Recall

```
[a, b] \subset \mathbb{R} compact
closed \subset compact \Rightarrow compact
compact \subset T_2 \Rightarrow closed
f: X \to Y continuous, X compact \Rightarrow f(X) compact
X_1, \ldots, X_n compact \Rightarrow \prod_{i=1}^n X_i compact
```

Theorem 42

Suppose X is compact, Y is T_2 . Then any continuous bijection $f: X \to Y$ is a homeomorphism

Proof:

We need f^{-1} is continuous. $\Leftrightarrow f(D)$ closed in $Y \forall D \subset X$ closed. Take $D \subset X$ closed, As X is compact, D is compact. f(D) is compact (by Theorem 41) \Rightarrow since Y is T_2 , f(D) is closed. \Box

§ 27, 28, 45 Compactness in metric spaces

<u>Definition</u> (X, d) is **bounded** if $\exists M > 0$ such that $d(x, y) \le M$ for all $x, y \in X$. Careful: This depends on the metric (not just the topology) e.g. d and \overline{d} have the same topology and $\overline{d} \le 1$.

Theorem 43 (Heine-Borel)

A subspace $X \subset \mathbb{R}^n$ is compact $\Leftrightarrow X$ is closed and bounded in the <u>Euclidean</u> metric.

Example A closed ball $C_r(x) = \{y \in \mathbb{R}^n : |x - y| \le r\}$ is compact.

Proof:

"\(\sigma\)" X is compact, because \mathbb{R}^n is $T_2 \Rightarrow X$ closed. $X \subset \mathbb{R}^n = \bigcup_{n \geq 1} B_n(0)$. Since X is compact, $X \subset B_n(0)$ for some n. Take M = 2 $n \Rightarrow X$ is bounded. "\(\sigma\)" X is closed and bounded for X is closed and bounded for X is closed for X is closed and bounded for X is closed for X is closed and bounded for X is closed for X is closed and bounded for X is closed for X is compact. So if X is compact.

More generally

Theorem 44

(X, d) metric then the following are equivalent.

- (i) X compact
- (ii) X limit point compact
- (iii) *X* sequentially compact.
- (iv) X satisfies the Lebesgue Lemma + X totally bounded
- (v) *X* is complete + *X* totally bounded..

Recall $x \in \overline{A} \Leftrightarrow$ all nbds U of x intersect A (i.e. $U \cap A \neq \emptyset$), $x \in A' \Leftrightarrow$ outside x. (i.e. $U \cap A \notin \{x\}$)

In metric space, $x \in A' \Leftrightarrow$ every neighborhood U of x contains infinitely many points of A.

Proof:

We'll show (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i) and (iii) \Leftrightarrow (v)

<u>Definition</u> X is *limit point compact* if every infinite subset A has a limit point (i.e. $A' \neq \emptyset$)

<u>Definition</u> X is *sequentially compact* if every sequence $x_n \in X (n \ge 1)$ has a convergent subsequence: i.e. $\exists 1 \le n_1 < n_2 < \dots$

such that
$$x_{n_i} \to x$$
 as $i \to \infty$, for some x . e.g. $x_n = (-1)^n \in \mathbb{R}$, take $n_i = 2i$ (or $2i + 1$)

(ii) \Rightarrow (iii): X limit point compact. $(x_n)_{n=1}^{\infty}$ sequence in X, $A := \{x_n : n \ge 1\}$.

Case 1: A infinite

X limit point compact $\Rightarrow \exists x \in A'$. Construct subsequence by induction

Pick n_1 such that $x_{n_1} \in B_1(x)$ and $n_2 > n_1$ such that $x_{n_2} \in B_{1/2}(x)$. (can do that b/c any neighborhood contains infinitelyy many point of A). By construction, $x_{n_i} \to x$ as $i \to \infty$.

Case 2: A is finite

$$A = \{a_1, a_2, \dots, a_n\}$$
. $\exists j$ such that $\{n : x_n = a_j\}$ is infinite. Pick $n_1 < n_2 < \dots$ such that $x_{n_i} = a_j$. $\forall i$ Then $x_{n_i} \to a_j$. \Box

<u>Definition</u> *X* satisfies Lebesgue's Lemma if \forall open covers $\{U_{\lambda}\}$ of X, $\exists \delta > 0$ such that any δ -ball is contained in one of the U_{λ} .

Example R doesn't satisfy LL

<u>Definition</u> *X* is *totally bounded* if $\forall \epsilon > 0$, *X* is a finite union of ϵ -balls.

Remark Totally bounded ⇒ bounded.

Pick any
$$\epsilon > 0$$
. Then $X = \bigcup_{i=1}^n B_{\epsilon}(x_i)$. Then $\forall x, y \in X$. $\exists i, j \text{ such that } x \in B_{\epsilon}(x_i), y \in B_{\epsilon}(x_j)$
 $d(x, y) \le d(x, x_i) + d(x_i, x_j) + d(x_i, y) \le 2\epsilon + \max_{1 \le i, j \le n} d(x_i, x_j)$.

bounded does not imply totally bounded.

e.g. Take $d = \text{discrete metric. } X \text{ infinite, } \epsilon < 1.$

But bounded \Leftrightarrow totally bounded for $X \subset \mathbb{R}^n$ with Euclidean metric.

 $(iii) \Rightarrow (iv)$

If *X* is not totally bounded $\Rightarrow \exists \epsilon > 0$ such that $X \neq \text{ finite union of } \epsilon \text{-balls.}$

Constrct sequence $x_n \in X$ by induction. Pick x_1 arbitrarily. Pick $x_2 \in X \setminus B_{\epsilon}(x_1)$, ..., Pick $x_n \in X \setminus \bigcup_{i=1}^{n-1} B_{\epsilon}(x_i)$, ... X sequentially compact $\Rightarrow \exists$ convergent subsequence $x_{n_i} \to x$ as $i \to \infty$. $\Rightarrow d(x_{n_i}, x) < \epsilon/2$ for i >> 0. $\Rightarrow d(x_{n_{i+1}}, x_{n_i}) < \epsilon/2 + \epsilon/2 = \epsilon$. Contradicts that $x_{n_i} \notin B_{\epsilon}(x_{n_i})$.

If X does <u>not</u> satisfy Lebesgue, \exists open cover $\{U_{\lambda}\}$, \forall $\delta > 0$. \exists δ -ball in X that is not contained in any U_{λ} . For $\delta = 1/n$: \exists x_n such that $B_{1/n}(x_n)$ is not contained in any U_{λ} . X sequentially compact \Rightarrow \exists convergent subsequence $x_{n_i} \rightarrow x$.

 $x \in U_{\lambda}$ some λ . U_{λ} open $\Rightarrow \exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset U_{\lambda}$.

Pick i>>0 such that $d(x_{n_i}, x) < \frac{\epsilon}{2}$ and $\frac{1}{n_i} < \frac{\epsilon}{2}$. $\Rightarrow B_{1/n_i}(x_{n_i}) \subset B_2(x) \subset U_{\lambda}$. contradiction. \Box

(iv) \Rightarrow (i): X Lebesgue + totally bounded. Suppose $\{U_{\lambda}\}$ open cover, Lebesque $\Rightarrow \exists \delta > 0$ (Lebesque #), such that any δ ball in X

is contained in one of the U_{λ} .

totally bounded $\Rightarrow X = \bigcup_{i=1}^{n} B_{\delta}(x_i)$ for some x_i . $\exists \lambda_i$ such that $B_{\delta}(x_i) \subset U_{\lambda_i}$. So $X = \bigcup_{i=1}^{n} U_{\lambda_i}$ (finite subcover).

Recall (X, d) is complete if every Cauchy sequence converges.

<u>Recall</u> (X, d) complete, Y complete $\Leftrightarrow Y$ closed.

Remark Let Y be subset of X, and (X, d) metric. $x \in \overline{Y} \iff \exists$ sequence $y_n \in Y$ such that $y_n \to x$.