Oct 27 Term test

Office Hour : Wed 5:30–7:30 TA Office Hour : Tue 10:30–12:30

Last time

X connected if *X* can't be written as disjoint union $X = U \cup^* V$ of non–empty open subsets. (\bigcup^* denotes disjoint union). $\Leftrightarrow \nexists$ clopen subset $U \neq \emptyset$, *X*. ($X = U \cup^* V$ called separation.)

 $X \subset \mathbb{R}$ connected $\Leftrightarrow X$ convex $(x, y \in X : (x \le y) \Rightarrow [x, y] \subset X)$.

Theorem 29

If $f: X \to Y$ continuous, and X connected $\Rightarrow f(X)$ is connected.

Proof:

Suppose not, then $f(x) = U \bigcup^* V$ separation (U, V non-empty open) then $X = f^{-1}(f(X)) = f^{-1}(U) \bigcup^* f^{-1}(V)$ furthermore they are open because $f: X \to f(X)$ is continuous. (Theorem 7). \Box

Remark Theorem 28 and 29 imply the *intermediate value theorem* for continuous functions $f:[a,b] \to \mathbb{R}$.

[a, b] connected (convex) \Rightarrow its image f([a, b]) is connected \Rightarrow convex.

Lemma 30

Suppose $X = U \cup^* V$ is a separation. If $A \subset X$ connected subspace, then $A \subset U$ or $A \subset V$.

Proof:

Intersect with $A = (A \cap U) \cup^* (A \cap V)$, where $A \cap U$ and $A \cap V$ are open in A. If $A \cap U$, $A \cap V$ are both non–empty, this is a separation of A. contradiction. \Rightarrow Either $A \cap U = \emptyset$ or $A \cap V = \emptyset$. i.e. $A \cap U = \emptyset \Rightarrow A \subset U^c = V$, $A \cap V = \emptyset \Rightarrow A \subset U$. \Box

Theorem 31

If $A \subset X$ connected subspace, and $A \subset B \subset \overline{A}$, then B is connected. In particular, A connected $\Rightarrow \overline{A}$ connected.

Proof:

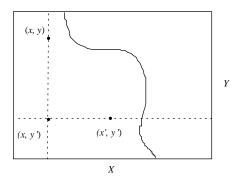
Suppose $B = U \bigcup^* V$ (separation). By the lemma, we know $A \subset U$ or $A \subset V$. Can assume $A \subset U \Rightarrow \overline{A} \subset \overline{U} \Rightarrow B \subset B \cap \overline{U} = \text{closure}$ of U in B. (by Lemma 17) = U since U is clopen in B. Contradiction as $V = \emptyset$. \square

Theorem 32

If X_1, \ldots, X_n connected $\Rightarrow \prod_{i=1}^n X_i$ connected.

Proof:

n=2 X, Y connected, want $X \times Y$ connected. Suppose $X \times Y = U \cup^* V$ separation



Fix $(x, y) \in U$. Say $(x', y') \in X \times Y$ arbitrary.

<u>Recall</u> (HW03 18.4): $X \times \{b\} \cong X$ and $\{a\} \times Y \cong Y$ homeomorphic. $\Rightarrow X \times \{y\}$ connected.

Lemma $30 \Rightarrow X \times \{y\} \subset U \Rightarrow (x', y) \in U$. Similary $\{x'\} \times Y \subset U \Rightarrow (x', y') \in U$.

Hence $X \times Y = U$. Contradiction \Box . n > 2 either imitate the same argument or use induction.

 $\prod_{i=1}^{n} X_i \cong (X_1 \times ... \times X_{n-1}) \times X_n$. To check homeo i) use basis, ii) show $(X_1 \times ... \times X_{n-1}) \times X_n \to \prod_{i=1}^{n} X_i$ is continuous. By Theorem 22, we only have to check each coordinate function is continuous. True, because it is a composition of one (i = n) or two $(i \neq n)$ projection maps. (projection maps are continuous). The other way is left as an exercise.

<u>Remark</u> In the same way, can show: if $Y_{\lambda} \subset X$, Y_{λ} connected $\forall \lambda$, and all Y_{λ} have a point in common. Then $\bigcup_{\lambda \in \Lambda} Y_{\lambda}$ connected.

<u>Definition</u> X is path–conneceted if $\forall x, y \in X, \exists s : [0, 1] \to X$ such that s(0) = x and s(1) = y.

Lemma 33

X path connected $\Rightarrow X$ connected

Proof:

Suppose $X = U \bigcup^* V$ separation. Pick $x \in U$, $y \in V$. We know $\exists s : [0, 1] \to X$ s.t. s(0) = x and s(1) = y. Then $s^{-1}(U) \bigcup^* s^{-1}(V) = [0, 1]$ separation. This is a contradiction because [0, 1] is connected. \Box

Examples

Say $X \subset \mathbb{R}^n$ is *convex* if \forall **x**, **y** \in X then the whole segment connecting themis contained in X. t**x** + (1 - t) **y** \in X, \forall $t \in [0, 1]$.

The unit ball $B = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| \le 1 \}$, B is path connected \Rightarrow B is connected.

 $S^{n-1} = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| = 1 \}$ is path connected.

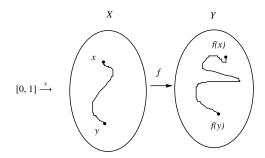
Theorem 34

i) $f: X \to Y$ continuous, X path connected $\Rightarrow f(X)$ path connected.

ii) X_{λ} path connected $\forall \lambda \Rightarrow \prod X_{\lambda}$ path connected.

Proof:

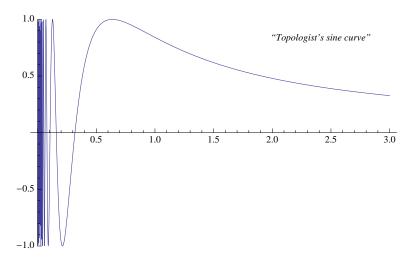
i) pick f(x), $f(y) \in f(X)$



ii) $(x_{\lambda})_{\lambda \in \Lambda}$, $(y_{\lambda})_{\lambda \in \Lambda} \in \prod X_{\lambda}$. We want $s : [0, 1] \to \prod X_{\lambda}$ s.t. $s(0) = (x_{\lambda})_{\lambda \in \Lambda}$, $s(1) = (y_{\lambda})_{\lambda \in \Lambda}$. So we need continuous coordinate functions $s_{\lambda} : [0, 1] \to X_{\lambda}$ such that $s_{\lambda}(0) = x_{\lambda}$, $s_{\lambda}(1) = y_{\lambda}$. By assumption, $\exists s_{\lambda}$ for all λ .

Example

$$X = \{(x, \sin(1/x)) : x > 0\} \cup \{0\} \times [-1, 1] \subset \mathbb{R}^2$$



X is connected. X_+ is connected because $X_+ = f(\mathbb{R}_+)$, where $f: \mathbb{R}_+ \to \mathbb{R}^2$ $x \longmapsto (x, \sin(1/x))$

 \Rightarrow X connected because $X = X_{+}$

However, *X* is *not* path connected. (exercise!)

<u>Remark</u> This example shows that A path connected ($\subset X$) does not imply that \overline{A} path connected.