Recall:

A *topology* on a set X is a collection τ of subsets of X having the following properties:

- (1) \emptyset and X are in τ .
- (2) The union of the elements of any subcollection of τ is in τ .
- (3) The intersection of the elements of any finite subcollection of τ is in τ .

A set *X* for which a topology has been specified is called a *topological space*.

Define $f: X \to Y$ where X, Y are topological spaces, then f is **continuous** if $f^{-1}(U)$ is open in X for all open $U \subset Y$.

If *X* is any set and $\tau_1 \subset \tau_2$ are topologies on *X*, then we say τ_2 is *finer* than τ_1 . τ_1 is *coarser* than τ_2 . In this case, we also say τ_1 and τ_2 are *comparable*.

Definition Given X is a set. A *basis* for a topology on X is a collection \mathcal{B} of subsets of X such that

- (1) The union of all $B \in \mathcal{B}$ is X.
- (2) $B_1 \cap B_2$ is a union of basis elements $\forall B_1, B_2 \in \mathcal{B}$.

Topology generated by ${\mathcal B}$

 $\tau = \{U \subset X | U \text{ is a union of basis elements}\}\$

Examples

- 1) $X = \mathbb{R}$
- 2) $\mathcal{B} = \{\text{all intervals } [a, b) \text{ with } a < b \text{ in } \mathbb{R} \}$
- -Check the basis axioms for this topology.
- i) This is easy, since any $x \in \mathbb{R}$ is in [x, x + 1).
- ii) $[a, b) \cap [c, d) = [\max(a, c), \min(b, d))$, provided it's not \emptyset .

Note: In general the intersection might not be a basis element.

 \mathbb{R} with the topology generated by \mathcal{B} is denoted by \mathbb{R}_l (*lower limit topology*).

To compare \mathbb{R} , \mathbb{R}_l

Theorem 3

Given basis \mathcal{B}_1 , \mathcal{B}_2 on a set X generating topologies τ_1 , τ_2 , then $\tau_1 \subset \tau_2 \Leftrightarrow \forall B_1 \subset \mathcal{B}_1$, $\forall x \in B_1 \exists B_2 \subset \mathcal{B}_2$ s.t. $x \in B_2 \subset B_1$. \Leftrightarrow basis elements of \mathcal{B}_1 is union of basis elements of \mathcal{B}_2 .

Proof: (left as an exercise)

Apply this theorem to \mathbb{R} , \mathbb{R}_l – Note \mathbb{R} represents the standard topology.

The basis of \mathbb{R} is all open intervals (a, b).

Any (a, b) is a union of [c, d)'s So \mathbb{R}_l is finer than \mathbb{R} (standard topology)

 \mathbb{R}_l is strictly finer than \mathbb{R} , *i.e.* these are not the same topology, because a basic open [a, b) in \mathbb{R}_l is not open in \mathbb{R} .

Remark: Different basis may describe the same topology!

Example

 \mathbb{R} (standard topology):

- 1) Open intervals (a, b)
- 2) All standard open subsets
- 3) Open intervals (a, b) with $a, b \in \mathbb{Q}$

R can have many different basis.

How can describe a basis for a given topology?

Theorem 4

Let *X* be topological space, and \mathcal{B} be collection of open subsets of *X*. If $\forall U \subset X$ is open $\forall x \in U \exists B \in \mathcal{B} \text{ s.t. } x \in B \subset U$. Then \mathcal{B} is a basis of *X*. ($\Leftrightarrow \forall U \subset X$ is open are unions of elements of \mathcal{B})

Proof: (left as an exercise)

Definition A *subbasis* for a topology on a set X is a collection S of subsets of X (whose union is X)

Theorem 5

If S is a subbasis, let $\tau = \{\text{all subsets } U \subset X \mid \text{unions of finite intersections of elements of } S\}$ $(\Leftrightarrow \forall x \in U \exists S_1, \ldots, S_n \in S \text{ s.t } x \in \bigcap_{i=1}^n S_i \subset U)$

Then τ is the coarsest topology containing S (generated by S).

Proof:

First we claim that $\mathcal{B} := \{S_1 \cap S_2 \cap ... \cap S_n : \text{ where } S_i \in \mathcal{S}\}\$ is a basis and it generates τ . To see that we check the criterions i) union is everything, because empty intersection (i.e. n = 0) is $X (\Rightarrow \in \mathcal{B})$.

proof will be continued in next lecture.