§51, 52 Homotopy and Fundamental Groups

Suggested textbook: Armstrong "Basic Topology"

Let $I := [0, 1] (\subset \mathbb{R})$

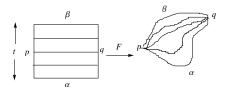
<u>Definition</u> $f, g: X \to Y$ cts, then f, g are **homotopic** (write $f \simeq g$) if $\exists F: X \times I \to Y$ such that such that F(x, 0) = f(x), F(x, 1) = g(x), $\forall x \in X$. F is called **homotopy** (between f, g)

Example

 $f: \mathbb{R}^2 \to \mathbb{R}^2$ rotation by angle α (around 0), then $f \simeq \operatorname{id}(\operatorname{identity\ map})$ Homotopy at time t: rotation by $t\alpha$.

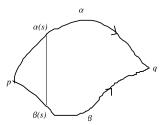
Focus on X = I, i.e. consider paths $I \rightarrow Y$.

<u>Definition</u> α , β : $I \to X$ (cts) are path homotopic (write $\alpha \simeq_p \beta$) if α , β have same endpoints p, q. $\exists F: I \times I$ (time) $\to X$ such that $F(s, 0) = \alpha(s)$, $F(s, 1) = \beta(s)$, F(0, t) = p, F(1, t) = q.



Examples

1) $X = \mathbb{R}^2$, Fix $p, q \in X$. Any two paths from p to q are homotopic.

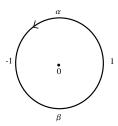


Fix s, idea: connect by straight lines.

Explicitly: $F(s, t) = (1 - t) \alpha(s) + t\beta(s)$, clearly continuous.

Similarly this works fro all convex subsets in \mathbb{R}^n

2) $X = \mathbb{R}^2 \setminus \{0\} \cong \mathbb{C} \setminus \{0\}$. We'll see that $\alpha(s) = e^{\pi i s}$, $\beta(s) = e^{-\pi i s}$ not path homotopic.



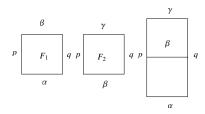
Proposition 56

(Path) homotopy is an equivalence relation.

Proof: do only for \simeq_p

 $\alpha \simeq_p \alpha$ obvious : $F(s, t) = \alpha(s), \ \alpha \simeq_p \beta \Rightarrow \beta \simeq_p \alpha$: revser time $t \leftrightarrow 1 - t$

$$\alpha \simeq_p \beta$$
, $\beta \simeq_p \gamma \Rightarrow \alpha \simeq_p \gamma$



$$F(s, t) = \begin{cases} F_1(s, 2t) & 0 \le t \le 1/2 \\ F_2(s, 2t - 1) & 1/2 \le t \le 1 \end{cases}$$

By pasting lemma (book 18.3) shows F is continuous. \Box

Constant path: given $p \in X$, let $\epsilon_p : I \to X$ for all s

 $s \mapsto p$

Reverse path: given path α , define $\overline{\alpha}: I \to X$

 $s \mapsto \alpha(1-s)$

Concatenation: If α , $\beta: I \to X$ such that $\alpha(1) = \beta(0)$, then can define

 $\alpha * \beta : I \to X, \ s \longmapsto \begin{cases} \alpha(2 \, s) & 0 \le s \le 1/2 \\ \beta(2 \, s - 1) & 1/2 \le s \le 1 \end{cases}$ (continuous by pasting lemma)

Proof: $(\alpha * \beta) * \gamma \neq \alpha * (\beta * \gamma)$

Theorem 57

(i) α path from p to q, $\alpha \neq \epsilon_q \simeq_p \alpha$ and $\epsilon_p * \alpha \simeq_p \alpha$

Proof: Only do $\epsilon_p * \alpha \simeq_p \alpha$.