Recall

Compactness in metric spaces:

Heine–Borel $X \subset \mathbb{R}^n$ compact \Leftrightarrow closed and bounded in Euclidean metric.

Theorem 44

(X, d) metric space TFAE

- (i) X is compact
- (ii) X is liimit point compact
- (iii) X is sequentially compact
- (iv) X satisfies lebesgue lemma and X is totally bounded
- (v) X is complete and totally bounded

```
Last time we showed : (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i) Today : (iii) \Leftrightarrow(v)
```

Definition *Limit point compact* if infinite subsets have limit points

<u>Definition</u> *Sequentially compact* if any sequence has a convergent subsequence.

<u>Definition</u> *Totally bounded* if for any $\epsilon > 0$, X is a finite union of ϵ -balls.

<u>Definition</u> **Lebesgue Lemma** for any open cover $\{U_{\lambda}\}_{{\lambda} \in \Lambda}$, $\exists \, \delta > 0$ s.t. any δ -ball is contained in one of the U_{λ} 's.

<u>Definition</u> Complete if every Cauchy sequence converges.

Proof: (iii) \Rightarrow (v)

Assume *X* is sequentially compact \Rightarrow totally bounded as we proved in (iii) \Rightarrow (iv). Suppose (x_n) is Cauchy sequence Sequentially compact $\Rightarrow \exists x_n \rightarrow x$ convergent subsequence.

```
Claim: x_n \to x as n \to \infty. Given \epsilon > 0, since x_n is Cauchy, d(x_n, x_m) < \epsilon/2 for all n, m \ge N. Since x_{n_i} \to x, \exists i such that n_i \ge N and d(x_{n_i}, x) < \epsilon/2. For n \ge N, d(x_{n_i}, x_n) < \epsilon/2. \Rightarrow d(x_n, x) \le \epsilon/2 + \epsilon/2 = \epsilon, for all n \ge N. Hence X is complete.
```

(v) \Rightarrow (iii): X is complete and totally bounded. (x_n) sequence in X, want a convergent subsequence. Use X totally bounded to construct a subsequence that is Cauchy. X complete \Rightarrow subsequence convergent. If X is totally bounded, can cover X by finite number of 1-balls. \Rightarrow one of them (call it B_1) contains x_n for infinitely many n. Pick n, smallest such that $x_{n_1} \in B_1$ and throw away all terms of the sequence that don't lie in B_1 . Repeat: $\exists \frac{1}{2}$ -ball, B_2 such that contains x_n for infinitely many n. Pick $n_2 > n_1$, smallest such that, $x_{n_2} \in B_2$ and throw away all $n > n_2$ such that $x_n \notin B_2$. By induction we get subsequence (x_{n_i}) such that $\forall j \geq i$, x_{n_j} lies in a $\frac{1}{j}$ -ball B_j . So $d(x_{n_k}, x_{n_l}) < \frac{2}{j}$, $\forall k, l \geq j$.

So
$$(x_{n_i})$$
 is Cauchy $\xrightarrow{X \text{ complete}} (x_{n_i})$ converges. \square

Application of Lebesgue Lemma

Theorem 45

Suppose X, Y metric spaces, Let $f: X \to Y$ continuous, if X is compact, then f is uniformly continuous.

Recall $\forall \epsilon > 0$, $\exists \delta > 0$ such that $d(x_1, x_2) < \delta \Rightarrow d(f(x_1), f(x_2)) < \epsilon$.

Given $\epsilon > 0$, $Y = \bigcup_{y \in Y} B_{\epsilon}(y)$ open cover. $\Rightarrow X = \bigcup_{y} f^{-1}(B_{\epsilon}(y))$ open cover by continuity of f.

X compact $\Rightarrow \exists$ Lebesgue number $\delta > 0$, for this open cover. Claim : $d(x_1, x_2) < \delta \Rightarrow d(f(x_1), f(x_2)) < 2\epsilon$.

Reason: $x_2 \in B_{\delta}(x_1) \subset f^{-1}(B_{\epsilon}(y))$, some y. So $f(x_1)$, $f(x_2) \in B_{\epsilon}(y) \Rightarrow d(f(x_1), f(x_2)) < 2\epsilon$. \Box

Another characterisation of compactness.

Let *X* be topological space.

<u>Definition</u> A collection \mathbb{C} of subsets of X has the *finite intersection property* if any finite subcollection has a non-empty intersection : $\bigcap_{i=1}^{n} C_i \neq \emptyset$ for all $C_i \in \mathbb{C}$, $\forall n \in \mathbb{N}$.

Proposition 46

X is compact \Leftrightarrow any collection of <u>closed</u> subsets having the finite intersection property has non–empty intersection $\bigcap_{C \in \mathbb{C}} C \neq \emptyset$.

Proof:

Define $\mathcal{U} := \{C^c : C \in \mathbb{C}\}, \text{ a collection of open subsets } (\bigcap_{C \in \mathbb{C}} C)^c = \bigcup_{U \in \mathcal{U}} U.$

So C has non-empty intersection $\Leftrightarrow \mathcal{U}$ not a cover

criterion of prop 46 ↑

 \uparrow X compact

 ${\tt C}$ has finite intersection prop $\Leftrightarrow {\tt U}$ has no finite subcover. ${\tt \Box}$

An example: the Cantor set.

Start with $C_0 = [0, 1] \in \mathbb{R}$

(http://en.wikipedia.org/wiki/Cantor_set)

$$C_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right], \ C_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right], \dots$$
$$C_n = \frac{C_{n-1}}{3} \cup \left(\frac{2}{3} + \frac{C_{n-1}}{3}\right).$$

Let $C := \bigcap_{n=0}^{\infty} C_n$ be cantor set. It is metrisable (since $C \subset \mathbb{R}$) and compact (closed and bounded in Euclidean metric) What are its elements?

Use base 3 (e.g.
$$3 = (10)_3$$
, $4 = (11)_3$, $5(12)_3$, $6 = (20)_3$, $9 = (100)_3$, ... also, $\frac{1}{3} = (0.1)_3$, ... since, $(0.1)_3 = 0 + \frac{1}{3}$

The numbers between 0 and $\frac{1}{3}$: first decimal digit is 0,

The numbers between $\frac{1}{3}$ and $\frac{2}{3}$: first decimal digit is 1,

The numbers between $\frac{2}{3}$ and 1: first decimal digit is 2,

Similarly, between 0 and $\frac{1}{9} = (0.01)_3$: first and second digit is 0. between $\frac{2}{9} = (0.02)_3$ and $\frac{1}{3} = (0.1)_3$: first digit is 0, second digit is 2.

 $C = \{x \in [0, 1], \text{ that can be written in base 3 without using 1 as digit}\}$

Endpoints:

In base 3: 0, d_1 , ..., d_n 22 ... (with $d_n \neq 2$) = 0, d_1 , ..., $d_n(d_{n+1})$

For example, $(0.020202...)_3 = x$, multiplying by 9 - $(2.0202...)_3 = 9 x$ (subtracting from each other) $2 = 8 x \Rightarrow x = \frac{1}{4}$

In fact, *C* is totally disconnected, $X \subset C$, |X| > 1 is not connected. The point is, by picking $x \neq y$ in X. At some stage, a point between x and y is removed.

C'(limit point of C) = C: Just change $n^{\text{th}} \text{ digit } 0 \leftrightarrow 2 \text{ (for } n >> 0)$.

Length: at n^{th} step, length = $\left(\frac{2}{3}\right)^n \to 0$ as $n \to \infty$.

<u>Definition</u> A set *A* is *countable* if \exists bijection $\mathbb{N} \rightarrow A$

C is uncountable.

Proof:

Assume *C* is countable, So we have $C = \{x_0, x_1, ...\}$

 $x_0 = 0.20220202...$ $x_1 = 0.20020222...$ $x_2 = 0.2000022 \dots$ $x_3 = 0.20220202...$ $x_4 = 0.20002002...$

pick x = 0.20022... cannot be one of the x_i 's. (just as the proof real numbers are not countable). contradiction. \Box