§17 Closed sets and Limit points

Recall $A \subset X$ closed $\Leftrightarrow A^c$ open

closure of $A = \overline{A} = \text{smallest closed set in } X \text{ containing } A$ **interior** of $A = A^{\circ} = \text{largest open set in } X \text{ contained in } A$

<u>Definition</u> An open neighborhood of $x \in X$ is an open set U s.t. $x \in U$

Theorem 14

 $A \subset X$ subset, then $x \in \overline{A} \Leftrightarrow$ all nbds of x intersect A

Proof

 $x \notin \overline{A} = \bigcap \{C \text{ closed} : C \supset A\} \iff \exists C \text{ closed}, C \supset A, x \notin C. \text{ Let } U := C^c \iff \exists U \text{ open}, A \bigcap U = \emptyset, x \in U \iff \exists \text{ nbd } U \text{ of } x \text{ that doesn't intersect } A. \square$

Example Compute $\left\{1 - \frac{1}{n}, n \ge 1\right\}$

Check $1 \in$ closure : any nbd of 1 contains open interval $I = (1 - \delta, 1 + \delta)$ for some $\delta > 0$.

Since $\lim_{n\to\infty} 1 - \frac{1}{n} = 1 \Rightarrow 1 - \frac{1}{n} \in I \text{ for } n >> 0 \Rightarrow 1 \in \text{closure}$

 $\left\{1 - \frac{1}{n}, n \ge 1\right\} \bigcup \{1\}$ is already closed \Rightarrow it has to be the closure.

Exercise Check $\overline{\left\{1-\frac{1}{n}, n \geq 1\right\}}$ is in \mathbb{R}_l

<u>Definition</u> $x \in X$ is a *limit point* of A if every nhd of x intersect A outside x. Notation : $A' = \sec x$ of limit points of A.

Theorem 15

$$\overline{A} = A \cup A'$$

Example $\left\{1 - \frac{1}{n}, n \ge 1\right\} \subset \mathbb{R}$, limit point = $\{1\}$

Example A = [0, 1)

$$A' = [0, 1] = \overline{A}$$

Example $A = \mathbb{Q} \subset \mathbb{R} \Rightarrow \overline{A} = \mathbb{R}$ Since any interval contains some rational numbers.

 $A' = \mathbb{R}$, Since any interval contains infinitely many rational numbers.

Proof: (left as an exercise)

Theorem 16

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

Proof: hw 2 □

More on subspaces

Lemma 17

 $Y \subset X$ subspace

- (i) The closed subsets are $\{Y \cap C : C \text{ closed in } X\}$
- (ii) If $Z \subset Y$ closed subset and $Y \subset X$ closed $\Rightarrow Z \subset X$ closed If $Z \subset Y$ open subset and $Y \subset X$ open $\Rightarrow Z \subset X$ open
- (iii) If $A \subset Y$ subset, then the closure of A in Y is $Y \cap \overline{A}$

Proof:

- (i) exercise
- (ii) open case: $Z \subset Y$ open $\Rightarrow \exists U$ open in X s.t. $Z = Y \cap U \Rightarrow Z$ is open in X because Y, U are open.
- (iii) To check $Y \cap \overline{A}$ is the closure, verify it is the smallest closed set in Y containing A. $Y \cap \overline{A}$ is closed in Y(by (i)) and contains A since $Y \supset A$, $\overline{A} \supset A$. We need to show whenever a subset $D \subset Y$ closed, $D \supset A$, then $D \supset Y \cap \overline{A}$. By part (i) $D = Y \cap C$. $Y \cap C \supset A \Rightarrow A \subset C \Rightarrow \overline{A} \subset C \Rightarrow Y \cap \overline{A} \subset A \cap C = D$. \square

Some separation axiom

<u>Definition</u> A topological space *X* is *Hausdorff* or T_2 if $\forall x \neq y \in X$, \exists nbds *U* of *x* and *V* of *y* s.t. $U \cap V = \emptyset$.

Example \mathbb{R}^n is T_2

open balls, radius $=\frac{1}{2}|x-y|$ or \leq .

Example Trivial topology (non-Hausdorff)

<u>Definition</u> A sequence $\{x_n\}_{n=1}^{\infty}$ $(x_n \in X)$ converges to $x \in X$ if $\forall U$ nbd of x, $\exists n_0 \text{ s.t. } x_n \in U \ \forall n \geq n_0$ (write $x_n \to x$, as $n \to \infty$)

Theorem 18

If X is T_2 , then any sequence converge to at most one point.

Example: If *X* has trivial topology $x_n \to x$ for any x!

Proof:

Suppose $\exists \{x_n\}_{n=1}^{\infty}$ s.t. $x_n \to x$, $x_n \to y$ where $x \neq y$. $T_2 \Rightarrow \exists U$, V disjoint nbds of x, y

$$\begin{array}{l} x_n \to x \ \Rightarrow \ x_n \in U, \ \forall \ n \geq n_0 \\ x_n \to y \ \Rightarrow \ x_n \in V, \ \forall \ n \geq n_1 \end{array} \right\} \Rightarrow x_n \in U \cap V = \emptyset, \ \forall \ n \geq \max \{n_0, \, n_1\}. \quad \text{Contradiction.} \ \Box$$

Theorem 19

- (i) If X is T_2 , then so is any subspace
- (ii) If X, Y are T_2 , so is $X \times Y$.

Proof:

- (i) $Y \subset X$ subspace, say $y_1 \neq y_2$ in $Y \cdot X$ is $T_2 \Rightarrow \exists U_1, U_2$ disjoint nbds of y_1, y_2 in X. $\Rightarrow \exists U_1 \cap Y_1, U_2 \cap Y_2 \text{ disjoint nbds of } y_1, y_2 \text{ in } Y.$
- (ii) Pick $(x_1, y_1) \neq (x_2, y_2)$ in $X \times Y$. If $x_1 \neq x_2 : X$ is $T_2 \Rightarrow \exists U_1, U_2$ disjoint nbds of x_1, x_2 in X. $\Rightarrow U_1 \times Y$, $U_2 \times Y$ disjoint index of (x_1, y_1) , (x_2, y_2) in $X \times Y$. If $y_1 \neq y_2$ is analogous! (use Y Hausdorff)

<u>Definition</u> A topological space *X* is T_1 if $\forall x \neq y$ in *X* if \exists nbd of *y s.t.* $x \notin V$.

Clearly $T_2 \Rightarrow T_1$

Theorem 20

 $X \text{ is } T_1 \Leftrightarrow \forall x, \{x\} \text{ is closed in } X)$

Proof: " \Rightarrow " Take $x \in X$. Want $\{x\}^c$ open. $T_1 \Rightarrow \forall y \in \{x\}^c \exists \text{ open nbd } V_y \text{ of } y \text{ s.t. } V_y \subset \{x\}^c$. See $\{x\}^c = \bigcup_{y \neq x} V_y \Rightarrow \{x\}^c$ open. " \Leftarrow ": Given $x \neq y$. Then can take $V = \{x\}^c$ (open by assumption) \Box

Example X any set with the finite complement topology. (recall U open $\Leftrightarrow U = \emptyset$ or U^c finite). X is T_1 since $\{x\}^c$ is open. If X is finite, it has the discrete topology, so it is T_2 . If X is infinite, U^c finite, so U is infinite. So X is T_1 but not T_2 .

More on countinuous functions

Theorem 21

 $f: X \to Y$ between topological spaces.

TFAE (the followings are equivalent)

- (i) f is continuous.
- (ii) $f^{-1}(C)$ closed in X, $\forall C \subset Y$ closed.
- (iii) $f(\overline{A}) \subset \overline{f(A)} \ \forall \ \text{subset } A$
- (iv) $\forall x \in X$, $\forall V$ nbd of $f(x) \exists$ nbd U of x s.t. $f(U) \subset V$ (This is similar to $\epsilon \delta$ definition in a metric space.)