Recall X compact if every open cover of X has a finite subcover.

i.e.
$$X = \bigcup_{\lambda \in \Lambda} U_{\lambda} \Rightarrow X = U_{\lambda_1} \bigcup ... \bigcup U_{\lambda_n}$$
 for some $\lambda_i \in \Lambda$

Lemma 36

Let $Y \subset X$ subspace. Then, Y compact $\Leftrightarrow (Y \subset \bigcup_{\lambda} U_{\lambda} \text{ with each } U_{\lambda} \text{ open in } X \Rightarrow Y \subset U_{\lambda_1} \cup ... \cup U_{\lambda_n} \text{ some } \lambda_i \in \Lambda)$

Example $[a, b] \subset \mathbb{R}$) compact

Theorem 37

 $X ext{ compact}, Y \subset X ext{ closed} \Rightarrow Y ext{ compact}$

Theorem 38

If X is T_2 and $Y \subset X$ compact, then Y is closed

Proof:

We want Y^c to be open. Pick any $x \in Y^c$: want a neighborhood of x that is disjoint from Y.

For any $y \in Y$, \exists disjoint neighborhood U_y of y and V_y of x (as X is T_2)

So $Y \subset \bigcup_{y \in Y} U_y \xrightarrow{Y \text{ compact}} Y \subset U_{y_1} \bigcup ... \bigcup U_{y_n}$ for some $y_i \in Y_i$ Let $V := V_{y_1} \cap ... \cap V_{y_n}$ open and neighborhood of x.

Claim: $V \cap Y = \emptyset$. Take $y \in V \cap Y \Rightarrow y \in U_{v_i}$ for some $i, y \in V \subset V_{v_i}$ contradiction \square

Corollary 39

If X is compact T_2 then for any closed $Y \subset X$ and any $x \notin Y$, \exists open $U, V \subset X$ such that $Y \subset U$ and $x \in V$ *Proof*:

 $Y \subset X$ closed, X compact $\Rightarrow Y$ compact. Then the preceding proof shows that we can take $U := \bigcup_{i=1}^n U_{v_i}, \ V = \bigcap_{i=1}^n V_{v_i}$.

Theorem 40

If X_1, \ldots, X_n compact, then $\prod_{i=1}^n X_i$ is compact. (remark: for infinite products, later!)

Proof:

Enough to show this for n = 2. For n > 2, use $(X_1 \times ... \times X_{n-1}) \times X_n \cong \prod_{i=1}^n X_i$ and induction.

Let $X = X_1$, $Y = X_2$. Suppose $X \times Y = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ open cover. Fix $x \in X$, $x \times Y \cong Y$, so it's compact.

So by Lemma 36, $x \times Y \subset W_{\lambda_i} \cup ... \cup W_{\lambda_n}$ (some $\lambda_i \in \Lambda$). Declare $W = W_{\lambda_i} \cup ... \cup W_{\lambda_n}$.

Claim: \exists neighborhood U of x such that $U \times Y \subset W$. Assume this is true. So for all $x \in X$, \exists neighborhood U_x of x such that

 $U_x \times Y$ contained in a finite union of W_λ 's. $X = \bigcup_{x \in X} U_x \xrightarrow{X \text{ compact}} X = U_{x_i} \bigcup \ldots \bigcup U_{x_m}$ for some $x_i \in X$.

 $\Rightarrow X \times Y = (U_{x_1} \times Y) \cup ... \cup (U_{x_m} \times Y)$. Each is contained in finite union of W_{λ} 's $\Rightarrow X \times Y$ is a finite union of W_{λ} 's.

Now we prove the claim. $x \times Y \subset W$ open $\Rightarrow \forall y \in Y, (x, y) \in W \Rightarrow \exists U_y \subset X, V_y \subset Y$ open such that $(x, y) \in U_y \times V_y \subset W$.

$$Y = \bigcup_{y \in Y} V_y \xrightarrow{Y \text{ compact}} Y = V_{y_1} \bigcup \ldots \bigcup V_{y_s} \text{ for some } y_i \in Y. \text{ Take } U := \bigcap_{i=1}^n U_{y_i}. \ \ \Box$$

Theorem 41

Suppose $f: X \to Y$ continuous and X compact then f(X) is compact.

Proof:

Use Lemma 36, suppose $f(X) \subset \bigcup_{\lambda \in \Lambda} V_{\lambda} \Leftrightarrow X = f^{-1}(\bigcup_{\lambda} V_{\lambda}) = \bigcup_{\lambda} f^{-1}(V_{\lambda}) \Leftrightarrow X = \bigcup_{\lambda} f^{-1}(V_{\lambda})$ open cover.

$$\xrightarrow{X \text{ is compact}} X = \bigcup_{i=1}^n f^{-1}(V_\lambda) = f^{-1}(\bigcup_{i=1}^n V_{\lambda_i}) \iff f(X) \subset \bigcup_{i=1}^n V_{\lambda_i}. \ \Box$$