Recall Tietze Extension Theorem

$$X T_4$$
 space, $A \subset X$ closed then $f: A \to [a, b]$ cts $\Rightarrow \exists \tilde{f}: X \to [a, b]$ cts, $\tilde{f}|_A = f$

Small remark $f_1, f_2: X \to \mathbb{R}$ cts, then $f_1 + f_2, f_1 f_2, \dots$ cts.

$$X \to \mathbb{R}^2 \stackrel{+}{\to} \mathbb{R}$$

 $x \longmapsto (f_1(x), f_2(x)) \to f_1(x) + f_2(x).$

Corollary 55

Tietze also true for functions to R

Proof:

Note:
$$\mathbb{R} \cong (-1, 1)$$

 $x \mapsto \frac{\arctan x}{\pi/2}$

Given $f: A \to (-1, 1)$ cts, by Theorem 54 $\exists g: X \to [-1, 1]$ such that $g|_A = f$ "Problematic set": $g^{-1}(\{-1, 1\})$ closed and disjoint from A.

By Urysohn $\exists \lambda : X \to [0, 1]$ such that $\lambda|_A \equiv 1, \ \lambda_{g^{-1}(\{-1,1\})} \equiv 0.$

Define
$$\tilde{f} := \lambda g$$
. Then $\tilde{f}|_A = g|_A = f$. But $\tilde{f}(x) \notin \{-1, 1\}$ for all x , since $|\tilde{f}| \le |g|$. \square

Remark From [a, b]-version get $[a, b]^n$ -version

From \mathbb{R} -version get \mathbb{R}^n -version

It is also true for $f: A \to \mathbb{R}^n$ such that $|f(x)| \le r$ for all x.

Reason: $\{x \in \mathbb{R}^n : |x| \le r\} \cong [-1, 1]^n$.

Compactness (lecture by Michael)

Compact spaces are small spaces.

3 questions for topologists when one finds a new property.

- 1) does any space have it?
- 2) perserved by continuous mappings?
- 3) do subspaces have these property?

Are these sets compact?

$$\{0\}^{\omega} \{0, 1\}^{\omega}$$

How to prove these sets are compact?

- 1) Use Konig's Lemma
- 2) Cantor set $\cong \{0, 1\}^{\omega}$

How about these sets?

 $[0, 1]^{\omega}$ product topology

 $[0, 1]^{\infty}$ box topology

Use compactness definition which works for all spaces.

Theorem A space *X* is compact if and only if for every collection \mathcal{F} of closed subsets of *X* with the finite intersection property, then $\bigcap \mathcal{F} \neq \emptyset$.

<u>Recall</u> In $\prod X_{\lambda}$, basic open sets are of the form $\prod_{\lambda_1}^{-1}(U_{\lambda}) \cap ... \cap \prod_{\lambda_n}^{-1}(U_{\lambda})$.

<u>Definition</u> Let X be a nonempty set, \mathcal{F} a collection of subsets of X. \mathcal{F} is a filter(on X) if

i) \mathcal{F} , it has FIP⁺ (i.e. for any collection $F \subseteq \mathcal{F}$, $\bigcap F \in \mathcal{F}$.)

ii) $\emptyset \notin \mathcal{F}, X \in \mathcal{F}$

iii) \mathcal{F} is closed upwards (if $A \in \mathcal{F}$, $B \supseteq A$, then $B \in \mathcal{F}$)

Example

Let $\mathcal{F} = \{(a, b) \subseteq \mathbb{R} : 100 \in (a, b)\}$ almost a filter (fails the third property)

 $\hat{\mathcal{F}} = \{A \subseteq \mathbb{R} : \exists (a, b) \ni 100 \text{ and } (a, b) \subseteq A\}$ This is a filter.

Biggest filter ? $\mathcal{F} \cup \{\{100\}\}\}$? No

Since $\{100\} \cup (0, 1) \notin \mathcal{F} \cap \{\{100\}\}\$

So we define $\mathcal{F} \cup \{\{100\}\} = \{A \subseteq \mathbb{R} : 100 \in A\} = \text{maximal(ultra) filter. (the notion } \subseteq \text{means closed upwards)}$

Definition A filter \mathcal{F} is maximal(or an ultrafilter) if whenever $\mathcal{D} \supseteq \mathcal{F}$ is a filter, $\mathcal{D} = \mathcal{F}$.

Fact 1 For every filter \mathcal{F} , there is an ultrafilter $\mathcal{D} \supseteq \mathcal{F}$.

Fact 2 If \mathcal{F} is an ultrafilter(on X) $A \subseteq X$, TFAE

i)
$$A \in \mathcal{F}$$

ii) $\forall F \in \mathcal{F}, A \cap F \neq \emptyset$

Proof:(of fact 2)

"\Rightarrow" Obvious. "\(\neq\)" $\forall F \in \mathcal{F}, F \cap A \neq \emptyset$. Check that $\mathcal{F} \cup \{A\}$ has FIP⁺.

Take $F_1, ..., F_n \in \mathcal{F}$, then $F_1 \cap ... \cap F_n \in \mathcal{F}$. So $F_1 \cap ... \cap F_n \cap A \neq \emptyset$.

Add to \mathcal{F} all sets of the form $(F_1 \cap F_2 \cap ... \cap F_n \cap A)$ e.g. $(F_7 \cap F_9 \cap A)$

Let all sets of the above form \mathcal{F}_2

Then $\overline{\mathcal{F} \cup \mathcal{F}_2}$ is a filter, $\mathcal{F} \subseteq \overline{\mathcal{F} \cup \mathcal{F}_2}$. So by maximality, $\mathcal{F} = \overline{\mathcal{F} \cup \mathcal{F}_2}$

Proof(of fact 1): use Zorn's lemma

Let \mathcal{F} be a filter, and let $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq ... \subseteq \mathcal{F}_n \subseteq ... \subseteq \mathcal{F}_\lambda \subseteq ...$

If we show $\bigcup_{n \in I} \mathcal{F}_n$ is a filter, ZL says \mathcal{F} can be extended to an ultra filter.

 $\{\mathcal{F}_{\lambda} \geq \mathcal{F} : \lambda \in I\}$ is a *chain* if given $\lambda_1, \ \lambda_2 \in I$ then $\mathcal{F}_{\lambda_1} \subseteq \mathcal{F}_{\lambda_2}$ or $\mathcal{F}_{\lambda_1} \supseteq \mathcal{F}_{\lambda_2}$. Call $\mathcal{F}_{\infty} = \bigcup_{\lambda \in I} \mathcal{F}_{\lambda}$. We know $X \in \mathcal{F}_{\infty}$, $\emptyset \notin \mathcal{F}_{\infty}$ and $\mathcal{F} \subseteq \mathcal{F}_{\infty}$.

Claim \mathcal{F}_{∞} has FIP⁺.

Let $A_1, ..., A_n \in \mathcal{F}_{\infty}$. $\exists \mathcal{F}_{\lambda_1}, \mathcal{F}_{\lambda_2}, ..., \mathcal{F}_{\lambda_n}$ be in the chain such that $A_i \in \mathcal{F}_{\lambda_i}$.

So there is a λ_N such that $\mathcal{F}_{\lambda_i} \subseteq F_{\lambda_N}$, $\forall i$. Check closed upwards.

Tychonoff's Theorem

Let X_{λ} be compact then $\prod X_{\lambda}$ is compact.

Proof:

Let \mathcal{F} be a collection of closed sets with the FIP. Let $\mathcal{F}_1 = \{F_1 \cap F_2 \cap ... \cap F_n : F_i \in \mathcal{F}\}$

Then $\mathcal{F} \cup \mathcal{F}_1$ is a filter. From then we extend $\mathcal{F} \cup \mathcal{F}_1$ to an ultrafilter \mathcal{U} . We want $\emptyset \neq \cap \mathcal{U} \subseteq \cap \mathcal{F}$ Let $\mathcal{U}_{\lambda} = \{ \gamma \subseteq X_{\lambda} : \pi_{\lambda}^{-1}(\gamma) \in \mathcal{U} \}$. Let $\pi_{\lambda}^{-1}(A \cap B) = \pi_{\lambda}^{-1}(A) \cap \pi_{\lambda}^{-1}(B)$. Since π_{λ} are continuous, $\pi_{\lambda}^{-1}(C)$ is closed for Cclosed.

Fact \mathcal{U}_{λ} is an ultrafilter on X_{λ} , we know $\bigcap \mathcal{U}_{\lambda} \neq \emptyset$. Pick $\mathcal{F}(\lambda) \in \bigcap \mathcal{U}_{\lambda}$

 $\underline{\operatorname{Claim}} \quad \mathcal{F}: I \to \bigcup X_{\lambda} \text{ given by } \mathcal{F}(\lambda)$

i)
$$\mathcal{F} \in \prod X_{\lambda}$$

ii)
$$\mathcal{F} \in \cap \mathcal{U}$$

Want if *B* a basic open set contains \mathcal{F} , then $B \in \mathcal{U}$. It is enough to show every subbasic open set $S \ni \mathcal{F}$ is in \mathcal{U} . if (i), then $\mathcal{F} \in \bigcap_{\mathcal{B} \in \mathcal{B}, \mathcal{F} \in \mathcal{B}} \mathcal{B} \subseteq \bigcap \mathcal{U} = \overline{\bigcap \mathcal{U}}$

Let $S = \pi_{\lambda}^{-1}(U_{\lambda}) \ni \mathcal{F}$. $(U_{\lambda} \text{ open in } X_{\lambda})$. So $\mathcal{F}(\lambda) \in U_{\lambda}$. Also $\mathcal{F}(\lambda) \in \bigcap \mathcal{U}_{\lambda}$. $U_{\lambda} \cap \bigcap \mathcal{U}_{\lambda} \neq \emptyset$.

So $U_{\lambda} \cap F \neq \emptyset$, $\forall F \in \mathcal{U}$. So $U_{\lambda} \in \mathcal{U}_{\lambda}$. Now let $\mathcal{F} \in U$ an open sset in $\prod X_{\lambda}$. So there is a basic open B such that $\mathcal{F} \in B \subseteq U$.

TFAE

- i) Zorn's lemma
- ii) Axiom of choice
- iii) Tychonoff's theorem