Recall (X, d) metric space

metric topology on X: basis $B_{\epsilon, d}(x)$; all ϵ -balls, $\epsilon > 0$

 \exists metric \overline{d} s.t. d and \overline{d} have same metric topology. e.g. $\overline{d} = \min(1, d)$

On R[^] defined uniform metric

$$\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup_{\lambda \in \Lambda} (\overline{d}(x_{\lambda}, y_{\lambda}))$$

Theorem 27

product topology \subset uniform topology \subset box topology

We proved 2nd "⊂" in last lecture

1st " \subset " We need to show that any basic open in the product topology is open in the uniform topology Basic open : $\prod_{\lambda \in \Lambda} U_{\lambda} : U_{\lambda} = \mathbb{R}, \ \lambda \notin {\lambda_1, \lambda_2, ... \lambda_n} \ U_{\lambda_i} \subset \mathbb{R}$ open for all *i*.

Pick $\mathbf{x} \in \prod_{\Lambda} U_{\lambda_i}$ open $\Rightarrow \exists \epsilon_i > 0 \text{ s.t. } B_{\epsilon_i, \overline{d}}(x_{\lambda_i}) \subset U_{\lambda_i}$ let $\epsilon := \min \{ \epsilon_i : 1 \le i \le n \}$ then $B_{\epsilon, \overline{\rho}}(\mathbf{x}) \subset \prod_{\Lambda} U_{\lambda}$

Reason : sup $\overline{d}(x_{\lambda}, y_{\lambda}) < \epsilon \Rightarrow y_{\lambda_i} \in U_{\lambda_i} \, \forall \, i \Rightarrow \mathbf{y} \in \prod U_{\lambda}$. \square

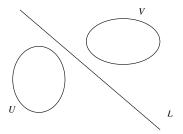
§ 23, 24 Connectedness

<u>Definition</u> A topological space *X* is *connected* if it cannot be written as disjoint union of two non–empty open subsets.

disjoint union of two non–empty open subsets : sometimes called separation of X.

Example

1) $X \subset \mathbb{R}^2$



 $X = U \bigcup^* V$ (here \bigcup^* denotes disjoint union)

U is open since $U = X \cap (\text{open half open to left of } L)$ similary for *V*

 \Rightarrow X is disconnected.

2) $X = [0, 1] \cup (2, 3)$ in \mathbb{R} , let U = [0, 1] and V = (2, 3) U is open in X since $U = X \cap \left(-\infty, \frac{3}{2}\right)$.

3)
$$X = \mathbb{R} \setminus \mathbb{Q}$$

Take $U = X \cap (-\infty, 0)$, $V = X \cap (0, \infty) \Rightarrow X$ is disconnected.

<u>Definition</u> $X \subset \mathbb{R}$ *convex* if $\forall x, y \in X \Rightarrow [x, y] \subset X$

Remark Convex sets are precisely all (possibly infinite) intervals.

(a, b) allow $a = -\infty$, $b = \infty$ (a, b] allow $a = -\infty$ [a, b) allow $b = \infty$ [a, b] $(a = \inf X, b = \sup X)$

Example More generally suppose $X \subset \mathbb{R}$ not convex,

Claim X disconnected

X not connected $\Rightarrow \exists x < y \text{ in } X \text{ and } \exists z \notin X \text{ s.t. } x < z < y$

 $U = X \cap (-\infty, z), V = X \cap (z, \infty)$ open disjoint. $U \cap V = X$ since $z \notin X$, non-empty since $x \in U$, $y \in V$

Remark separation $X = U \bigcup^* V$ (so $V = U^c$) $\Leftrightarrow U \subset X$ open $U \neq \emptyset$, U^c open $U^c = \emptyset \Leftrightarrow \emptyset \subset U \subset X$ (open and closed)

So X conneceted \Leftrightarrow the only open + closed subsets are \emptyset , X.

Example

- 1) |X| > 1, X discrete \Rightarrow disconneceted b/c every subset is clopen (open and closed)
- 2) *X* trivial topology \Rightarrow connected.

Theorem 28

If $X \subset \mathbb{R}$ convex, then X is connected, So $X \subset \mathbb{R}$ connected \Leftrightarrow convex

Proof:

Suppose $X = U \bigcup^* V$ separation, pick $x \in U$, $y \in V$ can assume x < y (otherwise swap U, V) Let $s := \sup(U \cap [x, y])$ This means $U \cap [x, y] \subset (-\infty, s]$. and all $\epsilon > 0$, $U \cap [x, y] \not\subset (-\infty, s - \epsilon]$

For any $\epsilon > 0$, $(s - \epsilon, s + \epsilon) \cap X$ open nbd of s in X intersects $U(as \ s \ is \ least \ upper \ bound)$ and $V(as \ s \ is \ an \ upper \ bound)$ $\Rightarrow s \in \text{closure of } U \text{ in } X = U$ $s \in \text{closure of } V \text{ in } X = V \quad \text{since } U, \ V \text{ clopen.}$

 $\Rightarrow s \in U \cap V = \emptyset$, contradiction.