
THE MOD p REPRESENTATION THEORY OF p-ADIC

GROUPS (MAT 1104, WINTER 2012)

FLORIAN HERZIG

In these exercises, G = GLn(Qp), K = GLn(Zp), and E is an algebraically
closed field of characteristic p.

Exercise 1 (Maximal compact subgroups of G). A lattice in Qn
p is a finitely-

generated Zp-submodule of Qn
p that generates Qn

p as vector space. In partic-
ular, it’s free of rank n. Note that G acts transitively on the set of lattices
in Qn

p .

(i) Show that K = StabG(Znp ).
(ii) Suppose that K ′ is a compact subgroup of G. Show that K ′ sta-

bilises a lattice. (Hint: show that the K ′-orbit of Znp is finite and
note that a finite sum of lattices is a lattice.)

(iii) Deduce that every compact subgroup is contained in a maximal
compact subgroup and that any maximal compact subgroup is con-
jugate to K.

Exercise 2. (In this exercise E = E can be of any characteristic.) Suppose
that π is any irreducible smooth representations of Q×p .

(i) Show that there is an r ≥ 1 such that K(r) = 1+prZp acts trivially.
(ii) Show that Z×p acts on π via a smooth character Z×p → E×.

(iii) By twisting we can assume that K = Z×p acts trivially, so π is an
irreducible representation of G/K ∼= Z. Show that is π is one-
dimensional.

Exercise 3 (Modular representations of finite groups). Suppose Γ is a finite
group. Say that γ ∈ Γ is p-regular (resp. p-singular) if the order of γ is prime
to p (resp. a power of p). The aim of this exercise is to show that the number
of irreducible Γ-representations over E is at most the number of p-regular
conjugacy classes. (In fact, equality holds.) This will show that in class we
constructed all irreducible representations of GL2(Fp).

(i) Show that every element γ ∈ Γ can be uniquely written as γrγs =
γsγr, where γr is p-regular and γs is p-singular.

(ii) Suppose that g ∈ GLd(E) is of finite order. Show that g is p-regular
(resp. p-singular) iff g is diagonalisable (resp. unipotent).

(iii) Suppose that ρ is an irreducible Γ-representation. Show that tr ρ :
Γ → E is a class function that is determined by its restriction to
the set of p-regular elements. (Hint: show that tr ρ(γ) = tr ρ(γr).)
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(iv) Suppose that ρ1,. . . , ρr are non-isomorphic irreducible Γ-representations.
Show that tr ρi : Γ→ E are linearly independent. (Hint: use the re-
sult of Burnside that the group ring E[Γ] surjects onto

∏
EndE(ρi).

Burnside’s result holds whenever E is algebraically closed and ρi
are non-isomorphic and irreducible. It’s a consequence of the Artin-
Wedderburn classification of semisimple rings.)

(v) Deduce the result.

Exercise 4 (Modular representations of GL2(Fq)). Say q = pf . Through-
out, fix an embedding Fq → E, so Γ := GL2(Fq) acts on E2. Let φ : Γ→ Γ
denote the homomorphism that sends a matrix (aij) to (apij). If V is a Γ-

representation, let V (i) denote the representation Γ
φi−→ Γ → GL(V ). (So

V (f) ∼= V .) The aim of this exercise is to show that the irreducible Γ-
representations are given by:

(0.1)

f−1⊗
i=0

(Symai E2)(i) ⊗ detb,

where 0 ≤ ai ≤ p− 1 and 0 ≤ b < q − 1. Write a :=
∑
aip

i.

(i) To show irreducibility, we may suppose b = 0. Show that the repre-
sentation above is isomorphic to the subrepresentation of SymaE2

(thought of as homogeneous polynomials in X, Y of degree a) that
has basis XmY a−m, where m =

∑
mip

i and 0 ≤ mi ≤ ai for all i.
(ii) As in class show that the

(
1 Fq

1

)
-invariant vectors are spanned by

Xa.
(iii) Show that Xa generates the representation. (As in class, use a

Vandermonde determinant.)
(iv) Deduce that the representations in (0.1) are irreducible and non-

isomorphic.
(v) Using the previous exercise show that we have found all irreducible

Γ-representations.

Exercise 5. Recall that F (a, b) = Syma−b(E2) ⊗ detb is an irreducible
representation of GL2(Fp) when a− b ≤ p− 1.

(i) Show that F (a, b)∗ ∼= F (−b,−a). (Hint: for k < p the usual natural
pairing shows that (Symk σ)∗ ∼= Symk(σ∗), so can reduce to a = 1,
b = 0. Show that for any 2-dimensional representation σ of any
group that σ∗ ∼= σ ⊗ det−1.)

(ii) Suppose Γ is a finite group and V a Γ-representation. Show that
(V ∗)Γ ∼= (VΓ)∗. Use this to compute F (a, b)U(Fp) in a different way

than we did in class.

Exercise 6 (Compact and parabolic inductions). Suppose that n = 2. Re-
call that for any weight V in a principal series IndG

B
χ we constructed a

natural injective map

(0.2) (c-IndGK V )[T−1
1 ]→ IndG

B
(c-IndTT (Zp) VU(Fp))
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that is HG(V )[G]-linear. We showed that it is surjective when dimV > 1.
Show that it fails to be surjective when dimV = 1. (Pick a smooth character
χ : Q×p → E× such that χ ◦ det |T (Zp) = VU(Fp) and compose (0.2) with the

natural surjection to IndG
B

(χ◦det). Show that the image of (c-IndGK V )[T−1
1 ]

lands in the one-dimensional subrepresentation of IndG
B

(χ ◦ det).)

Exercise 7 (Steinberg representation). Suppose that n = 2. Recall that
St = C∞c (P1(Qp), E)/1, where we identified B\G with P1(Qp) via the first

row. The goal of this exercise is to show that dim StI(1) = 1. This completes
the proof of irreducibility of St given in class, and also shows that St is
admissible.

(i) Show that dimC∞c (P1(Qp), E)I(1) = 2. (For example, show that

B\G/I(1) has two elements by the Cartan and the Bruhat decom-
positions.)

(ii) It remains to show that the map C∞c (P1(Qp), E)I(1) → StI(1) is
surjective. Suppose that f ∈ C∞c (P1(Qp), E) maps to an element

of StI(1). Show that the stabiliser of f in I(1) contains any element
having a fixed point on P1(Qp).

(iii) Complete the proof by showing that I(1) =
(

1

pZp 1

)(
Z×
p Zp

Z×
p

)
, not-

ing that the matrices in this product fix (1 : 0), resp. (0 : 1), in
P1(Qp).

Exercise 8 (Steinberg representation II). Again, n = 2. The goal of this
exercises is to give an alternative proof of irreducibility of St, by showing
that St is irreducible even as B-representation.

(i) Show that the “extension by zero” map C∞c (Qp, E) → St is an
isomorphism of B-representations. Recall that T acts on the left by
scaling and U by translations.

(ii) Suppose that π is any nonzero B-subrepresentation of C∞c (Qp, E).
Show that π ∩ C∞c (Zp, E) 6= 0.

(iii) Use the p-groups lemma to show that π contains the characteristic
function 1Zp .

(iv) Use scaling and translation to show that π = C∞c (Qp, E).

Exercise 9 (Schur’s lemma). Suppose that E is uncountable (of arbitrary
characteristic). Let π be an irreducible smooth G-representation and sup-
pose that f : π → π is a non-zero G-linear map having no eigenvector.

(i) Show that dimE π is countable. (Hint: one way to do this uses the
Iwasawa decomposition, another way uses lattices as in Exercise 1.)

(ii) Show that if P ∈ E[T ] is a non-zero polynomial, then P (f) : π → π
is an isomorphism.

(iii) Fix v ∈ π non-zero. Note that the elements {(f − λ)−1v : λ ∈ E}
are linearly dependent, and deduce a contradiction.

(iv) Prove that EndG(π) = E. In particular, π has a central character.
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Exercise 10 (Finite-dimensional irreducible representations). Suppose that
π is a finite-dimensional irreducible smooth G-representation.

(i) Show that there is an open normal subgroup of G that acts trivially.
(ii) Show that U and U both act trivially. (Use the torus action.)

(iii) Deduce that there is a smooth character χ : Q×p → E× such that

π ∼= χ ◦ det. (Hint: it’s known that U and U generate SLn(Qp).
This is in fact true over any field.)

Exercise 11. Recall that in the proof of the Satake isomorphism we cru-
cially used a certain compatibility relation between Cartan and Iwasawa
decompositions. Let U denote the unipotent radical of the lower-triangular
Borel subgroup. Let Λ− = {λ ∈ Λ = Zn : λ1 ≤ · · · ≤ λn}. For any µ ∈ Λ let
tµ ∈ T be defined as the diagonal matrix diag(pµ1 , . . . , pµn). For all λ ∈ Λ−
and µ ∈ Λ we want to show that Utµ ∩KtλK 6= ∅ implies that µ ≥ λ, i.e.,
that

∑r
i=1 µi ≥

∑r
i=1 λi for all r, with equality when r = n.

(i) Show that
∑n

i=1 µi =
∑n

i=1 λi. [This would also follow from the
general argument below.]

(ii) Show that µ1 ≥ λ1.
(iii) Now reduce the general case to the previous case: let V = En

be the vector space on which G acts. We have a homomorphism
G = GLE(V ) → GLE(

∧r V ), letting G act in the natural way on∧r V . The standard basis (ei)
n
i=1 of V gives rise to the basis ei1 ∧

· · · ∧ eir with 1 ≤ i1 < · · · < ir ≤ n. Apply this homomorphism to
Utµ ∩KtλK 6= ∅ and apply part (ii) to deduce

∑r
i=1 µi ≥

∑r
i=1 λi.

(iv) Use the same argument to show that Utλ ∩KtλK = (U ∩K)tλ. (It
helps to order the basis of

∧r V by the lexicographic order.)

[This is similar to Satake’s argument in his 1963 paper. He notes, however,
that for the purpose of establishing his isomorphism it suffices to show that
µ ≥` λ in the lexicographic order ≥` (the point is that if λ ∈ Λ− is fixed,
then there are only finitely many µ ∈ Λ− with

∑
µi =

∑
λi and µ ≥` λ),

which is a little easier.]

Exercise 12 (Explicit Satake transform for GL2). Suppose that n = 2.
Suppose that V is a weight of K. Recall that, with the notation of the
previous exercise, for λ ∈ Λ− we denote by Tλ ∈ HG(V ) the unique element
of support KtλK such that Tλ(tλ) ∈ EndE(V ) is a linear projection. Recall
also that for λ ∈ Λ we denote by τλ ∈ HT (VU(Fp)) the unique element of

support (T ∩K)tλ such that τλ(tλ) = 1.
For λ ∈ Λ− show that SG(Tλ) = τλ if dimE V > 1 or if λ1−λ2 ≥ −1, and

SG(Tλ) = τλ−τλ+(1,−1) otherwise. Use this to express T0,1Tλ in terms of the
Tµ, and compare with the formulae of Barthel–Livné in [BL94], Proposition
8. [It’s also possible to reverse the argument and first compute T0,1Tλ, which
inductively gives a formula for SG(Tλ). There’s also a much more general
formula for (the inverse of) SG, see [Her11], Proposition 5.1.]
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Exercise 13 (Explicit Satake transform for GL2, part II). For b ∈ Z con-

sider the weights V = F (b, b) = detb and V ′ = F (b + p − 1, b). Con-
sider Hecke operators ϕ+ ∈ HG(V, V ′) and ϕ− ∈ HG(V ′, V ) whose support
is K

(
1
p

)
K. (We know that these exist and are unique up to nonzero

scalar.) Fix an isomorphism VU(Fp)
∼−→ (V ′)U(Fp), so that we can identify

HT (VU(Fp), (V
′)U(Fp)), HT ((V ′)U(Fp), VU(Fp)), HT (VU(Fp)).

(i) Show that SG(ϕ+) = τ0,1 and SG(ϕ−) = τ0,1 − τ1,0 in HT (VU(Fp))

(up to nonzero scalar).
(ii) Deduce that ϕ+ ∗ϕ− = ϕ− ∗ϕ+ = T 2

1 −T2 (the latter up to nonzero
scalar) in HG(V ) ∼= HG(V ′), as we stated earlier.

Exercise 14. In class we proved the Satake isomorphism for G = GLn(Qp).
The purpose of this exercise is to show that it also works for standard Levi
subgroups of G. Suppose that M ∼= GLn1(Qp)× · · · ×GLnr(Qp) (in this or-
der). First, define the Satake transform by the Yoneda lemma just as in the
GLn-case. It is an algebra homomorphism SM : HM (V )→ HT (V(U∩M)(Fp))

for V a weight of M ∩K (which is nothing but a tensor products of weights
of GLni(Zp)). Show that its image consists of those functions that are sup-
ported on T−,M = {diag(t1, . . . , tn) : ord(t1) ≤ · · · ≤ ord(tn1), ord(tn1+1) ≤
· · · ≤ ord(tn1+n2), . . . }.

[This is a somewhat lengthy exercise, but each step of the argument gen-
eralises from the GLn-case.]

Exercise 15 (Transitivity of parabolic induction). Suppose that P = MnN
and Q = LnN ′ are standard parabolic subgroups of G such that P ⊂ Q. (In
particular, M ⊂ L and N ⊃ N ′.) Prove that for smooth M -representations
σ, we have a natural isomorphism

θ : IndG
P
σ ∼= IndG

Q

(
IndL

P∩L σ
)
,

where, as usual, we consider σ as P -representation via the natural projec-
tion P � M and similarly we consider the induced representation inside
parentheses as Q-representation.

(Hint: first note that P ∩ L = M n (N ∩ L). The isomorphism can be
described by θ(f)(g)(l) = f(lg) and θ−1(F )(g) = F (g)(1).)

Exercise 16 (Generalised Steinberg representations). In class I explained
without too many details that the generalised Steinberg representations

SpP =
IndG

P
1∑

Q)P IndG
Q

1
,

for standard parabolic subgroups P are irreducible and are pairwise non-
isomorphic [GK]. Let nP denote the number of GL-blocks of the Levi of
P . Let πi :=

∑
IndG

P
1, where the sum is over all standard parabolics with

nP = i. Then πi is an increasing filtration of IndG
B

(1).
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Show by induction on i that the irreducible constituents of πi are the SpP
with nP ≤ i, each occurring with multiplicity one. Deduce in particular that
the irreducible constituents of IndG

B
(1) are all the SpP , each occurring with

multiplicity one. [I thank E. Große-Klönne for this suggestion.]
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