 if τ ∈ JH(InjΓ σ).)

Let Wi = Wi(χ) denote the fiber product of W+
i and W−

i over their common cosocle χ. Let
Qi = Qi(τ) denote the fiber product of Q+

i and Q−
i over their common quotient I(µ−

i (τ), τ) (cf.
Lemma 2.3.1). We draw a diagram for Wi and Qi, but keep in mind that the submodule structure
is more complicated since the socle has multiplicities in each case:

χ χα−1
i τ µ−

i (τ)

Wi : χ Qi : τ

χ χαi τ µ+
i (τ)

δ+
i (τ)

Lemma 2.3.3. The representation IndGL2(OK)
I Wi has a unique quotient Q with socle τ⊕2 and

such that [Q : τ ] = 3, and this quotient is isomorphic to Qi. Moreover, we have JH(Qi) =
{τ, µ−

i (τ), µ+
i (τ), δ+

i (τ)} and Qi/ socΓ̃(Qi) is multiplicity free.

Proof. By exactness of induction, IndGL2(OK)
I Wi is the fiber product of IndGL2(OK)

I W±
i over

IndGL2(OK)
I χ. We have a commutative diagram with exact rows:

0 // IndGL2(OK)
I Wi

//

��

IndGL2(OK)
I W+

i × IndGL2(OK)
I W−

i
//

����

IndGL2(OK)
I χ

f
����

// 0

0 // Qi // Q+
i ×Q

−
i

α // I(µ−
i (τ), τ) // 0

(For the right square, note that the natural map IndGL2(OK)
I W ∗

i ↠ Q∗
i ↠ I(µ−

i (τ), τ) fac-
tors through the K1-coinvariants IndGL2(OK)

I ((W ∗
i )K1) = IndGL2(OK)

I (W ∗
i /χ), and hence through

IndGL2(OK)
I χ because IndGL2(OK)

I (W ∗
i /χ) is multiplicity free and µ−

i (τ) ∈ JH(IndGL2(OK)
I χ).)

By the snake lemma, since no constituent of ker(f) occurs in Q±
i (by Lemma 2.3.1), the left

vertical map is surjective. Note that the map α sends socΓ̃(Q+
i × Q−

i ) to 0, so socΓ̃(Qi) =
socΓ̃(Q+

i ) × socΓ̃(Q−
i ) = τ⊕2. As [Qi : τ ] = 3, we deduce the existence of Q. Uniqueness of Q is

clear, since [Qi : τ ] = [IndGL2(OK)
I Wi : τ ] = 3. The last statement follows from Lemma 2.3.1.

Note that eachQi surjects onto τ . For a nonempty subset J ⊆ {0, 1, . . . , f−1} letQJ = QJ (τ)
denote the fiber product of all Qi (i ∈ J ) over τ . Let χ def= χτ and let WJ = WJ (χ) denote the
fiber product of all Wi (equivalently of all W±

i ) for i ∈ J over their common cosocle χ.

Lemma 2.3.4.

(i) The radical filtration of WJ is given by χ⊕2|J | −
⊕

i∈J (χαi ⊕ χα−1
i ) − χ. Moreover,

socI(WJ ) ∼= rad2
I(WJ ) ∼= χ⊕2|J |.
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(ii) The K1-coinvariants of WJ fit in a short exact sequence 0→⊕
i∈J χαi → (WJ )K1 → χ→ 0

with cosocle χ.

Proof. (i) By construction of WJ as a fiber product we have an inclusion ι : ⊕i∈J ,∗ radI(W ∗
i ) ↪→

WJ . Its image is contained in radI(WJ ) because radI(W ∗
i ) ⊆ WJ is the unique subrepresen-

tation with cosocle χα∗1
i and radI(WJ ) ↠ radI(W ∗

i ). For length reasons, ι has to be an iso-
morphism onto radI(WJ ), which shows that cosocI(WJ ) ∼= χ. We also deduce the claims about
radI(WJ )/ rad2

I(WJ ) and rad2
I(WJ ), as radI(W ∗

i ) ∼= (χ−χα∗1
i ). The last assertion easily follows

as rad2
I(WJ ) ⊆ socI(WJ ) ⊆ socI(

⊕
i∈J Wi) ∼= χ⊕2|J | (note that rad3

I(WJ ) = 0).

(ii) By (i) it is clear that WJ has a unique quotient, say E , which fits in a short exact sequence
as in the statement. By [Hu10, Lemma 2.4(ii)] E is annihilated by mK1 , so that (WJ )K1 ↠ E .
We prove that this is an isomorphism. Since (WJ )K1 has cosocle χ by (i), we have a surjection
ProjI/K1 χ ↠ (WJ )K1 , which kills socI(ProjI/K1 χ) = χ because dimF(WJ )K1 ≤ 4|J | + 1 <

pf = dimF(ProjI/K1 χ). Since ProjI/K1 χ/ socI(ProjI/K1 χ) is multiplicity free [BHH+23, Lemma
6.1.3], it follows that (WJ )K1 is multiplicity free, hence (WJ )K1 is a quotient of WJ / rad2

I(WJ )
by (i). To conclude it suffices to prove that χα−1

i does not occur in (WJ )K1 . Otherwise, (WJ )K1

would surject onto Eχα−1
i ,χ which is not annihilated by mK1 by [Hu10, Lemma 2.4(ii)] again,

contradiction.

Lemma 2.3.5. The representation IndGL2(OK)
I WJ has a unique quotient Q with socle τ⊕2|J |

and such that [Q : τ ] = 2|J | + 1, and this quotient is isomorphic to QJ . Moreover, JH(QJ ) =
{τ, µ±

i (τ), δ+
i (τ) : i ∈ J } and QJ / socΓ̃(QJ ) is multiplicity free.

Proof. We have a commutative diagram with exact rows:

0 // IndGL2(OK)
I WJ //

g

��

∏
i∈J

IndGL2(OK)
I Wi

//

����

(IndGL2(OK)
I χ)⊕(|J |−1)

f

����

// 0

0 // QJ //
∏
i∈J

Qi
α // τ⊕(|J |−1) // 0

We claim that the left vertical map g is surjective. As coker(g) is a quotient of ker(f) and
JH(ker(f))∩ JH(∏i∈J Qi) = {µ−

i (τ) : i ∈ J } it follows that all the constituents of coker(g) are of
the form µ−

i (τ) for some i ∈ J , hence it suffices to show that QJ cannot surject onto any µ−
i (τ),

i ∈ J . This is true, as µ−
i (τ) occurs with multiplicity one in ∏

i∈J Qi (by Lemma 2.3.3) and
QJ ↠ Qi ↠ Q−

i ↠ I(µ−
i (τ), τ). By construction, the components of the map α are obtained as

composition Qi ↠ Q−
i ↠ τ (or are zero), so the map sends ∏i∈J socΓ̃(Qi) to 0 (by Lemma 2.3.3

for Q−
i ). Hence socΓ̃(QJ ) = ∏

i∈J socΓ̃(Qi) = τ⊕2|J | and together with [∏i∈J Qi : τ ] = 3|J | we
deduce [QJ : τ ] = 3|J | − (|J | − 1) = 2|J | + 1, hence we obtain the existence of Q (by taking
Q = QJ ). Uniqueness and the last statement again follow easily.

Recall that J is a fixed subset of S = {0, . . . , f−1}. Let ΘJ = ΘJ (τ) ⊆ QJ denote the largest
subrepresentation such that cosocΓ̃(ΘJ ) ∼= τ . (This exists and [ΘJ : τ ] = [QJ : τ ] = 2|J |+ 1: by
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[HW22, Prop. 3.10], IndGL2(OK)
I WS has a largest subrepresentation with cosocle τ ; the same is

then true for any quotient representation, in particular for IndGL2(OK)
I WJ ↠ QJ .) We note that

JH(ΘJ ) = {τ, µ±
i (τ) : i ∈ J }, with ΘJ / socΓ̃(ΘJ ) multiplicity free. For i ∈ J let Ψi = Ψi(τ) ⊆

QJ be the unique subrepresentation such that cosocΓ̃(Ψi) ∼= δ+
i (τ). Then Ψi

∼= I(τ, δ+
i (τ)), which

is uniserial of shape τ − µ+
i (τ)− δ+

i (τ), as

I(τ, δ+
i (τ)) ↪→ ker(Q+

i ↠ I(µ−
i (τ), τ)) ↪→ ker(Qi ↠ τ) ↪→ QJ

(the first inclusion coming from Lemma 2.3.1(ii)). In particular, radΓ̃(Ψi) ⊆ ΘJ for all i ∈ J .

Lemma 2.3.6. The representation QJ is the colimit of the diagram (ΘJ ←↩ radΓ̃(Ψi) ↪→ Ψi)i∈J
(with 2|J |+ 1 objects and 2|J | morphisms).

Proof. We claim that cosocΓ̃(QJ ) ∼= τ ⊕
⊕

i∈J δ+
i (τ). Suppose first that QJ ↠ σ for some

irreducible σ. Then

0 ̸= HomGL2(OK)(IndGL2(OK)
I WJ , σ) = HomI(WJ , σ) = HomI((WJ )K1 , σ).

But (WJ )K1 is an extension of χ by ⊕i∈J χα−1
i by the last assertion in [Hu10, Lemma 2.4(ii)].

Hence σ ∈ {τ, δ+
i (τ) : i ∈ J }. Conversely, it is enough to note that QJ ↠ Qi ↠ Q+

i ↠ δ+
i (τ)⊕ τ

for all i ∈ J by Lemma 2.3.1(ii).

Hence QJ = ΘJ +∑i∈J Ψi. Write J = {0 ≤ i1 < · · · < in ≤ f−1}. Let Rk
def= ΘJ +∑k

j=1 Ψij ,
with the convention R0 = ΘJ . We will prove by induction that Rk ∼= Rk−1 ⊕rad

Γ̃
(Ψik

) Ψik for
1 ≤ k ≤ n, which will complete the proof. It suffices to show that Rk−1 ∩Ψik = radΓ̃(Ψik). This
is clear, as µ+

ik
(τ) ∈ JH(ΘJ ), which gives the inclusion ⊇, and as δ+

ik
(τ) /∈ JH(Rk−1). (Recall that

these constituents occur with multiplicity one in QJ .)

3 Abstract setting

Let ρ : Gal(K/K) → GL2(F) be a continuous 0-generic representation as in § 1.4 and let π
denote a smooth representation of GL2(K) over F. In this section we introduce and study certain
assumptions on π (relative to ρ) that play a key role in our work.

3.1 Assumptions

From now until the end of this paper, we assume that π satisfies assumptions (i) (with r = 1) and
(ii) in [BHH+a, § 3.3.2] and assumption (iv) (with r = 1) in [BHH+b, § 2.1], i.e.

(i) we have πK1 ∼= D0(ρ) as GL2(OK)-representations (in particular, π is admissible) and π has
central character det(ρ)ω−1;

(ii) for any λ ∈P we have [π[m3] : χλ] = [π[m] : χλ];
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(iv) for any smooth character χ : I → F× and any i ≥ 0, ExtiI/Z1
(χ, π) ̸= 0 only if [π[m] : χ] ̸= 0,

in which case
dimF ExtiI/Z1

(χ, π) =
(

2f
i

)
.

For later reference we also recall assumption (iii) of [BHH+a, § 3.3.5], though we will not
assume it until § 5:

(iii) there is a GL2(K)-equivariant isomorphism of Λ-modules

E2f
Λ (π∨) ∼= π∨ ⊗ (det(ρ)ω−1),

where E2f
Λ (π∨) is endowed with the GL2(K)-action defined in [Koh17, Prop. 3.2].

Finally, we introduce a further assumption which will be used only in § 6 (namely to verify
equation (6) in the introduction).

(v) We have
dimF Torgr(Λ)

1 (gr(Λ)/m3, grm(π∨)) = dimF TorΛ
1 (Λ/m3, π∨),

where m = (yj , zj : 0 ≤ j ≤ f − 1) denotes the unique maximal graded ideal of gr(Λ) (see
(12)).

We first note the following consequence:

Lemma 3.1.1. Suppose assumptions (i) and (iv) hold. Let χ : I → F× be a character such that
χ /∈ JH(πI1) and Q be a quotient of IndGL2(OK)

I χ. Then ExtiGL2(OK)/Z1
(Q, π) = 0 for i ∈ {0, 1}.

In particular, this result holds when Q = τ is a Serre weight such that χτ /∈ JH(πI1) by taking
χ = χτ .

Proof. Using [Bre14, Prop. 4.2], the assumption on χ implies that JH(IndGL2(OK)
I χ) ∩W (ρ) =

∅. Thus for any subquotient Q of IndGL2(OK)
I χ we have HomGL2(OK)(Q, π) = 0, as

HomGL2(OK)(σ, π) ̸= 0 if and only if σ ∈W (ρ) by assumption (i).

Consider the short exact sequence 0 → V → IndGL2(OK)
I χ → Q → 0, where V is the corre-

sponding kernel. It induces a short exact sequence

HomGL2(OK)(V, π)→ Ext1
GL2(OK)/Z1

(Q, π)→ Ext1
GL2(OK)/Z1

(IndGL2(OK)
I χ, π) = 0,

where the first term vanishes by the last paragraph and the last term vanishes by assumption (iv)
using Shapiro’s lemma. The result follows.

Remark 3.1.2. Even if it is not needed for this paper, it is natural to ask if Ext1
GL2(OK)/Z1

(τ, π) =
0 for any Serre weight τ /∈W (ρ). It is possible to prove this for a globally defined representation
π(ρ) as in [BHH+b, § 2.6], in a similar way to [BHH+b, Prop. 2.6.2], but we don’t know how to
deduce this property using only assumptions (i)–(iv).
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3.2 Consequences of the assumptions

Recall from § 1.4 that mK1 denotes the maximal ideal of the Iwasawa algebra FJK1/Z1K and Γ̃ =
FJGL2(OK)/Z1K/m2

K1
(which is a finite-dimensional F-algebra). Let π be an admissible smooth

GL2(K)-representation satisfying assumptions (i), (ii) and (iv) above with 2-generic underlying
ρ. In this subsection we explicitly determine the finite-dimensional Γ̃-module π[m2

K1
].

Consider the Γ̃-representation D̃0(ρ) from § 1.4. As ρ is 2-generic, D̃0(ρ) is multiplicity free
by [HW22, § 4.1] and has a direct sum decomposition

D̃0(ρ) =
⊕

σ∈W (ρ)
D̃0,σ(ρ),

where D̃0,σ(ρ) is the largest subrepresentation of InjΓ̃ σ containing σ with multiplicity one and no
other Serre weights of W (ρ) (see also [BHH+23, Thm. 8.4.2]). In particular, socΓ̃(D̃0,σ(ρ)) = σ.

Lemma 3.2.1. Let τ ′ be a Serre weight.

(i) If τ ′ /∈W (ρ), then Ext1
Γ̃
(τ ′, D̃0(ρ)) = 0.

(ii) If τ ′ ∈ JH(D0(ρ)) \W (ρ), then Ext1
GL2(OK)/Z1

(τ ′, D0(ρ)) ∼= Ext1
Γ̃
(τ ′, D0(ρ)) = 0.

Proof. (i) This follows from the maximality of D̃0(ρ) recalled above.

(ii) The first isomorphism is a general fact, because both τ ′ and D0(ρ) are annihilated by mK1

(so any extension between them is automatically annihilated by m2
K1

). The second one follows
from (i) and the fact that HomΓ̃(τ ′, D̃0(ρ)/D0(ρ)) = 0 (as D̃0(ρ) is multiplicity free).

Let τ be a Serre weight and χ def= τ I1 . For n ≥ 1 letWχ,n
def= (ProjI/Z1 χ)/mn, where ProjI/Z1 χ is

the linear dual of the injective envelope InjI/Z1(χ−1) (a projective cover of χ in the dual category).
It is a finite-dimensional representation of I/Z1 over F. We let Wχ,3 be the smallest quotient of
Wχ,3 such that [Wχ,3 : χ] = [Wχ,3 : χ]. It is shown in [HW22, Lemma 3.2] that Wχ,3 fits into a
short exact sequence

0→
⊕
χ′

Eχ,χ′ →Wχ,3 → χ→ 0, (26)

where the direct sum is taken over the characters χ′ such that Ext1
I/Z1

(χ′, χ) ̸= 0. Then Wχ,3,
and hence also IndGL2(OK)

I Wχ,3, is annihilated by m2
K1

[HW22, Cor. 3.3].

If moreover τ (hence χ) is 2-generic, by [HW22, Prop. 3.10(i)], for any Jordan–Hölder factor
τ ′ of IndGL2(OK)

I Wχ,3 there exists a GL2(OK)-equivariant morphism

ϕτ ′ : ProjΓ̃ τ
′ → IndGL2(OK)

I Wχ,3 (27)

such that [coker(ϕτ ′) : τ ′] = 0. Note that by [HW22, Prop. 3.10(ii)], the image im(ϕτ ′) is unique
(even though ϕτ ′ need not be unique up to scalar).

For the following, we emphasize that ϕτ ′ depends on τ (we always take χ def= τ I1).
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Lemma 3.2.2. Assume that τ ∈W (ρ), so τ is 2-generic. Then JH(coker(ϕτ )) ∩W (ρ) = ∅, and

Ext1
GL2(OK)/Z1

(τ ′, τ) = 0

for any τ ′ ∈ JH(coker(ϕτ )).

Proof. The first assertion is proved in [HW22, Cor. 4.14] (taking χ = τ I1 there). The second
is essentially a consequence of [HW22, Cor. 3.11]. To see this, let τ ′ be a Serre weight such
that Ext1

GL2(OK)/Z1
(τ ′, τ) ̸= 0 (this is equivalent to Ext1

Γ(τ ′, τ) ̸= 0 by [BHH+b, Lemma 4.3.4],
noting that τ ′ is automatically 0-generic by [BP12, Cor. 5.6(ii)]). We need to prove that τ ′ /∈
JH(coker(ϕτ )). By [HW22, Prop. 3.12(ii)] (where E (τ) in loc. cit. is the set of Serre weights τ ′′

such that Ext1
Γ(τ ′′, τ) ̸= 0), we know that τ ′ is a Jordan–Hölder factor of IndGL2(OK)

I Wχ,3, so we
have a morphism ϕτ ′ as in (27). Since [coker(ϕτ ′) : τ ′] = 0, it suffices to prove that im(ϕτ ′) ⊆
im(ϕτ ). But this follows from [HW22, Cor. 3.11(a), (c)]. Indeed, if τ ′ ∈ JH(IndGL2(OK)

I χ),
then we conclude by [HW22, Cor. 3.11(a)], as J(τ) = {0, . . . , f − 1} in the notation of loc. cit.;
if τ ′ ∈ JH(IndGL2(OK)

I χ′) for some χ′ ∈ JH(Wχ,3) with χ′ ̸= χ, then we conclude by [HW22,
Cor. 3.11(c)].

Corollary 3.2.3. If τ ∈W (ρ), then

Ext1
Γ̃(coker(ϕτ ), D̃0(ρ)) = Ext1

Γ̃(coker(ϕτ ), τ) = 0.

Proof. Using Ext1
Γ̃
(τ ′, τ) = Ext1

GL2(OK)/Z1
(τ ′, τ) for any Serre weight τ ′, the first term is 0 by

dévissage from Lemma 3.2.1(i) and the first assertion in Lemma 3.2.2, and the second term is 0
by dévissage from the second assertion in Lemma 3.2.2.

Lemma 3.2.4. Assume that τ ∈W (ρ). Then coker(ϕτ ) has a direct sum decomposition

coker(ϕτ ) ∼=
f−1⊕
j=0

coker(ϕτ )j , (28)

where coker(ϕτ )j is a quotient of IndGL2(OK)
I χαj for 0 ≤ j ≤ f − 1. Moreover,

(i) if χαj ∈ JH(πI1), then Ext1
GL2(OK)/Z1

(
coker(ϕτ )j , D0(ρ)

)
= 0;

(ii) if χαj /∈ JH(πI1), then Ext1
GL2(OK)/Z1

(
coker(ϕτ )j , π

)
= 0.

Remark 3.2.5. Although it will not be used in this paper, we have the following explicit descrip-
tion of coker(ϕτ )j : it is the unique quotient of IndGL2(OK)

I χαj consisting of the Jordan–Hölder
factors parametrized by the subsets of {0, . . . , f − 1} that contain j.

Proof. By construction, im(ϕτ ) contains the image of any morphism ProjΓ̃ τ → IndGL2(OK)
I Wχ,3,

and in particular contains the subrepresentation IndGL2(OK)
I χ⊕2f ⊆ IndGL2(OK)

I Wχ,3 (recall
that χ⊕2f ⊆ Wχ,3 by (26) and that cosocΓ

(
IndGL2(OK)

I χ
)

= τ). Thus, the quotient map
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IndGL2(OK)
I Wχ,3 ↠ coker(ϕτ ) factors through IndGL2(OK)

I Wχ,2 ↠ coker(ϕτ ). Recall that Wχ,2
fits into a short exact sequence

0→
f−1⊕
j=0

(χαj ⊕ χα−1
j )→Wχ,2 → χ→ 0.

We have a commutative diagram with exact rows

0 // ker(q) //

��

ProjΓ̃ τ
q //

ϕτ

��

IndGL2(OK)
I χ // 0

0 //
f−1⊕
j=0

IndGL2(OK)
I χα±1

j
// IndGL2(OK)

I Wχ,2 // IndGL2(OK)
I χ // 0

so that we have a surjection γ : ⊕f−1
j=0 IndGL2(OK)

I χα±1
j ↠ coker(ϕτ ) by the snake lemma. As⊕f−1

j=0 IndGL2(OK)
I χα±1

j is multiplicity free (for instance by [BHH+b, Lemma 4.3.3]) we deduce
an isomorphism coker(ϕτ ) ∼=

⊕f−1
j=0 coker(ϕτ )±

j , where coker(ϕτ )±
j

def= γ(IndGL2(OK)
I χα±1

j ) (in par-
ticular it is a quotient of IndGL2(OK)

I χα±1
j ). If coker(ϕτ )−

j ̸= 0 then coker(ϕτ ) and a fortiori
IndGL2(OK)

I Wχ,2 would surject onto δ−
j (τ) (the cosocle of IndGL2(OK)

I χα−1
j ). But this is not

true by Frobenius reciprocity, as one checks that HomI(Wχ,2, δ
−
j (τ)) = 0 by [BHH+a, Lemma

3.2.2.6(ii)]. We thus get the decomposition (28) by taking coker(ϕτ )j
def= coker(ϕτ )+

j .

(i) By Lemma 3.2.1(ii) and the first statement in Lemma 3.2.2, it suffices to show that
JH(coker(ϕτ )j) ⊆ JH(D0(ρ)) when χαj ∈ JH(πI1). In fact, we prove the following stronger
statement: if χ′ ∈ JH(πI1) then JH(IndGL2(OK)

I χ′) ⊆ JH(D0(ρ)). By [BHH+b, eq. (52)] we
have JH(ProjΓ σ) ⊆ JH(D0(ρ)) for any σ ∈ W (ρ). Now, since χ′ ∈ JH(πI1), we have
JH(IndGL2(OK)

I χ′) ∩W (ρ) ̸= ∅ by [Bre14, Prop. 4.2]. Thus it suffices to prove that

JH(IndGL2(OK)
I χ′) ⊆ JH(ProjΓ σ′) (29)

for any σ′ ∈ JH(IndGL2(OK)
I χ′).

We prove (29) for any character χ′ : I → F× satisfying χ′ ̸= χ′s. Let ProjW (F)[Γ] σ
′ be the

projective cover of σ′ in the category of W (F)[Γ]-modules. Let [χ′] : I → W (F)× be the Teich-
müller lift of χ′. Since σ′ ∈ JH(IndGL2(OK)

I χ′), there is a non-zero morphism γ : ProjW (F)[Γ] σ
′ →

IndGL2(OK)
I [χ′]. Inverting p, the latter representation is irreducible over W (F)[1/p] as [χ′] ̸= [χ′s],

so γ is surjective after inverting p. We conclude by the Brauer–Nesbitt theorem.

(ii) It is a direct consequence of Lemma 3.1.1.

Lemma 3.2.6. Let τ ∈ W (ρ) and Q be a quotient of ProjΓ̃ τ such that radΓ̃(Q) ⊆ D̃0(ρ) (hence
radΓ̃(Q) is multiplicity free). Then Q is a quotient of im(ϕτ ).
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Proof. In this proof, if M is a finite-dimensional Γ̃-module, we write rad(M), soc(M)
and cosoc(M) for radΓ̃(M), socΓ̃(M) and cosocΓ̃(M) respectively. We may assume that Q ̸= 0.
Since rad(Q) is multiplicity free by assumption, we have [rad(Q) : τ ] ≤ 1 and [Q : τ ] ≤ 2. Since
rad(Q) ⊆ D̃0(ρ) = ⊕

σ∈W (ρ) D̃0,σ(ρ) (which is multiplicity free), we have a decomposition

rad(Q) =
⊕

σ∈W (ρ)
Vσ

for some subrepresentations Vσ ⊆ D̃0,σ(ρ). If Vσ ̸= 0, let Qσ be the quotient of Q by its largest
subrepresentation in which σ does not occur, so soc(Qσ) ∼= σ (even if σ = τ , as cosoc(Qσ) = τ)
and 0 → Vσ → Qσ → τ → 0. Assume first σ ̸= τ and Vσ ̸= 0. By [HW22, Lemma 4.10], the
natural morphism

Ext1
Γ̃(τ, σ)→ Ext1

Γ̃(τ, Vσ) (30)
is an isomorphism. Since Qσ has cosocle τ , we deduce that Vσ = σ. Assume next that σ = τ and
also Vτ ̸= 0. Then [HW22, Cor. 4.9] implies that the natural inclusion D0,τ (ρ) ↪→ D̃0,τ (ρ) induces
an isomorphism

Ext1
Γ̃(τ,D0,τ (ρ)) ∼−→ Ext1

Γ̃(τ, D̃0,τ (ρ)). (31)

Letting A def= Vτ ∩D0,τ (ρ) ̸= 0, we obtain a commutative diagram with exact rows

0 // Ext1
Γ̃(τ,A) //
� _

��

Ext1
Γ̃(τ, Vτ ) //
� _

��

Ext1
Γ̃(τ, Vτ/A)
� _

��
0 // Ext1

Γ̃(τ,D0,τ (ρ)) ∼ // Ext1
Γ̃(τ, D̃0,τ (ρ)) // Ext1

Γ̃(τ, D̃0,τ (ρ)/D0,τ (ρ))

where all the vertical arrows are easily seen to be injective (as D̃0,τ (ρ) is multiplicity free). A
diagram chase together with (31) shows that the class of Qτ in Ext1

Γ̃
(τ, Vτ ) lies in the image of

Ext1
Γ̃
(τ,A). Since Qτ has cosocle τ , we have A = Vτ , namely Vτ ⊆ D0,τ (ρ). Altogether we get

rad(Q) ⊆ D0(ρ).

Now we prove the lemma. If τ does not occur in rad(Q), then [Q : τ ] = 1 and Vτ = 0.
Moreover, the discussion in the last paragraph implies that rad(Q) = ⊕

σ∈JH(soc(Q)) σ (provided
rad(Q) ̸= 0). Thus Q is a Γ-representation by [BHH+b, Lemma 4.3.4] (and the first sentence in
its proof), and [HW22, Cor. 3.14] (applied with m = 0) implies that Q is a certain quotient of Θτ ,
where Θτ in loc. cit. is a quotient of im(ϕτ ) constructed in [HW22, Prop. 3.12]. As a consequence,
Q is a quotient of im(ϕτ ).

If τ occurs in rad(Q), then τ must occur in soc(Q) as rad(Q) ⊆ D0(ρ) and τ ∈ JH(soc(D0(ρ))).
In this case Q satisfies the following conditions:

(1) [Q : τ ] = 2, τ ↪→ soc(Q), and cosoc(Q) ∼= τ ;

(2) rad(Q) is a subrepresentation of D0(ρ).

It is proved in the last paragraph of the proof of [HW22, Prop. 4.18] that such a representation is
a quotient of Θτ , hence of im(ϕτ ). The argument goes as follows. Firstly, by [HW22, Lemma 4.10]
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condition (2) implies that JH(soc(Q)) is contained in {τ} ∪ E (τ), where E (τ) denotes the set of
Serre weights τ ′ such that Ext1

Γ(τ ′, τ) ̸= 0. Secondly, using (1) and the fact Ext1
Γ̃
(τ, τ) = 0, one

shows that the socle of C def= Q/τ is contained in E (τ) and that C fits in a short exact sequence

0→ S → C → τ → 0

for some subrepresentation S of ⊕τ ′∈E (τ) τ
′. Then we conclude by [HW22, Cor. 3.14].

Lemma 3.2.7. Assume that τ ∈W (ρ). Then HomGL2(OK)(ProjΓ̃ τ, π) has dimension 1 over F.

Proof. Step 1. We prove that HomGL2(OK)(τ, π/π[mK1 ]) = 0. Suppose by contradiction that
HomGL2(OK)(τ, π/π[mK1 ]) ̸= 0. The pullback of τ gives a subrepresentation V ⊆ π|GL2(OK) which
(using assumption (i)) fits into a nonsplit extension

0→ D0(ρ)→ V → τ → 0. (32)

Note that V is a Γ̃-representation but not a Γ-representation. By the projectivity of ProjΓ̃ τ , there
exists a Γ̃-equivariant morphism q : ProjΓ̃ τ → V whose composition with V ↠ τ is the natural
surjection ProjΓ̃ τ ↠ τ . Let Vτ denote the image of q, which has cosocle τ . Clearly Vτ satisfies
the conditions (on Q) in Lemma 3.2.6, so there exists a surjection im(ϕτ ) ↠ Vτ and we denote
by β the composition im(ϕτ ) ↠ Vτ ↪→ V .

We introduce a 3-step filtration on M
def= IndGL2(OK)

I Wχ,3 as follows. Let S ⊆ {0, . . . , f − 1}
be the set of indices j such that χαj ∈ JH(πI1). Put M2

def= im(ϕτ ) ⊆M and

M1
def= ker

(
M ↠

⊕
j /∈S

coker(ϕτ )j
)
,

where we used (28). Then 0 ⊆M2 ⊆M1 ⊆M with

M1/M2 ∼=
⊕
j∈S

coker(ϕτ )j , M/M1 ∼=
⊕
j /∈S

coker(ϕτ )j . (33)

By Lemma 3.2.2, Lemma 3.2.4(i) and (32), (33) we have Ext1
GL2(OK)/Z1

(M1/M2, V ) = 0, so
the natural morphism HomGL2(OK)(M1, V ) → HomGL2(OK)(M2, V ) is surjective. Thus we can
lift β to β′ : M1 → V , which we view as a morphism β′ : M1 → π (as V ⊆ π). Next, since
Ext1

GL2(OK)/Z1
(M/M1, π) = 0 by Lemma 3.2.4(ii) and (33), we can further lift β′ to a morphism

β′′ : M → π. By Frobenius reciprocity, we obtain an I-equivariant morphism Wχ,3 → π|I , which
must factor through Wχ,3 ↠ χ ↪→ π|I by assumption (ii). Correspondingly, β′′ itself factors
through M ↠ IndGL2(OK)

I χ → π, so im(β′′) is contained in π[mK1 ]. But this is not true by
construction of β′′, contradiction.

Step 2. Suppose by contradiction that dimF HomGL2(OK)(ProjΓ̃ τ, π) ≥ 2. By [HW22,
Prop. 4.18], which requires ρ to be 2-generic and condition (a) at the beginning of [HW22, § 4.3]
to hold, we also have dimF HomGL2(OK)(Θτ , π) ≥ 2. (Recall from [HW22, § 3.3] that Θτ is the
smallest quotient of ProjΓ̃ τ/ rad3

Γ̃

(
ProjΓ̃ τ

)
such that

[
ProjΓ̃ τ/ rad3

Γ̃

(
ProjΓ̃ τ

)
: τ
]

= [Θτ : τ ]
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and that Θτ fits into a short exact sequence

0→
⊕
τ ′

Eτ,τ ′ → Θτ → τ → 0,

where the direct sum is taken over the Serre weights τ ′ such that Ext1
Γ(τ ′, τ) ̸= 0; see [HW22,

Cor. 3.16].) Thus, there exists a GL2(OK)-equivariant morphism γ : Θτ → π which does not
factor through the cosocle of Θτ . Since π[mK1 ] ∼= D0(ρ) is multiplicity free and τ ∼= cosocΓ̃(Θτ )
occurs in socGL2(OK)(π), we deduce that im(γ) is not contained in π[mK1 ]. However, radΓ̃(Θτ ) is
annihilated by mK1 (by [HW22, Cor. 3.16]), so the image U of radΓ̃(Θτ ) is contained in π[mK1 ].
The inclusions U ⊆ π[mK1 ] ⊆ π induce natural maps

Ext1
GL2(OK)/Z1

(τ, U)→ Ext1
GL2(OK)/Z1

(τ, π[mK1 ])→ Ext1
GL2(OK)/Z1

(τ, π).

The first map is injective, because by assumption (i) either HomGL2(OK)(τ, π[mK1 ]/U) = 0 (if
τ ∈ JH(U)) or the map HomGL2(OK)(τ, π[mK1 ]) → HomGL2(OK)(τ, π[mK1 ]/U) is surjective (if
τ /∈ JH(U)). The second map is also injective by Step 1. However, viewing im(γ) as a (non-zero)
element in Ext1

GL2(OK)/Z1
(τ, U), it is sent to 0 in Ext1

GL2(OK)/Z1
(τ, π) as im(γ) ⊆ π. This gives

the desired contradiction.

Proposition 3.2.8. Suppose that π satisfies assumptions (i), (ii) and (iv) with a 2-generic un-
derlying ρ. Then

π[m2
K1 ] ∼= D̃0(ρ). (34)

Proof. It follows from Lemma 3.2.7 that [π[m2
K1

] : σ] = 1 for any σ ∈W (ρ). From the construction
of D̃0(ρ) we deduce an inclusion π[m2

K1
] ⊆ D̃0(ρ). Suppose the inclusion is strict, and choose a

Serre weight τ ↪→ D̃0(ρ)/π[m2
K1

]. Let Vτ ⊆ D̃0(ρ) be a subrepresentation with cosocle τ and
such that the composition Vτ ↪→ D̃0(ρ) ↠ D̃0(ρ)/π[m2

K1
] coincides with the chosen inclusion

τ ↪→ D̃0(ρ)/π[m2
K1

]. As D0(ρ) ⊆ π[m2
K1

] by assumption (i), we have τ ∈ JH(D̃0(ρ)) \ JH(D0(ρ)),
so in particular χτ /∈ JH(πI1). Applying HomGL2(OK)/Z1(−, π) to 0 → radΓ̃(Vτ ) → Vτ → τ → 0
and using Lemma 3.1.1, we obtain an isomorphism

HomGL2(OK)(Vτ , π) ∼−→ HomGL2(OK)(radΓ̃(Vτ ), π).

Thus, the natural inclusion radΓ̃(Vτ ) ⊆ π lifts to an embedding Vτ ↪→ π, whose image is contained
in π[m2

K1
] as Vτ is annihilated by m2

K1
. This gives a contradiction as τ /∈ JH(π[m2

K1
]) (D̃0(ρ) being

multiplicity free).

4 On the Hilbert series of π

Let π be a smooth mod p representation of GL2(K) over F satisfying assumptions (i), (ii) and
(iv) of § 3. In this section we compute the Hilbert series of grm(π∨).

If M = ⊕
n≤0Mn is a graded F-vector space with dimFMn < +∞ for all n, we define the

Hilbert series
hM (t) def=

∑
n≥0

dimF(M−n)tn ∈ ZJtK.
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In particular, if Π is any admissible smooth representation of GL2(K) the Hilbert series hΠ(t) def=
hgrm(Π∨)(t) ∈ ZJtK is defined.

Theorem 4.1. Assume that ρ is 9-generic and that π satisfies assumptions (i), (ii) and (iv) of
§ 3.

(i) If ρ is irreducible, then hπ(t) = (3 + t)f
(1− t)f − 1.

(ii) If ρ is split reducible, then hπ(t) = (3 + t)f
(1− t)f + 1.

(iii) If ρ is nonsplit reducible and dρ
def= |Jρ| (so dρ < f , see (10) for Jρ), then hπ(t) = 2f−dρ ·

(1 + t)f−dρ(3 + t)dρ

(1− t)f .

Remark 4.2. Note that the denominator of hπ(t) equals (1 − t)f expresses the fact that the
Gelfand–Kirillov dimension of π equals f . (By [BHH+23, Lemma 5.1.3], the Gelfand–Kirillov
dimension of π equals the dimension of grm(π∨) as an R-module, hence equals the dimension of
(grm(π∨))m as an Rm-module by [BH93, Ex. 1.5.25], hence equals the exponent of (1 − t) in the
denominator of hπ(t) by [Mat89, Thms. 13.2, 13.4], cf. the discussion on [Mat89, p. 97].)

Remark 4.3. Note that if we put t = 0 we recover the dimension formula for D0(ρ)I1 = πI1 in
[BP12, Thm. 1.1].

Proof. We first recall that, under our assumptions, by [BHH+b, Thm. 2.1.2] we have

grm(π∨) ∼= N
def=
⊕
λ∈P

χ−1
λ ⊗R/a(λ),

where a(λ) is the ideal of R associated to λ ∈P in (13). It remains to determine hN (t).

We note the following elementary but useful formulas. First, if M,M ′ are two graded F-vector
spaces, then

hM⊗M ′(t) = hM (t)hM ′(t). (35)

Second, we have for any integer n ≥ 0:

1
2
[
(2 + x)n − (2− x)n

]
=

∑
0≤i≤n, i odd

(
n

i

)
2n−ixi, (36)

1
2
[
(2 + x)n + (2− x)n

]
=

∑
0≤i≤n, i even

(
n

i

)
2n−ixi. (37)

By definition of N , we have hN (t) = ∑
λ∈P hR/a(λ)(t). Recalling a(λ) = (tj ; 0 ≤ j ≤ f − 1)

with tj ∈ {yj , zj , yjzj} and noting that

hF[yi](t) = hF[zi](t) = 1/(1− t), hF[yi,zi]/(yizi)(t) = (1 + t)/(1− t),
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we obtain by (35) that

hR/a(λ)(t) = (1 + t)|A(λ)|

(1− t)f ,

where A(λ) def= {j : tj = yjzj}. Hence, we are reduced to counting the cardinality of λ ∈ P such
that |A(λ)| = s for a given 0 ≤ s ≤ f .

(i) Given λ ∈P, we define an element λ ∈ D as follows:

λ0(x0) def=


x0 − 1 if λ0(x0) ∈ {x0 − 1, x0 + 1},
p− 2− x0 if λ0(x0) ∈ {p− 2− x0, p− x0},
λ0(x0) otherwise

and if j ̸= 0,

λj(xj)
def=


xj if λj(xj) ∈ {xj , xj + 2},
p− 3− xj if λj(xj) ∈ {p− 1− xj , p− 3− xj},
λj(xj) otherwise.

It is easy to see that λ ∈ D . By [BHH+a, Def. 3.3.1.1], we have tj = yjzj if and only if
λj(xj) ∈ {xj + 1, p− 2− xj} if j ̸= 0 (resp. λ0(x0) ∈ {x0, p− 1− x0}), thus A(λ) = A(λ). On the
other hand, given λ ∈ D , there exist exactly 2|{0,...,f−1}\A(λ)| elements λ ∈P giving rise to λ. As
a consequence we have hN (t) = QN (t)/(1− t)f with

QN (t) def=
∑

0≤s≤f, s odd
2f−s · 2

(
f

s

)
(1 + t)s = (3 + t)f − (1− t)f ,

where the first equality follows from Lemma 4.5 below and the second from (36) (with x = 1 + t).
The result follows.

(ii) The proof is similar to (i) using Lemma 4.5(ii) below and (37).

(iii) Let P ⊆ P be the subset introduced in the proof of [BHH+a, Prop. 3.3.1.5], namely
λ ∈P if and only if

λj(xj) ∈ {xj , xj + 1, p− 1− xj , p− 2− xj , p− 3− xj} (38)

and λj(xj) = p−1−xj implies j /∈ Jρ (recall from (10) that λj(xj) = p−3−xj implies j ∈ Jρ). In
the proof of [BHH+a, Prop. 3.3.1.5] a map P →P, λ 7→ λ is defined, which satisfies A(λ) = A(λ)
and for any λ ∈ P, there exist exactly 2|{0,...,f−1}\A(λ)| elements λ in P giving rise to λ. Using
Lemma 4.5(iii) below (with |A(λ)| = f − dρ + s), we then obtain hN (t) = Q′

N (t)/(1− t)f , where

Q′
N (t) def=

∑
0≤s≤dρ

2dρ−s · 2f−dρ

(
dρ
s

)
(1 + t)(f−dρ)+s = 2f−dρ(1 + t)f−dρ(3 + t)dρ

(recall dρ = |Jρ|), proving the result.

Remark 4.4. We note that our proof determines hN (t) in each case without any genericity
conditions on ρ.
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Lemma 4.5.

(i) If ρ is irreducible, then |A(λ)| is odd for all λ ∈ D . For any subset J ⊆ {0, . . . , f − 1} with
|J | odd, there exist exactly 2 elements λ ∈ D such that A(λ) = J . As a consequence, for
any 0 ≤ s ≤ f which is odd, the set of λ ∈ D with |A(λ)| = s has cardinality 2

(f
s

)
.

(ii) If ρ is split reducible, then |A(λ)| is even for all λ ∈ D . For any subset J ⊆ {0, . . . , f − 1}
with |J | even, there exist exactly 2 elements λ ∈ D such that A(λ) = J . As a consequence,
for any 0 ≤ s ≤ f which is even, the set of λ ∈ D with |A(λ)| = s has cardinality 2

(f
s

)
.

(iii) If ρ is nonsplit reducible, then Jcρ ⊆ A(λ) for any λ ∈P (where P is defined in the proof of
Theorem 4.1(iii)), and for any J ⊆ Jρ the set of λ ∈P with A(λ) = J ⊔ Jcρ has cardinality
2f−dρ. In particular, we always have f − dρ ≤ |A(λ)| ≤ f , and for any 0 ≤ s ≤ dρ the set
of λ ∈P with |A(λ)| = f − dρ + s has cardinality 2f−dρ

(dρ
s

)
.

Proof. (i) By the definition of A(λ), we have

A(λ) = {j : λj(xj) ∈ {xj + 1, p− 2− xj} if j ̸= 0, or λ0(x0) ∈ {x0, p− 1− x0} if j = 0}. (39)

By definition of D (see [BP12, § 11]) and ofA(λ), we check that λj(xj) is determined by λj−1(xj−1)
and the value of 1A(λ)(j) for any j. For example, if λ0(x0) = x0 and f ≥ 2, then λ1(x1) = x1
(resp. λ1(x1) = p − 2 − x1) if 1 /∈ A(λ) (resp. 1 ∈ A(λ)). This implies that λ ∈ D is determined
by λ0(x0) and A(λ). Moreover, one checks that:

• |A(λ)∩{1, . . . , f−1}| is even if λ0(x0) ∈ {x0, p−1−x0} (by showing that |{j ̸= 0 : λj(xj) =
p − 2 − xj}| = |{j ̸= 0 : λj(xj) = xj + 1}|), and is odd if λ0(x0) ∈ {x0 − 1, p − 2 − x0}
(by showing that |{j ̸= 0 : λj(xj) = p − 2 − xj}| = |{j ̸= 0 : λj(xj) = xj + 1}| ± 1). As a
consequence, |A(λ)| is always odd by (39).

• Conversely, if λ0(x0) ∈ {x0, p − 1 − x0} (resp. λ0(x0) ∈ {x0 − 1, p − 2 − x0}) and J ⊆
{1, . . . , f−1} is even (resp. odd), then there exists a unique λ ∈ D with given value at j = 0
and such that J = A(λ) ∩ {1, . . . , f − 1}.

Thus, for any J ⊆ {0, . . . , f − 1} with |J | odd, there exist exactly two λ ∈ D with A(λ) = J . The
result follows from this.

(ii) The proof is similar to (and simpler than) (i). In this case, one has A(λ) = {j : λj(xj) ∈
{xj +1, p−2−xj}} and it follows directly from the definition of D that the subsets |{j : λj(xj) =
xj + 1}| and |{j : λj(xj) = p − 2 − xj}| of Z/fZ are interlaced, i.e. between any two distinct
elements of one subset there exists an element of the other, and hence of the same cardinality.

(iii) By the proof of [BHH+a, Lemma 3.3.1.3], there is a bijection between P and D ss as
follows: λ ∈P corresponds to µ ∈ D ss defined by

µj(xj)
def=
{
p− 3− xj if λj(xj) = p− 1− xj ,
λj(xj) otherwise.
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One checks that A(λ) = (A(µ) ∩ Jρ) ⊔ Jcρ, so in particular Jcρ ⊆ A(λ). Thus for a given J ⊆ Jρ,

|{λ ∈P : A(λ) = J ⊔ Jcρ}| = |{µ ∈ D ss : A(µ) ∩ Jρ = J}|,

where A(µ) is formed with respect to ρss. If |J | is even, then for any J ′ ⊆ Jcρ with |J ′| being
even, there exist exactly 2 elements µ ∈ D ss such that A(µ) = J ⊔ J ′ by (ii), so the cardinality
of µ ∈ D ss satisfying A(µ) ∩ Jρ = J is ∑0≤i≤f−dρ, i even 2

(f−dρ

i

)
= 2f−dρ . Similarly, if |J | is odd,

then the cardinality of µ ∈ D ss satisfying A(µ)∩Jρ = J is ∑0≤i≤f−dρ, i odd 2
(f−dρ

i

)
= 2f−dρ . This

proves the second statement and the last one easily follows.

In the rest of this section, we assume that ρ is split reducible. For λ ∈ P, recall the set
Jλ ⊆ {0, . . . , f − 1} defined in (11). For i ∈ {0, . . . , f} put

N(i)
def=

⊕
λ∈P,|Jλ|=i

χ−1
λ ⊗R/a(λ).

The following result computes the Hilbert series of N(i).

Proposition 4.6. Assume ρ is split reducible. Then for any 0 ≤ i ≤ f ,

hN(i)(t) =
2 ∑

0≤s≤i

( f
2s
)(f−2s

i−s
)
(1 + t)2s

(1− t)f .

Remark 4.7. Together with [BHH+b, Cor. 3.2.7](ii), Proposition 4.6 gives the Hilbert series
hπ′(t) for any subquotient π′ of π if ρ is split reducible and max{9, 2f + 1}-generic.

Proof. Since ρ is split reducible, |A(λ)| = 2|{j : λj(xj) = xj + 1}| by the proof of Lemma 4.5(ii).
Since {j : λj(xj) = xj + 1} ⊆ Jλ, we deduce |A(λ)|/2 ≤ |Jλ|. Fix 0 ≤ i ≤ f . As in the proof of
Theorem 4.1, we have

hN(i)(t) =
∑

0≤s≤i |Pi,s|(1 + t)2s

(1− t)f

where Pi,s
def= {λ ∈ P : |Jλ| = i, |A(λ)| = 2s}. Thus, it suffices to show the equality |Pi,s| =

2∑0≤s≤i
( f

2s
)(f−2s

i−s
)
.

Let λ ∈ Pi,s (with 0 ≤ s ≤ i ≤ f) and write A(λ) = {0 ≤ j1 < j′
1 < · · · < js < j′

s < f}.
Assume first λj1(xj1) = xj1 + 1; we call it case +. Then one checks that λ is uniquely determined
by (A(λ), Jλ \ A(λ)) as follows:

• λjk = xjk + 1 and λj′
k
(xj′

k
) = p− 2− xj′

k
for 1 ≤ k ≤ s by the proof of Lemma 4.5(ii);

• if jk < j < j′
k for some k, then λj(xj) ∈ {xj , xj + 2}, and λj(xj) = xj + 2 if and only if

j ∈ Jλ \ A(λ);

• if j′
k < j < jk+1 for some k (in Z/fZ), then λj(xj) ∈ {p − 1 − xj , p − 3 − xj}, and

λj(xj) = p− 3− xj if and only if j ∈ Jλ \ A(λ).
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Conversely, an element λ ∈ P satisfying the above conditions belongs to Pi,s with i = |{j :
λj(xj) = {xj + 1, xj + 2, p− 3− xj}}|. Similar statements hold if λj1(xj1) = p− 2− xj1 ; we call
it case −.

The above discussion implies that sending λ to
(
A(λ), case ±, Jλ \ A(λ)

)
gives a bijection

between Pi,s and the set of triples (J,±, J ′) satisfying

J ⊆ {0, . . . , f − 1}, |J | = 2s, J ′ ⊆ Jc, |J ′| = i− s.

Thus |Pi,s| = 2∑0≤s≤i
( f

2s
)(f−2s

i−s
)

as desired.

5 On the structure of subquotients of π in the semisimple case

We determine the m2
K1

-torsion of any subquotient of π, where π is any smooth mod p represen-
tation of GL2(K) satisfying assumptions (i)–(iv) of § 3 and the underlying Galois representation
ρ : Gal(K/K) → GL2(F) is semisimple and sufficiently generic. By [BHH+a, Cor. 3.3.5.6] and
Proposition 3.2.8 we may and will assume that ρ is split reducible.

Proposition 5.1. Assume that ρ is split reducible and max{9, 2f + 1}-generic.

(i) Let π′ be a subquotient of π. Then there exists a (unique) subset Σ′ ⊆ {0, . . . , f} such that

π′[m2
K1 ] ∼=

⊕
i∈Σ′

D̃0(ρ)i,

where D̃0(ρ)i
def= ⊕

σ∈W (ρ), |Jσ |=i D̃0,σ(ρ) for 0 ≤ i ≤ f .

(ii) Let π1 ⊆ π2 be subrepresentations of π. Then the induced sequence of Γ̃-modules

0→ π1[m2
K1 ]→ π2[m2

K1 ]→ (π2/π1)[m2
K1 ]→ 0

is split exact.

Remark 5.2. As a consequence of Proposition 5.1(ii), if π1 ⊆ π2 are subrepresentations of π,
then the induced sequence of Γ-representations

0→ πK1
1 → πK1

2 → (π2/π1)K1 → 0

is split exact. This strengthens [BHH+b, Lemma 3.2.6].

Proof. We first prove (i) for any subrepresentation π′ = π1. Let Σ′ = Σ1 be the unique subset
such that socGL2(OK)(π1) = ⊕

ℓ(σ)∈Σ1 σ. First, since π1[m2
K1

] ⊆ π[m2
K1

], we deduce from Proposi-
tion 3.2.8 that

π1[m2
K1 ] ⊆

⊕
i∈Σ1

D̃0(ρ)i.

Denote by Q the quotient
(⊕

i∈Σ1 D̃0(ρ)i
)
/π1[m2

K1
]; we want to prove Q = 0. By [HW22, Thm.
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4.6], D̃0(ρ) is multiplicity free, so JH(Q) ∩W (ρ) = ∅. Consider the natural morphisms

Q ↪→ π[m2
K1 ]/π1[m2

K1 ] ↪→ (π/π1)[m2
K1 ] ↪→ π/π1

which induce an embedding socGL2(OK)(Q) ↪→ socGL2(OK)(π/π1). But JH(socGL2(OK)(π/π1)) ⊆
W (ρ) by [BHH+b, Lemma 3.2.6], so we must have socGL2(OK)(Q) = 0, equivalently Q = 0.

(ii) As in the proof of [BHH+b, Cor. 3.2.5], it suffices to treat the special case π2 = π. We
again define Σ1 by the equality socGL2(OK)(π1) = ⊕

ℓ(σ)∈Σ1 σ, so π1[m2
K1

] = ⊕
i∈Σ1 D̃0(ρ)i by the

preceding paragraph. Thus there is an inclusion ⊕i/∈Σ1 D̃0(ρ)i ∼= π[m2
K1

]/π1[m2
K1

] ⊆ (π/π1)[m2
K1

].
Suppose that this is not an equality. Then (π/π1)[m2

K1
] contains a subrepresentation V which fits

into a nonsplit Γ̃-extension
0→

⊕
i/∈Σ1

D̃0(ρ)i → V → τ → 0 (40)

for some Serre weight τ . (The extension is nonsplit by [BHH+b, Lemma 3.2.6].) We have τ ∈W (ρ)
by Lemma 3.2.1(i) and we let again χ

def= τ I1 .

By the projectivity of ProjΓ̃ τ , there exists a Γ̃-equivariant morphism β : ProjΓ̃ τ → V whose
composition with V ↠ τ is the natural projection ProjΓ̃ τ ↠ τ . Let Vβ denote the image of β,
which has cosocle τ . By (40), Vβ satisfies the conditions in Lemma 3.2.6, so it is a quotient of
im(ϕτ ), namely β factors through im(ϕτ )→ V .

By Corollary 3.2.3 we have Ext1
Γ̃
(coker(ϕτ ), V ) = 0 by dévissage using (40). Hence, using

the short exact sequence 0 → im(ϕτ ) → IndGL2(OK)
I Wχ,3 → coker(ϕτ ) → 0, we can lift the map

im(ϕτ )→ V of the previous paragraph to

β′ : IndGL2(OK)
I Wχ,3 → V (↪→ π/π1).

The splitting statement in [BHH+b, Cor. 3.2.5] with n = 3 implies that the natural sequence

0→ HomI(Wχ,3, π1)→ HomI(Wχ,3, π)→ HomI(Wχ,3, π/π1)→ 0

is exact, so combined with Frobenius reciprocity we obtain a morphism

β′′ : IndGL2(OK)
I Wχ,3 → π

whose composition with π ↠ π/π1 gives β′. By [BHH+23, Prop. 6.4.6], any I-equivariant
morphism Wχ,3 → π factors through Wχ,3 ↠ χ, hence β′′ factors as IndGL2(OK)

I Wχ,3 ↠

IndGL2(OK)
I χ→ π. In particular, the image of β′′ is contained in πK1 and has cosocle τ . Since τ

occurs in socGL2(OK)(π) and not elsewhere in πK1 (as πK1 is multiplicity free), the image of β′′

(hence also the image of β) is just τ . This gives a contradiction, proving (ii), as V is a nonsplit
extension by assumption and Vβ has cosocle τ .

Finally, (i) is a direct consequence of the first paragraph of the proof and of (ii).

We can now prove Theorem 1.1.3 in the semisimple case.
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Corollary 5.3. Assume that ρ is semisimple and max{9, 2f + 1}-generic. Then for any subquo-
tient π′ of π we have

dimF((X))D
∨
ξ (π′) = | JH(π′K1) ∩W (ρ)|.

Proof. We have dimF((X))D
∨
ξ (π′) = | JH(socGL2(OK) π

′)| by [BHH+b, Cor. 3.2.7(i)] (if ρ is split
reducible) and [BHH+a, Prop. 3.3.5.3(ii)] (if ρ is irreducible, noting that π′ = π by [BHH+a,
Thm. 3.3.5.6(i)] in that case). It suffices to show that JH(π′K1)∩W (ρ) = JH(socGL2(OK) π

′). If ρ
is irreducible this is clear, as π′K1 = πK1 = D0(ρ) by assumption (i). If ρ is split reducible, then
π′K1 = ⊕

i∈Σ′ D0(ρ)i by Proposition 5.1, keeping the notation there, and the result follows.

6 On the structure of subquotients of π in the non-semisimple
case

We prove many results on the structure of subquotients of π as I- and GL2(OK)-representations.

From now on π denotes an admissible smooth representation of GL2(K) over F satisfying
assumptions (i)–(v) of § 3, with underlying Galois representation ρ which is nonsplit reducible
and 0-generic.

The main results of this section include the description of the I1- and K1-invariants as well
as of the GL2(OK)-socle of any subquotient of π. These results all depend on determining the
I1-socle filtration of any subquotient π′ of π (equivalently, the associated graded module of π′∨

for the m-adic filtration), which is the subject of subsection 6.1.

We again suppose that π1 ⊆ π is a subrepresentation of π and let π2
def= π/π1. Let i0

def=
i0(π1) ∈ {−1, . . . , f}, cf. [BHH+b, Thm. 4.3.15]. To simplify notation, for λ ∈ P we let dλ

def=
max{i0 + 1− |Jλ|, 0}.

6.1 The graded module of subquotient representations of π

We describe grm(π′∨), where π′ is any subquotient of π (Corollary 6.1.7). We start with quotients
π2 = π/π1 of π:

Theorem 6.1.1. Assume that ρ is max{9, 2f + 3}-generic. We have an isomorphism of graded
gr(Λ)-modules with compatible H-actions,

grm(π∨
2 ) ∼=

⊕
λ∈P

χ−1
λ ⊗

ai01 (λ)
a(λ) (−dλ).

The grading shifts are such that all nonzero direct summands contribute in degree 0, but
vanish in degree 1. Note also from the definitions that ai01 (λ)/a(λ) = 0 if |{j ∈ Jcρ : λj(xj) ∈
{p − 1 − xj , xj}}| < dλ. (The converse is also true, by comparing equations [BHH+b, (79) and
(80)], or alternatively see the proof of [BHH+b, Cor. 4.4.7].)
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Remark 6.1.2. Theorem 6.1.1 implies that grm(π∨
2 ) is Cohen–Macaulay or zero as gr(Λ)-module.

(By [BHH+b, Prop. 4.4.3] and [BHH+b, Cor. 4.4.5], each nonzero ai01 (λ)/a(λ) is Cohen–Macaulay,
as the Cohen–Macaulay property is closed under direct summands, shifts in grading, and direct
sums.)

Remark 6.1.3. Theorem 6.1.1 shows that grm(π∨
2 ) is killed by the ideal J , i.e. is an R-module.

This is a priori not obvious. A similar comment applies to Corollary 6.1.7.

Remark 6.1.4. When i0 = f , Theorem 6.1.1 is trivially true, because π2 = 0 and af1(λ) = a(λ) for
all λ ∈P. (By [BHH+b, Lemma 4.1.4] we have f + 1− |Jλ| = |J1|+ |J2|+ |Jλ∗ |+ 1 > |J1|+ |J2|,
where λ 7→ λ∗ is the involution of P defined in [BHH+a, Def. 3.3.1.6].) When i0 = f − 1,
Theorem 6.1.1 has an easier proof (and holds when ρ is max{9, 2f + 1}-generic). By [BHH+b,
Thm. 4.4.8(ii)], π2 is irreducible in this case, so π2 is the principal series IndGL2(K)

B(K) (χ1 ⊗ χ2ω
−1)

by [HW22, Prop. 10.8], where ρ ∼=
( χ1 ∗

0 χ2

)
and hence χ1|IK

= ω

∑f−1
j=0 (rj+1)pj

f and χ2|IK
= 1.

(Here B(K) denotes the Borel subgroup of upper-triangular matrices of GL2(K).) We apply the
combinatorial Proposition 6.1.10 below (or argue directly) to deduce

⊕
λ∈P

χ−1
λ ⊗

ai01 (λ)
a(λ) (−dλ) ∼= χ−1

λ′ ⊗
R

(zj : 0 ≤ j ≤ f − 1) ⊕ χ−1
λ′′ ⊗

R

(yj : 0 ≤ j ≤ f − 1) , (41)

where λ′, λ′′ ∈ Pss are given by λ′
j(xj) = p − 3 − xj , λ′′

j (xj) = xj + 2 for all j. We calculate
χλ′ = (χ2|IK

)ω−1 ⊗ χ1|IK
and χλ′′ = χ1|IK

⊗ (χ2|IK
)ω−1. We conclude by [BHH+a, Prop.

3.3.3.4(ii)].

Lemma 6.1.5. Suppose that M is a graded gr(Λ)-module. Let N def= (ai01 (λ)/a(λ))(−dλ) for some
λ ∈P. Then the natural map

HOMgr(Λ)(N,M)0 → HOMgr(Λ)(N,M/ gr≤−3M)0

is an isomorphism.

Recall that HOM(N,M)0 denotes the graded morphisms N →M (of degree 0).

Proof. Step 1. Suppose for the moment that S is a graded ring and N any finitely presented
graded S-module. For any subset D ⊆ Z we say that N has relations in degrees D as S-module
if there exists a graded exact sequence of the form ⊕n

i=1 S(−di) → S⊕m → N → 0 with di ∈ D
for all i (in particular, N is generated by its degree 0 part).

We claim that if N has relations in degrees D as S/I-module, where I is an ideal of S that is
generated by finitely many homogeneous elements si whose degrees are contained in D, then the
same is true as S-module.

To see this, by assumption we can find a surjective graded homomorphism (S/I)⊕m → N → 0,
whose kernel is generated by finitely many homogeneous elements xj whose degrees are contained
in D for all j. Lift each xj to a homogeneous element x̃j of S⊕m of the same degree. By
composition we have a surjective morphism S⊕m → N → 0 of graded S-modules. Its kernel is
generated by all siek (where ek denotes the standard F-basis of S⊕m) and all x̃j , as desired.
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Step 2. We show that N = (ai01 (λ)/a(λ))(−dλ) has relations in degrees {−1,−2} as gr(Λ)-
module. Since N is a graded R/a(λ)-module and R/a(λ) is obtained from gr(Λ) by quotienting
by an ideal generated by homogeneous elements of degrees −1 and −2, by Step 1 it suffices to
show that N has relations in degrees {−1,−2} as R/a(λ)-module.

Note that j ∈ J1 ⊔J2 implies that tj = yjzj and let d def= dλ for short. By interchanging yj and
zj for some j and permuting {0, 1, . . . , f − 1}, we may assume that

N = (yi1 · · · yid : 0 ≤ i1 < · · · < id < e)(−d)

as graded R/a(λ)-module, for some 0 ≤ e ≤ f . This module is generated by the elements
XI

def= ∏
i∈I yi (of degree 0) for subsets I ⊆ E

def= {0, 1, . . . , e− 1} with |I| = d. We claim that the
relations are generated by

ziXI = 0 for all i ∈ I;
yiXI′\{i} = yjXI′\{j} for all i ̸= j in I ′ ⊆ E, |I ′| = d+ 1.

(42)

Note that R/a(λ) has as F-basis all monomials of the form ∏
j w

≥0
j with wj ∈ {yj , zj} \ {tj}. If∑

I fIXI = 0 with fI ∈ R/a(λ), then using relations (42), without loss of generality, fI does not
contain any zi (i ∈ I) and yi (i ∈ E \ I, i < min I). The map fI 7→ fIXI is injective for such
fI , and moreover for every monomial term in fIXI , I is the set of d largest elements i of E such
that yi divides it. This shows that fI = 0 for all I, proving that we have found all relations, and
indeed the relations are in degree −1.

Step 3. By Step 2 we have an exact sequence ⊕n
i=1 gr(Λ)(−di) → gr(Λ)⊕m → N → 0 with

di ∈ {−1,−2} for all i. We get a commutative diagram

0 // HOMgr(Λ)(N,M)0 //

��

HOMgr(Λ)(gr(Λ),M)⊕m
0

//

��

n⊕
i=1

HOMgr(Λ)(gr(Λ)(−di),M)0

��

0 // HOMgr(Λ)(N,M)0 // HOMgr(Λ)(gr(Λ),M)⊕m
0

//
n⊕
i=1

HOMgr(Λ)(gr(Λ)(−di),M)0

where M def= M/ gr≤−3M . As HOMgr(Λ)(gr(Λ)(−i),M)0 = Mi for all i ∈ Z, the middle and right
vertical arrows are isomorphisms, hence so is the left one.

Fix n ≥ 1, which we will specify later, and assume that ρ is (2n−1)-generic. Recall τ def= τ (n) ⊆
π from [BHH+b, § 2.4], so τ = ⊕

λ∈P τλ with τλ
def= τ

(n)
λ and socI(τλ) ∼= χλ. Let τ def= τ [mn] = π[mn]

(last statement of [BHH+b, Lemma 2.4.2)] and τλ
def= τλ[mn] for λ ∈P, so τ = ⊕

λ∈P τλ. Let Θ
denote the image of τ in π2. As τ is multiplicity free by [BHH+b, Cor. 2.4.3(i)] (for r = 1), we
have τ ∩ π1 = ⊕

λ∈P(τλ ∩ π1) and Θ = ⊕
λ∈P Θλ, where Θλ is the image of τλ in π2. For the

same reason,

F−iΘ∨ = miτ∨ ∩Θ∨ =
( ⊕
λ∈P

miτ∨
λ

)
∩Θ∨ =

⊕
λ∈P

(miτ∨
λ ∩Θ∨) =

⊕
λ∈P

Fλ,−iΘ∨
λ (43)
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for all i ∈ Z≥0, where F (resp. Fλ) denotes the filtration on Θ∨ (resp. Θ∨
λ) induced from the

m-adic filtration on τ∨ (resp. τ∨
λ). In particular, grF (Θ∨) = ⊕

λ∈P grFλ
(Θ∨

λ) and F−nΘ∨ = 0.

Suppose that n ≥ 1 and that ρ is (2n− 1)-generic. The following lemma determines the sub-
module structure of τ (n)

λ [mn] (and hence of π[mn] = τ (n)[mn] if r = 1 by [BHH+b, Cor. 2.4.3(ii)]),
since ⊕λ∈P τ

(n)
λ is multiplicity free by [BHH+b, Cor. 2.4.3(i)] (as ρ is (2n− 1)-generic).

Lemma 6.1.6. Suppose that ρ is (n − 1)-generic and keep the above notation. Suppose that
λ ∈P. For any χ, χ′ ∈ JH(τ (n)

λ [mn]) with Ext1
I/Z1

(χ, χ′) ̸= 0, upon perhaps interchanging χ and
χ′, there exist ℓj ∈ Z for 0 ≤ j ≤ f − 1, ε ∈ {±1}, and 0 ≤ j0 ≤ f − 1 such that

(i) χ = χλ
∏
j α

ℓj
j and χ′ = χαεj0;

(ii) ℓj ≥ 0 if tj = yj, ℓj ≤ 0 if tj = zj, and
∑
j |ℓj | < n;

(iii) |ℓj0 + ε| < |ℓj0 |;

(iv) Eχ′,χ (the unique nonsplit extension of χ by χ′, see § 1.4) is a subquotient of τ (n)
λ [mn].

In particular, either Eχ,χ′ or Eχ′,χ occurs as subquotient of τ (n)
λ [mn].

Proof. By construction of τ (n)
λ (cf. the proofs of [BHH+b, Lemma 2.4.1] and [HW22, Prop. 9.19]),

as χ ∈ τ
(n)
λ [mn] we can write χ = χλ

∏
j α

ℓj
j for some ℓj ∈ Z satisfying condition (ii). As

Ext1
I/Z1

(χ, χ′) ̸= 0 we have χ′ = χαεj0 for some ε ∈ {±1} and some 0 ≤ j0 ≤ f − 1. By the
genericity condition we deduce that condition (ii) holds for (ℓ0, . . . , ℓj0 + ε, . . . , ℓf−1). (As ρ
is (n − 1)-generic, |ℓj | < n ≤ p−1

2 , and εpj0 + ∑f−1
j=0 ℓjp

j ≡
∑f−1
j=0 ℓ

′
jp
j (mod pf − 1) for integers

|ℓ′j | <
p−1

2 implies (ℓ0, . . . , ℓj0 +ε, . . . , ℓf−1) = (ℓ′0, . . . , ℓ′f−1).) Interchanging χ and χ′, if necessary,
we may assume that (iii) holds. Then (iv) holds, as the nonsplit extension of αℓj0

j0
by αℓj0 +ε

j0
occurs

in the j0-th tensor factor defining τ (n)
λ .

Proof of Theorem 6.1.1. By Remark 6.1.4 we can assume throughout the proof that i0 ≤ f − 2.
Let N ′

2 denote the right-hand side of the theorem, i.e. N ′
2

def= ⊕
λ∈P N ′

2,λ with

N ′
2,λ

def= χ−1
λ ⊗

ai01 (λ)
a(λ) (−dλ).

Step 1. We show that grm(π∨
2 )/m3 ↠ N ′

2/m
3 as graded gr(Λ)-modules with compatible

H-actions.
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Consider the commutative diagram

0 //
⊕
λ∈P

χ−1
λ ⊗

ai01 (λ)
a(λ)

//

∼=

��

⊕
λ∈P

χ−1
λ ⊗

R

a(λ)
//

∼=

��

⊕
λ∈P

χ−1
λ ⊗

R

ai01 (λ)
//

∼=

��

0

0 // grF ′(π∨
2 ) //

��

gr(π∨) //

����

gr(π∨
1 ) //

����

0

0 // grF (Θ∨) // gr(τ∨) // gr((τ ∩ π1)∨) // 0

0 //
⊕
λ∈P

grFλ
(Θ∨

λ) //
⊕
λ∈P

gr(τ∨
λ) //

⊕
λ∈P

gr((τλ ∩ π1)∨) // 0

of graded gr(Λ)-modules with compatible H-actions, where F ′ denotes the filtration on π∨
2 induced

by the m-adic filtration on π∨ and we recall that F denotes the filtration on Θ∨ induced by the
m-adic filtration on τ∨. The top vertical maps are isomorphisms by [BHH+b, Cor. 4.4.5] (see also
the proof of [BHH+b, Prop. 4.4.3]). From τ = π[mn] we get (τ ∩ π1)[mn] = π1[mn]. Hence the
middle and right vertical maps are isomorphisms in degrees > −n, and so the same is true of the
left vertical map. The middle vertical composition ⊕λ∈P χ−1

λ ⊗ (ai01 (λ)/a(λ))→⊕
λ∈P gr(τ∨

λ) is
an isomorphism in degree 0, respecting the direct sum decomposition (by H-equivariance). As
its domain is generated by its degree 0 part as gr(Λ)-module, it follows that the middle vertical
composition respects the direct sum decomposition, and hence the same is true for the left and
right vertical maps. We deduce that for each λ ∈P the morphism

N ′
2,λ(dλ) = χ−1

λ ⊗
ai01 (λ)
a(λ) → grFλ

(Θ∨
λ) (44)

of graded gr(Λ)-modules is an isomorphism in degrees > −n.

We now show that

Fλ,−dλ−i(Θ∨
λ) = miΘ∨

λ for any λ ∈P, i ≥ 0. (45)

To see this, note that if dλ = 0, then ai01 (λ) = R, hence the λ-part of the above commutative
diagram shows that the natural map grFλ

(Θ∨
λ) ↪→ gr(τ∨

λ) is an isomorphism, which implies that
the natural map Θ∨

λ ↪→ τ∨
λ of filtered Λ-modules is an isomorphism, as desired. Suppose now that

dλ > 0. We first obtain from the previous diagram the following diagram:

0 // χ−1
λ ⊗

ai01 (λ) + mn

a(λ) + mn
//

∼=
��

χ−1
λ ⊗

R

a(λ) + mn
//

∼=
��

χ−1
λ ⊗

R

ai01 (λ) + mn
//

∼=
��

0

0 // grFλ
(Θ∨

λ) // gr(τ∨
λ) // gr((τλ ∩ π1)∨) // 0
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By the definition of a(λ) the middle isomorphism shows that

JH(τ∨
λ) =

{
χ−1
λ

∏
j

α
ℓj
j : ℓ ∈ L

}
,

where
L

def=
{
ℓ = (ℓj)f−1

j=0 : ℓj ≤ 0 if tj = yj , ℓj ≥ 0 if tj = zj ,
∑
j

|ℓj | < n

}
,

as well as
JH(miτ∨

λ) =
{
χ−1
λ

∏
j

α
ℓj
j : ℓ ∈ L, i ≤

∑
j

|ℓj |
}
.

By the definition of ai01 (λ) the left isomorphism shows that

JH(Θ∨
λ) =

{
χ−1
λ

∏
j

α
ℓj
j : ℓ ∈ L, |{j ∈ J1 : ℓj > 0}|+ |{j ∈ J2 : ℓj < 0}| ≥ dλ

}
,

where we recall that J1 = {j ∈ Jcρ : λj(xj) = p − 1 − xj}, J2 = {j ∈ Jcρ : λj(xj) = xj}. In
particular, Θ∨

λ ⊆ mdλτ∨
λ and hence miΘ∨

λ ⊆ Θ∨
λ ∩ mdλ+iτ∨

λ for all i ≥ 0. Conversely, to show
Θ∨
λ ∩mdλ+iτ∨

λ ⊆ miΘ∨
λ , by multiplicity freeness it suffices to show that JH(Θ∨

λ) ∩ JH(mdλ+iτ∨
λ) ⊆

JH(miΘ∨
λ). Take χ def= χ−1

λ

∏
j α

ℓj
j with ℓ ∈ L, |{j ∈ J1 : ℓj > 0}| + |{j ∈ J2 : ℓj < 0}| ≥ dλ, and

dλ + i ≤
∑
j |ℓj |. With the help of Lemma 6.1.6 it is easy to show that there exist characters

χi′ ∈ JH(Θ∨
λ) (0 ≤ i′ ≤ i) with χ0

def= χ and such that the unique nonsplit extension Eχi′−1,χi′ (of
χi′ by χi′−1) occurs as subquotient of Θ∨

λ for all 0 < i′ ≤ i. (If i > 0 then we find χ1 as follows: if
there is j /∈ J1⊔J2 such that ℓj ̸= 0, choose such a j; otherwise, choose j such that |ℓj | > 0 and is
as small as possible. Then χ1

def= χ0α
−sgn(ℓj)
j is still an element of JH(Θ∨

λ), and we have decreased∑
j |ℓj | by 1. Proceed inductively to find all χi′ .) We deduce that χ occurs in radi Θ∨

λ = miΘ∨
λ ,

proving (45).

We now let n def= i0 + 4. As dλ ≤ i0 + 1 < n− 2 we obtain from (44) and (45) an isomorphism
of graded gr(Λ)-modules

N ′
2,λ/m

3 = N ′
2,λ/ gr≤−3N

′
2,λ
∼= grFλ

(Θ∨
λ(−dλ))/ grFλ,≤−3(Θ∨

λ(−dλ)) = gr(Θ∨
λ)/m3.

Hence
gr(π∨

2 )/m3 ↠ gr(Θ∨)/m3 ∼=
⊕
λ∈P

gr(Θ∨
λ)/m3 ∼= N ′

2/m
3, (46)

as desired.

Step 2. We show that grm(π∨
2 )/m3 ∼= N ′

2/m
3 as graded gr(Λ)-modules with compatible H-

actions.

From the cohomology long exact sequence we get

0→ coker
(

TorΛ
1 (Λ/m3, π∨)→ TorΛ

1 (Λ/m3, π∨
1 )
)
→ π∨

2 /m
3 → π∨/m3 → π∨

1 /m
3 → 0. (47)

We let
C

def= coker
(

TorΛ
1 (Λ/m3, π∨)→ TorΛ

1 (Λ/m3, π∨
1 )
)
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and give it the induced filtration as quotient of TorΛ
1 (Λ/m3, π∨

1 ).

First we show that gr(C) is a subquotient of

C ′ def= coker
(

Torgr(Λ)
1 (gr(Λ)/m3, grm(π∨))→ Torgr(Λ)

1 (gr(Λ)/m3, grm(π∨
1 ))
)
. (48)

Notice that gr(C) is a quotient of

coker
(

gr(TorΛ
1 (Λ/m3, π∨))→ gr(TorΛ

1 (Λ/m3, π∨
1 ))
)
,

because if we have a filtered exact sequence X → Y → C → 0 with C carrying the induced
filtration, then coker(gr(X) → gr(Y )) surjects onto gr(C) by [LvO96, Thm. I.4.2.4(1)]. Then,
as in the proof of [BHH+b, Prop. 2.4.9], we consider the morphism of spectral sequences that
converges to this morphism:

Eri +3

��

TorΛ
i (Λ/m3, π∨)

��
E′r
i

+3 TorΛ
i (Λ/m3, π∨

1 ).

(Referring to that proof, we have E0
i = gr(Λ/m3 ⊗Λ Mi) ∼= gr(Λ/m3) ⊗gr(Λ) gr(Mi) by [LvO96,

Lemma I.6.14], so E1
i = Torgr(Λ)

i (gr(Λ)/m3, grm(π∨)).) Assumption (v) says that dimFE
∞
1 =

dimFE
1
1 . It easily follows that coker(Er+1

1 → E′r+1
1 ) is a subquotient of coker(Er1 → E′r

1 ) for any
r ≥ 1 (recall that E′r+1

1 is a subquotient of E′r
1 , while Er+1

1 = Er1 by the preceding sentence).
This implies the claim by taking r sufficiently large.

From the sequence (47) we see that

dimF(C) = dimF(π∨
2 /m

3)− dimF(π∨/m3) + dimF(π∨
1 /m

3)
= dimF(grm(π∨

2 )/m3)− dimF(gr(π∨)/m3) + dimF(gr(π∨
1 )/m3).

(49)

By Step 1 we know that

dimF(grm(π∨
2 )/m3) ≥ dimF(N ′

2/m
3) =

∑
λ∈P

dimF(N ′
2,λ/m

3)

=
∑
λ∈P

dimF(N2,λ/m
3) = dimF(grF ′(π∨

2 )/m3),
(50)

where N2,λ
def= χ−1

λ ⊗ (ai01 (λ)/a(λ)) = N ′
2,λ(dλ) and we used [BHH+b, Cor. 4.4.5] for the last

equality. Combining equations (49), (50) together with the fact that gr(C) is a subquotient of C ′

(cf. (48)) we obtain

dimF(C ′) ≥ dimF(C) ≥ dimF(grF ′(π∨
2 )/m3)− dimF(gr(π∨)/m3) + dimF(gr(π∨

1 )/m3). (51)

The exact sequence

0→ C ′ → grF ′(π∨
2 )/m3 → gr(π∨)/m3 → gr(π∨

1 )/m3 → 0

shows that equality holds in (51), and hence in (50). As equality holds in (50), the surjection
grm(π∨

2 )/m3 ↠ N ′
2/m

3 in (46) has to be an isomorphism.
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Step 3. By Lemma 6.1.5 we get a graded morphism (of degree 0) N ′
2 → grm(π∨

2 ), which
has to be surjective by the graded Nakayama lemma. Recall that N ′

2 is Cohen–Macaulay by
Remark 6.1.2. By Step 4 of the proof of [BHH+b, Prop. 4.4.3] we have Z(N ′

2) = Z(N i0
2 ) =

Z(grm(π∨
2 )). Using the same argument as in the last paragraph of the proof of [BHH+b,

Prop. 4.4.3] (i.e. N ′
2 is Cohen–Macaulay and the two modules have the same cycle), we deduce

that the morphism N ′
2 ↠ grm(π∨

2 ) is an isomorphism.

Corollary 6.1.7. Assume that ρ is (4f + 1)-generic. Suppose π′ = π′
1/π1 is any nonzero subquo-

tient, where π1 ⊊ π′
1 ⊆ π. Then we have an isomorphism of graded gr(Λ)-modules with compatible

H-actions,

grm(π′∨) ∼=
⊕
λ∈P

χ−1
λ ⊗

ai01 (λ)
a
i′0
1 (λ)

(−dλ), (52)

where −1 ≤ i0
def= i0(π1) < i′0

def= i0(π′
1) ≤ f and dλ

def= max{i0 + 1− |Jλ|, 0}.

Proof. We first assume that f ≥ 2. Then 4f + 1 ≥ max{9, 2f + 3}, so we may assume that
i′0 ≤ f − 1 by Theorem 6.1.1. Let N ′ denote the right-hand side of (52). Let π2

def= π/π1 and
π′

2
def= π/π′

1, so
0→ π′ → π2 → π′

2 → 0.

Let d′
λ

def= max{i′0 + 1− |Jλ|, 0}.

Step 1. We show that N ′/mn ∼= gr(π′∨)/mn, where n def= max{i′0 − i0, 2}+ 1(≤ f + 1).

Let n′ def= n+ i′0 + 1(≤ 2f + 1) and let τ def= τ (n′)[mn′ ]. Note that by assumption ρ is (2n′ − 1)-
generic. Define Θ = ⊕

λ∈P Θλ (resp. Θ′ = ⊕
λ∈P Θ′

λ), as the image of τ in π2 (resp. π′
2). Then

Θ′∨
λ ⊆ Θ∨

λ for all λ ∈P. By (45) applied to Θ∨
λ and Θ′∨

λ we have

miΘ∨
λ ∩Θ′∨

λ = mi+dλτ∨
λ ∩Θ′∨

λ = mi+dλ−d′
λΘ′∨

λ (53)

for all i ∈ Z.

From (45) and (44) we have

gr(Θ∨
λ)(dλ) ∼= grFλ

(Θ∨
λ) ∼=

(
χ−1
λ ⊗

ai01 (λ)
a(λ)

)
≥−n′+1

,

using the notation (·)≥−n′+1 as in [BHH+b, Lemma 2.2.7], hence

gr(Θ∨
λ) ∼=

(
χ−1
λ ⊗

ai01 (λ)
a(λ) (−dλ)

)
≥−n′+dλ+1

(54)

and likewise for gr(Θ′∨
λ ). As i0 +1 ≥ dλ, by Theorem 6.1.1 the natural surjection gr(π∨

2 ) ↠ gr(Θ∨)
is an isomorphism in degrees ≥ −n′ + i0 + 2, and likewise for gr(π′∨

2 ) in degrees ≥ −n′ + i′0 + 2.
As −n + 1 = −n′ + i′0 + 2 > −n′ + i0 + 2, we obtain that the natural surjections π∨

2 ↠ Θ∨ and
π′∨

2 ↠ Θ′∨ induce isomorphisms

π∨
2 /m

iπ∨
2

∼−→ Θ∨/miΘ∨, π′∨
2 /m

iπ′∨
2

∼−→ Θ′∨/miΘ′∨ (55)
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for all 0 ≤ i ≤ n.

Suppose 0 ≤ i ≤ n. From the exact sequence π′∨
2 /m

iπ′∨
2 → π∨

2 /m
iπ∨

2 → π′∨/miπ′∨ → 0
and (55), we obtain that

π′∨/miπ′∨ ∼=
⊕
λ∈P

Θ∨
λ/(Θ′∨

λ + miΘ∨
λ).

By the line above together with (55) we see that the kernel of π∨
2 /m

iπ∨
2 ↠ π′∨/miπ′∨ is identified

with ⊕
λ∈P

(Θ′∨
λ + miΘ∨

λ)/miΘ∨
λ
∼=
⊕
λ∈P

Θ′∨
λ /m

i+dλ−d′
λΘ′∨

λ ,

where the isomorphism follows from (53), and hence we have an exact sequence

0→
⊕
λ∈P

Θ′∨
λ /m

i+dλ−d′
λΘ′∨

λ →
⊕
λ∈P

Θ∨
λ/m

iΘ∨
λ → π′∨/miπ′∨ → 0.

Therefore the filtration on the left term induced by the m-adic filtration on the middle term is
the m-adic filtration up to a shift by d′

λ − dλ. Taking graded pieces for i = n, we obtain

0→
⊕
λ∈P

(gr(Θ′∨
λ )/mn+dλ−d′

λ)(d′
λ − dλ)→

⊕
λ∈P

gr(Θ∨
λ)/mn → gr(π′∨)/mn → 0

By (54) and its analogue for gr(Θ′∨
λ ) we obtain

0→

⊕
λ∈P

χ−1
λ ⊗

a
i′0
1 (λ)
a(λ) (−dλ)


≥−n+1

→

⊕
λ∈P

χ−1
λ ⊗

ai01 (λ)
a(λ) (−dλ)


≥−n+1

→ gr(π′∨)/mn → 0.

Therefore, gr(π′∨)/mn ∼= (N ′)≥−n+1 ∼= N ′/mn (the second isomorphism holds since N ′ is gen-
erated by its elements of degree 0, which follows from the definition of the ideal ai01 (λ)), as we
wanted to show.

Step 2. We lift the isomorphism N ′/mn ∼−→ gr(π′∨)/mn = (gr(π′∨))≥−n+1 to a homomor-
phism N ′ → gr(π′∨). Consider the short exact sequence of graded gr(Λ)-modules,

0→ a
i′0
1 (λ)
a(λ) (−dλ)→ ai01 (λ)

a(λ) (−dλ)→ ai01 (λ)
a
i′0
1 (λ)

(−dλ)→ 0.

Going back to the proof of Lemma 6.1.5, we know that the middle term has relations generated
in degrees −1, −2, and the left term has generators in degree dλ − d′

λ. As 0 ≤ d′
λ − dλ ≤ i′0 − i0,

the right term has relations in degree −1, −2, . . . , −max{i′0 − i0, 2} = −n+ 1. (Note that when
d′
λ − dλ = 0 then d′

λ = dλ = 0 by definition since i0 < i′0, and hence ai01 (λ) = a
i′0
1 (λ) = R.) By

Step 3 of the proof of Lemma 6.1.5, we deduce the desired lifting N ′ → gr(π′∨).

Step 3. Using Steps 1 and 2, we conclude that the homomorphism N ′ → gr(π′∨) is an
isomorphism exactly as in Step 3 of the proof of Theorem 6.1.1. (Note that N ′ is Cohen–Macaulay
by [BHH+b, Cor. 4.4.6]. Also note that Z(gr(π′∨)) = Z(gr(π∨

2 )) − Z(gr(π′∨
2 )) = Z(N i0

2 ) −
Z(N i′0

2 ) = Z(N ′).)
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Finally we assume that f = 1, and we just assume that ρ is 0-generic. We prove that π has
length 2 and fits into a short exact sequence 0→ π0 → π → π1 → 0, where π0, π1 are irreducible
principal series as in [BHH+a, Cor. 3.3.5.8], namely they are dual to each other in the sense that

E2
Λ(π∨

i ) ∼= π∨
1−i ⊗ (det(ρ)ω−1). (56)

Indeed, by assumption (i) we know that W (ρ) = {σ0} is a singleton and it is easy to see that
π0

def= ⟨GL2(K) · σ0⟩ is an irreducible principal series (as in the proof of [BHH+a, Cor. 3.3.5.8])
and that π0 = socGL2(K)(π). Using assumption (iii) and (56), we deduce that π has a quotient
isomorphic to π1. We need to prove that V = 0, where V def= ker(π ↠ π1)/π0. By [BHH+a,
Thm. 3.3.2.1] (with r = 1) there is a surjection of gr(Λ)-modules with compatible H-action

N
def=
⊕
λ∈P

χ−1
λ ⊗R/a(λ) ↠ grm(π∨) (57)

and m(grm(π∨)) ≤ 4 by [BHH+a, Cor. 3.3.2.5], where m(−) denotes the total multiplicity of
R-modules. On the other hand, [BHH+a, Prop. 3.3.3.4(ii)] implies that grm(π∨

i ) is an R-module
and m(grm(π∨

i )) = 2 for i = 0, 1, so we deduce m(V ) = 0 by the additivity of m(−), equiv-
alently dimF V < +∞. However, this forces Ext1

GL2(K)(V, π0) = 0 by [Eme10, Lemma 4.3.9,
Prop. 4.3.32(1)], hence V = 0 (as π0 = socGL2(K)(π)). In all, we deduce that π has length 2
and that (57) is an isomorphism (as the graded module N in (57) is Cohen–Macaulay) which
determines grm(π∨). Moreover, using [BHH+a, Prop. 3.3.3.4(ii)] again we check that grm(π′∨) is
as in (52) for any proper subquotient π′ of π.

Corollary 6.1.8. Assume ρ is max{9, 2n+ 2f + 1}-generic for some n ≥ 1. If π′ = π′
1/π1 is any

subquotient, where π1 ⊊ π′
1 ⊆ π, then π′[mn] is multiplicity free as I-representation.

Proof. Since π′ injects into π2 = π/π1 and hence π′[mn] ⊆ π2[mn] we are reduced to the case
where π′ = π2. We need to show that gr(π∨

2 )/mn is multiplicity free. By Theorem 6.1.1, and as
ai01 (λ)/a(λ) is generated by elements of degree −dλ for each λ ∈ P, it is equivalent to showing
that ⊕

λ∈P

χ−1
λ ⊗

(
ai01 (λ)
a(λ) (−dλ)

)
>−n

is multiplicity free. Hence it is sufficient that

⊕
λ∈P

χ−1
λ ⊗

(
R

a(λ)

)
>−(n+dλ)

is multiplicity free. This follows from [BHH+b, Lemma 2.3.7], as n + dλ ≤ n + i0 + 1 and as
N/I(n+i0+1)N surjects onto N/mn+i0+1N= N>−(n+i0+1) (as hj kills N).

Remark 6.1.9. Just like in Remark 6.1.4 there is an easier proof when i0(π1) ∈ {f −1, f} with ρ
being max{9, 2n− 1, 2f + 1}-generic. In the first case, the multiplicity freeness follows from (41),
by applying [BHH+b, Lemma 2.3.6(ii)] with m = 2n− 2 and λ = λ′′ ∈Pss (so tj = yj for all j);
in the second case it is trivial.
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We conclude this section with a further result regarding the structure of π. Let πs be an
admissible smooth representation satisfying assumptions (i)–(v) with respect to ρss. The most
optimistic expectation, at least for globally defined π = π(ρ) and πs = π(ρss) as in § 7.1 (cf. the
comments after [BP12, Thm. 19.10]), is that πss ∼= πs and moreover that π and πs both have
length f + 1. (In fact, the first expectation implies the second by Remark 6.2.3 below.) The
following proposition provides new evidence for this expectation. For any λ′ ∈Pss we let ass(λ′)
denote the ideal of R generated by all tssj = tssj (λ′) ∈ {yj , zj , yjzj}, which are defined as in (13)
but for the Galois representation ρss. Recall ass(λ′) ⊇ ker(R→ R), so we often think of it as ideal
of R.

Proposition 6.1.10. For any −1 ≤ i0 ≤ f − 1 we have an isomorphism

⊕
λ∈P

χ−1
λ ⊗

ai01 (λ)
ai0+1

1 (λ)
(−dλ) ∼=

⊕
λ′∈Pss, ℓ(λ′)=i0+1

χ−1
λ′ ⊗

R

ass(λ′)

of graded gr(Λ)-modules with compatible H-actions.

Remark 6.1.11. For any −1 ≤ i0 ≤ f − 1 let π′ def= π′
1/π1, where i0(π1) = i0 and i0(π′

1) = i0 + 1
(if such π1, π′

1 exist) and let π′
s denote the subquotient of πs corresponding to the subset P ′ def=

{λ′ ∈Pss, ℓ(λ′) = i0 + 1} in [BHH+b, Cor. 3.2.7(ii)] (if it exists). If π′ and π′
s exist (for example,

if π and πs have length f + 1), then by Corollary 6.1.7 and [BHH+b, Cor. 3.2.7(iii)] (provided
that ρ is max{9, 4f + 1}-generic), Proposition 6.1.10 asserts that

grm(π′∨) ∼= grm(π′∨
s ) (58)

as graded gr(Λ)-modules with compatible H-actions. If i0 +1 ∈ {0, f}, we even know that π′ ∼= π′
s

are isomorphic principal series (compare [HW22, Prop. 10.8] with [BHH+a, Cor. 3.3.5.8]). More
interestingly, if f = 2 and i0 = 0 we know that π′ and π′

s exist (and are supersingular) by [HW22,
Thm. 1.7], [BHH+a, Cor. 3.3.5.8], and hence (58) holds (provided ρ is max{9, 4f + 1}-generic).

Proof. Fix λ ∈P. As usual, let J1
def= {j ∈ Jcρ : λj(xj) = p− 1− xj} and J2

def= {j ∈ Jcρ : λj(xj) =
xj}, and let J def= J1 ⊔ J2. We show that

χ−1
λ ⊗

ai01 (λ)
ai0+1

1 (λ)
(−dλ) ∼=

⊕
J ′⊆J, |Jλ|+|J ′|=i0+1

χ−1
λ′(J ′) ⊗

R

ass(λ′(J ′)) , (59)

where λ′(J ′) ∈Pss is defined by

λ′(J ′)j(xj)
def=


p− 3− xj if j ∈ J ′

1
def= J ′ ∩ J1,

xj + 2 if j ∈ J ′
2

def= J ′ ∩ J2,
λj(xj) otherwise.

It is easy to check that this implies the proposition, by taking a direct sum over all λ ∈P.

If i0 + 1 − |Jλ| < 0, then (59) trivially holds: by definition, ai01 (λ) = ai0+1
1 (λ) = R, so both

sides are zero.
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Suppose that i0+1−|Jλ| ≥ 0, so dλ = i0+1−|Jλ|. Note that χ−1
λ′(J ′) = χ−1

λ

∏
j∈J ′

1
αj
∏
j∈J ′

2
α−1
j ,

and ∏j∈J ′
1
αj
∏
j∈J ′

2
α−1
j gives the action of H on the degree dλ polynomial

pJ ′
def=
∏
j∈J ′

1

yj
∏
j∈J ′

2

zj ∈ R ∼= F[yj , zj : 0 ≤ j ≤ f − 1].

Therefore, by twisting both sides by χλ(dλ), it suffices to show that

ai01 (λ)
ai0+1

1 (λ)
∼=

⊕
J ′⊆J, |J ′|=dλ

pJ ′ ⊗ R

ass(λ′(J ′)) .

We have

ai01 (λ)
ai0+1

1 (λ)
∼=

I(J1, J2, dλ) + a(λ)
I(J1, J2, dλ + 1) + a(λ)

∼=
I(J1, J2, dλ)

I(J1, J2, dλ + 1) + I(J1, J2, dλ) ∩ a(λ)

(recall the ideals I(J1, J2, dλ) from [BHH+b, Def. 4.2.4]). Note that I(J1, J2, dλ) = (pJ ′ : J ′ ⊆
J, |J ′| = dλ) and a(λ) = (tj : 0 ≤ j ≤ f − 1) with tj = yjzj for all j ∈ J (see equation
(13)). By [HH11, Prop. 1.2.1] the ideal I(J1, J2, dλ) ∩ a(λ) is generated by the monomials pJ ′zj
(j ∈ J ′

1), pJ ′yj (j ∈ J ′
2), and pJ ′tj (j /∈ J ′), where J ′ ⊆ J runs through all subsets with

|J ′| = dλ. Hence the ideal I(J1, J2, dλ + 1) + I(J1, J2, dλ) ∩ a(λ) is generated by the monomials
pJ ′zj (j ∈ J ′

1 ⊔ (J2 \ J ′
2)), pJ ′yj (j ∈ J ′

2 ⊔ (J1 \ J ′
1)), and pJ ′tj (j /∈ J), where again J ′ ⊆ J

runs through all subsets with |J ′| = dλ. Since, from equation (13) and the definition of λ′(J ′),
ass(λ′(J ′)) = a(λ) + (zj : j ∈ J ′

1 ⊔ (J2 \ J ′
2)) + (yj : j ∈ J ′

2 ⊔ (J1 \ J ′
1)) we deduce that

I(J1, J2, dλ + 1) + I(J1, J2, dλ) ∩ a(λ) =
∑

J ′⊆J, |J ′|=dλ

pJ ′ · ass(λ′(J ′)).

In particular,

I(J1, J2, dλ)
I(J1, J2, dλ + 1) + I(J1, J2, dλ) ∩ a(λ)

∼=
∑
J ′⊆J, |J ′|=dλ

pJ ′R∑
J ′⊆J, |J ′|=dλ

pJ ′ass(λ′(J ′)) ,

so for each index J ′, multiplication induces a homomorphism

pJ ′ ⊗ R

ass(λ′(J ′)) →
I(J1, J2, dλ)

I(J1, J2, dλ + 1) + I(J1, J2, dλ) ∩ a(λ)

and passing to the direct sum induces a surjective homomorphism
⊕

J ′⊆J, |J ′|=dλ

pJ ′ ⊗ R

ass(λ′(J ′)) ↠
I(J1, J2, dλ)

I(J1, J2, dλ + 1) + I(J1, J2, dλ) ∩ a(λ) ,

which we need to show is an isomorphism. Suppose that we have an element f = (pJ ′ ⊗ [fJ ′ ])J ′

in the kernel, or equivalently that ∑J ′ pJ ′fJ ′ = ∑
J ′ pJ ′gJ ′ in R for some gJ ′ ∈ ass(λ′(J ′)). By

replacing fJ ′ by fJ ′ − gJ ′ we may assume that gJ ′ = 0 for all J ′, i.e. that ∑J ′ pJ ′fJ ′ = 0. Fix J ′

and let b(J ′) def= (zj : j ∈ J2 \J ′
2) + (yj : j ∈ J1 \J ′

1) ⊆ ass(λ′(J ′)). From pJ ′fJ ′ = −∑J ′′ ̸=J ′ pJ ′′fJ ′′

we deduce that pJ ′fJ ′ ∈ b(J ′). As multiplication by pJ ′ is injective on R/b(J ′) (a polynomial
ring), it follows that fJ ′ ∈ b(J ′) ⊆ ass(λ′(J ′)), so f = 0, as desired.
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6.2 I1-invariants and GL2(OK)-socle of subquotient representations of π

We describe the I1-invariants of subquotients of π. We deduce that π is multiplicity free and give
a description of the GL2(OK)-socles of subquotients of π.

We start with the I1-invariants of quotients π2 = π/π1 of π:

Proposition 6.2.1. Assume that ρ is max{9, 2f + 3}-generic. Let i0 = i0(π1) with −1 ≤ i0 ≤ f
be as in [BHH+b, Thm. 4.3.15]. Then πI1

2 is multiplicity free and

JH(πI1
2 ) = {χλ : λ ∈P, |Jλ| > i0 or λ ∈Pss \P, |Jλ| = i0 + 1}.

Proof. As H-representations πI1
2 is dual to the degree 0 part of grm(π∨

2 ), namely, F⊗gr(Λ) grm(π∨
2 ).

Comparing Theorem 6.1.1 and [BHH+b, Cor. 4.4.5], we see that there is an isomorphism F⊗gr(Λ)
grm(π∨

2 ) ∼= F⊗gr(Λ) grF (π∨
2 ) compatible with H-actions (but not gradings), where F denotes the

filtration on π∨
2 induced by the m-adic filtration on π∨. The result then follows from [BHH+b,

Cor. 4.4.7].

We can generalize to subquotients:

Corollary 6.2.2. Assume that ρ is max{9, 2f + 3}-generic. Suppose π′ = π′
1/π1 is any nonzero

subquotient, where π1 ⊊ π′
1 ⊆ π. Let i0

def= i0(π1), i′0
def= i0(π′

1), so −1 ≤ i0 < i′0 ≤ f . Then π′I1 is
multiplicity free and

JH(π′I1) = {χλ : λ ∈P, i0 < |Jλ| ≤ i′0 or λ ∈Pss \P, |Jλ| = i0 + 1}.

Proof. Since we have injections (π′
1)I1/πI1

1 ↪→ π′I1 ↪→ (π/π1)I1 , we deduce from [BHH+b,
Cor. 4.3.16] and Proposition 6.2.1 that

{χλ : λ ∈P, i0 < |Jλ| ≤ i′0} ⊆ JH(π′I1)
⊆ {χλ : λ ∈P, i0 < |Jλ| or λ ∈Pss \P, |Jλ| = i0 + 1}.

In particular, π′I1 is multiplicity free. On the other hand, note that π′I1 is the kernel of the natural
map (π/π1)I1 → (π/π′

1)I1 . For any λ ∈Pss \P with |Jλ| = i0 + 1, χλ ∈ JH((π/π1)I1) and maps
to zero in (π/π′

1)I1 by Proposition 6.2.1, so χλ ∈ JH(π′I1) for such λ.

To finish the proof it remains to show that χλ for λ ∈ P, |Jλ| > i′0 does not occur in π′I1 .
By [BHH+b, Cor. 4.3.16], χλ does not occur in π′I1

1 and πI1
1 , and by Proposition 6.2.1 it occurs

in (π/π1)I1 with multiplicity 1. Hence the χλ-eigenspace of (π/π1)I1 is the image of the χλ-
eigenspace of πI1 and so maps to zero in H1(I1/Z1, π1). The following diagram then shows that
χλ cannot occur in π′I1 = (π′

1/π1)I1 , since it does not occur in π′I1
1 :

0 // πI1
1

// π′I1
1

//
� _

��

(π′
1/π1)I1 //
� _

��

H1(I1/Z1, π1)

0 // πI1
1

// πI1 // (π/π1)I1 // H1(I1/Z1, π1).
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Remark 6.2.3. Let πs be an admissible smooth representation satisfying assumptions (i)–(v) with
respect to ρss. We remark that if πss ∼= πs (as one might hope is true in analogy with GL2(Qp)) or
even just πss ∼= πss

s , then π and πs have length exactly f + 1 provided ρ is max{9, 2f + 3}-generic.
(Sketch proof: we calculate (πss)I1 using Corollary 6.2.2 and (πss

s )I1 using [BHH+b, Cor. 3.2.5]. If
Σ ⊆ {0, 1, . . . , f} denotes the subset of elements of the form i0(π1) + 1 for some subrepresentation
π1 ⊊ π, then we deduce that Pss = P ∪ {λ ∈ Pss : |Jλ| ∈ Σ}. As ρ is non-semisimple,
Jρ ̸= {0, 1, . . . , f − 1} and one easily shows that for any 1 ≤ k ≤ f there exists λ ∈Pss \P with
|Jλ| = k. We deduce that Σ = {0, 1, . . . , f}, i.e. π has length f + 1.)

Corollary 6.2.4. Assume that ρ is max{9, 2f + 3}-generic. Suppose π′ = π′
1/π1 is any nonzero

subquotient, where π1 ⊊ π′
1 ⊆ π. Let i0

def= i0(π1), i′0
def= i0(π′

1), so −1 ≤ i0 < i′0 ≤ f . Then

socGL2(OK)(π′) ∼=
⊕

σ∈W (ρ),i0<ℓ(σ)≤i′0

σ ⊕
⊕

σ∈W (ρss)\W (ρ),ℓ(σ)=i0+1
σ. (60)

In particular, socGL2(OK)(π′) is multiplicity free.

For the proof, recall from [BHH+b, § 4.3.4] that D0(ρ) admits an increasing filtration 0 =
D0(ρ)≤−1 ⊊ D0(ρ)≤0 ⊊ · · · ⊊ D0(ρ)≤i ⊊ · · · ⊊ D0(ρ)≤f = D0(ρ), where D0(ρ)≤i is the largest
Γ-subrepresentation of D0(ρ) not containing any τ ∈W (ρss) with ℓ(τ) > i as subquotient. We set
D0(ρ)i

def= D0(ρ)≤i/D0(ρ)≤i−1, D0,σ(ρ)≤i
def= D0,σ(ρ) ∩D0(ρ)≤i and D0,τ (ρ)i

def= D0(ρ)i ∩D0,τ (ρss)
for σ ∈W (ρ) and τ ∈W (ρss) (see loc. cit).

Proof. By Corollary 6.2.2, socGL2(OK)(π′) is multiplicity free. We prove the inclusion “⊇”. If
σ ∈ W (ρ), i0 < ℓ(σ) ≤ i′0, then σ ⊆ π′

1|GL2(OK) but σ ̸⊆ π1|GL2(OK) by [BHH+b, Cor. 4.3.17], so
σ ⊆ π′|GL2(OK). If σ ∈W (ρss), ℓ(σ) = i0 + 1, then σ ⊆ D0(ρ)i0+1 by [BHH+b, eq. (64)], which by
[BHH+b, Thm. 4.3.15] injects into

π′K1
1 /πK1

1 = D0(ρ)≤i′0/D0(ρ)≤i0 ↪→ π′K1 .

(In particular, the right-hand side of (60) injects into socGL2(OK)(π′K1
1 /πK1

1 ).)

Now we prove the inclusion “⊆”. Suppose that τ is a Serre weight such that τ ⊆ π′|GL2(OK).
By Corollary 6.2.2, we know τ I1 = χλ, where either λ ∈ P, i0 < |Jλ| ≤ i′0 or λ ∈ Pss \P,
|Jλ| = i0 + 1.

If λ ∈P, i0 < |Jλ| ≤ i′0, then τ I1 lifts to π′I1
1 by [BHH+b, Cor. 4.3.16] and hence τ is the image

of a morphism IndGL2(OK)
I χλ → π′

1 ↠ π′. In particular, τ ↪→ π′K1
1 /πK1

1
∼= D0(ρ)≤i′0/D0(ρ)≤i0 , so

by dévissage and [BHH+b, eq. (64)], τ ∈ W (ρss) with i0 < ℓ(τ) ≤ i′0. Suppose that τ /∈ W (ρ)
(or we are done). By [BHH+b, Lemma 4.1.1] we deduce that the image of the above morphism
IndGL2(OK)

I χλ → π′
1 ⊆ π is isomorphic to I(σ, τ), where σ ∈ W (ρ) is determined (via equation

(11)) by Jσ = Jρ∩Jλ. As the image of the composition is τ , it follows that radΓ(I(σ, τ)) ⊆ πK1
1 =

D0(ρ)≤i0 , so from [BHH+b, Lemma 4.1.3] (taking τ ′ such that |Jτ ′ | = |Jτ | − 1) and [BHH+b,
eq. (64)] we deduce that ℓ(τ) = i0 + 1, as desired.

Suppose that λ ∈Pss \P, |Jλ| = i0 + 1. From the proof of Corollary 6.2.2 we know that the
1-dimensional subspace (π′)I=χλ is the image of the morphism W (χµ, χλ) ↪→ π′

1 ↠ π′, where J1,
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J2 and µ ∈P are defined as in equations [BHH+b, eq. (58), eq. (59)]. By Frobenius reciprocity
we have a corresponding morphism IndGL2(OK)

I W (χµ, χλ) → π′
1 and we denote by V its image.

Note that V/(V ∩ π1) ∼= τ . By [BHH+b, Lemma 4.3.9(i)] we have socGL2(OK)(V ) ∼= σ, where
σ ∈ W (ρ) is determined by Jσ = Jρ ∩ Jµ, and by [BHH+b, Lemma 4.1.1] and [BHH+b, eq. (59)]
it has parameter

S(σ) = {j : µj(xj) ∈ {xj , xj + 1, p− 2− xj , p− 3− xj}}
= {j : λj(xj) ∈ {xj , xj + 1, xj + 2. . . . . . ., p− 2− xj , p− 3− xj}}

inside IndGL2(OK)
I χµ (see § 2.1 for S(σ)). Here we use the convention (from the proof of [BHH+b,

Lemma 4.1.1]) that an underlined entry is only allowed when j ∈ Jρ, and similarly that an entry
with a dotted underline is only allowed when j /∈ Jρ. Let τ ′ ∈W (ρss) be determined by Jτ ′ = Jλ,
and by [BHH+b, Lemma 3.1.3] it has parameter

S(τ ′) = {j : λj(xj) ∈ {xj , xj + 1, p− 2− xj , p− 3− xj}}

inside IndGL2(OK)
I χλ. As

(S(σ) ⊔ J1) \ J2 = {j : λj(xj) ∈ {xj , xj + 1, p− 2− xj , p− 3− xj}} ⊆ S(τ ′),

and J2 ⊆ S(σ) \ S(τ ′) (and since S(σ) ∩ J1 = S(τ ′) ∩ J2 = ∅) we deduce from [BHH+b,
Prop. 4.3.6(ii), Prop. 4.3.8] that τ ′ ∈ JH(V K1). Since ℓ(τ ′) = i0 + 1, it follows from [BHH+b,
Thm. 4.3.15] that τ ′ /∈ JH(πK1

1 ), so τ ′ ∼= τ . Thus τ ∈ W (ρss) and ℓ(τ) = i0 + 1, i.e. τ appears in
the right-hand side of (60), as desired.

Remark 6.2.5. The proof shows that socGL2(OK)(π′) = socGL2(OK)(π′K1
1 /πK1

1 ), but by (60) it is
bigger than socGL2(OK)(π′

1)/ socGL2(OK)(π1), in general.

Recall from subsection 1.4 the Γ̃-representation D̃0(ρ) and from Proposition 3.2.8 that we have
π[m2

K1
] ∼= D̃0(ρ).

We now define the increasing filtration (D̃0(ρ)≤i)−1≤i≤f on D̃0(ρ) by letting D̃0(ρ)≤i be the
largest Γ̃-subrepresentation of D̃0(ρ) that does not contain any τ ∈ W (ρss) with ℓ(τ) > i as
subquotient. Equivalently, it is the largest subrepresentation V of InjΓ̃(socGL2(OK) π) such that

(i) [V : σ] = 1 for all σ ∈W (ρ), ℓ(σ) ≤ i;

(ii) [V : τ ] = 0 for all τ ∈W (ρss), ℓ(τ) > i.

Then D̃0(ρ)≤i = ⊕
σ∈W (ρ) D̃0,σ(ρ)≤i for a unique subrepresentation D̃0,σ(ρ)≤i ⊆ D̃0(ρ)≤i.

We remark (though will not need) that D̃0(ρ)≤i ∩D0(ρ) = D0(ρ)≤i and that all properties of
the filtration D0(ρ)≤i before [BHH+b, Lemma 4.3.14] generalize to the filtration D̃0(ρ)≤i.

Corollary 6.2.6. Assume that ρ is max{9, 2f + 3}-generic. Let i0 = i0(π1) with −1 ≤ i0 ≤ f be
as in [BHH+b, Thm. 4.3.15]. Then

π1[m2
K1 ] ∼= D̃0(ρ)≤i0 .
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Proof. (Cf. the proof of Proposition 5.1(i).) By [BHH+b, Thm. 4.3.15] we have π1[mK1 ] =
D0(ρ)≤i0 , and as π[m2

K1
] is multiplicity free we deduce from the injection π1[m2

K1
]/π1[mK1 ] ↪→

π[m2
K1

]/π[mK1 ] that no element of W (ρss) occurs in π1[m2
K1

]/π1[mK1 ]. As a consequence,

π1[m2
K1 ] ⊆ D̃0(ρ)≤i0 .

Let Q def= D̃0(ρ)≤i0/π1[m2
K1

], which injects into π[m2
K1

]/π1[m2
K1

] and hence into π2[m2
K1

]. If Q ̸= 0,
pick an irreducible subrepresentation σ ⊆ Q ⊆ π2|GL2(OK). Then σ ∈ W (ρss) and ℓ(σ) > i0 by
Corollary 6.2.4 (with i′0 = f), contradicting that σ contributes to D̃0(ρ)≤i0 . Hence Q = 0, as we
wanted to show.

6.3 K1–invariants of subquotient representations of π

We describe the K1-invariants of subquotients of π (Corollary 6.3.9). The proofs in this section
are subtle (and sometimes technical), in particular use the results of the preceding two sections
and certain Γ̃-representations that are not multiplicity free (Lemma 2.3.1).

We start with the K1-invariants of quotients π2 = π/π1 of π:

Theorem 6.3.1. Assume that ρ is max{9, 2f + 3}-generic. Let i0 = i0(π1) with −1 ≤ i0 ≤ f be
as in [BHH+b, Thm. 4.3.15]. We have

πK1
2
∼= D0(ρss)i0+1 ⊕D0(ρ)i0+1 (D0(ρ)/D0(ρ)≤i0).

To prepare for the proof, we first need some lemmas.

Recall from § 1.4 that D0(ρ) = ⊕
σ∈W (ρ)D0,σ(ρ), and from [BP12, § 13] that D0,σ(ρ) is

maximal (for the inclusion) with respect to the two properties socGL2(OK)(D0,σ(ρ)) = σ and
JH(D0,σ(ρ)/σ) ∩W (ρ) = ∅. In particular, D0,σ(ρss) ⊆ D0,σ(ρ).

We now define and study the important subrepresentation W = ⊕
σ∈W (ρ)Wσ ⊆ D0(ρ) as well

as its image W2 = ⊕
σ∈W (ρ)W2,σ̃ ⊆ D0(ρ)/D0(ρ)≤i0 .

Lemma 6.3.2. Assume that ρ is 0-generic. There exists a unique subrepresentation W ⊆ D0(ρ)
such that JH(W) = W (ρss). Moreover, W has a direct sum decomposition W = ⊕

σ∈W (ρ)Wσ,
where socGL2(OK)(Wσ) = σ and JH(Wσ) = {τ ∈ W (ρss) : Jρ ∩ Jτ = Jσ} (in particular, Wσ ⊆
D0,σ(ρ) for all σ ∈W (ρ)). The cosocle σ̃ of Wσ is irreducible and we have Jσ̃ = Jσ ⊔ Jcρ.

Proof. This is a direct consequence of [BHH+b, Lemma 4.1.3].

For σ ∈ W (ρ) let σ̃ ∈ W (ρss) be the element such that Jσ̃ = Jσ ⊔ Jcρ, thus Wσ
∼= I(σ, σ̃).

Clearly, σ 7→ σ̃ gives a bijection between W (ρ) and {τ ∈ W (ρss) : Jτ ⊇ Jcρ}. For convenience, we
write Wσ̃

def= Wσ.

LetW2 ⊆ π2 (resp.W2,σ̃) be the image ofW (resp.Wσ̃) in D0(ρ)/D0(ρ)≤i0
∼= πK1/πK1

1 ⊆ πK1
2 .

In particular, JH(W2) = {τ ∈ W (ρss) : ℓ(τ) ≥ i0 + 1}. As W is multiplicity free, we have
W2 = ⊕

σ∈W (ρ)W2,σ̃ (note that, contrary to Wσ̃, σ /∈ JH(W2,σ̃) in general).
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Lemma 6.3.3. Assume that ρ is 1-generic and that σ ∈W (ρ).

(i) We have
JH(W2,σ̃) = {τ ∈W (ρss) : Jρ ∩ Jτ = Jσ, ℓ(τ) ≥ i0 + 1}.

Moreover, if ℓ(σ) ≥ i0 + 1, then W2,σ̃ =Wσ̃
∼= I(σ, σ̃).

(ii) Suppose that τ, τ ′ ∈ JH(W2) are such that Ext1
Γ(τ ′, τ) ̸= 0. Then the nonsplit extension

τ − τ ′ occurs in W2 as a subquotient if and only if Jτ ′ = Jτ ⊔ {j} for some j /∈ Jρ.

(iii) We have

socΓ(W2,σ̃) =
⊕{

τ ∈W (ρss) : Jρ ∩ Jτ = Jσ, ℓ(τ) = max{i0 + 1, ℓ(σ)}
}
.

Proof. (i) Note that JH(W2,σ̃) ⊆ JH(W2) ∩ JH(Wσ̃), and equality has to hold since both sides
form a partition of JH(W2) as σ varies. The first formula follows, and it implies the second part,
as W2,σ̃ is a quotient of Wσ̃

∼= I(σ, σ̃).

(ii) “⇐”: The nonsplit extension τ − τ ′ is isomorphic to I(τ, τ ′). Assuming Jτ ′ = Jτ ⊔ {j} for
some j /∈ Jρ, let σ ∈W (ρ) be determined by Jσ = Jρ ∩ Jτ = Jρ ∩ Jτ ′ . By [BHH+b, Lemma 4.1.3]
we know that τ occurs in I(σ, τ ′) and that τ ′ occurs in I(σ, σ̃). From I(τ, τ ′) ↞ I(σ, τ ′) ↪→
I(σ, σ̃) ↠ W2,σ̃ and the multiplicity freeness of Wσ̃

∼= I(σ, σ̃), we deduce that τ − τ ′ occurs as
subquotient of W2,σ̃.

“⇒”: if τ − τ ′ occurs as subquotient, then τ, τ ′ ∈ JH(W2,σ̃) for some σ ∈ W (ρ). Thus
Jτ ∆ Jτ ′ ⊆ Jcρ by (i) and moreover |Jτ ∆ Jτ ′ | = 1 by Lemma 2.1.2, i.e. Jτ ′ = Jτ ⊔ {j} or
Jτ = Jτ ′ ⊔ {j} for some j /∈ Jρ. If we had Jτ = Jτ ′ ⊔ {j}, then τ ′ − τ would occur as subquotient
by “⇐”. This contradicts the fact that, by multiplicity freeness, at most one of τ − τ ′, τ ′ − τ can
occur. Hence Jτ ′ = Jτ ⊔ {j}.

(iii) This follows from (i) and (ii).

Lemma 6.3.4. Assume that ρ is 1-generic. Let τ ′ ∈W (ρss).

(i) If σ ∈W (ρ), then the natural morphism

Ext1
Γ(τ ′, socΓ(W2,σ̃))→ Ext1

Γ(τ ′,W2,σ̃) (61)

is surjective.

(ii) If 0→W2,σ̃ → V → τ ′ → 0 is a nonsplit extension of Γ-representations and V ′ ⊆ V , V ′ ⊈
W2,σ̃ is any subrepresentation with cosocle τ ′, then radΓ(V ′) is semisimple and [V ′ : τ ′] = 1.

Proof. Consider a nonsplit Γ-extension 0 → W2,σ̃ → V → τ ′ → 0, and let V ′ ⊆ V , V ′ ̸⊆ W2,σ̃

be such that cosocΓ(V ′) ∼= τ ′. Write socΓ(V ′) = ⊕n
i=1 τi and let m def= max{i0 + 1, ℓ(σ)}. (Note

that, if ℓ(σ) ≥ i0 + 1, then n = 1 and τ1 = σ by the last statement of Lemma 6.3.3(i).) As V is
nonsplit, socΓ(V ) = socΓ(W2,σ̃), so by Lemma 6.3.3(iii) we deduce that τi ∈ W (ρss), ℓ(τi) = m,
and the τi are pairwise distinct.

53



We claim that V ′ is multiplicity free, or equivalently that [V ′ : τ ′] = 1. If not, then V ′ has
a quotient V ′ with socΓ(V ′) = τ ′ and [V ′ : τ ′] = 2, and we get a contradiction by Lemmas 2.2.2
and 2.2.3 applied with Q = V

′ and σ = τ ′, as JH(V ) ⊆W (ρss).

By Lemma 6.3.3(i) and (iii) we know that

JH(radΓ(V ′)) ⊆ JH(W2,σ̃) ⊆ {τ ∈W (ρss) : ℓ(τ) ≥ m} (62)

and also that τ ∈ JH(socΓ(W2,σ̃)) implies ℓ(τ) = m. As Ext1
Γ(τ ′, radΓ(V ′)) ̸= 0 we obtain by

dévissage that Ext1
Γ(τ ′, τ) ̸= 0 for some constituent τ of radΓ(V ′) and hence, by the last assertion

of Lemma 2.1.2 and (62), we deduce that ℓ(τ ′) ≥ ℓ(τ)− 1 ≥ m− 1.

We claim that ℓ(τ ′) ̸= m. As V ′ is multiplicity free by above, V ′ admits a unique quotient
V

′ such that socΓ(V ′) = τ1 (recall that τ1 ⊆ socΓ(V ′)), so V
′ ∼= I(τ1, τ

′) by [BP12, Cor. 3.12].
Assume by contradiction that ℓ(τ ′) = ℓ(τ1) = m, and note that τ ′ ̸∼= τ1 by multiplicity freeness of
V ′. By Lemma 2.1.2 applied to V ′ ∼= I(τ1, τ

′), we deduce that V ′ has a Jordan–Hölder constituent
τ ′′ ̸= τ ′ (e.g. that corresponding to Jτ1 ∩ Jτ ′ ⊊ Jτ1) satisfying |Jτ ′′ | < |Jτ1 | = m. This contradicts
(62), proving the claim.

Arguing as in the previous paragraph (replacing τ1 by τi ⊆ socΓ(V ′)), we have a surjection
V ′ ↠ I(τi, τ ′) and hence radΓ(V ′) ↠ radΓ(I(τi, τ ′)) for each 1 ≤ i ≤ n. As radΓ(V ′) ⊆ W2,σ̃
we conclude that JH(radΓ(I(τi, τ ′))) ⊆ JH(W2,σ̃). By Lemma 2.1.2 applied to I(τi, τ ′) and
Lemma 6.3.3(i) we deduce that

{J : J ∆ Jτi ⊆ Jτ ′ ∆ Jτi for some i and J ̸= Jτ ′} ⊆ {J : Jσ ⊆ J ⊆ Jσ̃, |J | ≥ m}. (63)

Fix 1 ≤ i ≤ n. If Jτi ∩ Jτ ′ ̸= Jτ ′ , then by (63) applied to Jτi ∩ Jτ ′ we deduce that |Jτi ∩ Jτ ′ | ≥
m = |Jτi |. Hence Jτi ∩ Jτ ′ equals Jτ ′ or Jτi , i.e. Jτ ′ ⊆ Jτi or Jτi ⊆ Jτ ′ for any i.

If ℓ(τ ′) ∈ {m−1,m+1}, then by above |Jτ ′ ∆Jτi | = 1 for all i, and it follows from Lemma 2.1.2
that I(τi, τ ′) has length 2. The natural map V ′ →

⊕
i I(τi, τ ′) is injective, as it is injective on

socles, so radΓ(V ′) ↪→
⊕

i radΓ(I(τi, τ ′)) = ⊕
i τi. We conclude that radΓ(V ′) is semisimple.

Hence the class [V ] of V , which is by construction the image of [V ′] under Ext1
Γ(τ ′, radΓ(V ′))→

Ext1
Γ(τ ′,W2,σ̃), is in fact the image of [V ′] under the composition

Ext1
Γ(τ ′, radΓ(V ′))→ Ext1

Γ(τ ′, socΓ(W2,σ̃))→ Ext1
Γ(τ ′,W2,σ̃),

i.e. is in the image of (61).

We suppose finally till the end of that proof that ℓ(τ ′) > m+ 1, and we will derive a contra-
diction (so that this case does not happen). Note that the assumption implies (Jσ ⊆ )Jτi ⊆ Jτ ′

for all i. If there exists j ∈ Jτ ′ \Jσ̃, then J = Jτ1 ⊔{j} belongs to the left-hand side of (63) (using
ℓ(τ ′) ̸= m + 1), but (obviously) not to its right-hand side, a contradiction. Hence Jτ ′ ⊆ Jσ̃, and
thus τ ′ ∈ JH(W2,σ̃) (using Lemma 6.3.3(i)). Let V ′′ denote the unique subrepresentation of W2,σ̃
with cosocle τ ′.

We now show that V ′ ∼= V ′′. As both V ′ and V ′′ are multiplicity free, it is enough to show that
socΓ(V ′) = socΓ(V ′′) by (the dual of) [BP12, Prop. 3.6, Cor. 3.11]. (The references imply that
ProjΓ τ ′ admits a maximal multiplicity-free quotient R. As R is multiplicity free, the quotients of
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R are determined by their socles.) If ℓ(σ) ≥ i0+1, this is obvious, as socΓ(W2,σ̃) ∼= σ is irreducible.
If ℓ(σ) ≤ i0, then by Lemma 6.3.3(ii) and (iii) we have socΓ(V ′′) ∼=

⊕
J τJ , where the direct sum

runs over all the J ⊆ {0, . . . , f − 1} such that Jσ ⊆ J ⊆ Jτ ′ and |J | = i0 + 1. (Here, τJ is the
element of W (ρss) such that JτJ = J , see § 1.4.) Thus socΓ(V ′) ⊆ socΓ(V ′′), since Jτi ⊆ Jτ ′ for all
1 ≤ i ≤ n. We claim that if τJ ∈ JH(socΓ(V ′)) (for some J ⊆ {0, . . . , f−1} such that Jσ ⊆ J ⊆ Jτ ′

and |J | = i0 + 1), then τ(J⊔{j})\{j′} ∈ JH(socΓ(V ′)) for any j ∈ Jτ ′ \ J and any j′ ∈ J \ Jσ. To
see this: from JH(I(τJ , τ ′)) ⊆ JH(V ′) we get τJ⊔{j} ∈ JH(radΓ(V ′)) and from Lemma 6.3.3(ii)
we deduce that τ(J⊔{j})\{j′} ∈ JH(socΓ(V ′)), as desired. As |Jσ| < |J | = i0 + 1 < |Jτ ′ | − 1, by
iteration of the claim above we conclude that any J ⊆ {0, . . . , f − 1} such that Jσ ⊆ J ⊆ Jτ ′ and
|J | = i0 + 1 satisfies τJ ∈ JH(socΓ(V ′)). Hence socΓ(V ′′) ⊆ socΓ(V ′), so indeed V ′ ∼= V ′′.

We next claim that radΓ(V ′) = radΓ(V ′′) is indecomposable. We already know that radΓ(V ′),
radΓ(V ′′) are isomorphic subrepresentations of W2,σ̃, and W2,σ̃ is multiplicity free, so radΓ(V ′) =
radΓ(V ′′). The indecomposability is obvious if ℓ(σ) ≥ i0 + 1, as socΓ(V ′) = socΓ(V ′′) is then
irreducible, so suppose ℓ(σ) ≤ i0. Following the argument of the previous paragraph, we know that
the uniserial representations of the form τJ−τJ⊔{j} and τ(J⊔{j})\{j′}−τJ⊔{j} occur as subquotients
of W2,σ̃ by Lemma 6.3.3(ii) and hence of radΓ(V ′). This shows by the same iteration as in the
preceding paragraph that all constituents of socΓ(V ′) lie in the same indecomposable component
of radΓ(V ′). Therefore radΓ(V ′) is indecomposable.

By the preceding two paragraphs, we can pick an isomorphism f : V ′ ∼−→ V ′′. By indecom-
posability of radΓ(V ′), we may rescale f so that f |radΓ(V ′) is the identity on radΓ(V ′) = radΓ(V ′′).
This means that V ′ and V ′′ define the same class in Ext1

Γ(τ ′, radΓ(V ′)), up to scalar, so some
linear combination splits, implying τ ′ ∈ JH(socΓ(V )). Since socΓ(W2,σ̃) = socΓ(V ) by definition
of V , this contradicts that ℓ(τ ′) > m+ 1 (if τ ∈ JH(socΓ(W2,σ̃)), then ℓ(τ) = m).

Proposition 6.3.5. Assume that ρ is max{9, 2f + 3}-generic. Let i0 = i0(π1) with −1 ≤ i0 ≤ f
be as in [BHH+b, Thm. 4.3.15] and π2

def= π/π1. Then D0(ρss)i0+1 injects into π2|GL2(OK).

Proof. Since D0(ρss)i0+1 = ⊕
τ∈W (ρss),ℓ(τ)=i0+1D0,τ (ρss) and is multiplicity free, it suffices to prove

that D0,τ (ρss) injects into π2|GL2(OK) for any τ ∈ W (ρss) with ℓ(τ) = i0 + 1. Let λ ∈ D ss be the
element corresponding to τ . As in Step 2 of the proof of [BHH+b, Thm. 4.3.15] we define

J1
def= {j ∈ Jcρ : λj(xj) = p− 3− xj}, J̃1

def= {j : λj(xj) ∈ {xj + 1, p− 2− xj}},

the element µ ∈ P by µj(xj) = p − 1 − xj if j ∈ J1 and µj(xj) = λj(xj) otherwise, and the
character χ′′ by

χ′′ def= χµ
∏

j∈J1⊔J̃1

α−1
j .

We then have W (χµ, χ′′) ↪→ π|I , hence a GL2(OK)-equivariant morphism as in Step 4 of the proof
of [BHH+b, Thm. 4.3.15]:

κ̃ : IndGL2(OK)
I W (χsµ, χ′′s)→ π|GL2(OK).

Let σ1 ∈ W (ρ) and τ1 = δ(τ) ∈ W (ρss) be as in Step 4 of the proof of [BHH+b, Thm. 4.3.15],
so that in particular im(κ̃) has socle σ1 and I(σ1, τ1) embeds into im(κ̃)K1 . By
[BHH+b, Lemma 4.1.3], for any τ ′ ∈ JH(I(σ1, τ1)) with τ ′ ̸= τ1, we have τ ′ ∈ W (ρss) with
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ℓ(τ ′) < ℓ(τ1) = i0 + 1, hence radΓ(I(σ1, τ1)) ⊆ π1 and I(σ1, τ1) ̸⊆ π1 by [BHH+b, Thm. 4.3.15]
and [BHH+b, eq. (66)].

Consider the composite morphism

IndGL2(OK)
I W (χsµ, χ′′s)→ π|GL2(OK) ↠ π2|GL2(OK);

we claim that it factors through

IndGL2(OK)
I W (χsλ, χ′′s)→ π2|GL2(OK). (64)

It suffices to prove that the image of W (χsµ, χ′′s) ↪→ π|I ↠ π2|I has socle χsλ or equivalently that
the image of W (χµ, χ′′) ↪→ π|I ↠ π2|I has socle χλ. This follows from Proposition 6.2.1 and the
following two facts:

(a) under the morphism W (χµ, χ′′) ↪→ π|I , radI(W (χµ, χλ)) is sent into π1, as any constituent
is of the form χν with ν ∈Pss, ℓ(ν) < i0 + 1 (this follows from [BHH+b, Lemma 4.3.1], the
recipe [BHH+b, eq. (59)], and since ℓ(λ) = i0 + 1);

(b) by the discussion after [BHH+b, eq. (71)] we have in particular that(
JH(W (χλ, χ′′)) \ {χλ}}

)
∩ JH(D0(ρss)I1) = ∅.

We note by [Bre14, Prop. 4.2] that fact (b) is equivalent to

JH
(

IndGL2(OK)
I W (χsλ, χ′′s)/ IndGL2(OK)

I χsλ

)
∩W (ρss) = ∅. (65)

Let V be the image of (64) and Vλ ⊆ V be the image of IndGL2(OK)
I χsλ in π2, so that V/Vλ is

a quotient of IndGL2(OK)
I W (χsλ, χ′′s)/ IndGL2(OK)

I χsλ and hence JH(V/Vλ) ∩W (ρss) = ∅ by (65).
From the exact sequence 0→ socGL2(OK)(Vλ)→ socGL2(OK)(V )→ socGL2(OK)(V/Vλ), as

JH(socGL2(OK)(V )) ⊆ JH(socGL2(OK)(π2)) ⊆W (ρss)

(by Corollary 6.2.4) and JH(socGL2(OK)(V/Vλ)) ∩W (ρss) = ∅, we deduce that the natural map
socGL2(OK)(V )→ socGL2(OK)(V/Vλ) is zero, i.e. socGL2(OK)(Vλ) = socGL2(OK)(V ).

We claim that socGL2(OK)(Vλ) = socGL2(OK)(V ) = τ1. By the first paragraph, the representa-
tion τ1 injects into socGL2(OK)(V ), hence into socGL2(OK)(Vλ). Conversely, if τ2 ⊆ socGL2(OK)(Vλ),
then we obtain surjections IndGL2(OK)

I χsλ ↠ Vλ ↠ I(τ2, τ
[s]) and the final representation surjects

onto I(δ(τ), τ [s]) by [BP12, Lemma 12.8(ii)] and [BP12, Lemma 15.2] (with S− = S+ = ∅ here).
As δ(τ) = τ1 occurs in socGL2(OK)(Vλ), by multiplicity freeness of Vλ we deduce that τ2 = τ1.

As in Step 4 of the proof of [BHH+b, Thm. 4.3.15], [BHH+b, Lemma 4.3.13] and the preceding
paragraph imply that V contains D0,δ(τ)(ρss), hence D0,δ(τ)(ρss) injects into πK1

2 . As ℓ(δ(τ)) = ℓ(τ)
and δ(·) is periodic, we deduce that D0,τ (ρss) also injects into πK1

2 , as desired.

We define the Γ-representation Di0
def= D0(ρss)i0+1 ⊕D0(ρ)i0+1 (D0(ρ)/D0(ρ)≤i0).
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Lemma 6.3.6. Assume that ρ is max{9, 2f + 3}-generic.

(i) Di0 is multiplicity free.

(ii) Di0 injects into πK1
2 .

(iii) We have DI1
i0
∼= πI1

2 and socGL2(OK)(Di0) ∼= socGL2(OK)(π2). Both representations are mul-
tiplicity free. In particular, JH(socGL2(OK)(Di0)) ⊆W (ρss).

(iv) We have W2 ⊆ Di0 and JH(Di0/W2) ∩W (ρss) = ∅.

(v) Let τ ′ be a Serre weight. If Ext1
Γ(τ ′, Di0) ̸= 0, then either τ ′ ∈W (ρss) or

τ ′ ∈
⋃

j≥i0+2
JH(D0(ρss)j)\ JH(D0(ρ)j).

Proof. (i) By construction, Di0 is a successive extension of the form

D0(ρss)i0+1 −D0(ρ)i0+2 − · · · −D0(ρ)f . (66)

More precisely, it inherits from [BHH+b, eq. (63)] a filtration with graded pieces D0(ρss)i0+1,
D0(ρ)i0+2, . . . , D0(ρ)f . Since D0(ρ)j injects into D0(ρss)j for all j and D0(ρss) is multiplicity
free, Di0 is also multiplicity free.

(ii) Clearly, πK1/πK1
1
∼= D0(ρ)/D0(ρ)≤i0 injects into πK1

2 . Recall that

Σ def= socΓ(D0(ρss)i0+1) = socΓ(D0(ρ)i0+1)

and that JH(D0(ρss)i0+1/Σ) ∩W (ρss) = ∅. Hence the restriction maps

HomGL2(OK)(D0(ρss)i0+1, π2)→ HomGL2(OK)(D0(ρ)i0+1, π2)→ HomGL2(OK)(Σ, π2).

are injective using Corollary 6.2.4 (applied to π2), and therefore bijective by Proposition 6.3.5
(for each τ ∈W (ρss) with ℓ(τ) = i0 + 1 we have an injection D0,τ (ρss) ↪→ π2). Thus any injection
f : D0(ρ)/D0(ρ)≤i0 ↪→ πK1

2 can be extended to a map f̃ : Di0 → π2. From the short exact
sequence

0→ D0(ρ)/D0(ρ)≤i0 → Di0 → D0(ρss)i0+1/D0(ρ)i0+1 → 0,

together with socΓ(Di0) ⊆ W (ρss) (which follows from (66)) and with W (ρss) ∩
JH(D0(ρss)i0+1/D0(ρ)i0+1) = ∅ (which follows from [BHH+b, eq. (64)]), we deduce that
socΓ(Di0) = socΓ(D0(ρ)/D0(ρ)≤i0). We conclude that f̃ is also injective and (ii) follows.

(iii) We claim that the inclusion DI1
i0
⊆ πI1

2 , deduced from (ii), is in fact an equality. Indeed,
[BHH+b, Cor. 4.3.16] and [BHH+b, Lemma 3.1.3] show respectively that

{χλ : λ ∈P, |Jλ| ≥ i0 + 1} ⊆ JH
((
D0(ρ)/D0(ρ)≤i0

)I1
)

and
{χλ : λ ∈Pss, |Jλ| = i0 + 1} ⊆ JH

(
D0(ρss)I1

i0+1

)
.
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By the definition of Di0 we obtain inclusions

{χλ : λ ∈P, |Jλ| > i0 or λ ∈Pss \P, |Jλ| = i0 + 1} ⊆ JH(DI1
i0

) ⊆ JH(πI1
2 ),

so that equality holds by Proposition 6.2.1.

The equality of socΓ(Di0) and socGL2(OK)(π2) follows from the chain of inclusions

socΓ(D0(ρ)/D0(ρ)≤i0) ⊆ socΓ(Di0) ⊆ socΓ(πK1
2 ) = socΓ(D0(ρ)/D0(ρ)≤i0),

where the first inclusion follows from the construction of Di0 , the second from part (ii) and the
last equality follows from Remark 6.2.5.

(iv) By definition, W2 ⊆ D0(ρ)/D0(ρ)≤i0 ⊆ Di0 . We have an exact sequence

0→ (D0(ρ)/D0(ρ)≤i0)/W2 → Di0/W2 → D0(ρss)i0+1/D0(ρ)i0+1 → 0

and a surjection D0(ρ)/W ↠ (D0(ρ)/D0(ρ)≤i0)/W2. As no constituents of D0(ρss)i0+1/D0(ρ)i0+1
and D0(ρ)/W lie in W (ρss), we deduce the final claim.

(v) By (66), we have either Ext1
Γ(τ ′, D0(ρss)i0+1) ̸= 0 or Ext1

Γ(τ ′, D0(ρ)j) ̸= 0, where j ≥ i0+2.
In the latter case, using the exact sequence 0 → D0(ρ)j → D0(ρss)j → Rj → 0, where Rj is the
corresponding quotient, we see that either Ext1

Γ(τ ′, D0(ρss)j) ̸= 0 or HomΓ(τ ′, Rj) ̸= 0.

Recall that D0(ρss)j = ⊕
τ∈W (ρss),ℓ(τ)=j D0,τ (ρss) for all 0 ≤ j ≤ f . By [HW18, Lemmas 2.25,

2.26], if Ext1
Γ(τ ′, D0,τ (ρss)) ̸= 0, then τ ′ ∈W (ρss). The result follows.

The following result strengthens Lemma 6.3.6(v).

Corollary 6.3.7. Assume that ρ is max{9, 2f + 3}-generic. If Ext1
Γ(τ ′, Di0) ̸= 0 for some Serre

weight τ ′, then τ ′ ∈W (ρss).

Proof. By Lemma 6.3.6(v), it suffices to show Ext1
Γ(τ ′, Di0) = 0 if τ ′ ∈ JH(D0(ρss)j)\ JH(D0(ρ)j)

for some j ≥ i0 + 2. Fix such a Serre weight τ ′, so τ ′ /∈ JH(Di0) (and τ ′ /∈ JH(D0(ρ))). By
contradiction let 0→ Di0 → V → τ ′ → 0 be a nonsplit extension of Γ-representations and V ′ ⊆ V ,
V ′ ⊈ Di0 any subrepresentation with cosocle τ ′. Say τ ′ ∈ JH(D0,τ ′′(ρss)), for τ ′′ ∈W (ρss), ℓ(τ ′′) =
j > i0 + 1. Note that τ ′ ̸∼= τ ′′, as τ ′ /∈ W (ρss) by [BHH+b, eq. (64)]. Pick any σ ∈ JH(socΓ(V ′)),
so σ ∈ W (ρss) by Lemma 6.3.6(iii) and V ′ ↠ I(σ, τ ′), so τ ′′ ∈ JH(I(σ, τ ′)) ⊆ JH(V ′) by [BP12,
Lemma 12.8(ii)]. As τ ′ ̸∼= τ ′′, τ ′′ even occurs in radΓ(V ′) ⊆ Di0 , so τ ′′ occurs in W2 ⊆ Di0 by
Lemma 6.3.6(iv). Define σ ∈ W (ρ) by Jσ = Jρ ∩ Jτ ′′ , so τ ′′ ∈ JH(W2,σ̃) (where W2 and W2,σ̃
are defined just before Lemma 6.3.3). We claim that τ ′ ∈ JH(InjΓ σ), which gives a contradiction
by [BHH+b, eq. (65)] since JH(InjΓ σ) ⊆ JH(D0(ρ)) (cf. [BHH+b, eq. (52)]).

If ℓ(σ) ≥ i0 + 1, then by the last assertion of Lemma 6.3.3(i) the socle of the unique sub-
representation of W2 with cosocle τ ′′ is σ, so σ ↪→ V ′ and hence V ′ ↠ I(σ, τ ′), which implies
τ ′ ∈ JH(InjΓ σ), as claimed.

If ℓ(σ) ≤ i0, the socle of the unique subrepresentation of W2 with cosocle τ ′′ is the direct sum
of all τJ ∈W (ρss) with ℓ(τJ) = i0 + 1, Jσ ⊆ J ⊆ Jτ ′′(⊆ Jσ ⊔ Jcρ), by Lemma 6.3.3, and each such
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τJ must inject into V ′. (Again, τJ is the element of W (ρss) such that JτJ = J .) We deduce as
before that τ ′ ∈ JH(InjΓ τJ) for each such τJ , equivalently τJ ∈ JH(InjΓ τ ′) by [BP12, Lemma 3.2].
To prove the claim it suffices to prove the following two statements:

(a) for any two subsets J, J ′ ⊆ {0, . . . , f − 1}, if τJ , τJ ′ ∈ JH(InjΓ τ ′), then τJ∩J ′ ∈ JH(InjΓ τ ′);

(b) ⋂J J = Jσ, where J runs over all elements in X
def= {J : Jσ ⊆ J ⊆ Jτ ′′ , |J | = i0 + 1}.

For (a), we first observe that by [BP12, Lemma 12.6] τJ , τJ ′ are automatically compatible in the
sense that their corresponding elements in I are compatible (relative to τ ′). Thus Lemma 2.1.5
implies that JH(I(τJ , τJ ′)) ⊆ JH(InjΓ τ ′), in particular τJ∩J ′ ∈ JH(InjΓ τ ′) using Lemma 2.1.4.
For (b), we note that ℓ(σ) ≤ i0 and ℓ(τ ′′) ≥ i0 + 2, so Jσ ⊊ J ⊊ Jτ ′′ for any J ∈ X. Fix J ∈ X
and j′ ∈ Jτ ′′ \ J . Then Jj

def= (J ⊔ {j′}) \ {j} ∈ X for any j ∈ J \ Jσ. It is direct to check that
Jσ = J ∩ (⋂j Jj), from which (b) follows.

For σ ∈W (ρ) and 0 ≤ i ≤ f let us define for convenience the Γ-representations

D0,σ(ρ)(i)
def= D0,σ(ρ)≤i
D0,σ(ρ)≤i−1

∼=
⊕

τ∈W (ρss),ℓ(τ)=i,Jσ=Jρ∩Jτ

D0,τ (ρ)i

(using [BHH+b, eq. (68)]) and
D0,σ(ρss)(i)

def=
⊕

τ∈W (ρss),ℓ(τ)=i,Jσ=Jρ∩Jτ

D0,τ (ρss).

(Note that D0,σ(ρss)(i) depends on ρ, not just on ρss!) Hence

D0(ρ)i =
⊕

σ∈W (ρ)
D0,σ(ρ)(i) and D0(ρss)i =

⊕
σ∈W (ρ)

D0,σ(ρss)(i). (67)

(In the second case, note that W (ρss) = ∐
σ∈W (ρ){τ ∈ W (ρss) : Jρ ∩ Jτ = Jσ}.) Note that the

injection D0(ρ)i ↪→ D0(ρss)i (cf. above [BHH+b, eq. (64)]) respects the direct sum decompositions
(67), as D0,τ (ρ)i = D0(ρ)i ∩D0,τ (ρss) (cf. above [BHH+b, eq. (68)]).

Lemma 6.3.8. Assume that ρ is max{9, 2f + 3}-generic.

(i) There is a direct sum decomposition Di0 = ⊕
σ∈W (ρ)Di0,σ, where

Di0,σ
def= D0,σ(ρss)(i0+1) ⊕D0,σ(ρ)(i0+1)

(
D0,σ(ρ)/D0,σ(ρ)≤i0

)
for σ ∈W (ρ).

Moreover, Di0,σ = D0,σ(ρ) if ℓ(σ) ≥ i0 + 1.

(ii) Fix σ ∈W (ρ). We have a natural injectionW2,σ̃ ↪→ Di0,σ and JH(Di0,σ/W2,σ̃)∩W (ρss) = ∅.
Moreover,

socΓ(Di0,σ) ∼=
⊕

τ∈W (ρss),ℓ(τ)=max{i0+1,ℓ(σ)},Jσ=Jρ∩Jτ

τ. (68)
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(iii) Fix σ ∈ W (ρ) and let τ ′ ∈ W (ρss). Suppose that 0 → Di0,σ → V → τ ′ → 0 is a nonsplit
extension of Γ-representations and V ′ ⊆ V , V ′ ⊈ Di0,σ is any subrepresentation with cosocle
τ ′. If [V ′ : τ ′] = 1, then radΓ(V ′) is semisimple and contained in W2,σ̃ ⊆ Di0,σ. If [V ′ :
τ ′] = 2, then τ ′ ∼= σ and ℓ(σ) ≥ i0 + 1.

Proof. (i) Recall that D0(ρ) = ⊕
σ∈W (ρ)D0,σ(ρ), compatibly with filtrations. As D0(ρ)i0+1 ↪→

D0(ρss)i0+1, and the injection respects the direct sum decompositions (67), the direct sum decom-
position claimed in (i) follows.

We now prove the last claim of (i). If ℓ(σ) ≥ i0 + 1, then D0,σ(ρ)≤i0 = 0, and D0,σ(ρ)(i0+1) =
D0,σ(ρss)(i0+1) = 0 if ℓ(σ) > i0 + 1. If ℓ(σ) = i0 + 1, then it follows from the definitions
of D0,σ(ρ)≤i0+1 and of D0(ρ)≤i0+1 (cf. [BHH+b, § 4.3.4]), and from the inclusion D0,σ(ρss) ⊆
D0,σ(ρ) (cf. the introduction to [BHH+b, § 4]) that D0,σ(ρss) ⊆ D0,σ(ρ)≤i0+1, so D0,σ(ρ)(i0+1) =
D0,σ(ρss)(i0+1)(= D0,σ(ρss)).

(ii) Consider the diagram of Γ-representations

W �
� //

����

D0(ρ)

����
W2
� � // D0(ρ)/D0(ρ)≤i0

� � // Di0

Each term in this diagram has a natural direct sum decomposition indexed by σ ∈ W (ρ). The
top horizontal arrow preserves the decompositions because of [BHH+b, Lemma 4.1.3] and Lemma
6.3.2, which implies that the bottom horizontal map preserves the decompositions. The property
JH(Di0,σ/W2,σ̃)∩W (ρss) = ∅ then follows from Lemma 6.3.6(iv). By Lemma 6.3.6(iii) and (iv) we
know that socΓ(W2) = socΓ(Di0), and hence socΓ(W2,σ̃) = socΓ(Di0,σ) for each σ. Formula (68)
follows from Lemma 6.3.3(iii).

(iii) As V is a nonsplit extension, we have socΓ(V ) = socΓ(Di0,σ) hence JH(socΓ(V )) ⊆
JH(socΓ(Di0)) ⊆ W (ρss) by Lemma 6.3.6(iii). Since Di0,σ is multiplicity free by Lemma 6.3.6(i),
for each τ ∈ JH(socΓ(V ′)) there is a unique largest quotient V ′

τ of V ′ with socle τ (and cosocle
τ ′).

We first show that

[socΓ(V ′) : τ ′] = 0 ⇔ [V ′ : τ ′] = 1 ⇒ radΓ(V ′) ⊆ W2,σ̃ (69)
⇒ radΓ(V ′) is semisimple.

If [socΓ(V ′) : τ ′] = 0 then [V ′ : τ ] = 1 for each τ ∈ JH(socΓ(V ′)) as Di0,σ is multiplicity free,
hence V ′

τ
∼= I(τ, τ ′) by [BP12, Cor. 3.12]. As V ′ injects into ⊕τ∈JH(socΓ(V ′)) V

′
τ , we deduce that

radΓ(V ′) injects into ⊕τ∈JH(socΓ(V ′)) radΓ(V ′
τ ), so [radΓ(V ′) : τ ′] = 0 as [radΓ(V ′

τ ) : τ ′] = 0 for
all τ , i.e. [V ′ : τ ′] = 1. The converse of the first implication in (69) is obvious. Still assuming
[socΓ(V ′) : τ ′] = 0, by Lemma 2.1.2 we obtain JH(V ′

τ ) ⊆ W (ρss) for all τ ∈ JH(socΓ(V ′)),
thus JH(V ′) ⊆ W (ρss). This implies that radΓ(V ′) ⊆ W2,σ̃ by Lemma 6.3.6(iv), so radΓ(V ′) is
semisimple by Lemma 6.3.4(ii) (applied to the pushout of 0 → radΓ(V ′) → V ′ → τ ′ → 0 along
the injection radΓ(V ′) ⊆ W2,σ̃, which is still nonsplit, as it is contained in V which is nonsplit by
assumption).
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To conclude, it suffices to show that τ ′ ̸∼= σ or ℓ(σ) ≤ i0 imply [socΓ(V ′) : τ ′] = 0, hence
[V ′ : τ ′] = 1. If τ ′ ̸∼= σ and ℓ(σ) ≥ i0 +1, then Di0,σ = D0,σ(ρ) by part (i), so socΓ(V ′) = σ and we
are done. If ℓ(σ) ≤ i0, assume by contradiction that τ ′ ⊆ socΓ(V ′). Then τ ′ ⊆ socΓ(V ′) ⊆ Di0,σ,
so τ ′ ⊆ socΓ(W2,σ̃) by part (ii), so τ ′ /∈W (ρ) and ℓ(τ ′) = i0 + 1 by Lemma 6.3.3(iii). By [HW22,
Cor. 2.32], V ′

τ ′ has 3 socle layers, of the shape

τ ′ − soc1(V ′
τ ′)− τ ′,

and soc1(V ′
τ ′) contains at least one element of W (ρss) by Lemmas 2.2.2 and 2.2.3, say τ ′′. Since

τ ′, τ ′′ ∈ W (ρss) and τ ′ − τ ′′ is a subquotient of Di0,σ (hence of W2,σ̃ by part (ii) and Lemma
6.3.6(iv)), we have Jτ ′′ = Jτ ′ ⊔ {j′′} for some j′′ /∈ Jρ by Lemma 6.3.3(ii). On the other hand, as
τ ′ /∈ W (ρ) there exists j′ ∈ Jτ ′ \ Jρ (so j′ ̸= j′′). Let τ ∈ W (ρss) be the element corresponding
to Jτ ′′ \ {j′}. Then ℓ(τ) = i0 + 1 and the extension τ − τ ′′ occurs in V ′ as a subquotient by
Lemma 6.3.3(ii). By part (ii) and Lemma 6.3.3(iii) we have τ ⊆ socΓ(W2,σ̃) ⊆ socΓ(Di0,σ). Thus
τ occurs in socΓ(V ′) (using that Di0,σ containing radΓ(V ′) is multiplicity free). As τ ̸= τ ′ we have
[V ′ : τ ] = 1 so τ occurs in socΓ(V ′). As τ ̸= τ ′, V ′ has quotient V ′

τ which is isomorphic to I(τ, τ ′)
(arguing as in the case [socΓ(V ′) : τ ′] = 0). By Lemma 2.1.2 and as Jτ = (Jτ ′ ⊔ {j′′}) \ {j′},
it has length 4 and a constituent τ ′′′ ∈ W (ρss), with Jτ ′′′ = Jτ \ {j′′} in soc1(I(τ, τ ′)). But this
implies that the nonsplit extension τ − τ ′′′ occurs in Di0,σ (hence in W2,σ̃), which is impossible
by Lemma 6.3.3(ii). Hence [socΓ(V ′) : τ ′] = 0, as desired.

Proof of Theorem 6.3.1. If i0 = f this is trivial (both sides are zero). If i0 = f − 1, then as in
Remark 6.1.4 we have π2 ∼= IndGL2(K)

B(K) (χ1⊗χ2ω
−1), where ρ ∼=

( χ1 ∗
0 χ2

)
. Theorem 6.3.1 boils down

to showing IndKI (χ1 ⊗ χ2ω
−1) ∼= D0(ρss)f . This is true by [BP12, Rk. 14.9(i)]. From now on we

will assume that i0 ≤ f − 2. Furthermore, if i0 = −1 the result is just assumption (i), so we will
assume i0 ≥ 0 and so f ≥ 2.

Recall that Di0 ⊆ πK1
2 and that both representations have the same I1-invariants and the

same GL2(OK)-socle by Lemma 6.3.6(ii), (iii).

For a contradiction, assume Di0 ⊊ πK1
2 with Q being the quotient. Pick a Serre weight τ ′

which injects into Q. Then we obtain an extension of Γ-representations

0→ Di0 → V → τ ′ → 0,

which is nonsplit by the above discussion, and moreover V ⊆ πK1
2 . In other words, V defines a

nonzero element in Ext1
Γ(τ ′, Di0). Hence, by Corollary 6.3.7, we have τ ′ ∈W (ρss).

For σ ∈ W (ρ) let Vσ denote the quotient of V defined as the pushout of V ←↩ Di0 ↠ Di0,σ,
so that V ↪→

⊕
σ∈W (ρ) Vσ (recall Di0 = ⊕

σ∈W (ρ)Di0,σ from Lemma 6.3.8(i)). (We caution
the reader that, despite the notation, σ /∈ JH(Vσ) in general.) If there exists σ′ ∈ W (ρ) such
that τ ′ ∈ JH(Di0,σ′) (there can be at most one such σ′ by Lemma 6.3.6(i)) and [Vσ′ ] = 0 in
Ext1

Γ(τ ′, Di0,σ′), then choose any splitting s : τ ′ ↪→ Vσ′ and let V ′ be the image of any morphism
ProjΓ τ ′ → V whose composition with V ↠ Vσ′ is the map ProjΓ τ ′ ↠ τ ′ s−→ Vσ′ . Otherwise, let
V ′ ⊆ V , V ′ ̸⊆ Di0 denote any subrepresentation with cosocle τ ′. In either case, V ′ ⊆ V , V ′ ̸⊆ Di0

and cosocΓ(V ′) ∼= τ ′. Moreover, radΓ(V ′) ⊆ radΓ(V ) ⊆ Di0 is multiplicity free and

JH(socΓ(V ′)) ⊆ JH(socΓ(Di0)) ⊆W (ρss) (70)
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by Lemma 6.3.6(i) and (iii).

For any σ ∈ W (ρ) let V ′
σ denote the image of V ′ ↪→ V ↠ Vσ, so cosocΓ(V ′

σ) ∼= τ ′ and
V ′
σ ̸⊆ Di0,σ. We show that

[Vσ] = 0 in Ext1
Γ(τ ′, Di0,σ) if and only if V ′

σ
∼= τ ′. (71)

If [Vσ] = 0 and τ ′ ∈ JH(Di0,σ), then V ′
σ
∼= τ ′ by construction in the preceding paragraph. If

[Vσ] = 0 and τ ′ /∈ JH(Di0,σ), then V ′
σ
∼= τ ′ (the unique subrepresentation of Di0,σ⊕τ ′ with cosocle

τ ′). Conversely, the “if” direction of (71) is true, as V ′
σ ̸⊆ Di0,σ provides the splitting.

For later reference we show that

radΓ(V ′) ∼=
⊕

σ∈W (ρ)
radΓ(V ′

σ). (72)

By construction, V ′ ↪→
⊕

σ∈W (ρ) V
′
σ, so radΓ(V ′) ↪→

⊕
σ∈W (ρ) radΓ(V ′

σ). As V ′ surjects onto
V ′
σ, we deduce radΓ(V ′) surjects onto radΓ(V ′

σ) for all σ. Since the radΓ(V ′
σ) ⊆ Di0,σ for σ ∈

W (ρ) have disjoint constituents, it follows that the injection radΓ(V ′) ↪→⊕
σ∈W (ρ) radΓ(V ′

σ) is an
isomorphism.

We now distinguish cases.

Step 1. Assume [V ′ : τ ′] = 1. We will show that χτ ′ contributes twice to π2[m2], but this
contradicts Corollary 6.1.8.

We claim that radΓ(V ′) is semisimple. By (72) it suffices to show that radΓ(V ′
σ) is semisimple

for any σ ∈W (ρ). If [Vσ] = 0, then V ′
σ
∼= τ ′ by (71) and we are done. If [Vσ] ̸= 0 we deduce that

radΓ(V ′
σ) is semisimple by Lemma 6.3.8(iii) (using the assumption [V ′ : τ ′] = 1). This establishes

the claim.

In the following three paragraphs we show that for any Γ-subrepresentation V ′′ ⊆ πK1
2 such

that cosocΓ(V ′′) ∼= τ ′ and radΓ(V ′′) is semisimple there exist J ⊆ {0, . . . , f − 1} and a map
f̃ : QJ = QJ (τ ′) → πK1

2 such that ΘJ = ΘJ (τ ′) surjects onto V ′′, where QJ (τ ′) (resp. ΘJ (τ ′))
was defined just before Lemma 2.3.5 (resp. Lemma 2.3.6).

Note that τ ∈ JH(radΓ(V ′′)) implies Ext1
Γ(τ ′, τ) ̸= 0 and τ ∈ W (ρss) (by (70), as radΓ(V ′′) ⊆

socΓ(V ′′)). For ∗ ∈ {±} define J ∗ def= {0 ≤ i ≤ f − 1 : µ∗
i (τ ′) ↪→ V ′′}, so that

radΓ(V ′′) ∼=
⊕

i∈J + µ+
i (τ ′)⊕⊕i∈J − µ−

i (τ ′) by [BHH+b, Lemma 4.3.4]. We note that J +∩J − = ∅
by Lemma 2.2.3.

Suppose that i ∈ J + (or more generally that µ+
i (τ ′) ↪→ π2|GL2(OK)). We claim that the

nonsplit extension µ+
i (τ ′) − δ+

i (τ ′) embeds into Di0 . By Corollary 6.2.4 (applied to π2) we have
two cases. If µ+

i (τ ′) ∈W (ρ) and ℓ(µ+
i (τ ′)) ≥ i0 +1, then µ+

i (τ ′)−δ+
i (τ ′) embeds into D0,µ+

i (τ ′)(ρ)
(by Lemma 2.2.3 and the definition of D0,µ+

i (τ ′)(ρ)), so into Di0 . If µ+
i (τ ′) ∈ W (ρss) \W (ρ) and

ℓ(µ+
i (τ ′)) = i0 + 1, then µ+

i (τ ′)− δ+
i (τ ′) similarly embeds into D0,µ+

i (τ ′)(ρss) ⊆ D0(ρss)i0+1 ⊆ Di0 .
In either case we deduce from Lemma 2.2.1 (note µ+

i (τ ′) = µ−
i (δ+

i (τ ′))) that

χδ+
i (τ ′) ∈ JH(πI1

2 ) ∀ i ∈ J +, (73)
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and that
χδ+

i (τ ′) ∈ JH(πI1) if i ∈ J + and µ+
i (τ ′) ∈W (ρ). (74)

Let J def= J + ⊔ J −. Now we show that there exists a map f̃ : QJ = QJ (τ ′) → πK1
2 such

that ΘJ = ΘJ (τ ′) surjects onto V ′′. Clearly there exists a surjection f : ΘJ / socΓ̃(ΘJ ) ↠ V ′′,
which is unique up to scalar (both sides are multiplicity free, with cosocle τ ′, and we know all
their constituents). We show that f : ΘJ ↠ ΘJ / socΓ̃(ΘJ ) ↠ V ′′ ⊆ πK1

2 can be extended to a
map QJ → πK1

2 . By Lemma 2.3.6 (with Ψi = Ψi(τ ′)) it suffices to show that the map f |rad
Γ̃

(Ψi)

extends to Ψi for all i ∈ J . (The extension is automatically unique, as δ+
i (τ ′) ̸↪→ π2|GL2(OK) by

Lemma 2.2.3.) Note that f |soc
Γ̃

(Ψi) = 0, as socΓ̃(Ψi) ⊆ radΓ̃(Ψi) ⊆ ΘJ and f(socΓ̃(ΘJ )) = 0.
If i ∈ J −, f |rad

Γ̃
(Ψi) = 0, as µ+

i (τ ′) ̸↪→ π2|GL2(OK) by Corollary 6.2.4 and Lemma 2.2.3, so the
extension to Ψi is trivial. If i ∈ J +, f |rad

Γ̃
(Ψi) factors through an injection of µ+

i (τ ′) into πK1
2

and by above this extends to an injection of µ+
i (τ ′)− δ+

i (τ ′) into πK1
2 .

By Lemma 2.3.5 the map f̃ gives rise to a homomorphism IndGL2(OK)
I WJ ↠ QJ → πK1

2 , and
by Frobenius reciprocity we get a map f : WJ → πK1

2 |I . Since f factors through WJ ↠ (WJ )K1

which is killed by m2 by Lemma 2.3.4(ii), we get f(WJ ) ⊆ π2[m2]. In particular, as cosocI(WJ ) ∼=
χτ ′ , we see that χτ ′ contributes to π2[m2].

We now specialize to V ′′ def= V ′, in which case f(WJ ) ̸⊆ Di0 . If f(WJ ) ⊆ π2[m] = πI1
2 , then

f(WJ ) ⊆ DI1
i0
⊆ Di0 by the first statement of Lemma 6.3.6(iii), contradiction. Since f(WJ )

is K1-invariant, by Lemma 2.3.4(ii) we deduce that radI(f(WJ )) ⊆ ⊕
i∈J χτ ′αi. If χτ ′αi ↪→

f(WJ ) ⊆ π2, then Frobenius reciprocity gives us a nonzero map IndGL2(OK)
I χτ ′αi → im(f̃) ⊆ π2,

and hence [im(f̃) : δ+
i (τ ′)] ̸= 0. By construction, [im(f̃) : δ+

i (τ ′)] = 0 for all i ∈ J −, so
radI(f(WJ )) ⊆ ⊕

i∈J + χτ ′αi. (In fact, we have radI(f(WJ )) = ⊕
i∈J + χτ ′αi, but we will not

need this.)

Choose now i ∈ J + such that χτ ′αi ⊆ f(WJ ). Let λ′ ∈ D ss correspond to τ ′ ∈ W (ρss), and
for i ∈ J + we let λ(i) ∈ D ss correspond to µ+

i (τ ′) ∈W (ρss) and λ′(i) ∈Pss correspond to δ+
i (τ ′).

(See § 1.4 for D ss and Pss.) More precisely, note that

(λ′
i, λ

(i)
i , λ

′(i)
i ) ∈

{
(xi, xi + 1, xi + 2), (p− 3− xi, p− 2− xi, p− 1− xi)

}
,

λ′
i−1 = p− 2− λ(i)

i−1 = λ
′(i)
i−1, and

λ′
j = λ

(i)
j = λ

′(i)
j ∀ j /∈ {i− 1, i}.

In particular, it follows that

Jλ(i) = Jλ′(i) = Jλ′ ∆ {i}, ℓ(λ(i)) = ℓ(λ′(i)) = ℓ(λ′)± 1. (75)

Recall that the I-representations Θ = ⊕
µ∈P Θµ and τ = ⊕

µ∈P τµ were defined just before
Lemma 6.1.6 (taking n = i0 + 4(≤ f + 2) and noting that by assumption ρ is (2n − 1)-generic).
Recall that in Step 2 of the proof of Theorem 6.1.1 we showed that the natural map (46) is
an isomorphism. Equivalently, Θ[m3] = π2[m3], and hence π2[m2] = ⊕

µ∈P Θµ[m2]. Moreover,
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using the exact sequence 0 → τµ ∩ π1 → τµ → Θµ → 0 and the dual of (45) (recalling that
Fµ,−iΘ∨

µ = miτ∨
µ ∩Θ∨

µ , cf. (43)), we see that

Θµ[mi] = τµ[mi+dµ ]
(τµ ∩ π1)[mi+dµ ]

for all i ≥ 0 (recall that dµ = max{i0 + 1− ℓ(µ), 0}). By (73) we have χτ ′αi = χλ′(i) ∈ JH(πI1
2 ) =

JH(π2[m]) = JH(Θ[m]), and moreover it occurs in τµ(i) , where µ(i) ∈P is obtained from λ′(i) as µ
is obtained from λ in [BHH+b, eq. (59)]. As the I-representation τ is multiplicity free ([BHH+b,
Cor. 2.4.3(ii)]) we deduce that χτ ′αi occurs in Θµ(i) [m]. Since the nonsplit extension χτ ′αi − χτ ′

is a quotient of f(WJ ) ⊆ π2[m2] = Θ[m2], it follows again by multiplicity freeness of τ that χτ ′

occurs in the direct summand Θµ(i) [m2] of Θ[m2] as well. Dually, χ−1
τ ′ occurs in grm,−1(Θ∨

µ(i)).

Define J (i)
1 , J (i)

2 exactly as in [BHH+b, eq. (58)] (with λ′(i) instead of λ) and let

J̃
(i)
1

def= {j /∈ Jρ : µ(i)
j = p− 1− xj} = {j /∈ Jρ : λ′(i)

j ∈ {p− 3− xj , p− 1− xj}},

J̃
(i)
2

def= {j /∈ Jρ : µ(i)
j = xj} = {j /∈ Jρ : λ′(i)

j ∈ {xj , xj + 2}},

so J (i)
1 ⊆ J̃

(i)
1 , J (i)

2 ⊆ J̃
(i)
2 , J̃ (i)

1 ∩ J̃
(i)
2 = ∅. Note that ℓ(µ(i)) = ℓ(λ′(i)) − |J (i)

1 | − |J
(i)
2 | = ℓ(λ(i)) −

|J (i)
1 | − |J

(i)
2 |, where the first equality was noted just after [BHH+b, eq. (59)]. We claim that

dµ(i) = |J (i)
1 |+ |J

(i)
2 |. (76)

If µ+
i (τ ′) /∈ W (ρ), then ℓ(λ(i)) = ℓ(µ+

i (τ ′)) = i0 + 1. If µ+
i (τ ′) ∈ W (ρ) and ℓ(λ(i)) ≥ i0 + 1, then

by above λ′(i) ∈ P (as χδ+
i (τ ′) ∈ JH(πI1) by (74)), so µ(i) = λ′(i) and J

(i)
1 = J

(i)
2 = ∅. The claim

follows.

As noted just after [BHH+b, eq. (59)] we have χλ′(i) = χµ(i)
∏
j∈J(i)

1
α−1
j

∏
j∈J(i)

2
αj , or equiva-

lently (using χλ′αi = χλ′(i)):

χ−1
λ′ = χ−1

µ(i)αi
∏

j∈J(i)
1

αj
∏

j∈J(i)
2

α−1
j . (77)

Recall from (44) and (45) that grm,−1(Θ∨
µ(i)) ∼= χ−1

µ(i) ⊗ gr−1−d
µ(i)

(ai01 (µ(i))/a(µ(i))) (using −1 −
dµ(i) > −n), and that

ai01 (µ(i))
a(µ(i))

∼=
I(J̃ (i)

1 , J̃
(i)
2 , dµ(i))

I(J̃ (i)
1 , J̃

(i)
2 , dµ(i)) ∩ a(µ(i))

(78)

by [BHH+b, eq. (75)]. As χ−1
λ′ occurs in grm,−1(Θ∨

µ(i)), we deduce that there exists
a monomial m ∈ I(J̃ (i)

1 , J̃
(i)
2 , dµ(i)), m /∈ a(µ(i)) of degree dµ(i) + 1 that has H-eigencharacter

χ−1
λ′ χµ(i) . By (77) the monomial

m′ def=

yi
∏
j∈J(i)

1
yj
∏
j∈J(i)

2
zj if i /∈ J (i)

2 ,∏
j∈J(i)

1
yj
∏
j∈J(i)

2 \{i} zj if i ∈ J (i)
2
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has the same H-eigencharacter. Since in addition m and m′ have degree at most 2 in each variable
(by [BHH+b, Def. 4.2.4] in the first case) and are not multiples of yjzj for any j (as m /∈ a(µ(i)) in
the first case), we deduce using p−1 > 4 that m = m′. Hence m′ has degree dµ(i) +1. Using (76) it
follows that i /∈ J (i)

2 and m = yi
∏
j∈J(i)

1
yj
∏
j∈J(i)

2
zj . If i ∈ Jρ, then µ(i)

i = λ
′(i)
i ∈ {xi+2, p−1−xi}

(by [BHH+b, eq. (58), eq. (59)]) and hence ti = yi (where ti = ti(µ(i)) is defined in (13)), so m is
a multiple of ti ∈ a(µ(i)), contradiction. Hence i ∈ Jcρ, and we deduce moreover that λ′(i)

i ̸= xi + 2
from i /∈ J (i)

2 and [BHH+b, eq. (58)].

We are left with the case where λ′(i)
i = p− 1− xi and i ∈ Jcρ. In this case Jτ ′ = Jµ+

i (τ ′) ⊔ {i}
by (75) since λ′

i = p − 3 − xi, hence τ ′ /∈ W (ρ) (as i ∈ Jcρ). Moreover, as µ+
i (τ ′) ↪→ π2|GL2(OK),

we have ℓ(τ ′) = ℓ(µ+
i (τ ′)) + 1 > i0 + 1, so τ ′ ∈ JH(W2), so τ ′ ∈ JH(W2,σ̃), where σ ∈ W (ρ) is

determined by Jσ = Jρ∩Jτ ′ (Lemma 6.3.3(i)). We claim that the unique subrepresentation W ′ of
W2,σ̃ ⊆ W2 ⊆ Di0 having cosocle τ ′ has semisimple radical. We have two cases by Corollary 6.2.4.
If µ+

i (τ ′) ∈ W (ρ) and ℓ(µ+
i (τ ′)) ≥ i0 + 1, then σ ∼= µ+

i (τ ′) and W ′ ∼= (µ+
i (τ ′) − τ ′) by Lemma

6.3.3(i), (iii). If µ+
i (τ ′) ∈W (ρss) and ℓ(µ+

i (τ ′)) = i0 + 1, then ℓ(σ) = |Jρ∩Jτ ′ | ≤ |Jµ+
i (τ ′)| = i0 + 1

(using i ∈ Jcρ) and ℓ(τ ′) = i0 + 2, so radΓ(W ′) is semisimple by Lemma 6.3.3(ii), (iii), proving
the claim. By the third paragraph of Step 1 (applied with V ′′ = V ′, resp. W ′), we obtain
two morphisms QS → πK1

2 that are linearly independent, as V ′ ̸⊆ Di0 and W ′ ⊆ Di0 . (Note
that the subset J ⊆ S may differ in the two cases, but QS surjects onto any QJ , and likewise
WS surjects onto any WJ .) Since we showed that the maps f : WS → π2 corresponding to
IndGL2(OK)

I WS ↠ QS → πK1
2 have images contained in π2[m2], we deduce that χτ ′ contributes

twice to π2[m2], as we wanted to show.

Step 2. Assume [V ′ : τ ′] = 2. We will show that χτ ′ contributes twice to π2[m3], but this
contradicts Corollary 6.1.8.

From (72) and since radΓ(V ′) ⊆ radΓ(V ) ⊆ Di0 is multiplicity free we deduce that τ ′ ∈
JH(radΓ(V ′

σ)) for a unique σ ∈W (ρ). By (71) and the last statement of Lemma 6.3.8(iii) (applied
to V ′

σ ⊆ Vσ) it follows that τ ′ ∼= σ ∈ W (ρ) and ℓ(τ ′) ≥ i0 + 1, hence [V ′
τ ′ : τ ′] = 2. Using

radΓ(V ′
τ ′) ⊆ Di0,τ ′ and ℓ(τ ′) ≥ i0 + 1 it follows moreover from Lemma 6.3.8(i) that socΓ(V ′

τ ′) = τ ′,
and hence τ ′ ↪→ radΓ(V ′) by (72). The natural surjection radΓ(V ′) ↠ radΓ(V ′/τ ′) induces an
isomorphism radΓ(V ′)/τ ′ ∼−→ radΓ(V ′/τ ′). We apply again (72) to deduce that

radΓ(V ′)/τ ′ ∼=
⊕
σ ̸=τ ′

radΓ(V ′
σ)⊕ (radΓ(V ′

τ ′)/τ ′). (79)

As in the second paragraph of Step 1, radΓ(V ′
σ) is semisimple for all σ ̸= τ ′, and radΓ(V ′

τ ′)/τ ′ is
semisimple by Lemma 2.2.2. In conclusion, radΓ(V ′/τ ′) is semisimple. As cosocΓ(V ′/τ ′) ∼= τ ′ we
can write, as in the fourth paragraph of Step 1,⊕

σ ̸=τ ′

radΓ(V ′
σ) ∼=

⊕
i∈J +

µ+
i (τ ′)⊕

⊕
i∈J −

µ−
i (τ ′) (80)

and (using moreover Lemma 2.2.2),

radΓ(V ′
τ ′)/τ ′ ∼=

⊕
i∈J ′

(µ+
i (τ ′)⊕ µ−

i (τ ′)) (81)
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for some subsets J +, J −, J ′ of {0, 1, . . . , f − 1}. For i ∈ J ∗, ∗ ∈ {±} we have µ∗
i (τ ′) ↪→ V ′ ↪→

π2|GL2(OK) by (72). Therefore J + ∩ J − = ∅ by Corollary 6.2.4 and Lemma 2.2.3, and note that
(J + ⊔ J −) ∩ J ′ = ∅ as radΓ(V ′) ⊆ Di0 is multiplicity free. Let J def= J ′ ⊔ J + ⊔ J −, and write
QJ = QJ (τ ′), ΘJ = ΘJ (τ ′), Ψi = Ψi(τ ′) as in Step 1.

We show that dimF HomGL2(OK)(ΘJ , π2|GL2(OK)) ≥ 2. It suffices to show that
dimF HomΓ̃(ΘJ , V

′) = 2. As [V ′ : τ ′] = 2 and cosocΓ̃(ΘJ ) ∼= τ ′, the dimension is at most 2,
and we have a trivial map ΘJ ↠ τ ′ ↪→ V ′, so it suffices to find a map whose image is not ir-
reducible. We follow the argument in [HW22, Cor. 3.14]. By (79), (80), and (81) there exists a
surjection f : ΘJ / socΓ̃(ΘJ ) ↠ V ′/τ ′ (just as in the sixth paragraph of Step 1). The same proof
as in [HW22, Cor. 3.13] shows that Ext1

Γ̃
(ΘJ , τ

′) = 0, so we can lift f to f̃ : ΘJ → V ′ whose
image is not contained in τ ′ ⊆ V ′.

We show that the restriction map

HomGL2(OK)(QJ , π2|GL2(OK))→ HomGL2(OK)(ΘJ , π2|GL2(OK)) (82)

is surjective (even an isomorphism). By Lemma 2.3.6 it suffices to show that the restriction map

HomGL2(OK)(Ψi, π2|GL2(OK))→ HomGL2(OK)(radΓ̃(Ψi), π2|GL2(OK)) (83)

is an isomorphism for any i ∈ J . The map (83) is injective, as Ψi
∼= (τ ′ − µ+

i (τ ′) − δ+
i (τ ′)) and

δ+
i (τ ′) ̸↪→ π2|GL2(OK) by Lemma 2.2.3, so it suffices to show that the map (83) is surjective. By

Lemma 2.2.1, radΓ̃(Ψi) ∼= (τ ′−µ+
i (τ ′)) is a quotient of IndGL2(OK)

I χµ+
i (τ ′) (note that µ−

i (µ+
i (τ ′)) =

τ ′ as f ≥ 2), so by Lemma 6.3.6(iii) (and Frobenius reciprocity) we see that the right-hand side
of (83) is at most 1-dimensional. It thus suffices to show that HomGL2(OK)(Ψi, π2|GL2(OK)) ̸= 0
for all i ∈ J .

Suppose i ∈ J . If µ+
i (τ ′) ↪→ π2|GL2(OK), then the nonsplit extension µ+

i (τ ′)− δ+
i (τ ′) embeds

into Di0 ⊆ πK1
2 exactly as in the fifth paragraph of Step 1, so we are done. Otherwise, i ∈ J −

and hence µ−
i (τ ′) ∈ W (ρss). As τ ′ ∈ W (ρ) and ℓ(τ ′) ≥ i0 + 1 (see the second paragraph of

Step 2), the uniserial representation Ψi = (τ ′ − µ+
i (τ ′) − δ+

i (τ ′)) injects into D̃0(ρ) (by the
definition of D̃0(ρ) in § 1.4, noting that µ+

i (τ ′), δ+
i (τ ′) /∈ W (ρ) by Lemma 2.2.3) and even into

D̃0(ρ)/D̃0(ρ)≤i0 ↪→ π2|GL2(OK), where this last injection comes from Corollary 6.2.6. We have
proved that (82) is an isomorphism.

As IndGL2(OK)
I WJ surjects onto QJ by Lemma 2.3.5, we deduce from the surjectivity of (82)

and from dimF HomGL2(OK)(ΘJ , π2|GL2(OK)) ≥ 2 that

dimF HomI(WJ , π2|I) = dimF HomGL2(OK)(IndGL2(OK)
I WJ , π2|GL2(OK)) ≥ 2.

As cosocI(WJ ) = χτ ′ and WJ is killed by m3, it follows that χτ ′ occurs at least twice in π2[m3],
as we wanted to show.

Corollary 6.3.9. Assume that ρ is max{9, 2f + 3}-generic. Suppose π′ = π′
1/π1 is any nonzero

subquotient, where π1 ⊊ π′
1 ⊆ π. Let i0

def= i0(π1), i′0
def= i0(π′

1), so −1 ≤ i0 < i′0 ≤ f . Then

π′K1 ∼= D0(ρss)i0+1 ⊕D0(ρ)i0+1 (D0(ρ)≤i′0/D0(ρ)≤i0).
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Proof. Note that π′K1 is the kernel of the natural map (π/π1)K1 → (π/π′
1)K1 . Let us write

again Di0
def= D0(ρss)i0+1 ⊕D0(ρ)i0+1 (D0(ρ)/D0(ρ)≤i0). By Theorem 6.3.1 the above natural map

is identified with a map
θ : Di0 → Di′0

.

Let θ0
def= θ|D0(ρ)/D0(ρ)≤i0

. We have socGL2(OK)(π/π′
1) ⊆ {σ ∈ W (ρss) : ℓ(σ) ≥ i′0 + 1} by Corol-

lary 6.2.4, and JH(D0(ρss)i0+1) ∩W (ρss) is disjoint from that set since i0 < i′0, so D0(ρss)i0+1 ⊆
ker(θ) and hence ker(θ) = D0(ρss)i0+1 ⊕D0(ρ)i0+1 ker(θ0). On the other hand, by comparison with
πK1 = D0(ρ) we see that θ0 is the natural surjection D0(ρ)/D0(ρ)≤i0 ↠ D0(ρ)/D0(ρ)≤i′0 . The
result follows.

We can now extend [Wan, Thm. 1.2] to subquotients.

Corollary 6.3.10. Keep the notation and assumptions of Corollary 6.3.9. Then we have

dimF((X))D
∨
ξ (π′) = | JH(π′K1) ∩W (ρss)| =

∑
i0<i≤i′0

(
f

i

)
.

Proof. By exactness of D∨
ξ and [BHH+b, Cor. 4.4.2] we know that the two outside terms are equal.

By Corollary 6.3.9 (using (66), [BHH+b, eq. (65)] and that W (ρss) ⊆ JH(D0(ρ))), we deduce that
JH(π′K1) ∩W (ρss) = {σ ∈W (ρss) : i0 < ℓ(σ) ≤ i′0}, and the result follows.

7 Global arguments

In this section we prove that certain globally defined smooth mod p representations of GL2(K)
satisfy assumption (v) of § 3 (besides assumptions (i)–(iv) of § 3).

7.1 Global setting

We define smooth mod p representations of GL2(K) that arise from the mod p étale cohomology
of suitable Shimura curves, and recall why they satisfy assumptions (i)–(iv) of § 3. We then show
in § 7.2 below that they furthermore satisfy assumption (v).

Let F be a totally real number field in which p is unramified, and let Sp denote the set of
places of F above p. For each finite place w of F we denote by Fw the completion of F at w. We
fix a quaternion algebra D over F , with center F such that D splits at all places in Sp and at
exactly one infinite place. We let SD denote the set of places of F at which D ramifies.

We fix a continuous representation r : Gal(F/F ) → GL2(F) and define Sr to be the set of
places where r ramifies. We write rw for r|Gal(Fw/Fw). We assume that:

• r|Gal(F/F ( p√1)) is absolutely irreducible;
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• if p = 5, then the image of r(Gal(F/F ( p
√

1))) in PGL2(F) is not isomorphic to A5;

• for all w ∈ Sp, rw is 0-generic;

• for all w ∈ SD, rw is non-scalar.

We now fix v ∈ Sp and let ψ : GF → W (F)× be the Teichmüller lift of ω det(r). Following
[EGS15, § 6.5] with the corrections of [BHH+23, Rk. 8.1.3] (see also [BD14, § 3.3, § 3.4]) we
have a compact open subgroup Uv of (D ⊗F A∞,v

F )× and a smooth representation of Uv(A∞,v
F )×

on a finite-dimensional F-vector space which we denote by M
v, and on which (A∞,v

F )× acts by
ψ−1. (Following the notation of [EGS15, § 6.5] this is the mod p-reduction of the inflation to∏
w∈S\{v}Kw

∏
w/∈S∪{v}(OD)×

w of the ∏w∈S\{v}Kw-representation L over W (F) of loc. cit., where
furthermore (A∞,v

F )× acts via ψ−1. Again, the representation L should be corrected following
[BHH+23, Rk. 8.1.3(i)], in particular ψ in [EGS15, § 6.5] should be replaced everywhere by its
inverse.) We set ρ def= r∨

v and following [BD14, eq. (3.3)] (which treats the case where r is split at
all w ∈ Sp, but generalizes to the remaining cases by [EGS15, § 6.5]) we define the “local factor”

π(ρ) def= HomUv

(
M

v
,HomGal(F/F )

(
r, lim−→

V

H1
ét(XV ×F F ,F)

))
[m′

r], (84)

where XV denotes the smooth projective Shimura curve over F associated to V constructed with
the convention “ε = −1” (see [BD14, § 3.1] and [BDJ10, § 2]), the colimit runs over all compact
open subgroups of (D ⊗F A∞

F )×, and m′
r is the maximal ideal denoted m′ in [BD14, § 3.3] and

in [EGS15, p. 50] (though the context of loc. cit. is slightly different since they use patching
functors). We assume from now on that

• HomGal(F/F )
(
r, lim−→V

H1
ét(XV ×F F ,F)

)
̸= 0.

In particular π(ρ) ̸= 0 by [BD14, Thm. 3.7.1] under the condition that r is reducible at all w ∈ Sp,
but the proof extends to the general case using the material of [EGS15, § 6.5].

We define the ring R∞ as in [BHH+23, § 8.1], with the set S in loc. cit. taken to be SD ∪ Sr
and the rings Rψw

rw
(w ∈ (SD ∪Sr)\Sp) and R(0,−1),τw,ψw

rw
(w ∈ Sp \{v}) of loc. cit. replaced by the

rings Rmin
w of [EGS15, § 6.5]. By [EGS15, Thm. 7.2.1] and [BD14, Lemma 3.4.1] the rings Rmin

w

are formally smooth over W (F) (of dimension 3 or 3 + 3[Fw : Qp] according to whether w ∈ Sp or
not), so that R∞ is formally smooth over W (F) of relative dimension 4|SD∪Sr|+2[Fv : Qp]+q−1
for some integer q ≥ [F : Q].

We can now follow the construction of [EGS15, § 6.4] (where the definition of S(σ)m of
loc. cit. should be corrected as explained in [BHH+23, Rk. 8.1.3(iii)]). We obtain a patching
functor (in the sense of [EGS15, § 6.1]) M∞ defined on the category of continuous representations
of GL2(OFv ) on finite type W (F)-modules with central character ψ−1, and taking values in the
category of R∞-modules of finite type, such that

M∞(σv)/m∞ ∼=
(

HomGL2(OFv )(σv, π(ρ))
)∨

and which moreover satisfies dimF(M∞(σv)/m∞) ≤ 1 for any Serre weight σv, by [EGS15, § 6.5].
Furthermore the construction of [DL21, Thm. 6.2] gives a finitely generated module M∞ over
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R∞JGL2(OFv )K such that M∞/m∞ ∼= π(ρ)∨ and

M∞(σv) = Homcont
W (F)JGL2(OFv )K(M∞, σ

∨
v )∨

(where (−)∨ def= Homcont
W (F)(−, E/W (F))).

Proposition 7.1.1. If ρ is 12-generic then π(ρ) satisfies assumptions (i)–(iv) with “r = 1”.

Proof. The proofs of the results of [BHH+23, § 8.2, § 8.3, Thms. 8.4.1, 8.4.2, 8.4.3], [Wan23, § 6]
go through verbatim for our π(ρ), replacing all occurrences of r in loc. cit. by 1. (Note that the
hypothesis [BHH+23, § 8.1, item (iii)(b)] and [Wan23, § 1, item (ii)] are satisfied as all Rmin

w above
are formally smooth over W (F).) In particular [BHH+23, Thm. 1.9], [Wan23, Thm. 6.3(ii)] hold,
with r = 1, for π(ρ) so that π(ρ) satisfies assumption (i) and (ii) (for the latter, using [BHH+23,
Prop. 6.4.6] which holds for a not necessarily semisimple ρ). Similarly [BHH+23, Thm. 1.10],
[Wan23, Thm. 6.3(i)] hold for π(ρ) so that π(ρ) satisfies assumption (iii) (via [HW22, Thm. 8.2]).
Finally the proofs of [BHH+b, Lemma 2.6.1, Prop. 2.6.2] go through verbatim replacing r and π
in loc. cit. with 1 and π(ρ) respectively, so π(ρ) satisfies assumption (iv). (Note that assumption
(i) is also satisfied by the main result of [LMS22, HW18, Le18].)

7.2 Verifying assumption (v)

We keep the setup of § 7.1. The goal of this section is to prove the following result:

Proposition 7.2.1. Assume that ρ is 9-generic. If π(ρ) satisfies assumptions (i), (ii) and (iv)
of § 3, then it also satisfies assumption (v).

To simplify notation we let π def= π(ρ) and assume that it satisfies assumptions (i), (ii) and (iv)
in the remainder of this section.

Remark 7.2.2. In fact, we will even establish a canonical isomorphism

Torgr(Λ)
1 (gr(Λ)/mn, grm(π∨)) ∼= gr(TorΛ

1 (Λ/mn, π∨))

for n = 3. We remark that the n = 2 case can be proved by a similar, but significantly shorter,
argument. The n = 1 case was established in [BHH+b, Cor. 2.5.1(i)] (taking i = 1 there).

The proof of Proposition 7.2.1 requires a number of preliminary results.

Lemma 7.2.3. Assume that ρ is 0-generic. Then for any λ ∈P we have

JH(IndGL2(OK)
I χλ) ∩W (ρ) = {τ ∈W (ρ) : J ′ min ⊆ Jτ ⊆ J ′ max},

where

J ′ min def= {j ∈ Jρ : λj ∈ {xj + 2, p− 3− xj}},
J ′ max def= {j ∈ Jρ : λj /∈ {xj , p− 1− xj}}.
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Proof. Note that we can replace λ with λ[s] (see [BHH+b, eq. (50)]) without changing the validity
of the lemma. By [Bre14, Prop. 4.3] we have

JH(IndGL2(OK)
I χsλ) ∩W (ρ) = {σJ : Jmin ⊆ J ⊆ Jmax},

where σJ ∈ W (ρ) denotes the Serre weight defined by νJ
def= µJ ◦ λ, with µJ ∈ P determined by

µJ,j ∈ {p− 2− xj , p− 1− xj} if and only if j ∈ J . As σJ ∈W (ρ), we deduce that µJ ◦ λ ∈ D by
[HW22, Lemmas 2.1, 2.7]. Also recall from [Bre14, Prop. 4.3] that

Jmin = δ({j : λj ∈ {p− 1− xj , xj + 2} or (λj = xj + 1, j /∈ Jρ}),
Jmax = δ({j : λj /∈ {p− 3− xj , xj} and (λj = p− 2− xj ⇒ j ∈ Jρ)}).

Let J(λ) def= {j : λj ∈ {p− 3− xj , p− 2− xj , p− 1− xj}}. As νJ = µJ ◦ λ, we have

j ∈ δ(JνJ ) ⇐⇒ νJ,j ∈ {p− 3− xj , p− 2− xj} ⇐⇒ j ∈ J ∆ J(λ).

Equivalently,

JνJ = δ−1(J) ∆K, where K def= δ−1(J(λ)) = {j : λj ∈ {p− 3− xj , p− 1− xj , xj + 1}}. (85)

From basic set theory, Jmin ⊆ J ⊆ Jmax if and only if J ′ min ⊆ δ−1(J) ∆K ⊆ J ′ max, where

J ′ min def= (δ−1(Jmin) \K) ⊔ (K \ δ−1(Jmax)),
J ′ max def= (δ−1(Jmax) \K) ⊔ (K \ δ−1(Jmin)).

Finally, it follows from the definitions that

J ′ min = {j : λj = xj + 2} ⊔ {j : λj = p− 3− xj},
J ′ max = {j ∈ Jρ : λj ∈ {xj + 2, p− 2− xj}} ⊔ {j ∈ Jρ : λj ∈ {p− 3− xj , xj + 1}}.

Lemma 7.2.4. Suppose that A0 = F[x1, . . . , xn] and A = FJx1, . . . , xnK. If I0, J0 are ideals of
A0, then I0A ∩ J0A = (I0 ∩ J0)A as ideals of A.

Proof. This is a special case of [Mat89, Thm. 7.4(ii)], as A is flat over A0.

The following lemma follows exactly as in [LLHLM20, Lemma 3.6.2] and [EGS15, Prop. 8.1.1].

Lemma 7.2.5. Suppose V is a finite length smooth representation of GL2(OK) over F that
is multiplicity free. Suppose that the scheme-theoretic supports of the R∞-modules M∞(σ) (cf.
[BHH+b, § 2.6]) are reduced and do not share any irreducible components for σ running through
JH(V ). Then

AnnR∞ M∞(V ) =
⋂

σ∈JH(V )
AnnR∞ M∞(σ).

Lemma 7.2.6. Suppose R = F[Xj , Yj (1 ≤ j ≤ k)], I = (XjYj (1 ≤ j ≤ k), YjYj′ (1 ≤ j < j′ ≤
k)). We have

dimF TorRi (F, R/I) =
{

1 if i = 0,
i
(k+1
i+1
)

if i > 0.
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Proof. Note that R/I is the Stanley–Reisner ring F[∆] associated to the simplicial complex ∆
whose minimal non-faces are {Xj , Yj} (1 ≤ j ≤ k) and {Yj , Yj′} (1 ≤ j < j′ ≤ k) [BH93, § 5].
Also, dimF TorRi (F, R/I) is the rank of the degree i term in any minimal graded free resolution of
R/I as R-module. Let V

def= {X1, . . . , Yk} denote the set of vertices. By [BH93, Thm. 5.5.1, Thm.
5.3.2] we have

dimF TorRi (F, R/I) =
∑

W ⊆V

dimF H̃|W |−i−1(|∆W |;F), (86)

where ∆W denotes the subcomplex obtained by all faces of ∆ whose vertices are contained in
W with geometric realization |∆W |, and where H̃j denotes the j-th reduced homology group
(by convention, H−1(∅;F) = F). By definition of ∆, if W contains at least two Xj , then |∆W | is
contractible (so the term indexed by W in (86) vanishes). Similarly, if W contains Xj for precisely
one j, but it does not contain Yj , then |∆W | is contractible. If W contains Xj for precisely one j
and it also contains Yj , then |∆W | is homotopic to a disjoint union of 2 points. If W contains no
Xj , then |∆W | is a disjoint union of |W | points. If |∆W | is homotopic to a disjoint union of s ≥ 2
points, the term dimF H̃|W |−i−1(|∆W |;F) equals s− 1 in degree i = |W | − 1 and 0 otherwise.

Now let us compute dimF TorRi (F, R/I) via (86). If i > 0, the only contribution then comes
from the

( k
i+1
)

subsets W of {Y1, . . . , Yk} of cardinality i+1 (each contributing i) and the k ·
(k−1
i−1
)

subsets W that contain precisely one Xj and also Yj (each contributing 1). The lemma easily
follows.

Recall that for n ≥ 1 we denote Wχ,n = (ProjI/Z1 χ)/mn ∼= χ⊗F Λ/mn. For λ ∈P we let

kλ
def= |{0 ≤ j ≤ f − 1 : tj ̸= yjzj}|.

(Recall that the tj , depending on λ, are defined in (13).) We recall that R∞ = R∞ ⊗O F.

Proposition 7.2.7. Assume that ρ is 2-generic. Then for any λ ∈ P we can find compatible
isomorphisms

R∞ ∼= FJXj , Yj (1 ≤ j ≤ ℓ), Zm (ℓ < m ≤ N)K

for some integer N ≥ 2f and

M∞(IndGL2(OK)
I Wχλ,2) ∼= R∞/(XjYj (1 ≤ j ≤ ℓ), YiYj (1 ≤ i < j ≤ kλ), Zm(ℓ < m ≤ 2f)),

where ℓ def= |Jρ|.

Proof. Let χ def= χλ and Vχ
def= IndGL2(OK)

I Wχ,2. We have

M∞(Vχ)/m∞ ∼= HomI((ProjI/Z1 χ)/m2, π)∨ ∼= HomI(ProjI/Z1 χ, π[m2])∨, (87)

and this is one-dimensional by [HW22, Thm. 1.3(ii)], so M∞(Vχ) is a cyclic R∞-module.

We first show that

JH(Vχ) ∩W (ρ) =
{
σ ∈W (ρ) :

∣∣(Jσ \ J ′′) ∆ J ′∣∣ ≤ 1
}
, (88)
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where J ′ def= {j ∈ Jρ : λj ∈ {xj + 2, p − 3 − xj}} and J ′′ def= {j ∈ Jρ : λj ∈ {xj + 1, p − 2 − xj}}.
Note that Lemma 7.2.3 applied to χ gives J ′ min = J ′ and J ′ max = J ′ ⊔ J ′′. On the other hand,
by [BHH+b, Lemma 2.3.6(ii)] (with m = 1), χ′ def= χα±1

j occurs in πI1 if and only if j ∈ Jρ and
λj ∈ {xj , p− 3−xj} (resp. λj ∈ {xj + 2, p− 1−xj}) if the sign is positive (resp. negative), and in
each such case Lemma 7.2.3 applied to χ′ gives J ′ min = J ′ ∆ {j} and J ′ max = J ′ ⊔ J ′′. In other
words,

JH(Vχ) ∩W (ρ) =
{
σ ∈W (ρ) : ∃ K ⊆ Jρ \ J ′′, |K| ≤ 1, J ′ ∆K ⊆ Jσ ⊆ (J ′ ∆K) ⊔ J ′′

}
=
{
σ ∈W (ρ) : ∃ K ⊆ Jρ \ J ′′, |K| ≤ 1, Jσ \ J ′′ = J ′ ∆K

}
=
{
σ ∈W (ρ) : ∃ K ⊆ Jρ \ J ′′, |K| ≤ 1, (Jσ \ J ′′) ∆ J ′ = K

}
,

which is equivalent to (88).

As ρ is nonsplit, we may assume without loss of generality that 0 /∈ Jρ if f is odd. Let

µ
def=
{

(x0 + 1, p− 2− x1, x2 + 1, p− 2− x3, . . . , p− 2− xf−1) if f is even,
(x0, p− 2− x1, x2 + 1, p− 2− x3, . . . , p− 2− xf−2, xf−1 + 1) if f is odd,

so µ ∈ P and for all j ∈ Jρ we have µj ∈ {xj + 1, p − 2 − xj}. Then [Bre14, Prop. 4.3]
or Lemma 7.2.3 imply that JH(IndGL2(OK)

I χµ) ⊇ W (ρ). Observe that if σ ∈ W (ρ), then σ is
parametrized, in the notation of [Bre14], by the set

Jσ,µ
def= {j even : j ∈ δ(Jσ)} ⊔ {j odd : j /∈ δ(Jσ)}.

(If f is odd we take 0 ≤ j ≤ f − 1, not just j ∈ Z/fZ!) On the other hand, in the same situation,
the minimal/maximal subsets in [Bre14, Prop. 4.3] equal

Jmin = δ({j even : j /∈ Jρ, j ̸= 0 if f odd})
= {j odd : j /∈ δ(Jρ)}

and

Jmax = δ({j even : j ̸= 0 if f odd} ⊔ {j odd : j ∈ Jρ})
= {j odd} ⊔ {j even : j ∈ δ(Jρ)}.

In particular, we deduce that

Jσ,µ \ Jmin = {j even : j ∈ δ(Jσ)} ⊔ {j odd : j ∈ δ(Jρ \ Jσ)},
Jmax \ Jmin = δ(Jρ).

(89)

Let τ0 denote the lattice in a tame principal series type obtained by inducing the Teichmüller
lift of χµ from I to GL2(OK), and let τ def= τ0[1/p]. By [EGS15, Thm. 7.2.1] the corresponding
fixed-determinant framed local deformation ring Rτ,ψ,□ρ is isomorphic to OJxj , yj , zm : j ∈ Jmax \
Jmin, 1 ≤ m ≤ f+3−ℓK/(xjyj : all j) (of relative dimension f+3), where ℓ def= |Jmax\Jmin| = |Jρ|.
The full fixed-determinant framed local deformation ring Rψ,□ρ is a power series ring in 3f + 3
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variables. It is not hard to see that we can choose an isomorphism Rψ,□ρ
∼= OJXj , Yj , Zm :

j ∈ Jmax \ Jmin, ℓ < m ≤ 3f + 3 − ℓK such that Rτ,ψ,□ρ = Rψ,□ρ /((XjYj : all j) + IZ), where
IZ

def= (Zm : ℓ < m ≤ 2f).

Hence by [EGS15, Thm. 10.1.1] we deduce that

R∞ ∼= OJXj , Yj , Zm : j ∈ Jmax \ Jmin, ℓ < m ≤ NK,

M∞(τ0) ∼= R∞/((XjYj : all j) + IZ),

for some integer N ≥ 3f + 3− ℓ. From [EGS15, Thm. 7.2.1(4), Lemma 10.1.12] it follows that

AnnR∞
M∞(σ) = (Xj : j ∈ Jσ,µ \ Jmin, Yj : j ∈ Jmax \ Jσ,µ) + IZ . (90)

(In fact, to compare with the conventions of [EGS15] we have to replace (Jmin, Jmax, Jσ,µ) by
((Jmax)c, (Jmin)c, Jcσ,µ), cf. the proof of [EGS15, Lemma 7.4.1], but this amounts to interchanging
Xj and Yj for each j.)

By Lemma 7.2.5 we have

AnnR∞
M∞(IndGL2(OK)

I χµ) =
⋂

σ∈W (ρ)
AnnR∞

M∞(σ),

Iχ
def= AnnR∞

M∞(Vχ) =
⋂

σ∈JH(Vχ)∩W (ρ)
AnnR∞

M∞(σ).

We will make several changes of variables, which will not affect the final result. Up to interchanging
Xj ’s and Yj ’s, we deduce from equations (89) and (90) that

Iχ ∼=
⋂

σ∈JH(Vχ)∩W (ρ)

(
(Xj : j ∈ δ(Jσ), Yj : j ∈ δ(Jρ \ Jσ)) + IZ

)
.

Shifting the indices in Xj and Yj by one (to get rid of the δ(·)), and applying (88) we get

Iχ ∼=
⋂

J⊆Jρ, |(J\J ′′)∆J ′|≤1

(
(Xj : j ∈ J, Yj : j ∈ Jρ \ J) + IZ

)
. (91)

As J ′ ∩ J ′′ = ∅ we have (J \ J ′′) ∆ J ′ = (J ∆ J ′) \ J ′′. Interchanging variables Xj and Yj for all
j ∈ J ′, which has the effect of replacing J by J ∆ J ′ in (91) we get

Iχ ∼=
⋂

J⊆Jρ, |J\J ′′|≤1

(
(Xj : j ∈ J, Yj : j ∈ Jρ \ J) + IZ

)
.

By Lemma 7.2.4 and [BH93, Thm. 5.1.4], this intersection equals

(XjYj , Yj1Yj2 : all j ∈ Jρ; j1 < j2 both contained in Jρ \ J ′′) + IZ . (92)

(The corresponding simplicial complex has facets {Xj : j /∈ J, Yj : j ∈ J}, hence minimal non-
faces {Zm} for all m, {Xj , Yj} for all j, and {Yj1 , Yj2} for all j1 < j2 both contained in Jρ \ J ′′.)
As kλ = |{j ∈ Jρ : λj /∈ {xj + 1, p− 2− xj}}| = |Jρ \ J ′′|, we are done.

73



Proposition 7.2.8. Assume that ρ is 2-generic. Then for any λ ∈P we have

dimF ExtiI/Z1
(Wχλ,2, π) =


1 if i = 0,
2f +

(kλ
2
)

if i = 1,
2f2 + (k2

λ − kλ − 1)f −
(kλ+1

3
)

if i = 2.

Proof. Let χ def= χλ and k
def= kλ for short.

By [BHH+b, Lemma 2.6.1], ExtiI/Z1
(Wχ,2, π) is dual to TorR∞

i (F,M∞(IndGL2(OK)
I Wχ,2)),

hence by Proposition 7.2.7 to TorR∞
i (F, R∞/I∞), where

R∞ = FJXj , Yj (1 ≤ j ≤ ℓ), Zm (ℓ < m ≤ N)K,
I∞ = (XjYj (1 ≤ j ≤ ℓ), YiYj (1 ≤ i < j ≤ k), Zm(ℓ < m ≤ 2f)) ⊆ R∞,

where ℓ = |Jρ|. Let

R
def= F[Xj , Yj (1 ≤ j ≤ ℓ), Zm (ℓ < m ≤ N)],

I
def= (XjYj (1 ≤ j ≤ ℓ), YiYj (1 ≤ i < j ≤ k), Zm(ℓ < m ≤ 2f)) ⊆ R.

As R∞ is flat over R and R∞/I∞ = R∞ ⊗R R/I, by considering minimal graded free resolutions
we deduce an isomorphism

TorRi (F, R/I) ∼= TorR∞
i (F, R∞/I∞).

It remains to compute TorRi (F, R/I) for i ≤ 2. We let

R(1) def= F[Xj , Yj (1 ≤ j ≤ k)], I(1) def= (XjYj (1 ≤ j ≤ k), YiYj (1 ≤ i < j ≤ k)),
R(2,j) def= F[Xj , Yj ], I(2,j) def= (XjYj),
R(3,m) def= F[Zm], I(3,m) def= (Zm),
R(4,n) def= F[Zn], I(4,n) def= (0),

so that

R ∼= R(1) ⊗F
⊗
k<j≤ℓ

R(2,j) ⊗F
⊗

ℓ<m≤2f
R(3,m) ⊗F

⊗
n>2f

R(4,n),

R/I ∼= R(1)/I(1) ⊗F
⊗
k<j≤ℓ

R(2,j)/I(2,j) ⊗F
⊗

ℓ<m≤2f
R(3,m)/I(3,m) ⊗F

⊗
n>2f

R(4,n)/I(4,n).

By using the tensor product of a minimal graded free resolution of R(1)/I(1) and of the minimal
graded free resolutions

0→ R(2,j) XjYj−−−→ R(2,j) →R(2,j)/I(2,j) → 0

0→ R(3,m) Zm−−→ R(3,m) →R(3,m)/I(3,m) → 0
0→ R(4,n) →R(4,n)/I(4,n) → 0
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we obtain that

dimF TorRi (F, R/I) =
i∑

j=0

(
2f − k
i− j

)
dimF TorR(1)

j (F, R(1)/I(1)),

=
(

2f − k
i

)
+

i∑
j=1

j ·
(

2f − k
i− j

)(
k + 1
j + 1

)

by Lemma 7.2.6. We conclude by a short calculation.

Corollary 7.2.9. Assume that ρ is 3-generic. Then for any λ ∈P we have

dimF Ext1
I/Z1

(Wχλ,3, π) ≥ 2f2 + f +
(
kλ + 1

3

)
.

Remark 7.2.10. We will see below (in the proof of Proposition 7.2.1) that equality holds, at
least under a stronger genericity condition. By the proof of this corollary, this implies in fact that
the natural map Ext2

I/Z1
(Wχλ,3, π)→ Ext2

I/Z1
(χλ ⊗m2/m3, π) is injective.

Proof. Again let χ def= χλ. By [HW22, Thm. 1.3], we have HomI/Z1(Wχ,3, π) = HomI/Z1(χ, π).
The exact sequence 0→ χ⊗m2/m3 →Wχ,3 →Wχ,2 → 0 thus gives rise to a long exact sequence

0→ HomI/Z1(χ⊗m2/m3, π)→ Ext1
I/Z1

(Wχ,2, π)→ Ext1
I/Z1

(Wχ,3, π)
→ Ext1

I/Z1
(χ⊗m2/m3, π)→ Ext2

I/Z1
(Wχ,2, π).

(93)

Let J def= {0 ≤ j ≤ f − 1 : tj ̸= yjzj} (where again the tj are defined in (13)). Let εj
def=

−1 if tj = yj , εj
def= +1 if tj = zj . Note that, by [BHH+b, Lemma 2.3.6(ii)] (with m = 2),

JH(χ ⊗ m2/m3) ∩ JH(πI1) consists of χ (occurring 2f times in χ ⊗ m2/m3) and all χαεi
i α

εj

j for
{i < j} ⊆ J (each occurring once in χ⊗m2/m3). Hence by assumption (iv) we deduce that

dimF ExtiI/Z1
(χ⊗m2/m3, π) =

{
2f +

(kλ
2
)

if i = 0,
2f(2f +

(kλ
2
)
) if i = 1.

By Proposition 7.2.8 we deduce that the first map in (93) is an isomorphism, so

dimF Ext1
I/Z1

(Wχ,3, π) ≥ dimF Ext1
I/Z1

(χ⊗m2/m3, π)− dimF Ext2
I/Z1

(Wχ,2, π)

= 2f
(

2f +
(
kλ
2

))
−
(

2f2 + (k2
λ − kλ − 1)f −

(
kλ + 1

3

))

= 2f2 + f +
(
kλ + 1

3

)
,

where we used Proposition 7.2.8 again.

Lemma 7.2.11. Assume that ρ is (2n+1)-generic. Suppose that χ : I → F×, J, J ′ ⊆ {0, 1, . . . , f−
1}, ij , i′j′ ∈ Z \ {0} for all j ∈ J , j′ ∈ J ′ such that

∑
j∈J |ij | ≤ n and

∑
j∈J ′ |i′j | ≤ n. If

χ
∏
j∈J α

ij
j ∈ JH(πI1) and χ

∏
j∈J ′ α

i′j
j ∈ JH(πI1), then
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(i) |ij − i′j | ≤ 1 for all j ∈ J ∩ J ′;

(ii) χ
∏
j∈J ′′ α

i′′j
j ∈ JH(πI1) for any J ∩ J ′ ⊆ J ′′ ⊆ J ∪ J ′, where i′′j = ij if j ∈ J and i′′j = i′j if

j ∈ J ′′ \ J .

Proof. Let χ′ def= χ
∏
j∈J α

ij
j ∈ JH(πI1) and χ′′ def= χ

∏
j∈J ′ α

i′j
j ∈ JH(πI1). Write χ′ = χλ for some

λ ∈P. Since
χ′′ = χ′ ∏

j∈J∩J ′

α
i′j−ij
j

∏
j∈J\J ′

α
−ij
j

∏
j∈J ′\J

α
i′j
j ,

part (i) immediately follows from [BHH+b, Lemma 2.3.6(ii)] (with m = 2n). The same lemma
implies part (ii) as well, by noting that

χ
∏
j∈J ′′

α
i′′j
j = χ′ ∏

j∈J\J ′′

α
−ij
j

∏
j∈J ′′\J

α
i′j
j

and since the assumptions imply that J ′′ \ J ⊆ J ′ \ J and J \ J ′′ ⊆ J \ J ′.

Proof of Proposition 7.2.1. It suffices to establish a canonical isomorphism

Torgr(Λ)
1 (gr(Λ)/m3, grm(π∨)) ∼= gr(TorΛ

1 (Λ/m3, π∨)).

Just as in the proof of [BHH+b, Cor. 2.4.8, Cor. 2.5.1] it suffices to show that

dimF Torgr(Λ)
1 (gr(Λ)/m3, grm(π∨)) ≤ dimF TorΛ

1 (Λ/m3, π∨),

and then equality has to hold.

Step 1. We first show that

dimF Torgr(Λ)
1 (gr(Λ)/m3, grm(π∨))

=
∑
λ∈P

(
4f3 + (6− 4kλ)f2 + (2k2

λ − 2kλ + 1)f − 1
6kλ(kλ − 1)(2kλ − 1)

)
.

From [BHH+b, Thm. 2.1.2] we have grm(π∨) ∼=
⊕

λ∈P χ−1
λ ⊗ R/a(λ). Fix λ ∈ P and let J def=

{0 ≤ j ≤ f − 1 : tj ̸= yjzj}, k
def= |J | = kλ. It will suffice to show that

dimF Torgr(Λ)
1 (gr(Λ)/m3, R/a(λ)) = 4f3 + (6− 4k)f2 + (2k2− 2k+ 1)f − 1

6k(k− 1)(2k− 1). (94)

We will compute this Tor1 using an explicit free resolution of R/a(λ).

Recall from [BHH+b, eq. (18)] that gr(Λ) (resp. gr(Λ)j) is the universal enveloping algebra of
the Lie algebra ⊕f−1

j=0 gj (resp. gj) over F, where gj has F-basis yj , zj , hj , subject to [yj , zj ] = hj ,
hj is central, and [gj , gj′ ] = 0 for all j ̸= j′. In the following we use the Poincaré–Birkhoff–Witt
bases for these Lie algebras, for the ordering y0, . . . , yf−1, z0, . . . , zf−1, h0, . . . , hf−1. In particular,
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gr(Λ)/m3 has F-basis given by all ordered monomials whose degree is at least −2, where yj , zj
have degree −1 and hj has degree −2, and its dimension equals 2f2 + 4f + 1.

Note that R/a(λ) is the tensor product of gr(Λ)j/(tj , hj) over F for all 0 ≤ j ≤ f − 1. Recall
from [HW22, Lemma 9.6] the minimal gr-free resolution of gr(Λ)j/(tj , hj) as gr(Λ)j-module:

G
(j)
• : 0→ gr(Λ)j

(−hj ,tj)
−−−−−→ gr(Λ)j ⊕ gr(Λ)j

(tj
hj

)
−−−→ gr(Λ)j → 0,

where we ignore the grading and H-actions. (Compared to [HW22, Lemma 9.6] we applied
the involution (α, β) 7→ (−α − β, β) to the middle term in case tj = yjzj .) Then
Torgr(Λ)

1 (gr(Λ)/m3, R/a(λ)) is obtained as the first homology of the complex gr(Λ)/m3 ⊗gr(Λ) G•,
where G• is the tensor product complex of all G(j)

• , 0 ≤ j ≤ f − 1. Note that G0 ∼= gr(Λ),
G1 ∼=

⊕f−1
j=0 gr(Λ)⊕2, G2 ∼=

⊕f−1
j=0 gr(Λ)⊕⊕0≤i<j≤f−1(gr(Λ)⊕2)⊗gr(Λ) (gr(Λ)⊕2).

For the purpose of the calculation we may and it will be convenient to assume that tj = zj
for all j ∈ J (by interchanging yj and zj , if necessary).

The morphism ∂1 : G1/m
3 → G0/m

3 is given by
(tj
hj

)
in the j-th component, so its image in

gr(Λ)/m3 has F-spanning vectors given by{
yjzj , hj if j /∈ J,
tj , yitj , zitj , hj if j ∈ J,

where 0 ≤ i ≤ f − 1 is arbitrary. As the term titj = tjti gets counted twice for any {i < j} ⊆ J ,
we see that

dimF im(∂1) = 2(f − k) + (2f + 2)k −
(
k

2

)
= 2f(k + 1)−

(
k

2

)
.

Since dimFG1/m
3 = 4f3 + 8f2 + 2f , we deduce that

dimF ker(∂1) = 4f3 + 8f2 − 2kf +
(
k

2

)
.

The image of the morphism ∂2 : G2/m
3 → G1/m

3 is generated by (−hj , tj)j for all j and
(tj , 0)i − (ti, 0)j , (hj , 0)i − (0, ti)j , (0, hj)i − (0, hi)j for all i ̸= j as a gr(Λ)-module. (Here the
subscript j denotes the j-th component of G1/m

3 ∼=
⊕f−1

j=0 (gr(Λ)/m3)⊕2.) As an F-vector space
we get spanning vectors

(hj , 0)i − (0, ti)j 0 ≤ i, j ≤ f − 1,
(tj , 0)i − (ti, 0)j 0 ≤ i < j ≤ f − 1,

(0, hj)i − (0, hi)j 0 ≤ i < j ≤ f − 1,

and
−(0, wti)j if i ∈ J , any j, (95)

(wtj , 0)i − (wti, 0)j if {i < j} ⊆ J, (96)
(wtj , 0)i if i /∈ J, j ∈ J, (97)
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where w ∈ {y0, . . . , yf−1, z0, . . . , zf−1} is arbitrary. By the Poincaré–Birkhoff–Witt Theorem, the
only linear relations occur in (95), where (0, tjtℓ)i is listed twice for any {j < ℓ} ⊆ J and any i;
in (96), where for any {i < j < ℓ} ⊆ J the elements

(tℓtj , 0)i − (tℓti, 0)j , (titℓ, 0)j − (titj , 0)ℓ, (tjti, 0)ℓ − (tjtℓ, 0)i,

add to zero, and in (97), where (tjtℓ, 0)i is listed twice for any {j < ℓ} ⊆ J , i /∈ J . Therefore,

dimF im(∂2) = f2 +
(
f

2

)
+
(
f

2

)
+ 2f2k + 2f

(
k

2

)
+ 2fk(f − k)− f

(
k

2

)
−
(
k

3

)
− (f − k)

(
k

2

)

= 2f2(2k + 1)− f(2k2 + 1) + 2
(
k + 1

3

)
.

We finally check that dimF ker(∂1)− dimF im(∂2) equals the right-hand side of (94), as desired.

Step 2. We show that

dimF TorΛ
1 (Λ/m3, π∨) ≥

∑
λ∈P

(
4f3 + (6− 4kλ)f2 + (2k2

λ − 2kλ + 1)f − 1
6kλ(kλ − 1)(2kλ − 1)

)
.

Note that

TorΛ
1 (Λ/m3, π∨) ∼= TorFJI/Z1K

1 (FJI/Z1K⊗Λ Λ/m3, π∨) ∼=
⊕

χ:I→F×

TorFJI/Z1K
1 (Wχ,3, π

∨), (98)

and this is dual to ⊕χ:I→F× Ext1
I/Z1

(Wχ,3, π) by [BHH+b, Lemma 2.6.1].

By assumption (iv), Ext1
I/Z1

(Wχ,3, π) = 0 if JH(Wχ,3)∩JH(πI1) = ∅. Assume that JH(Wχ,3)∩
JH(πI1) ̸= ∅ and let 0 ≤ i < 3 be minimal such that JH(χ ⊗ mi/mi+1) ∩ JH(πI1) ̸= ∅. From
Lemma 7.2.11 (with n = 2) we deduce for this i that JH(χ⊗mi/mi+1)∩JH(πI1) is a singleton. For
any λ ∈P and 0 ≤ i < 3 let Xλ,i be the set of all χ such that JH(χ⊗mi/mi+1)∩JH(πI1) = {χλ}
and JH(χ⊗mj/mj+1)∩ JH(πI1) = ∅ for all 0 ≤ j < i. Let Xλ

def= ⊔
0≤i<3Xλ,i. It will be sufficient

to show that∑
χ∈Xλ

dimF Ext1
I/Z1

(Wχ,3, π) ≥ 4f3 + (6− 4k)f2 + (2k2 − 2k + 1)f − 1
6k(k − 1)(2k − 1),

where k def= kλ for short.

If χ ∈ Xλ,0, then χ = χλ and

dimF Ext1
I/Z1

(Wχ,3, π) ≥ 2f2 + f +
(
k + 1

3

)

by Corollary 7.2.9. Moreover, |Xλ,0| = 1.

Suppose that χ ∈ Xλ,1. Then the unique (up to scalar) nonzero morphism ProjI/Z1 χλ →
Wχ,3 factors through a morphism i : Wχλ,2 → Wχ,3, as the image is contained in radWχ,3 =
mWχ,3. Moreover, i is injective by [BHH+23, Lemma 6.1.2] and any Jordan–Hölder factor
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of coker(i) is not contained in JH(πI1) by Lemma 7.2.11 (with n = 2). (We know the con-
stituents of Wχ,3 and their multiplicities by [BHH+23, (44)].) Hence i induces an isomorphism
Ext1

I/Z1
(Wχ,3, π) ∼−→ Ext1

I/Z1
(Wχλ,2, π), which has dimension 2f +

(k
2
)

by Proposition 7.2.8. From
[BHH+b, Lemma 2.3.6(ii)] applied with ∑j |ij | ≤ 1 it follows that |Xλ,1| = 2f − k.

If χ ∈ Xλ,2, then JH(Wχ,3) ∩ JH(πI1) = {χλ} (with multiplicity one), so Ext1
I/Z1

(Wχ,3, π) ∼←−
Ext1

I/Z1
(χλ, π), which has dimension 2f by assumption (iv). We claim that |Xλ,2| = 2f2 − 2kf +(k+1

2
)
. Let again J

def= {0 ≤ j ≤ f − 1 : tj ̸= yjzj}, which depends on λ. Let εj
def= −1 if tj = yj ,

εj
def= +1 if tj = zj , and εj ∈ {±1} arbitrary for j /∈ J . Note that for integers ij ∈ Z (0 ≤ j ≤ f−1)

such that ∑j |ij | ≤ 2 we have χλ
∏
j α

εjij
j ∈ JH(πI1) if and only if ij ∈ {0, 1} if j ∈ J and ij = 0 if

j /∈ J , cf. [BHH+b, Lemma 2.3.6(ii)] (with m = 2). Using Lemma 7.2.11 (with n = 2) we deduce

Xλ,2 = {χλα
−εj

j α
−εj′
j′ ({j ≤ j′} ⊆ J), χλα

−εj

j α±1
j′ (j ∈ J, j′ /∈ J),

χλα
±2
j (j /∈ J), χλα±1

j α±1
j′ ({j < j′} ⊆ Jc)},

which has cardinality(
k + 1

2

)
+ 2k(f − k) + 2(f − k) + 4

(
f − k

2

)
= 2f2 − 2kf +

(
k + 1

2

)
.

We conclude by

∑
χ∈Xλ

dimF Ext1
I/Z1

(Wχ,3, π) ≥
(

2f2 + f +
(
k + 1

3

))
+ (2f − k)

(
2f +

(
k

2

))

+
(

(2f2 − 2kf +
(
k + 1

2

))
(2f)

= 4f3 + (6− 4k)f2 + (2k2 − 2k + 1)f − 1
6k(k − 1)(2k − 1).
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