THE MOD p REPRESENTATION THEORY OF p-ADIC
GROUPS (MAT 1104, WINTER 2012)

FLORIAN HERZIG

In these exercises, G = GL,(Q)), K = GLy(Z,), and E is an algebraically
closed field of characteristic p.

Exercise 1 (Maximal compact subgroups of GG). A lattice in Qj is a finitely-
generated Zy-submodule of Q) that generates Q) as vector space. In partic-
ular, it’s free of rank n. Note that G acts transitively on the set of lattices
in Q.

(i) Show that K = Stabg(Zy).

(ii) Suppose that K’ is a compact subgroup of G. Show that K’ sta-
bilises a lattice. (Hint: show that the K’-orbit of Z} is finite and
note that a finite sum of lattices is a lattice.)

(iii) Deduce that every compact subgroup is contained in a maximal
compact subgroup and that any maximal compact subgroup is con-
jugate to K.

Exercise 2. (In this exercise E = E can be of any characteristic.) Suppose
that 7 is any irreducible smooth representations of Q..

(i) Show that there is an r > 1 such that K (r) = 14p"Z, acts trivially.
(ii) Show that Z, acts on 7 via a smooth character Z, — E*.
(iii) By twisting we can assume that K = Z; acts trivially, so 7 is an

irreducible representation of G/K = 7Z. Show that is 7 is one-
dimensional.

Exercise 3 (Modular representations of finite groups). Suppose I' is a finite
group. Say that v € T is p-regular (resp. p-singular) if the order of  is prime
to p (resp. a power of p). The aim of this exercise is to show that the number
of irreducible I'-representations over F is at most the number of p-regular
conjugacy classes. (In fact, equality holds.) This will show that in class we
constructed all irreducible representations of GLa(F)).

(i) Show that every element v € I' can be uniquely written as 7,vs =
YsYr, Where v, is p-regular and ~; is p-singular.
(ii) Suppose that g € GL4(E) is of finite order. Show that g is p-regular
(resp. p-singular) iff g is diagonalisable (resp. unipotent).
(iii) Suppose that p is an irreducible I'-representation. Show that trp :
I' — F is a class function that is determined by its restriction to
the set of p-regular elements. (Hint: show that tr p(v) = tr p(+,).)
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(iv) Suppose that p1,..., p, are non-isomorphic irreducible I'-representations.
Show that tr p; : I' — E are linearly independent. (Hint: use the re-
sult of Burnside that the group ring E[I'] surjects onto [ [ Endg(p;).
Burnside’s result holds whenever E is algebraically closed and p;
are non-isomorphic and irreducible. It’s a consequence of the Artin-
Wedderburn classification of semisimple rings.)

(v) Deduce the result.

Exercise 4 (Modular representations of GLa(F,)). Say ¢ = p/. Through-
out, fix an embedding F, — E, so I :== GLy(F,) acts on E%. Let ¢ : ' = T
denote the homomorphism that sends a matrix (a;;) to (afj). If Visal-
representation, let V() denote the representation T KNS N GL(V). (So
V) 2 V) The aim of this exercise is to show that the irreducible T'-
representations are given by:

f-1
(0.1) Q) (Sym™ E*)D @ det?,

i=0
where 0 < a; <p—1and 0 <b < q—1. Write a::Zaipi.

(i) To show irreducibility, we may suppose b = 0. Show that the repre-
sentation above is isomorphic to the subrepresentation of Sym® E?
(thought of as homogeneous polynomials in X, Y of degree a) that
has basis XY™™ where m = >_ m;p’ and 0 < m; < q; for all i.

(ii) As in class show that the (1 ]qu )-invariant vectors are spanned by
X

(iii) Show that X* generates the representation. (As in class, use a
Vandermonde determinant.)

(iv) Deduce that the representations in are irreducible and non-
isomorphic.

(v) Using the previous exercise show that we have found all irreducible
I'-representations.

Exercise 5. Recall that F(a,b) = Sym® ?(E?) ® det’ is an irreducible
representation of GLy(F,) when a —b <p — 1.
(i) Show that F'(a,b)* = F(—b,—a). (Hint: for k < p the usual natural
pairing shows that (Sym* o)* = Sym*(0*), so can reduce to a = 1,
b = 0. Show that for any 2-dimensional representation o of any
group that ¢* = ¢ @ det™1.)
(ii) Suppose I' is a finite group and V a I'-representation. Show that
(VA)E = (V)*. Use this to compute F(a, b)U(Fp) in a different way
than we did in class.

Exercise 6 (Compact and parabolic inductions). Suppose that n = 2. Re-
call that for any weight V' in a principal series Ind%x we constructed a
natural injective map

(0.2) (e-Ind% V)[T7'] = IndG(c-Ind7 s, ) Vire,))
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that is Hg(V)[G]-linear. We showed that it is surjective when dim V' > 1.
Show that it fails to be surjective when dim V' = 1. (Pick a smooth character
X : Q) — E* such that x odet|pz,) = Vir(r,) and compose li with the

natural surjection to Ind%(xodet). Show that the image of (c-Ind% V)[T7!]
lands in the one-dimensional subrepresentation of Ind%(x odet).)

Exercise 7 (Steinberg representation). Suppose that n = 2. Recall that
St = C(P(Qy), E)/1, where we identified B\G with P1(Q,) via the first
row. The goal of this exercise is to show that dim St’ (1) = 1. This completes
the proof of irreducibility of St given in class, and also shows that St is
admissible.

(i) Show that dim C°(P'(Q,), E)!) = 2. (For example, show that
B\G/I(1) has two elements by the Cartan and the Bruhat decom-
positions.)

(ii) Tt remains to show that the map C®(P'(Q,), E)'M — StIM) is
surjective. Suppose that f € C°(P}(Q,), F) maps to an element
of St!(). Show that the stabiliser of f in I(1) contains any element
having a fixed point on P1(Q,).

: 1 Xz

(iii) Complete the proof by showing that I(1) = (pr 1> ( v Zg >, not-
ing that the matrices in this product fix (1 : 0), resp. (0 : 1), in
P1(Q,).

Exercise 8 (Steinberg representation II). Again, n = 2. The goal of this
exercises is to give an alternative proof of irreducibility of St, by showing
that St is irreducible even as B-representation.

(i) Show that the “extension by zero” map C°(Q,,E) — St is an
isomorphism of B-representations. Recall that T acts on the left by
scaling and U by translations.

(ii) Suppose that 7 is any nonzero B-subrepresentation of C2°(Q,, E).
Show that 7 N C°(Z,, E) # 0.

(iii) Use the p-groups lemma to show that 7 contains the characteristic
function 1z, .
(iv) Use scaling and translation to show that 7 = C2°(Q,, E).

Exercise 9 (Schur’s lemma). Suppose that E is uncountable (of arbitrary
characteristic). Let m be an irreducible smooth G-representation and sup-
pose that f : 7 — 7 is a non-zero G-linear map having no eigenvector.

(i) Show that dimpg 7 is countable. (Hint: one way to do this uses the
Iwasawa decomposition, another way uses lattices as in Exercise )
(ii) Show that if P € E[T] is a non-zero polynomial, then P(f): 7 — «
is an isomorphism.
(iii) Fix v € m non-zero. Note that the elements {(f — \)"lv: A € E}
are linearly dependent, and deduce a contradiction.
(iv) Prove that Endg(m) = E. In particular, 7 has a central character.
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Exercise 10 (Finite-dimensional irreducible representations). Suppose that
7 is a finite-dimensional irreducible smooth G-representation.

(i) Show that there is an open normal subgroup of G that acts trivially.
(ii) Show that U and U both act trivially. (Use the torus action.)
(iii) Deduce that there is a smooth character x : Q; — E* such that
7 = yodet. (Hint: it’s known that U and U generate SL,(Q,).
This is in fact true over any field.)

Exercise 11. Recall that in the proof of the Satake isomorphism we cru-
cially used a certain compatibility relation between Cartan and Iwasawa
decompositions. Let U denote the unipotent radical of the lower-triangular
Borel subgroup. Let A- ={ A€ A=7Z": )\ <--- < \,}. Forany u € A let
t, € T be defined as the diagonal matrix diag(p*!,...,pt). For all A € A_
and p € A we want to show that Ut, N KtyK # @ implies that p > A, i.e.,
that > 7, ui > > .4 A; for all 7, with equality when r = n.

(i) Show that Y 1, i = > i1 Ai. [This would also follow from the
general argument below.]

(ii) Show that u3 > A;.

(ili) Now reduce the general case to the previous case: let V = E"
be the vector space on which G acts. We have a homomorphism
G = GLg(V) = GLg(A" V), letting G act in the natural way on
A" V. The standard basis (e;)_; of V gives rise to the basis e;; A
- Aej, with 1 <4 <--- <4, <n. Apply this homomorphism to
Ut,NKt\K # @ and apply part (i) to deduce >2i_; p; > Y7 Ai-

(iv) Use the same argument to show that Uty N Kty K = (UNK)ty. (It
helps to order the basis of A"V by the lexicographic order.)

[This is similar to Satake’s argument in his 1963 paper. He notes, however,
that for the purpose of establishing his isomorphism it suffices to show that
p >¢ A in the lezicographic order >, (the point is that if A € A_ is fixed,
then there are only finitely many p € A_ with > p; = > A and p > A),
which is a little easier.]

Exercise 12 (Explicit Satake transform for GlLs). Suppose that n = 2.
Suppose that V is a weight of K. Recall that, with the notation of the
previous exercise, for A € A_ we denote by T\ € H¢g (V') the unique element
of support Kt)K such that T)(ty) € Endg(V) is a linear projection. Recall
also that for A € A we denote by 7\ € J-CT(VU(FP)) the unique element of
support (T'N K)ty such that 7)(¢y) = 1.

For A € A_ show that Sg(T)) = ) if dimg V' > 1 or if \; — Ay > —1, and
8c(T) = Tx — Tay(1,—1) otherwise. Use this to express Tp17) in terms of the
T,,, and compare with the formulae of Barthel-Livné in [BL94], Proposition
8. [It’s also possible to reverse the argument and first compute Ty 17y, which
inductively gives a formula for 8¢(7Ty). There’s also a much more general
formula for (the inverse of) 8¢, see [Herll], Proposition 5.1.]
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Exercise 13 (Explicit Satake transform for GLg, part II). For b € Z con-
sider the weights V = F(b,b) = det’” and V' = F(b+ p — 1,b). Con-
sider Hecke operators ¢ € Hg(V, V') and p_ € Hg(V', V) whose support
is K (1 p)K . (We know that these exist and are unique up to nonzero

~

scalar.) Fix an isomorphism Vow,) — v’ )U(FP)’ so that we can identify
Hr(Vow,) (Voe,)) Vo, Voe,) Hr(Vog,)-
(i) Show that 8g(¢+) = 70,1 and S8g(p—) = 101 — 710 in HT(VU(FZ,))
(up to nonzero scalar).
(ii) Deduce that ¢ *x@_ = p_x @, = T —Tp (the latter up to nonzero
scalar) in Hg(V) = He(V'), as we stated earlier.

Exercise 14. In class we proved the Satake isomorphism for G = GL,(Q)).
The purpose of this exercise is to show that it also works for standard Levi
subgroups of G. Suppose that M = GL,,, (Qp) x - - - x GLj,, (Qp) (in this or-
der). First, define the Satake transform by the Yoneda lemma just as in the
GL,,-case. It is an algebra homomorphism 8y; : Hp (V) — J—CT(V(Um M) (Fp))
for V' a weight of M N K (which is nothing but a tensor products of weights
of GLy,(Zy)). Show that its image consists of those functions that are sup-
ported on T—M = {diag(t1,...,t,) : ord(t1) < --- < ord(ty,), ord(tn, 1) <
- <ord(tn,+ng)s -}

[This is a somewhat lengthy exercise, but each step of the argument gen-
eralises from the GL,-case.]

Exercise 15 (Transitivity of parabolic induction). Suppose that P = M x N
and @ = Lx N’ are standard parabolic subgroups of G such that P C Q. (In
particular, M C L and N D N’.) Prove that for smooth M-representations
o, we have a natural isomorphism

. G~ G L
0:Indjo = Inda (IndﬁmL 0) ,

where, as usual, we consider ¢ as P-representation via the natural projec-
tion P — M and similarly we consider the induced representation inside
parentheses as @—representation.

(Hint: first note that PN L = M x (N N L). The isomorphism can be

described by 6(f)(g)(1) = f(lg) and 6~ (F)(g) = F(g)(1).)

Exercise 16 (Generalised Steinberg representations). In class I explained
without too many details that the generalised Steinberg representations

_ Ind$1
S

for standard parabolic subgroups P are irreducible and are pairwise non-
isomorphic [GK]. Let np denote the number of GL-blocks of the Levi of
P. Let m; := ZInd% 1, where the sum is over all standard parabolics with

Spp

np = i. Then 7; is an increasing filtration of Ind%(l).
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Show by induction on ¢ that the irreducible constituents of m; are the Spp
with np < i, each occurring with multiplicity one. Deduce in particular that
the irreducible constituents of Ind%(l) are all the Spp, each occurring with
multiplicity one. [I thank E. Grofle-Klénne for this suggestion.]
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