Last Time

Theorem 44(v) states "complete+totally bounded" \Leftrightarrow compact. This generalizes Heine–Borel.

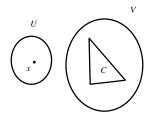
$$X \subset \mathbb{R}^n$$
, X bounded in Euclidean metric \iff totally bounded \iff X compete, since \mathbb{R}^n complete

Any compact metric space is continuous image of Cantor set! (proof will be linked on course website)

Separation Axioms

 T_1 is equivalent of "points are closed", T_2 = Hausdorff. $T_2 \Rightarrow T_1$. T_2 does not imply T_1 , example: finite complement topology.

<u>Definition</u> X is *regular* or T_3 if X is T_1 and for any closed subset $C \subset X$ and any $x \notin C$, \exists disjoint open sets U containing x and, $V \supset C$.



<u>Remark</u> $T_3 \Rightarrow T_2$ because T_3 space is T_1 , so we can take $C = \{y\}$.

<u>Definition</u> X is *normal* or T_4 if X is T_1 and for any disjoint closed subsets C, D \exists disjoint open subsets $U \supset C$, $V \supset D$.

Remark $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1$

 T_2 does not imply T_3 . Take $X = \mathbb{R}_K$, with basis (a, b), $(a, b) \setminus K$, where $K = \left\{\frac{1}{n} : n \ge 1\right\}$. Finer top. than $\mathbb{R} \Rightarrow \mathbb{R}_K$ is $T_2(\Rightarrow T_1)$

Take C = K closed, and choose x = 0. Suppose $\exists U, V$ disjoint open, such that $0 \in U, V \supset K$. So $0 \in (-\epsilon, \epsilon) \setminus K(\text{basis}) \subset U$ for some $\epsilon > 0$. Pick n, such that $\frac{1}{n} < \epsilon$. Since $\frac{1}{n} \in V \Rightarrow \left(\frac{1}{n} - \delta, \frac{1}{n} + \delta\right) \subset V$ some $\delta > 0$. Then points close enough to $\frac{1}{n}$ will be in $U \cap V$. contradiction. \Box

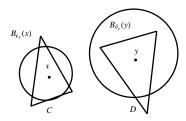
Also, T_3 does not imply T_4 . For example: \mathbb{R}^2_l . We will see next time that is T_3 . It is not T_4 , see book pg.198.

Theorem 47

If X is a metrizable topological space, then X is T_4 .

Proof:

We know X is $T_2 \Rightarrow T_1$. Say topology comes from the metric d and C, $D \subset X$ disjoint closed.



For $x \in C$, $\exists \epsilon_x > 0$ such that $B_{\epsilon_x}(x) \cap D = \emptyset$ (since D^c is open)

For $y \in D$, $\exists \delta_y > 0$ such that $B_{\delta_y}(y) \cap C = \emptyset$.

Let $U:=\bigcup_{x\in C}B_{\epsilon_x/2}(x)$ open, contains $C.\ V:=\bigcup_{y\in D}B_{\delta_y/2}(y)$ open, contains D.

 $U, V \text{ disjoint: if not, } \exists x \in C, y \in D \text{ such that } B_{\epsilon_x/2}(x) \cap B_{\delta_y/2}(y) \neq \emptyset. \text{ So } d(x, y) < \frac{\epsilon_x + \delta_y}{2} \leq \max(\epsilon_x, \delta_y).$

Say $\epsilon_x \ge \delta_y$: then $d(x, y) < \epsilon_x$, $y \in B_{\epsilon_x}(x) \cap D = \emptyset$. Contradiction. \Box

Theorem 48

If *X* is compact T_2 , then *X* is T_4 .

In Corollary 39, we saw that X is T_3 .

 $C, D \subset X$ disjoint + closed. $\Rightarrow C, D$ compact as X is compact.

 $\forall x \in C, \exists U_x \text{ containing } x, \ V_x \supset D \text{ open } + \text{ disjoint since } X \text{ is } T_3. \text{ (note: } x \notin D). \text{ As in corollary 39 (as } C \text{ is compact).}$ $C \subset U_{x_1} \bigcup \ldots \bigcup U_{x_n} \text{ (some } x_i \in C), D \subset V_{x_1} \cap \ldots \cap V_{x_n}. \text{ Clearly disjoint. } \square$