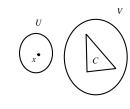
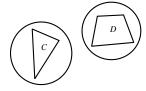
Recall X is T_3 if X is T_1 and for any closed subset $C \subset X$ and any $x \notin C$, \exists disjoint open sets U containing x and, $V \supset C$.



X is T_4 if X is T_1 and



 $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1$

Lemma 50

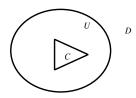
X be T_1 space.

(i) *X* is $T_3 \Leftrightarrow \forall x \in U$ and $\forall U$ open A open A of A, A such that A is A in A is in A is A i

(ii) *X* is $T_4 \Leftrightarrow \forall C \subset U$ open, $\exists V$ open such that $C \subset V \subset \overline{V} \subset U$.

Proof: Do (ii), part (i) is analogous

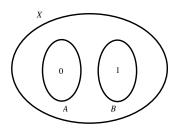
" \Rightarrow " X is T_4 , suppose C closed $\subset U$ open. Let $D := U^c$, closed disjoint from C. $T_4 \Rightarrow \exists \ U_1, \ U_2$ disjoint open such that $C \subset U_1, \ D \subset U_2$



Then, $C \subset U_1 \subset U_2^c \subset D^c = U$. Can take $V = U_1$ because $\overline{U_1} \subset U_2^c$ (closed) " \Leftarrow " Suppose C, D disjoint closed. Let $U := D^c$. Then $C \subset U$ open, then $\exists V$ open such that $C \subset V \subset \overline{V} \subset U$. Then $C \subset V$ and $D \subset (\overline{V})^c$ disjoint open. \Box

§33 Urysohn's Lemma

Motivating Question : Let $A, B \subset X$ disjoint subsets



When does there exist a continuous function $f: X \to [0, 1]$ such that $f|_A \equiv 0$ and $f|_B \equiv 1$. If f exists, $f^{-1}\{0\}$ closed subset containing A and $f^{-1}\{1\}$ closed subset containing B. So we can restrict attention to A, B closed.

Moreover, $f^{-1}([0, 1/2))$ open subset containing A, $f^{-1}((1/2, 1])$ open subset containing B and disjoint.

Theorem 51 (Urysohn's Lemma)

Suppose X is T_4 , then $\forall A, B$ disjoint closed subsets $\exists f : X \to [0, 1]$ cts such that $f|_A \equiv 0$ and $f|_B \equiv 0$

Idea: "successive approximation"



To avoid intersecting, we set $\overline{U_0} \subset U_{1/2}$

Proof: (nice pictures in Janich "Topology")

1. Choose open sets $U_{i/2^n}$. Let $U_1 := B^c$ (open), note A closed $\subset B^c$ open.

X is T_4 then by lemma 50, $\exists U_0$ open such that $A \subset U_0 \subset \overline{U_0} \subset U_1 = B^c$

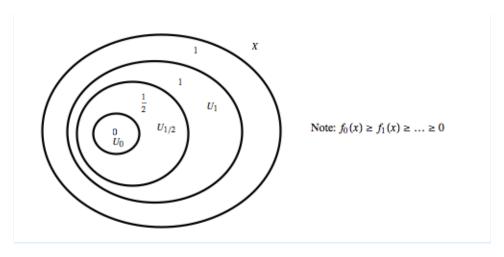
Induct: $\exists \ U_{1/2}$ open such that $U_0 \subset \overline{U_0} \subset U_{1/2} \subset \overline{U_{1/2}} \subset U_1$

 $\exists \ U_{1/4}, \ U_{3/4} \ \text{open such that} \ U_0 \subset \overline{U_0} \subset U_{1/4} \subset \overline{U_{1/4}} \subset U_{1/2} \subset \overline{U_{1/2}} \subset U_{3/4} \subset \overline{U_{3/4}} \subset U_1 \\ \exists \ U_{1/8}, \ U_{3/8}, \ U_{5/8}, \ U_{7/8}, \ \dots$

2. Functions f_n and $f: X \to [0, 1]$

For $n \ge 0$, $U_0 \subset U_{1/2^n} \subset U_{2/2^n} \subset ... \subset U_{2^n-1/2^n} \subset U_1$

$$f_n(x) := \begin{cases} 0 & \text{if } x \in U_0 \\ \frac{i}{2^n} & \text{if } x \in U_{i/2^n} - U_{i-1/2^n} \\ 1 & \text{if } x \notin U_1 \end{cases}$$



and $|f_n(x) - f_{n+1}(x)| \le \frac{1}{2^{n+1}}$, $\forall n$. Let $f(x) = \lim_{n \to \infty} f_n(x)$, (exists because bounded monotone sequence) and obtaion $f: X \to [0, 1], \ f|_A \equiv 0$ (even zero on U_0) and $f|_B \equiv 1$ (because $B = U_1^c$).

3. Check that f is continuous:

Note: $|f(x) - f_n(x)| \le \frac{1}{2^n}$, use Theorem 21(iv): $\forall x \in X, \ \forall \epsilon > 0$, need to show $\exists \text{ nbd } U \text{ of } x \text{ such that } f(U) \subset B_{\epsilon}(f(x))$.

Fix some n, $\exists i$ such that $x \in U_{i/2^n} - \overline{U_{i-2/2^n}}$ (this is open).

why does i exist?, take i minimal such that $x \in U_{i/2^n}$, then if $x \in \overline{U_{i-2/2^n}} \subset U_{i-1/2^n}$. contradiction.

For any
$$y \in U_{i/2^n} - \overline{U_{i-2/2^n}}, |f(y) - f(x)| \le |f(y) - f_n(y)| + |f_n(y) - f_n(x)| + |f_n(x) - f(x)| \le \frac{1}{2^n} + \frac{1}{2^n} + \frac{1}{2^n} = \frac{3}{2^n}$$
.

Choose n >> 0 such that $\frac{3}{2^n} < \epsilon$.

Theorem 49

 \mathbb{R}_l is T_4

we know \mathbb{R}_l is $T_2 \Rightarrow T_1$ (since finer than \mathbb{R}). For C, D disjoint closed.

For $x \in C$ since $x \in D^c$ open, $\exists c_x > x$ such that $[x, c_x) \subset D^c$

For $y \in D$ since $y \in C^c$ open, $\exists d_y > y$ such that $[y, d_y] \subset C^c$

 $U := \bigcup_{x \in C} [x, c_x), \ V := \bigcup_{y \in D} [y, d_y) \text{ where } C \subset U, \text{ and } D \subset V$

Claim: $U \cap V = \emptyset$

If not, $\exists x \in C$, $y \in D$ such that $[x, c_x) \cap [y, d_y] \neq \emptyset$ WLOG, $x \le y \Rightarrow y \ (\in D) \in [x, c_x) \ (\subset D^c)$. contradiction. \Box

Theorem 52

(a) X is $T_3 \Rightarrow$ any subspace is T_3

(b) X_{λ} is T_3 for all $\lambda \in \Lambda \Rightarrow \prod_{\lambda \in \Lambda} X_{\lambda}$ is T_3

Corollary \mathbb{R}^2_I is T_3

Remark Since it's known that \mathbb{R}^2_l is *not* T_4 , the analogue of Theorem 52 (b) is not true. It is known that analogue of Theorem 52 (a) for T_4 also fails.

Proof:

 $T_3 \Rightarrow T_2$ and we know subspace and products of T_2 spaces are T_2 ($\Rightarrow T_1$)

(a) Say $Y \subset X$ subspace. Suppose $D \subset Y$ closed, $y \in Y \setminus D$. Then $\exists C \subset X$ closed such that $D = Y \cap C$.

Note: $y \notin C$ (since $y \in Y$). X is $T_3 \Rightarrow y \in U$, $C \subset V$ disjoint open in X. Then, $U \cap Y$, $V \cap Y$ disjoint open in Y. $C \cap Y = D$.