Recall

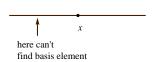
 T_1 : points are closed(\Leftrightarrow finite subsets closed)

 T_2 : distinct points have disjoint neighborhoods (Hausdorff)

Example

Non- T_1 Space

 \mathbb{R} with basis (a, ∞) where $a \in \mathbb{R}$



here can't find basis element

Theroem 21

 $f: X \to Y$, TFAE

(i) f is continuous

(ii) $f^{-1}(C)$ closed $\forall C$ closed

(iii) $f(\overline{A}) \subset \overline{f(A)}$

(iv) $\forall x \in X \forall \text{ nbd } V \text{ of } f(x) \exists \text{ nbd } U \text{ of } x \text{ s.t. } f(U) \subset V.$

$$(i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$$

Proof

(i) \Rightarrow (iv) want nbd U of x such that $f(U) \subset V \Leftrightarrow U \subset f^{-1}(V)$ open by (i). We can take $U = f^{-1}(V)$. It contains x, since $f(x) \in V$. (iv) \Rightarrow (iii) need $\forall x \in \overline{A}$, $f(x) \in f(\overline{A}) \Leftrightarrow$ any nbd V of f(x) intersects f(A). By (iv), \exists nbd U of x, s.t. $f(V) \subset V$. But $U \cap A \neq \emptyset$, because $x \in \overline{A} \Rightarrow$ if $y \in U \cap A$, then $f(y) \in f(U) \cap f(A) \subset V \cap f(A)$

(iii) \Rightarrow (ii) want $f^{-1}(C)$ closed $\forall C$ closed. Apply (iii) with $A = f^{-1}(C)$. $f(\overline{f^{-1}(C)}) \subset \overline{f(f^{-1}(C))}$. We know $f(f^{-1}(C)) \subset C \Rightarrow \overline{f(f^{-1}(C))} \subset \overline{C} = C$. $f(\overline{f^{-1}(C)}) \subset C$. $\overline{f^{-1}(C)} \subset f^{-1}(C)$. $\Rightarrow f^{-1}(C) = \overline{f^{-1}(C)}$ as reverse inclusion is true. So $f^{-1}(C)$ is closed. (ii) \Rightarrow (i) need $f^{-1}(U)$ open $\forall U$ open. $f^{-1}(U) = f^{-1}(U^c) \Rightarrow f^{-1}(U)$ open.

<u>Definition</u> X, Y topological spaces: A map $f: X \to Y$ is a **homeomorphism** if it's bijection, and f and f^{-1} are continuous. Equivalently, U is open in $Y \Leftrightarrow f^{-1}(U)$ is open in X.

In this case, *X* and *Y* have *same* topological properties.

Example

$$X \text{ in } T_2(\text{or } T_1) \iff Y \text{ is } T_2(\text{or } T_1)$$

 $C \subset X \text{ closed } \iff f(C) \subset Y \text{ closed}$
 $\mathcal{B} \text{ a basis for } X \iff f(\mathcal{B}) \text{ a basis for } Y.$

Remark

A continuous bijection needn't be a homeomorphism.

Example

$$(X, \tau) \rightarrow (X, \tau'), x \longmapsto x$$
 is continuously bijection $\Leftrightarrow \tau' \subset \tau$.
 $(X, \tau) \rightarrow (X, \tau'), x \longmapsto x$ is homeomorphism $\Leftrightarrow \tau' = \tau$.

Example

 $S^2 \setminus \{N\} \cong \mathbb{R}^2$ (Stereographic projection)

$$f:\mathbb{R}^2\to S^2\setminus\{N\}$$

$$(x, y) \mapsto \left(\frac{2x}{x^2 + y^2 + 1}, \frac{2y}{x^2 + y^2 + 1}, \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}\right)$$
, then $f^{-1}(a, b, c) \mapsto \left(\frac{a}{1 - c}, \frac{b}{1 - c}\right)$ – homeomorphism

Remark

It can be hard to show 2 spaces are <u>not</u> homeomorphism. One way is to show one is T_2 , other isn't.

Definition

 $f: X \to Y$ is an *embedding* if it is injective and the induced map $X \to f(X)$ is a homeomorphism.