Recall X topological space, $p \in X$

$$\pi_1(X, p) := \text{loops in } X \text{ at } p \ / \simeq_p$$

$$= \{ \text{path homotopy equivalence classes } [\alpha] \text{ of loops } \alpha \text{ at } p \}$$

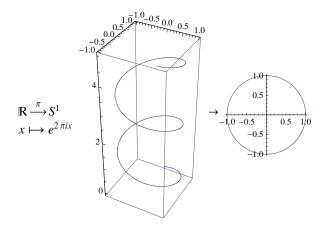
$$[\alpha] = [\beta] \Leftrightarrow \alpha \simeq_p \beta$$

 $\pi_1(X, p)$ has only one element, if $X \subset \mathbb{R}^n$ convex.

$$\pi_1(X, p)$$
 is a group: $[\alpha] * [\beta] := [\alpha * \beta]$.
 $\overline{[\alpha]} := [\overline{\alpha}]$

$$[\epsilon_p]$$
 (identity)

Goal: $\pi_1(S^1, 1) \cong (\mathbb{Z}, +)$



Proposition 61 ("path lifting")

Suppose $\alpha: I \to S^1$ is a path. Fix $x \in \pi^{-1}(\alpha(0))$. Then there is a unique path $\tilde{\alpha}: I \to \mathbb{R}$ such that $\tilde{\alpha}(0) = x$ and $\pi \circ \tilde{\alpha} = \alpha$. Proof uses U_+ and U_- (can be found in the textbook)

Proposition 62 ("Homotopy lifting")

Suppose α , $\beta: I \to S^1$ have same endpoints. Fix $x \in \pi^{-1}(\alpha(0))$. Then $\alpha \simeq_p \beta \Rightarrow \tilde{\alpha} \simeq_p \tilde{\beta}$, where $\tilde{\alpha}$, $\tilde{\beta}$ lifted path with starting point x.

Theorem 63

$$(\pi_1(S^1, 1), *) \cong (\mathbb{Z}, +)$$
 or simply $\pi_1(S^1, 1) \cong \mathbb{Z}$.

Proof:

Define
$$\theta: \pi_1(S^1, 1) \to \mathbb{Z}$$
, where $\tilde{\alpha} = \text{lifted path from Proposition 61 with } \tilde{\alpha}(0) = 0.$

$$[\alpha] \longmapsto \tilde{\alpha}(1)$$

This does not depend on the choice of α : $[\alpha] = [\beta] \Rightarrow [\tilde{\alpha}] = [\tilde{\beta}]$ by Proposition 62. $\Rightarrow \tilde{\alpha}(1) = \tilde{\beta}(1)$.

Claim 1: θ is surjective.

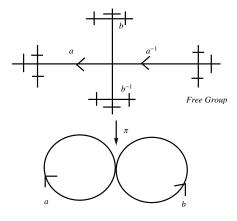
Given
$$n \in \mathbb{Z}$$
, take any path $\tilde{\alpha}: I \to \mathbb{R}$ such that $\tilde{\alpha}(0) = 0$, $\tilde{\alpha}(1) = n$ (e.g. $\tilde{\alpha}(s) = ns$)

Let
$$\alpha := \pi \circ \tilde{\alpha}$$
 (e.g. $\alpha(s) = e^{2\pi i n s}$).

Then $\tilde{\alpha}$ is a path lifting α and starting at 0, so it's the lift of Proposition 61 gives $\Rightarrow \theta([\alpha]) = n$.

If $\theta([\alpha]) = \theta([\beta])$, then $\tilde{\alpha}(1) = \tilde{\beta}(1)$. So $\tilde{\alpha}$, $\tilde{\beta}$ are paths in \mathbb{R} with same endpoints $\Rightarrow \tilde{\alpha} \simeq_p \tilde{\beta}$. $\Rightarrow (\pi \circ \tilde{\alpha} = \alpha) \simeq_p (\pi \circ \tilde{\beta} = \beta)$, which means $[\alpha] = [\beta]$.

Claim 3: $\theta([\alpha] * [\beta]) = \theta([\alpha]) + \theta([\beta])$ ("group homomorphism") (left as an exercise). \square

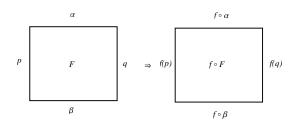


Lemma 64

If α , $\beta: I \to X$ are paths and $f: X \to Y$ continuous then $\alpha \simeq_p \beta \Rightarrow f \circ \alpha \simeq_p f \circ \beta$.

Proof:

If *F* is a path homotopy between α and β then $f \circ F$ is a path homotopy between $f \circ \alpha$ and $f \circ \beta$.



$$F \colon I \times I \to X \stackrel{f}{\to} Y$$

Disc
$$D^2 = \{x \in \mathbb{R}^2 : |x| \le 1\}$$

 $S^2 = \{x \in \mathbb{R}^3, |x| = 1\}$

Theorem 65 (Brouwer fixed point theorem)

Any continuous function $f: D^2 \to D^2$ has a fixed point ie. $\exists x \in D^2$ such that f(x) = x.

Proof:

Suppose that f has a no fixed point. Then for $x \in D^2$, we can define r(x) in S^1 as follows:

It is the intersection point of the line from f(x) to x with S^1 (the point that is closer to x) This works because we assumed $f(x) \neq x$.

 $r: D^2 \to S^1$; (not bad to check that r is continuous.) Note that r(x) = x if $x \in S^1$.

$$S^1 \stackrel{i}{\to} D^2 \stackrel{r}{\to} S^1$$
, hence $r \circ i = \text{Id}$

Suppose $\alpha: I \to S^1$ in a loop at 1, then $i \circ \alpha = I \to D^2$. Then $i \circ \alpha = \epsilon_1$ constant loop since $D^2 \subset \mathbb{R}^2$ is a convex subset. $\Rightarrow \frac{\alpha}{r \circ i \circ \alpha} \simeq_p \frac{\epsilon_1}{r \circ \epsilon_1} \text{ in } S^1. \text{ So } \pi_1(S^1, 1) = \{ [\epsilon_1] \} : \text{ contradicting Theorem 63.} \ \Box$

Theorem 66 (Borsuk-Ulam Theorem)

 $\forall f: S^2 \to \mathbb{R}^2$ continous, $\exists x \in S^2$ such that f(x) = f(-x).

If not, define $g(x) := \frac{f(x) - f(-x)}{|f(x) - f(-x)|} \in S^1$, note $f(x) - f(-x) \neq 0$ by assumption.

 $g: S^2 \to S^1$ continous. Note g(-x) = -g(x).

Consider the loop $\alpha: I \to S^2$

$$s \mapsto (\cos(2\pi s), \sin(2\pi s), 0)$$

Let $\beta = g \circ \alpha : I \to S^1$ (loop)

Note: $\beta(s + \frac{1}{2}) = -\beta(s)$ for all $s \in [0, \frac{1}{2}]$

$$\beta\left(s+\frac{1}{2}\right) = g\left(\alpha\left(s+\frac{1}{2}\right)\right) = g(-\alpha(s)) = -g(\alpha(s)) \text{ (by oddness)} = -\beta(s).$$

By Proposition 61, can lift β to a path $\tilde{\beta}: I \to \mathbb{R}$ (pick any starting point $\in \pi^{-1}(\beta(0))$)

For any $s \in [0, \frac{1}{2}]$, $\tilde{\beta}(s + \frac{1}{2}) - \tilde{\beta}(s) = \frac{1}{2} + q_s$ where $q_s \in \mathbb{Z}$

 $\Rightarrow q_s = \tilde{\beta}(s + \frac{1}{2}) - \tilde{\beta}(s) - \frac{1}{2}$. This is a continuous function $\left[0, \frac{1}{2}\right] \to \mathbb{Z} = \text{discrete topology}$.

So this is constant, $q_s = q \in \mathbb{Z}$ (independent of s)

Then
$$\tilde{\beta}(1) = \tilde{\beta}(\frac{1}{2}) + \frac{1}{2} + q = \tilde{\beta}(0) + \frac{1}{2} + q + \frac{1}{2} + q = \tilde{\beta}(0) + 2q + 1$$
.

So β winds around S^1 , 2q + 1 times. So $\beta \not\simeq_p \epsilon$, but $\alpha \simeq_p \epsilon$ inside S^2

$$\Rightarrow \overline{g \circ \alpha} \simeq_p \overline{g \circ \epsilon}, \text{ contradiction by Lemma 64.} \ \Box$$