Theorem 5

If S is a subasis, the $\tau = \{\text{unions of finite intersection of elements of } \tau \}$. This is a topology that is the coarsest topology containing S

Proof:

 $\mathcal{B} = \{\text{finite intersection } \bigcap_{i=1}^n S_i, \ S_i \in \mathcal{S}\}, \text{ we need } \mathcal{B} \text{ to be a basis } (\Rightarrow \tau \text{ is topology generated by it)}.$

Checking basis criterions

(i) Trivial

(ii)
$$B_1, B_2 \in \mathcal{B}$$
, Let $B_1 = S_2 \cap ... \cap S_r$, $B_2 = S_{r+1} \cap ... \cap S_{r+t}$
 $B_1 \cap B_2 = \bigcap_{i=1}^{r+t} S_i \in \mathcal{B}$

Now we wish to show that this topology is the coarsest topology. Suppose $\tau' \supset S$ is any topology. It is required to show that $\tau \subset \tau'$. This is true because τ' closed under finite intersections and any unions.

Subspace and Product Topology §15, 16

<u>Definition</u> Suppose (X, τ_X) is a topological space and $Y \subset X$ is a *subset*. Then the *subspace topology* of Y in X is $T_Y = \{Y \cap U | U \in \tau_X\}$.

Check this is a topology!

Theorem 6

The subspace topology is the coarsest topology on Y s.t. the inclusion map i: $Y \to X$ is continuous.

Proof: The map i continuous $\Leftrightarrow i^{-1}(U) = (Y \cap U)$ open in Y, $\forall U$ open in X. The inclusion map is continuous when Y has topology τ' . $\Leftrightarrow \tau_Y = \{Y \cap U \mid U \subset X\} \subset \tau'$. Hence τ_Y is coarsest.

Theorem 7 (Restriction of (co)domain)

Suppose $f: X \to Y$ is continuous map of topological spaces.

- i) If $Z \subset X$ is subset, then $f|_Z Z \to Y$ is continuous. (if Z has subspace topology).
- ii) If $W \subset Y$ is a subset containing f(X), then $g: X \to W$ is continuous. (if W has subspace topology).

Proof

- i) $f|_Z$ is a composite map: $Z \xrightarrow{i} X \xrightarrow{f} Y$. Both i, f are continuous and since composites of continuous maps are continuous. (By Thm 1)
- ii) We need to show that if $V \subset W$ is open, then $g^{-1}(V) \subset X$ is open. Note that V is of the form $W \cap U$, where $U \subset Y$ is open. So we have $g^{-1}(V) = g^{-1}(W \cap U) = f^{-1}(W \cap U) = f^{-1}(U)$ because $f(X) \subset W$. Hence $f^{-1}(U)$ is open in X by the continuity of f.

Theorem 8

Let X be a topological space and Z, Y be subspaces such that $Z \subset Y \subset X$. The natural topologies on Z coincide.

- 1) Subspace topology in X
- 2) Subspace topology in Y, where Y has subspace topology in X.

Proof: (left as an exercise)

Theorem 9

Let *X* be a topological space and *Y* be a subset of *X*. If \mathcal{B}_X is a basis for the topology of *X* then $\mathcal{B}_Y = \{Y \cap B, B \in \mathcal{B}_X\}$ is a basis for the subspace topology on *Y*.

Proof: Use Thm 4.

<u>Definition</u> Suppose X, Y are topological spaces. Then the projection is $p_1: X \times Y \to X$, $p_2: X \times Y \to Y$. i.e. $p_1(x, y) = x$ and $p_2(x, y) = y$.

Theorem 10

There is a coarsest topology on $X \times Y$ such that projection maps p_1 and p_2 are continuous.

Proof:

 p_1 , p_2 are continuous $\Leftrightarrow p_1^{-1}(U)$, $p_2^{-1}(V)$ are open in $X \times Y$, for all open U and V in X and Y, respectively. Let $S := \{p_1^{-1}(U), p_2^{-1}(V) | U \subset X, V \subset Y \text{ open} \}$ The topology generated by this subbasis is the coarsest containing S, i.e. p_1 , p_2 are both continuous. \square

This topology is called the *product topology* on $X \times Y$.

In fact, we can get basis out of the subbasis by taking all finite \cap :

$$p_1^{-1}(U_1) \cap \ldots \cap p_1^{-1}(U_r) \cap p_2^{-1}(V_1) \cap \ldots \cap p_2^{-1}(V_s) \text{ where } U_i \subset X, \ V_j \subset Y \text{ is open } \forall i, j \text{ So the basis} = \left\{ p_1^{-1}(U) \cap p_2^{-1}(V) \, \middle| \, U \subset X, \ V \subset Y \text{ open} \right\} = \left\{ U \times V \, \middle| \, U \subset X, \ V \subset Y \text{ open} \right\}$$

We call $p_1^{-1}(U)$, $p_2^{-1}(V)$ "open cylinders" and $U \times V$ "open box".

Examples

 $X = \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$. Two topologies :

- (1) product topology (R has standard topology)
- (2) standard topology on \mathbb{R}^2 .

These two are the same! (Use Thm 3)

- (1) has basis $U \times V$, $U, V \subset \mathbb{R}$ open
- (2) open balls(or disks), $B_{\delta}(x, y)$

Theorem 11

If \mathcal{B}_X is a basis for X and \mathcal{B}_Y is a basis for Y, then $\mathcal{B} := \{B_1 \times B_2 | B_1 \in \mathcal{B}_X, B_2 \in \mathcal{B}_Y\}$ is a basis for the product topology.

Proof: Use Thm 4.

Theorem 12

If $A \subset X$, $B \subset Y$ are subsets of topological spaces X, Y then on $A \times B$ the two natural topologies coincide.

- i) Product topology of the subspace topology on A, B
- ii) subspace topology of the product topology on $X \times Y$.

Basis of topology (i)

i.e. $(A \cap U) \times (B \cap Y)$ where $U \subset X$ and $V \subset Y$ are open. i.e. (Open subsets of A) \times (Open subsets of B)

Basis of topology (ii)

 $\overset{\text{Thm 9}}{\Rightarrow} \text{ basis for subspace } A \times B : (A \times B) \cap (U \times V) = (A \cap U) \times (B \cap V). \text{ Same basis } \Rightarrow \text{Same topology}.$

Order Topology §14

 (X, \leq) is a set together with a linear(or total) order

Example

 $(\mathbb{R}, \leq), (\mathbb{Z}, \leq)$ – standard order

If (X, \leq) , (Y, \leq') then have dictionary order on $X \times Y$: say $(x, y) \le (x', y') \Leftrightarrow (x < x')$ or (x = x') and y < y'