THE MOD *p* REPRESENTATION THEORY OF *p*-ADIC GROUPS (MAT 1104, WINTER 2012)

FLORIAN HERZIG

In these exercises, $G = \operatorname{GL}_n(\mathbb{Q}_p)$, $K = \operatorname{GL}_n(\mathbb{Z}_p)$, and E is an algebraically closed field of characteristic p.

Exercise 1 (Maximal compact subgroups of G). A *lattice* in \mathbb{Q}_p^n is a finitelygenerated \mathbb{Z}_p -submodule of \mathbb{Q}_p^n that generates \mathbb{Q}_p^n as vector space. In particular, it's free of rank n. Note that G acts transitively on the set of lattices in \mathbb{Q}_p^n .

- (i) Show that $K = \operatorname{Stab}_G(\mathbb{Z}_p^n)$.
- (ii) Suppose that K' is a compact subgroup of G. Show that K' stabilises a lattice. (Hint: show that the K'-orbit of \mathbb{Z}_p^n is finite and note that a finite sum of lattices is a lattice.)
- (iii) Deduce that every compact subgroup is contained in a maximal compact subgroup and that any maximal compact subgroup is conjugate to K.

Exercise 2. (In this exercise $E = \overline{E}$ can be of any characteristic.) Suppose that π is any irreducible smooth representations of \mathbb{Q}_p^{\times} .

- (i) Show that there is an $r \ge 1$ such that $K(r) = 1 + p^r \mathbb{Z}_p$ acts trivially.
- (ii) Show that \mathbb{Z}_p^{\times} acts on π via a smooth character $\mathbb{Z}_p^{\times} \to E^{\times}$.
- (iii) By twisting we can assume that $K = \mathbb{Z}_p^{\times}$ acts trivially, so π is an irreducible representation of $G/K \cong \mathbb{Z}$. Show that is π is one-dimensional.

Exercise 3 (Modular representations of finite groups). Suppose Γ is a finite group. Say that $\gamma \in \Gamma$ is *p*-regular (resp. *p*-singular) if the order of γ is prime to *p* (resp. a power of *p*). The aim of this exercise is to show that the number of irreducible Γ -representations over *E* is at most the number of *p*-regular conjugacy classes. (In fact, equality holds.) This will show that in class we constructed *all* irreducible representations of $\operatorname{GL}_2(\mathbb{F}_p)$.

- (i) Show that every element $\gamma \in \Gamma$ can be uniquely written as $\gamma_r \gamma_s = \gamma_s \gamma_r$, where γ_r is *p*-regular and γ_s is *p*-singular.
- (ii) Suppose that $g \in \operatorname{GL}_d(E)$ is of finite order. Show that g is p-regular (resp. p-singular) iff g is diagonalisable (resp. unipotent).
- (iii) Suppose that ρ is an irreducible Γ -representation. Show that tr ρ : $\Gamma \to E$ is a class function that is determined by its restriction to the set of *p*-regular elements. (Hint: show that tr $\rho(\gamma) = \text{tr } \rho(\gamma_r)$.)

Date: March 6, 2012.

FLORIAN HERZIG

- (iv) Suppose that ρ_1, \ldots, ρ_r are non-isomorphic irreducible Γ -representations. Show that tr $\rho_i : \Gamma \to E$ are linearly independent. (Hint: use the result of Burnside that the group ring $E[\Gamma]$ surjects onto $\prod \operatorname{End}_E(\rho_i)$. Burnside's result holds whenever E is algebraically closed and ρ_i are non-isomorphic and irreducible. It's a consequence of the Artin-Wedderburn classification of semisimple rings.)
- (v) Deduce the result.

Exercise 4 (Modular representations of $\operatorname{GL}_2(\mathbb{F}_q)$). Say $q = p^f$. Throughout, fix an embedding $\mathbb{F}_q \to E$, so $\Gamma := \operatorname{GL}_2(\mathbb{F}_q)$ acts on E^2 . Let $\phi : \Gamma \to \Gamma$ denote the homomorphism that sends a matrix (a_{ij}) to (a_{ij}^p) . If V is a Γ representation, let $V^{(i)}$ denote the representation $\Gamma \xrightarrow{\phi^i} \Gamma \to \mathrm{GL}(V)$. (So $V^{(f)} \cong V$.) The aim of this exercise is to show that the irreducible Γ representations are given by:

(0.1)
$$\bigotimes_{i=0}^{f-1} (\operatorname{Sym}^{a_i} E^2)^{(i)} \otimes \det^b,$$

where $0 \le a_i \le p-1$ and $0 \le b < q-1$. Write $a := \sum a_i p^i$.

- (i) To show irreducibility, we may suppose b = 0. Show that the representation above is isomorphic to the subrepresentation of $\operatorname{Sym}^a E^2$ (thought of as homogeneous polynomials in X, Y of degree a) that has basis $X^m Y^{a-m}$, where $m = \sum m_i p^i$ and $0 \le m_i \le a_i$ for all *i*. (ii) As in class show that the $\begin{pmatrix} 1 & \mathbb{F}_q \\ 1 \end{pmatrix}$ -invariant vectors are spanned by
- X^a .
- (iii) Show that X^a generates the representation. (As in class, use a Vandermonde determinant.)
- (iv) Deduce that the representations in (0.1) are irreducible and nonisomorphic.
- (v) Using the previous exercise show that we have found all irreducible Γ -representations.

Exercise 5. Recall that $F(a,b) = \text{Sym}^{a-b}(E^2) \otimes \det^b$ is an irreducible representation of $\operatorname{GL}_2(\mathbb{F}_p)$ when $a-b \leq p-1$.

- (i) Show that $F(a, b)^* \cong F(-b, -a)$. (Hint: for k < p the usual natural pairing shows that $(\operatorname{Sym}^k \sigma)^* \cong \operatorname{Sym}^k(\sigma^*)$, so can reduce to a = 1, b = 0. Show that for any 2-dimensional representation σ of any group that $\sigma^* \cong \sigma \otimes \det^{-1}$.)
- (ii) Suppose Γ is a finite group and V a Γ -representation. Show that $(V^*)^{\Gamma} \cong (V_{\Gamma})^*$. Use this to compute $F(a, b)_{\overline{U}(\mathbb{F}_p)}$ in a different way than we did in class.

Exercise 6 (Compact and parabolic inductions). Suppose that n = 2. Recall that for any weight V in a principal series $\operatorname{Ind}_{\overline{B}}^{\overline{G}}\chi$ we constructed a natural injective map

(0.2)
$$(\operatorname{c-Ind}_{K}^{G} V)[T_{1}^{-1}] \to \operatorname{Ind}_{\overline{B}}^{G}(\operatorname{c-Ind}_{T(\mathbb{Z}_{p})}^{T} V_{\overline{U}(\mathbb{F}_{p})})$$

 $\mathbf{2}$

that is $\mathcal{H}_G(V)[G]$ -linear. We showed that it is surjective when dim V > 1. Show that it fails to be surjective when dim V = 1. (Pick a smooth character $\chi : \mathbb{Q}_p^{\times} \to E^{\times}$ such that $\chi \circ \det|_{T(\mathbb{Z}_p)} = V_{\overline{U}(\mathbb{F}_p)}$ and compose (0.2) with the natural surjection to $\operatorname{Ind}_{\overline{B}}^G(\chi \circ \det)$. Show that the image of $(\operatorname{c-Ind}_{\overline{K}}^G V)[T_1^{-1}]$ lands in the one-dimensional subrepresentation of $\operatorname{Ind}_{\overline{B}}^G(\chi \circ \det)$.)

Exercise 7 (Steinberg representation). Suppose that n = 2. Recall that $\operatorname{St} = C_c^{\infty}(\mathbb{P}^1(\mathbb{Q}_p), E)/1$, where we identified $\overline{B} \setminus G$ with $\mathbb{P}^1(\mathbb{Q}_p)$ via the first row. The goal of this exercise is to show that dim $\operatorname{St}^{I(1)} = 1$. This completes the proof of irreducibility of St given in class, and also shows that St is admissible.

- (i) Show that dim $C_c^{\infty}(\mathbb{P}^1(\mathbb{Q}_p), E)^{I(1)} = 2$. (For example, show that $\overline{B} \setminus G/I(1)$ has two elements by the Cartan and the Bruhat decompositions.)
- (ii) It remains to show that the map $C_c^{\infty}(\mathbb{P}^1(\mathbb{Q}_p), E)^{I(1)} \to \operatorname{St}^{I(1)}$ is surjective. Suppose that $f \in C_c^{\infty}(\mathbb{P}^1(\mathbb{Q}_p), E)$ maps to an element of $\operatorname{St}^{I(1)}$. Show that the stabiliser of f in I(1) contains any element having a fixed point on $\mathbb{P}^1(\mathbb{Q}_p)$.
- (iii) Complete the proof by showing that $I(1) = \begin{pmatrix} 1 \\ p\mathbb{Z}_p & 1 \end{pmatrix} \begin{pmatrix} \mathbb{Z}_p^{\times} & \mathbb{Z}_p \\ & \mathbb{Z}_p^{\times} \end{pmatrix}$, noting that the matrices in this product fix (1 : 0), resp. (0 : 1), in $\mathbb{P}^1(\mathbb{Q}_p)$.

Exercise 8 (Steinberg representation II). Again, n = 2. The goal of this exercises is to give an alternative proof of irreducibility of St, by showing that St is irreducible even as *B*-representation.

- (i) Show that the "extension by zero" map $C_c^{\infty}(\mathbb{Q}_p, E) \to \text{St}$ is an isomorphism of *B*-representations. Recall that *T* acts on the left by scaling and *U* by translations.
- (ii) Suppose that π is any nonzero *B*-subrepresentation of $C_c^{\infty}(\mathbb{Q}_p, E)$. Show that $\pi \cap C_c^{\infty}(\mathbb{Z}_p, E) \neq 0$.
- (iii) Use the *p*-groups lemma to show that π contains the characteristic function $1_{\mathbb{Z}_p}$.
- (iv) Use scaling and translation to show that $\pi = C_c^{\infty}(\mathbb{Q}_p, E)$.

Exercise 9 (Schur's lemma). Suppose that E is *uncountable* (of arbitrary characteristic). Let π be an irreducible smooth G-representation and suppose that $f: \pi \to \pi$ is a non-zero G-linear map having no eigenvector.

- (i) Show that $\dim_E \pi$ is countable. (Hint: one way to do this uses the Iwasawa decomposition, another way uses lattices as in Exercise 1.)
- (ii) Show that if $P \in E[T]$ is a non-zero polynomial, then $P(f) : \pi \to \pi$ is an isomorphism.
- (iii) Fix $v \in \pi$ non-zero. Note that the elements $\{(f \lambda)^{-1}v : \lambda \in E\}$ are linearly dependent, and deduce a contradiction.
- (iv) Prove that $\operatorname{End}_G(\pi) = E$. In particular, π has a central character.

FLORIAN HERZIG

Exercise 10 (Finite-dimensional irreducible representations). Suppose that π is a finite-dimensional irreducible smooth *G*-representation.

- (i) Show that there is an open normal subgroup of G that acts trivially.
- (ii) Show that U and \overline{U} both act trivially. (Use the torus action.)
- (iii) Deduce that there is a smooth character $\chi : \mathbb{Q}_p^{\times} \to E^{\times}$ such that $\pi \cong \chi \circ \text{det.}$ (Hint: it's known that U and \overline{U} generate $\mathrm{SL}_n(\mathbb{Q}_p)$. This is in fact true over any field.)

Exercise 11. Recall that in the proof of the Satake isomorphism we crucially used a certain compatibility relation between Cartan and Iwasawa decompositions. Let \overline{U} denote the unipotent radical of the lower-triangular Borel subgroup. Let $\Lambda_{-} = \{\lambda \in \Lambda = \mathbb{Z}^n : \lambda_1 \leq \cdots \leq \lambda_n\}$. For any $\mu \in \Lambda$ let $t_{\mu} \in T$ be defined as the diagonal matrix $\operatorname{diag}(p^{\mu_1}, \ldots, p^{\mu_n})$. For all $\lambda \in \Lambda_{-}$ and $\mu \in \Lambda$ we want to show that $\overline{U}t_{\mu} \cap Kt_{\lambda}K \neq \emptyset$ implies that $\mu \geq \lambda$, i.e., that $\sum_{i=1}^{r} \mu_i \geq \sum_{i=1}^{r} \lambda_i$ for all r, with equality when r = n.

- (i) Show that $\sum_{i=1}^{n} \mu_i = \sum_{i=1}^{n} \lambda_i$. [This would also follow from the general argument below.]
- (ii) Show that $\mu_1 \geq \lambda_1$.
- (iii) Now reduce the general case to the previous case: let $V = E^n$ be the vector space on which G acts. We have a homomorphism $G = \operatorname{GL}_E(V) \to \operatorname{GL}_E(\bigwedge^r V)$, letting G act in the natural way on $\bigwedge^r V$. The standard basis $(e_i)_{i=1}^n$ of V gives rise to the basis $e_{i_1} \land \cdots \land e_{i_r}$ with $1 \leq i_1 < \cdots < i_r \leq n$. Apply this homomorphism to $\overline{U}t_{\mu} \cap Kt_{\lambda}K \neq \emptyset$ and apply part (ii) to deduce $\sum_{i=1}^r \mu_i \geq \sum_{i=1}^r \lambda_i$.
- (iv) Use the same argument to show that $\overline{U}t_{\lambda} \cap Kt_{\lambda}K = (\overline{U} \cap K)t_{\lambda}$. (It helps to order the basis of $\bigwedge^{r} V$ by the lexicographic order.)

[This is similar to Satake's argument in his 1963 paper. He notes, however, that for the purpose of establishing his isomorphism it suffices to show that $\mu \geq_{\ell} \lambda$ in the *lexicographic* order \geq_{ℓ} (the point is that if $\lambda \in \Lambda_{-}$ is fixed, then there are only finitely many $\mu \in \Lambda_{-}$ with $\sum \mu_{i} = \sum \lambda_{i}$ and $\mu \geq_{\ell} \lambda$), which is a little easier.]

Exercise 12 (Explicit Satake transform for GL₂). Suppose that n = 2. Suppose that V is a weight of K. Recall that, with the notation of the previous exercise, for $\lambda \in \Lambda_{-}$ we denote by $T_{\lambda} \in \mathcal{H}_{G}(V)$ the unique element of support $Kt_{\lambda}K$ such that $T_{\lambda}(t_{\lambda}) \in \operatorname{End}_{E}(V)$ is a linear projection. Recall also that for $\lambda \in \Lambda$ we denote by $\tau_{\lambda} \in \mathcal{H}_{T}(V_{\overline{U}(\mathbb{F}_{p})})$ the unique element of support $(T \cap K)t_{\lambda}$ such that $\tau_{\lambda}(t_{\lambda}) = 1$.

For $\lambda \in \Lambda_{-}$ show that $S_G(T_{\lambda}) = \tau_{\lambda}$ if $\dim_E V > 1$ or if $\lambda_1 - \lambda_2 \geq -1$, and $S_G(T_{\lambda}) = \tau_{\lambda} - \tau_{\lambda+(1,-1)}$ otherwise. Use this to express $T_{0,1}T_{\lambda}$ in terms of the T_{μ} , and compare with the formulae of Barthel–Livné in [BL94], Proposition 8. [It's also possible to reverse the argument and first compute $T_{0,1}T_{\lambda}$, which inductively gives a formula for $S_G(T_{\lambda})$. There's also a much more general formula for (the inverse of) S_G , see [Her11], Proposition 5.1.]

Exercise 13 (Explicit Satake transform for GL₂, part II). For $b \in \mathbb{Z}$ consider the weights $V = F(b, b) = \det^b$ and V' = F(b + p - 1, b). Consider Hecke operators $\varphi_+ \in \mathcal{H}_G(V, V')$ and $\varphi_- \in \mathcal{H}_G(V', V)$ whose support is $K({}^1_p)K$. (We know that these exist and are unique up to nonzero scalar.) Fix an isomorphism $V_{\overline{U}(\mathbb{F}_p)} \xrightarrow{\sim} (V')_{\overline{U}(\mathbb{F}_p)}$, so that we can identify $\mathcal{H}_T(V_{\overline{U}(\mathbb{F}_p)}, (V')_{\overline{U}(\mathbb{F}_p)}), \mathcal{H}_T((V')_{\overline{U}(\mathbb{F}_p)}), \mathcal{H}_T(V_{\overline{U}(\mathbb{F}_p)})$.

- (i) Show that $S_G(\varphi_+) = \tau_{0,1}$ and $S_G(\varphi_-) = \tau_{0,1} \tau_{1,0}$ in $\mathcal{H}_T(V_{\overline{U}(\mathbb{F}_p)})$ (up to nonzero scalar).
- (ii) Deduce that $\varphi_+ * \varphi_- = \varphi_- * \varphi_+ = T_1^2 T_2$ (the latter up to nonzero scalar) in $\mathcal{H}_G(V) \cong \mathcal{H}_G(V')$, as we stated earlier.

Exercise 14. In class we proved the Satake isomorphism for $G = \operatorname{GL}_n(\mathbb{Q}_p)$. The purpose of this exercise is to show that it also works for standard Levi subgroups of G. Suppose that $M \cong \operatorname{GL}_{n_1}(\mathbb{Q}_p) \times \cdots \times \operatorname{GL}_{n_r}(\mathbb{Q}_p)$ (in this order). First, define the Satake transform by the Yoneda lemma just as in the GL_n -case. It is an algebra homomorphism $\mathcal{S}_M : \mathcal{H}_M(V) \to \mathcal{H}_T(V_{(\overline{U} \cap M)(\mathbb{F}_p)})$ for V a weight of $M \cap K$ (which is nothing but a tensor products of weights of $\operatorname{GL}_{n_i}(\mathbb{Z}_p)$). Show that its image consists of those functions that are supported on $T^{-,M} = \{\operatorname{diag}(t_1, \ldots, t_n) : \operatorname{ord}(t_1) \leq \cdots \leq \operatorname{ord}(t_{n_1}), \operatorname{ord}(t_{n_1+1}) \leq \cdots \leq \operatorname{ord}(t_{n_1+n_2}), \ldots \}.$

[This is a somewhat lengthy exercise, but each step of the argument generalises from the GL_n -case.]

Exercise 15 (Transitivity of parabolic induction). Suppose that $P = M \ltimes N$ and $Q = L \ltimes N'$ are standard parabolic subgroups of G such that $P \subset Q$. (In particular, $M \subset L$ and $N \supset N'$.) Prove that for smooth M-representations σ , we have a natural isomorphism

$$\theta: \operatorname{Ind}_{\overline{P}}^{\overline{G}} \sigma \cong \operatorname{Ind}_{\overline{Q}}^{\overline{G}} \left(\operatorname{Ind}_{\overline{P} \cap L}^{\overline{L}} \sigma \right),$$

where, as usual, we consider σ as \overline{P} -representation via the natural projection $\overline{P} \rightarrow M$ and similarly we consider the induced representation inside parentheses as \overline{Q} -representation.

(Hint: first note that $\overline{P} \cap L = M \ltimes (\overline{N} \cap L)$. The isomorphism can be described by $\theta(f)(g)(l) = f(lg)$ and $\theta^{-1}(F)(g) = F(g)(1)$.)

Exercise 16 (Generalised Steinberg representations). In class I explained without too many details that the generalised Steinberg representations

$$\operatorname{Sp}_P = \frac{\operatorname{Ind}_{\overline{P}}^G 1}{\sum_{Q \supsetneq P} \operatorname{Ind}_{\overline{Q}}^G 1},$$

for standard parabolic subgroups P are irreducible and are pairwise nonisomorphic [GK]. Let n_P denote the number of GL-blocks of the Levi of P. Let $\pi_i := \sum \operatorname{Ind}_{\overline{P}}^G 1$, where the sum is over all standard parabolics with $n_P = i$. Then π_i is an increasing filtration of $\operatorname{Ind}_{\overline{B}}^G(1)$.

FLORIAN HERZIG

Show by induction on *i* that the irreducible constituents of π_i are the Sp_P with $n_P \leq i$, each occurring with multiplicity one. Deduce in particular that the irreducible constituents of $\text{Ind}_{\overline{B}}^G(1)$ are all the Sp_P , each occurring with multiplicity one. [I thank E. Große-Klönne for this suggestion.]

References

- [BL94] L. Barthel and R. Livné. Irreducible modular representations of GL₂ of a local field. Duke Math. J., 75(2):261–292, 1994.
- [GK] Elmar Große-Klönne. On special representations of p-adic reductive groups. Preprint, version of 9/14/2009.
- [Her11] Florian Herzig. The classification of irreducible admissible mod p representations of a p-adic GL_n. Invent. Math., 186(2):373–434, 2011.

Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada

E-mail address: herzig@math.toronto.edu