§26, 27 Compact Spaces

<u>Definition</u> A collection \mathcal{A} of subsets of a space X is said to *cover* X, or to be a *covering* of X, if the union of the elements of \mathcal{A} is equal to X. It is called an *open covering* of X if its elements are open subsets of X.

Definition A space X is said to be *compact* if every open covering \mathcal{A} of X contains a finite subcollection that also covers X.

Examples

- 1) \mathbb{R} not compact, $\mathbb{R} = \bigcup_{n \ge 1} (-n, n)$
- 2) (0, 1) is not compact (0, 1) = $\bigcup_{n\geq 1} \left(\frac{1}{n}, 1\right)$, similarly, (0, 1], [0, 1) not compact
- 3) If *X* is finite, then *X* is compact, Let $X = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ (for each $x \in X$ pick $\lambda_x \in \Lambda$ such that $x \in U_{\lambda_x}$ then $\{U_{\lambda_x}\}_{x \in X}$ forms finite subcover.
- 4) $\{0\} \cup \{\frac{1}{n} : n \ge 1\} \subset \mathbb{R}$. This is compact because any open neighborhood of 0 contains all but finitely many $\frac{1}{n}$'s.

Theorem 35

Any closed interval $[a, b] \subset \mathbb{R}$ is compact

Suppose $\{U_{\lambda}\}_{{\lambda} \in \Lambda}$ open cover that doesn't have a finite subcover. Let $X := \{t \in [a, b] : \text{the interval } [a, t] \text{ is contained in the union of finitely many } U_{\lambda} \text{'s}\}$. Let $x := \sup X \in [a, b]$. (Note a < x < b). There exists $\lambda_0 \in \Lambda$ such that $x \in U_{\lambda_0}$.

But
$$x - \frac{\epsilon}{2} \in X$$
, so $[a, x - (\epsilon/2)] \subset U_{\lambda_1} \cup ... \cup U_{\lambda_n}$ (some $\lambda_i \subset \Lambda$). Then $\left[a, x + \frac{\epsilon}{2}\right] \subset U_{\lambda_1} \cup ... \cup U_{\lambda_n}$. $\Rightarrow x + \frac{\epsilon}{2} \in X$. This is a contraction as $x \in \sup X$. \Box

General facts

Lemma 36

 $Y \subset X$ be subspace. Y is compact \iff whenever $Y \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$ where $U_{\lambda} \subset X$ open then $\exists \lambda_1, \ldots, \lambda_n \in \Lambda$ s.t $Y \subset U_{\lambda_1} \cup \ldots \cup U_{\lambda_n}$.

Proof:

"→"

$$Y \subset \bigcup_{\lambda} U_{\lambda} \Rightarrow Y = Y \cap \bigcup_{\lambda} U_{\lambda} = \bigcup_{\lambda} (Y \cap U_{\lambda})$$
 where $Y \cap U_{\lambda}$ open in Y . Y compact $\Rightarrow Y = \bigcup_{i=1}^{n} (Y \cap U_{\lambda_i})$ some $\lambda_i \in \Lambda$ (fin subcover) $\bigcup_{i=1}^{n} (Y \cap U_{\lambda_i}) \subset \bigcup_{i=1}^{n} U_{\lambda_i}$.

,, _ ,,

Say $Y = \bigcup_{\lambda} V_{\lambda}$ open cover of Y. Know $V_{\lambda} = Y \cap U_{\lambda_i}$ some $U_{\lambda} \subset X$ open. $\Rightarrow Y \subset \bigcup_{\lambda} U_{\lambda}$. By hypothesis, $Y \subset \bigcup_{i=1}^{n} U_{\lambda_i}$ some $\lambda_i \in \Lambda$. $\Rightarrow Y = \bigcup_{i} (Y \cap U_{\lambda_i}) = \bigcup_{i} Y_{\lambda_i}$. \Box

Theorem 37

If $Y \subset X$ closed subspace and X is compact, then Y is compact.

Proof:

Use Lemma 36. Say
$$Y \subset \bigcup_{\lambda} U_{\lambda}$$
 (where $U_{\lambda} \subset X$ open) Then $X = Y^{c} \cup \bigcup_{\lambda} U_{\lambda}$ open cover $\Rightarrow X = Y^{c} \cup \bigcup_{i=1}^{n} U_{\lambda_{i}}$ some $\lambda_{i} \in \Lambda$. $\Rightarrow Y \subset \bigcup_{i=1}^{n} U_{\lambda_{i}}$ (as $Y \cap Y^{c} = \emptyset$)