<u>Recall</u> Urysohn's Lemma: X is T_4 then $\forall A, B$ disjoint closed subset, $\exists f: X \to [0, 1]$ cts such that $f|_A = 0$ and $f|_B = 1$.

Remark This works for [a, b] instead of [0, 1] since $[0, 1] \cong [a, b]$.

Theorem 52 (b)

 X_{λ} is $T_3 \forall \lambda \Rightarrow \prod_{\lambda \in \Lambda} X_{\lambda}$ is T_3 .

Proof:

Use criterion of Lemma 50 ($\exists V$ open such that $x \in V \subset \overline{V} \subset U$), Fix $\mathbf{x} = (x_{\lambda}) \in \prod X_{\lambda}, \ \mathbf{x} \in U$

So \exists basic open nbd, $\prod_{\lambda \in \Lambda} V_{\lambda}$ of x contained in U. (V_{λ} open in X_{λ} and $V_{\lambda} = X_{\lambda}$ for all but finitely many λ .)

Since X_{λ} is $T_3 \exists W_{\lambda}$ such that $x_{\lambda} \in W_{\lambda} \subset \overline{W_{\lambda}} \subset V_{\lambda}$. Whenever $V_{\lambda} = X_{\lambda}$ take $W_{\lambda} := X_{\lambda}$

Then $W := \prod W_{\lambda}$ is open in $\prod X_{\lambda}$.

Claim : $\overline{W} \subset \prod V_{\lambda}$

For any $\mu \in \Lambda$, $p_{\mu} : \prod X_{\lambda} \to X_{\mu}$ is cts. $\Rightarrow p_{\mu}(\overline{W}) \subset \overline{p_{\mu}(W)}$ (by Theorem 21) $= \overline{W_{\mu}} \subset V_{\mu}$. \Box

§35 Tietze Extension Theorem

Proposition 53

Y metric space, suppose $f_n: X \to Y$ cts $(n \ge 1)$, and $f: X \to Y$. If $f_n \to f$ uniformly, then f is continuous.

uniformly means: $\forall \epsilon > 0$, $\exists n_0 \ge 1$ such that $d(f_n(x), f(x)) < \epsilon$, $\forall x \in X$, $\forall n \ge n_0$.

Example

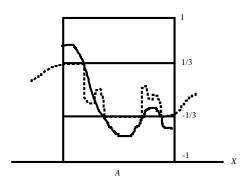
 $f_n: X \to \mathbb{R}$ cts, $M_n \in \mathbb{R}_{\geq 0}$ such that $|f_n(x)| \leq M_n$, $\forall x$ and $\sum M_n$ converges $\Rightarrow \sum f_n$ converges uniformly and its continuous. (Weierstrass M test)

Theorem 54 (Tietze)

X be T_4 space, $A \subset X$ closed, $f: A \to [a, b]$ cts, then $\exists \tilde{f}: X \to [a, b]$ cts such that $\tilde{f}|_A = f$. *Proof*:

WLOG, [a, b] = [-1, 1] (they are homeo)

Idea: use successive approximation.



If $g: A \to [-1, 1]$ satisfies.

$$g(x) = \begin{cases} 1/3 & \text{if } f(x) \ge 1/3\\ \in [-1/3, 1/3] & \text{if } f(x) \in [-1/3, 1/3]\\ -1/3 & \text{if } f(x) \le -1/3 \end{cases}$$

Then
$$|f(x) - g(x)| \le \frac{2}{3} \forall x \in A$$

$$C := f^{-1}(\left[\frac{1}{3}, 1\right])$$
 closed in $A \to \text{closed in } X \text{ (as } A \text{ is)}$

$$D := f^{-1}(\left[-1, -\frac{1}{3}\right])$$
 closed in $A \to$ closed in X (as A is)

 \Rightarrow C, D is disjoint closed

Uryusohn's Lemma $\Rightarrow \exists f_1: X \to \left[-\frac{1}{3}, \frac{1}{3}\right]$ cts such that $f_1 \mid_C \equiv \frac{1}{3}, f_1 \mid_D \equiv -\frac{1}{3}$

Moreoever, $|f(x) - f_1(x)| \le \frac{2}{3}$, $\forall x \in A$.

Hence,
$$f - f_1|_A : A \rightarrow \left[-\frac{2}{3}, \frac{2}{3}\right]$$
 cts

The same argument gives: $\exists f_2: X \to \left[-\frac{2}{3^2}, \frac{2}{3^2}\right]$ cts such that $|f(x) - f_1(x) - f_2(x)| \le \left(\frac{2}{3}\right)^2$, $\forall x \in A$

$$\exists f_n : X \to \left[-\frac{1}{3} \left(\frac{2}{3} \right)^{n-1}, \frac{1}{3} \left(\frac{2}{3} \right)^{n-1} \right] \text{ cts such that } |f(x) - f_1(x) - \dots - f_n(x)| \le \left(\frac{2}{3} \right)^n \ (\textcircled{\$})$$

Let
$$\tilde{f} := \sum_{n=1}^{\infty} f_n$$
. Note: $|f_n| \le \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$

Weierstrass M test $\Rightarrow \sum_{n=1}^{\infty} f_n$ converges uniformly, so \tilde{f} cts. $\left| \tilde{f}(x) \right| \le \left| \sum_{n=1}^{\infty} f_n(x) \right| \le \sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{2}{3} \right)^{n-1} = 1$.

$$|\tilde{f}(x)| \le |\sum_{n=1}^{\infty} f_n(x)| \le \sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} = 1.$$

Get
$$\tilde{f}: X \to [-1, 1]$$
 cts. Let $n \to \infty$ in $(\clubsuit) \Rightarrow \tilde{f}|_A = f$. \square