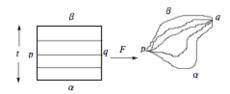
Path Homotopy

 α , β : $I \rightarrow X$ (cts) paths of some end points.

 $\alpha \simeq_p \beta$ if $F: I \times I \to X$ such that



<u>constant path</u> $\epsilon_p(s) = p$ for all s

<u>reverse path</u> $\overline{\alpha}(s) = \alpha(1 - s)$

concatenation $(\alpha * \beta)(s) = \begin{cases} \alpha(2s) & s \in [0, 1/2] \\ \beta(2s-1) & s \in [1/2, 1] \end{cases}$

Theorem 57

 α : path from p to q

 β : path from q to r

 γ : path from r to x

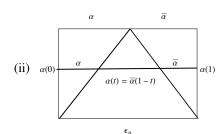
(i)
$$\alpha * \epsilon_q \simeq_p \alpha \simeq_p \epsilon_p * \alpha$$

(ii)
$$\alpha * \overline{\alpha} \simeq_p \epsilon_p$$
, $\overline{\alpha} * \alpha \simeq_p \epsilon_q$

(iii)
$$(\alpha * \beta) * \gamma \simeq_p \alpha * (\beta * \gamma)$$

Proof:

(i) last time



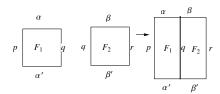
$$F(s,t) = \begin{cases} \alpha(2s) & s \le t/2\\ \alpha(t) & t/2 \le s \le 1 - t/2\\ \overline{\alpha}(2s-1) & s \ge 1 - t/2 \end{cases}$$

$$F(s,t) = \begin{cases} \alpha\left(\frac{4s}{t+1}\right) & t \ge 4s - 1\\ \beta(4s - t - 1) & 4s - 2 \le t \le 4s - 1\\ \gamma\left(\frac{4s - 2 - t}{2 - t}\right) & t \le 4s - 2 \end{cases}$$

Proposition 58

If $\alpha \simeq_p \alpha'$, $\beta \simeq_p \beta'$ and $\alpha(1) = \beta(0)$, then $\alpha * \beta \simeq_p \alpha' * \beta'$ Also, $\overline{\alpha} \simeq_p \overline{\alpha'}$

Proof:



Fix $p \in X$. Let $\Omega(X, p) :=$ "loops at p, i.e paths $\alpha: I \to X$ such that $\alpha(0) = \alpha(1) = p$ ". Then $\epsilon_p \in \Omega(X, p)$ $\alpha, \beta \in \Omega(X, p) \Rightarrow \overline{\alpha}, \alpha * \beta \in \Omega(X, p)$.

<u>Definition</u> The *fundamental group* $\pi_1(X, p)$ is the set of path homotopy equivalence classes in $\Omega(X, p)$ i.e. $\pi_1(X, p) = \Omega(X, p)/\simeq_p$

Example $X \subset \mathbb{R}^n$ convex subset, then $\pi_1(X, p)$ consists of one element only (see Ex. last time)

Write $[\alpha]$ for the \simeq_p – equivalence class of a path α . By prop 58, $[\alpha] = [\alpha'] \Rightarrow [\overline{\alpha}] = [\overline{\alpha'}]$.

So can define $\overline{[\alpha]} := \overline{[\alpha]}$ as the right-hand side only depends on $[\alpha]$.

Similarly, can define $[\alpha] * [\beta] := [\alpha * \beta]$ since the right-hand side only depends on $[\alpha]$ and $[\beta]$. (by prop 58)

From Theorem 57 we get

Corollary 59

Suppose $[\alpha]$, $[\beta]$, $[\gamma] \in \pi_1(X, p)$, then

(i)
$$[\alpha] * [\epsilon_p] = [\alpha] = [\epsilon_p] * [\alpha]$$

(ii)
$$[\alpha] * \overline{[\alpha]} = [\epsilon_p] = \overline{[\alpha]} * [\alpha]$$

(iii)
$$([\alpha] * [\beta]) * [\gamma] = [\alpha] * ([\beta] * [\gamma]).$$

This means that $\pi_1(X, p)$ together with the operation $*(*: \pi_1 \times \pi_1 \to \pi_1)$

- (i): $[\epsilon_p]$ *identity* element.
- (ii) $\overline{[\alpha]}$ *inverse* of $[\alpha]$ (identity and inverse elements are infact unique).
- (iii) * is associative

Examples

 $(\mathbb{Z}, +)$ group: id = 0, inverse of n = -n, associative. Similarly, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, ...

 D_6 = symmetries of equilateral triangle. (2 rotations, 3 reflections, identity)

Find group of the circle §53, 54

$$S^1:=\{z\in\mathbb{C}:|z|=1\}$$

Goal: $\pi_1(S^1, 1) \cong (\mathbb{Z}, +)$ – bijection that preserves the group operation.

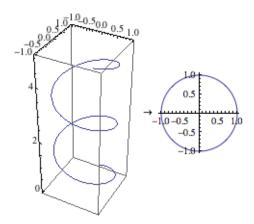
Intuition: we can assign its winding number $\in \mathbb{Z}$.

$$\pi: \mathbb{R} \to S^1 \text{ (cts)}$$

 $x \mapsto e^{2\pi i x}$

$$e^{2\pi ix} = 1, e^{2\pi ix} = \cos(2\pi x) + i\sin(2\pi x) \Leftrightarrow x \in \mathbb{Z}.$$

 $e^{2\pi ix} = e^{2\pi iy} \Leftrightarrow x - y \in \mathbb{Z}$



The Idea is can lift a loop at $1 \in S^1$ to a path starting at $0 \in \mathbb{R}$. Endpoint $\in \mathbb{Z}$

Consider $U_+ := S^1 \setminus \{-1\}, \ U_- := S^1 \setminus \{1\}$, open subsets.

Proposition 60

 $\pi^{-1}(U_+) = \bigcup_{n \in \mathbb{Z}} \left(n - \frac{1}{2}, n + \frac{1}{2}\right) \text{ (disjoint union) and } \pi|_{(n-1/2, n+1/2)} : (n-1/2, n+1/2) \to U_+ \text{ is a homeomorphism.}$ Similarly, for U_- . So for any point $x \in S^1$, there is a neighborhood (either U_+ or U_-) that has a simple preimage.

Proposition 61 (path lifting)

Suppose $\alpha: I \to S^1$ is a path. Fix $x \in \pi^{-1}(\alpha(0))$. Then there is a unique path $\tilde{\alpha}: I \to \mathbb{R}$ such that $\tilde{\alpha}(0) = x$ and $\pi \circ \tilde{\alpha} = \alpha$.