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Self-duality of 7, (7)

Notation. Keep (mostly) the notation in previous lectures.

@ K = unramified extension over Q, of degree f;

@ O = integers of K, F, = Ok/p;

@ G = GLy(K), Z =center;

° B=(51). B=(:2);

[Fg] [F(}])g I/h;
o Ki =Ker(GLy(Ok) — GL2(Fy)), Z1 = Z N Ky ;

@ (E,O,F) = rings of coefficients.

@ | = lwahori, I; = pro-p-lwahori, H := (
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Self-duality of 7, (7)

('XY‘{-&\/Pi

Wof
( w)f’:(am) pf)

Fix p: Gk := Gal(K/K) — GLx(IF) cont., written in usual form with
genericity conditions (slightly modified) :
@ generic : if 10 < r, < p—12 (as in [BHHMS1]);

@ strongly generic : max{10,2f} < r; < p — max{12,2f 4+ 2} (as in
[BHHMS2]).

Let 7, (7) = smooth admissible representation of G corresponding to
some globalization 7 of p in mod p cohomology (cf. Lecture 1).
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Self-duality of 7, (7)

Start with :

Fact : if 7 is an irreducible admissible C-representation of G, then

, #21®(C!odet),
n
where # := Homg(, F)> denotes the contragredient (or smooth dual)
of 7, and ¢ = the central character of .

Galois side : 2-dimensional representation is dual to itself up to twist :
ifg=(2g), w={(17) then

Tgt =det(g) " (w 'gw).

N l
Coorene T 4 bt

However, if 7 is over IF, 7 is usually zero (Livné, Vignéras) !
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Self-duality of 7, (7)

Set A\ := FF[P], where P = pro-p open subgroup of G.
For finitely generated A-module M, set (cf. Lecture 1)

E/(M) := Exth(M, A).

Recall : A has global dimension 4f.

Define _
grade jaA(M):=min{i > 0: E'(M) # 0},

com. dimension p(M) := gld(A) — ja(M).
Say M is Cohen-Macaulay if jA(M) = pd,(M). (e.g. projective = CM)

Remark (Venjakob) :
@ pdn(M) =max{i > 0:E'(M) # 0}.
@ A satisfies Auslander condition : for any N C E/(M), ja(N) > j.

dtn < 34 -7
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Self-duality of 7, (7)

Now consider €¢ := category of f.g. (left) A-modules together with a
compatible action of G. (Example : 7V € €¢ for admissible 7).

Then BUR S [ Kobthome)

Let M € €s be Cohen-Macaulay. We say M is essentially self-dual, if

EAMY M) 2 M © (¢ o det)

for some (.
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Self-duality of 7, (7)

Example. Below / = 3f.

(2) (Kohlhaase) E/((Indg x)¥) = (Indg x tag)V, where
ag = w®w L. Hence -
Ei((lndg Xw T ®x2)Y) = (IndS yow '@ y1)¥ ® (@o det).

To T
(b) (Kohlhaase) K = Q,, 7 supersingular, then

L E(rY) 21V @ (Codet).
Browd,
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Self-duality of 7, (7)

(c) Let HO be the space of mod p modular forms of level U in global

setting (i) or (iii) of Lecture 1 (or H! in setting (i)). .
rhonbgt oMy €

Theorem (Calegari-Emerton, Hill). (H2)Y is projective (hence
Cohen-Macaulay), and have T x G-equivariant isomorphism

E°((H3)Y) = (H3)Y @ ¢.

If GK(7,(F)) < f, then 7,(F)" is essentially self-dual.

Recall (Lecture 1) : op(7, (7)) is denoted GK (7, (F)).

L e ——— o
R—*—A——-
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Self-duality of 7, (7)

Patching module

Ju gt f

Let Ry = RE@OC’)[[XL ..., %] Following [CEGGPS], a patching module
is a non-zero R, [G]-module M, satisfying (among others) :
Cfw

o M, /ms =7, (F)Y;
@ M is a finitely generated @ﬂGLg(OK)ﬂ—module;

@ I regular local ring S (together with Soo — R.), such that M
is f.g. projective S [GL2(Ok)]-module. Moreover,

Mo ®S.. F= (ﬁg)\//
F
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Self-duality of 7, (7)

Theorem 1 follows from Example (c) and :

Theorem (Miracle flatness, [GN])

Assume F\’ﬁD is regular. If

GK(m, (7)) < f,

—_—

then the equality holds, M is flat over Ry, and Ry ®s. O =2 Ty, is
complete intersection. —

(Caution : It is crucial that RﬁD is regular.)

7 () 8 v Tfy = TR & clddl
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Upper bound of dimp V(m, (7))

© Upper bound of dimg V(7 (7))
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Upper bound of dimp V(m, (7))

C G’/—Z\
Notation. Write A = [F[/;/Z;1] from now on. 3(0\ < 39

-\ - =) 4 =2
Recall (Lecture 5) : gry,, (A) is isomorphic to Gk('ﬁ“” ’¥ ) J fﬂ

f—1
®F[yi7 Zj, hl]
i=0

where [y,',Z,'] = h;, [h,’,y,'] = [h,’,Z,'] — 0, and variables with / 75_/
commute. Moreover, deg(y;) = deg(z;) = 1.

[Fgl 0 .
0 [Fj])'

The action of g € H := (

g vi=a(e)y, g-z=alg) Pz Tg h=h

where o sends ([g] [2]) to ad~! (via fixed embedding F, — ).

=| vV - O\ tA L) o
& Y= GO Ca) e ) =lo H(‘{)
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Upper bound of dimp V(m, (7))

Let 9\!\%
J = (vizi,ziyi, 0<i<f—1).

Lemma (cf. Lecture 5)

gr(A)/J is isomorphic to the commutative ring

e el &A‘M-F
Fly;,z;0<i<f—-1]/(yiz;0<i<f—-1). ¢ p
'\ VY

@ If Nisa f.g. gr(A)-module killed by a power of J, can define
my(N), where p is a minimal prime ideal of gr(A)/J. Let
——

Po := (Zo, e ,Zf_l).
pr—
@ Let C; be the category of smooth adm. 7 (with central character)
such that gr(7") is killed by a power of J (cf. Lecture 5). This is an

abelian category and stable under extensions and Ej(—).
=
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Upper bound of dimp V(7 (7))

Main result

Write my () for my(gr(m”)) and V = Vg, .

Theorem (cf. Lecture 5)
For m € Cy, dimp V(1) < my (7).

Theorem 2 (BHHMS)

Let p be semisimple anThen m,(r) € C1 and(my,

Together with the lower bound in Lecture 4, we deduce

Corollary 3 (BHHMS2)

If p is semisimple and strongly generic, then V(7,(r)) = (indf?@”ﬁ)@r.

Assume r = 1 (for simplicity).
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Upper bound of dimp V(m, (7))

Key ingredient : "multiplicity free property" (r = 1)

H
~ - — ¥ I1 — v
[- =1 ¥xem(n) = e, Tl

This will be proved in Lecture 7,8.

Remark. This multiplicity-freeness implies immediately GK(m, (7)) < f.

If 7, (F)[m} ] is multiplicity free, then y;z and zy; act trivially on
gr?(7,(7)V). Thus gr(m, (7)) is finitely generated module over

er(N)/J = Fly;, zi]/(yizi), which has dimension f. .
gvtwr') X gorsetd "Heff’“w)'

¥ > €, o dor X 5 Tol) ee,

v~ e Bigie. - dor X gr(=) 1S foffed k\ljj“

MQE-@QQ = gcz\;e = Y€ x0.
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Upper bound of dimy V(7 (7))

Key ingredient : "multiplicity free property" (r = 1)

[ (Almd] = 1, V€ m(P)h.
This will be proved in Lecture 7,8.
Remark. This multiplicity-freeness implies immediately GK(m, (7)) < f.

If 7, (F)[m} ] is multiplicity free, then y;z and zy; act trivially on
gr?(7,(7)V). Thus gr(m, (7)) is finitely generated module over
gr(N)/J = Fly;, zi]/(viz;), which has dimension f. ]

Example. For f = 1, gr==2(F[l/Z1]) looks like

gr /1
N
gr ya @ at® =
S SUVANE Y
gr o a2

1 & D
g @Y Yy =
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Upper bound of dimp V(m, (7))

The proof of Theorem 2

Upshot Constryct an explicit gr(A)-module N with m,, (N) = 2, s.t

pwnd A V(T
Wb C-V‘:\FQCT Y‘)) N — gr(ﬂv( ) ) “ﬁ “\Pt’ (T((F)y él-p

(An "obvious" such module is

V= @D (W) @x ' on grlx@) bied by T

xem (@M T = g o -
But m,,(N') = dim 7, (F)", which (often) > 2 = |W(p)].)
Proof. jepsd T, (PR =P Uf whae 5)-§«;§ ¢t geoe 7((\7)}

™ € wcf).
W SO ® A .
dpe N [WW log k| (&)
whste= ‘QK el o 4r(W), am‘mmvd Y. defonind “(j reblion befween 5.
ot c .
?——— Cl\e‘k ({i’ A GF , 3,,;e C'Lx, -Fov Cowe ¢ - CQT(’Q /%C)p -0

. _ N o ety
7 ) =g, (5 0) <ipre Fm"“( :
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Upper bound of dimp V(m, (7))

i) =L/ @xT oLyt o0 |
« ROX =[w(p)
(a) If pis irreducible, then 7, () is supersingular, and dim 7, (F)" = (r
(Breuil, cf. Lecture 2), then take N = N’ (Thm of Paskunas).

(b) If pis reducible split, then 7, () = mo & w1 (both PS), and
&7 eV

T (F) = (Xoo D X5y) ® (Xow D XE,)- L-din
Fa_c{--, Xé: :7%‘(){/ 7(6(9 :%60&-

o' (7)) doo dwl bass e, el e g
(Xg: (7@0)" Xﬂv (st: )v

Co
geo/ \ W\MH\‘ -F\ve =) Z.e° =0-

Example 1. f = 1.

ze & ool {Ag) d-e’=o
_ v v < € o
Bhe = g B%) 0 Uy o0 e - Yo <o

—» %V(W)V) QC
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Upper bound of dimp V(m, (7))

Example 2. f =2, p irreducible. Then W(p) = {01, 02, 03,04}, where
o1=(ro,n), o2=(r—1,p—2—n)

o3=(p—-1-rn,p—3—-—n), oa=(p—2—r,n+1)

(up to twist, cf. Lecture 3). Moreover, X,\P' . .KS;&
4 ~o X3
\h o Nle M
7TV(r)l1 = @(XJ; DX5,) =3- dim | e
i—1 ’X;S o~ 7(-7,
L
One checks x;, = xo, 0", etc.

By multiplicity freeness of 7, (7)[m7 ], take N to be

(gr(A)/%) ® )ﬁ) D (gr(/\)/g) ® (x§3)v) @ (others).

& ep*
Ay . g 5
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Finite generation (1)

€© Finite generation (1) : semisimple case
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Finite generation (1)

Assume p is semisimple and strongly generic.

Theorem 4 (BHHMS2)
As a G-representation, m,(7) can be generated by Dy(p). = 7,—(?)‘4‘

The proof uses the computation of (i, [')-modules attached to =, ()
(Lecture 4).

Remark. The non-semisimple case (under weaker genericity condition)
will be treated in Lecture 9 (due to HW, the proof is of different nature).
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Self-duality of m (7) Upper bound of dimy V(7 (7)) Finite generation (1) The length

Let 7’ a subquotient of@rv(?)) or
(i) dimFV(w’)é My, (7). Ghgest T
(i) If ©" is a subrepresentation of 7, (7), then ?f’ yer=*o _
> ot dedu- TG
dimp V(7') = my, (1) = 1g(s0CGLa(00)T')- Picke brgh
In particular, V(7') # 0 if 7’ # 0. dow V (T £ 00
(iii) If 7" is a quotient of m,(7) and 7’ # 0, then V(7') # 0.

Proof of Thm.4 wark £ T = <6 REY =T e qeoked
) Se TW) = Selt) Ta =0
= i [ (X0F) = dim V()
Veud 3 y(B)co o o f
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Finite generation (1)

Proof of Lemma 5. (i) dimp V(') = my, (7’) if ©’ is subquot. of 7, (7).

NI

T = TE) b
o V(TR = .z‘a = Mg, (T(7)
3 clein La o scape by V ¢S exed.
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Self-duality of m (7) Upper bound of dimy V(7 (7)) Finite generation (1) The length

(i) dimp V(7') = my, (7') = lg(socqr, (o)) for #" C 7, (7). .
S T P
O b W € Y ). P seseny
N = ® N'X,) @ @ Nx) —» év{T(CF)V)
(@N) o ) - plx)

‘Xé\P' -—
> ma (™ p( ) ©
= el %(g ’U‘”( lg (¢ T)
" Show ohm Viw) > 4 cgoc ). T, & seew & oadly
TS | tetl - @Ten
Lot ()51, bm W(L&.1>) = §p (Te).
Coc (") = ? T UB')’]) = ).
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Self-duality of m (7) Upper bound of dimy V(7 (7)) Finite generation (1) The length

Ml ¢ l\'\,k J}

(iii) V(7") # 0 for 7’ non-zero quotient of m,(F). = ' —v 7 71
o —=>T

> 0> [V = WFE) 2 T 0
£ 2 o— pf (rv) —= S (@’)ing(ﬁrq — E%ef{‘v'r'f);
lob Fo=(BOe ) DMj > @) T
rel 7@ Wb bl RHrE)es 1@ 5 & o e
d_ﬂAlh T £0 (& Talv) #0)
?}0‘ @ s am S pure : Ay Subwed of T hoy fo Gare Gmé
B > %) £o

0= Intt) — ¥(ry) — &) -
i “ o s Pslondr i, = J € ) 23f4]
(] J(EJ( )(‘N')') :J S j( );ZJE A'V“S CM;(" ﬂ 270
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Self-duality of m (7) Upper bound of dimg V(7 (7)) Finite generation (1) The length

Show: - mg () =M (7)) vE 4 g

(m““ cﬁ

( CI\
Jon VT 2 g (1) = tng (F) 2 dow V(i) .

b T e wt) Q‘_‘?

—

<

/P~F : A—M\Mﬂ&f Mﬂ‘fmz
2 g (E¥()) = mp (FY) + g [ £F)

42 I g st
"o () 7 0t dae p

(]
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The length

Q@ The length
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The length

e () “DC?)EM
We assume from now on r =1 (NOT for simiplicity). O
e T = 6 lp)Y ® D= ) Ty
Theorem 5 (BHHMS2)

(i) If pis irreducible, then 7, (7) is irreducible.

(i) If pis reducible split, then - ¢ .

7Tv(7) >~ 1o D DTy

with g, 7 principal series. If moreover f = 2, then 7’ is
(irreducible) supersingular.

y

(i) In general, it is not clear if “finite generated = finite length".

(ii) [BP, Thm. 19.10(ii)] (which says that if p is reducible split then 7 in their
construction is also semisimple) does not apply here (cf. Lecture 3).
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Self-duality of 7, (7) Upper bound of dimy V(= (7)) Finite generation (I) The length

Proof of Thm.5 (i) Follows from Lecture 3, once we know 7, (7) is

generated by Do(p) by Theorem 4. - o oy oo rip. osntd by 0.7
'S ke + g

(if) f < vl eplts
= (Yo, ~--, Y&_\)’ 6:; s (P-s—v.,, -, P{g-@_‘)

M 'm;: <Gﬂ Go>-

Gh(a:)
Clin: T is PS. (uig ooflbad + u{nd k) nuip)sfe))
G, F’F v PS
T\_; D Fl' > FC\:) ‘F.@-'{;J —_ ') ,_‘[To@ﬁ;c

%.Mﬁ.\JT°®Ff‘
O Tom

Nod,
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Self-duality of 7, (7) Upper bound of dimy V(= (7)) Finite generation (I) The length

Ke: TE) = <& B(E> = <G se rtr>)>

E9 6.
eew(r - E?:;?,' — o by
2 w'n@%—* Tll) & C( TR)
Nnon- 2ero | 6:(
1/[ {6 tTm———> To OT
6. f

Q:QOC(“) =€O®Tf!_‘

:> ’1 MU&—D am Rom & =5 6 =(ec C'ZT.)

S BL.o¢ ) (dues an B T X T

T ST
= TO=(T® Ff) ® T ¥ -
¥ 12, BP 3 eelrh) =6 @6 3T m ol cs g
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The length

Some facts for later use :

M, defines an exact functor : O[GL2(Ok)]-Mod — R..-Mod
Moo(@) = HOm(é)II};(OK)(MOO, @d)d.

(a) For A = (aj, bj)ogjéf_]_ with aj > bj, and 7 : Ix — GL2(E) an
inertial type, set

Voa-n) = & ((Sym? 5 'E2) @ det™)"™

0<j<f-1

with n = (1,0), and o(7) := smooth irred. rep (over E) of
GL2(Ok) by Henniart's inertial LLC.
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Self-duality of 7, (7) Upper bound of dimy V(= (7)) Finite generation (I) The length

Some facts for later use :

M, defines an exact functor : O[GL2(Ok)]-Mod — R..-Mod

Moo(@) = Hom(é)ﬂi(oK)(Moo, @d)d.

(a) For A = (aj, bj)ogjéf_]_ with aj > bj, and 7 : Ix — GL2(E) an
inertial type, set

Voa-n) = & ((Sym? 5 'E2) @ det™)"™

0<j<f-1

with n = (1,0), and o(7) := smooth irred. rep (over E) of
GL2(Ok) by Henniart's inertial LLC.

If © C V(A —1n)®o(7) is an O[GL2(Ok)]-lattice, then M, (©) is
maximal CM and the action of R, factors through R ® 5o R;’T,

where R?’T is Kisin's pot. semistable deformation ring of type (A, 7).
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The length

(b) Mwo(©)/mae = Homgr,(0,)(©; (7))
In particular, M, (©) is a cyclic Ro,-module iff

dimp Homgr,,(0,)(©/@©, 7, (7)) = 1.

Example. [7,(7)X* : 6] = 1 if and only if Moo (Projgr,(r,)0) is
cyclic Roo-module.

(c) The flatness of M, over R, induces a Koszul type resolution of
7 (7)Y in terms of M, :

e M?Z(z) — ME" —» My, — 7, (F)Y — 0.
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The length

Thank you!
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