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ABSTRACT. Let F' be a locally compact non-archimedean field, p its residue charac-
teristic, and G a connected reductive group over F'. Let C be an algebraically closed
field of characteristic p. We give a complete classification of irreducible admissible C-
representations of G = G(F), in terms of supercuspidal C-representations of the Levi
subgroups of GG, and parabolic induction. Thus we push to their natural conclusion the
ideas of the third-named author, who treated the case G = GL,,, as further expanded
by the first-named author, who treated split groups G. As in the split case, we first
get a classification in terms of supersingular representations of Levi subgroups, and as a
consequence show that supersingularity is the same as supercuspidality.
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I. INTRODUCTION

I.1. The study of congruences between classical modular forms has met considerable
success in the past decades. When interpreted in the natural framework of automorphic
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forms and representations, such congruences naturally lead to representations over fields
of positive characteristic, rather than complex representations. In our local setting, where
the base field is a locally compact non-archimedean field F', this means studying represen-
tations of G = G(F'), where G is a connected reductive group over F, on vector spaces
over a field C of positive characteristic p, which we assume algebraically closed. As C' is
fixed throughout, we usually say representation instead of representation on a C-vector
space or C-representation.

Our representations satisfy natural requirements: they are smooth, in that every vector
has open stabilizer in G (smoothness is always understood for representations of G or
its subgroups), and most of the time they are admissible: a representation of G on a
C-vector space W is admissible if it is smooth and for every open subgroup J in G, the
space W of vectors fixed under J has finite dimension. The overall goal is to understand
irreducible admissible representations of G.

Here we consider only the case where the residue characteristic of F' is p.

I.2. In this paper we classify irreducible admissible representations of G in terms of
parabolic induction and supercuspidal representations of Levi subgroups of G. Such a
classification was obtained for G = GLj3 in the pioneering work of L. Barthel and R. Livné
[BLIL BL2] — see also some recent work [Abd, [Che, Ko, [KX| [Ly2] on situations where,
mostly, G has relative semisimple rank 1.

New ideas towards the general case were set forth by the third-named author [Hell, [He2],
who gave the classification for G = GL, over a p-adic field F'; his ideas were further
expanded by the first-named author [Abe] to treat the case of a split group G, still over
a p-adic field F'. T. Ly extended the arguments of [Hell He2| to treat G = GLs3,p where
D is a division algebra over F, allowing F' to have characteristic p. Here, using the first
steps accomplished in [HVI] HV2] (see [[.6), we treat general G and F.

1.3. To express our classification, we recall parabolic induction. If P is a parabolic
subgroup of G and 7 a representation of P on a C-vector space W, we write Indg 7 for the
natural representation of G, by right translation, on the space IndIGg W of smooth functions
f: G — W such that f(pg) = 7(p)f(g) for p in P, g in G. The functor Ind% is exact.
In fact we use Ind% 7 only when 7 comes via inflation from a representation o of the Levi
quotient of P, and we write Ind$ o instead of Ind% 7. A representation of G is said to be
supercuspidal if it is irreducible, admissible, and does not appear as a subquotient of a
parabolically induced representation Indg o, where P is a proper parabolic subgroup of G
and o an irreducible admissible representation of the Levi quotient of P.

First we construct irreducible admissible representations of G. The construction uses
the “generalized Steinberg” representations investigated by E. GroBe-Klénne [GKI] and
the third-named author [He2] when G is split, and by T. Ly [Lyl] in general: for any
pair of parabolic subgroups Q C P in G, Stg is the natural representation of P in the

quotient of Indg 1 by the sum of the subspaces Indg, 1, for parabolic subgroups Q' with

Q C Q' C P; the representation Stg factors through the unipotent radical Up of P

P/Up

and gives the representation StQ 1Up of its reductive quotient, so Stg is irreducible and

admissible [GKI1 Ly1].
Start with a parabolic subgroup P of G, with Levi quotient M, and a representation
o of M. Then there is a largest parabolic subgroup P(o) of G, containing P, such that
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o inflated to P extends to P(o) (see [[L7). That extension is unique, we write it o7 it
is trivial on the unipotent radical of P(o). It is irreducible and admissible if o is. We
consider triples (P, 0, Q): a triple consists of a parabolic subgroup P of G, a representation
o of the Levi quotient M of P, and a parabolic subgroup @ of G with P C Q C P(0);
we say that the triple is supercuspidal if o is a supercuspidal representation of M. To

a triple (P, 0, Q) we associate the representation I(P,0,Q) = Indg(o) (Co® Stg(a)).
Theorem 1. For a supercuspidal triple (P,o,Q), I(P,0,Q) is irreducible and admissible.

Theorem 2. Let (P,0,Q) and (P',0’,Q") be supercuspidal triples. Then I(P,o0,Q) and
I(P', o', Q") are isomorphic if and only if there is an element g of G such that P' = gPg~1,
Q' =gQg~ ! and o' is equivalent to p’ — o(g~1p'g).

Theorem 3. Any irreducible admissible representation of G is isomorphic to I(P,o,Q)
for some supercuspidal triple (P, o, Q).

Hopefully the classification expressed by these theorems will be useful in extending the
mod p local Langlands correspondence beyond GL2(Q)).

I.4. Using the classification results above, it is possible to describe the irreducible com-
ponents of Ind]Gg o where P is a parabolic subgroup of G and ¢ an irreducible admissible
representation of the Levi quotient M of P; in particular we show that IndIGD o has finite
length and that all its irreducible subquotients are admissible and occur with multiplicity
one.

Also we have a notion of supercuspidal support: if (P, o, Q) is a supercuspidal triple,
then m = I(P,0,Q) occurs as a subquotient of Indga and if m occurs as a subquotient
of Indg/ o' for a supercuspidal representation o’ of (the Levi quotient of) a parabolic
subgroup P’ of G then (P’,¢’) is conjugate to (P,o) in G as in Theorem 2. All that is
proved in It is the conjugacy class of (P, o) that we call the supercuspidal support
of 7.

Remark Even in the case of GL,,(F) (for which we refer to the introduction of [He2]), the
classification and its consequences are rather simpler than for complex representations:
intertwining operators do not exist in our context; this “explains” the multiplicity one
result above, which does not hold for complex representations [Ze]. By contrast, supercus-
pidal mod p representations remain a complete mystery, apart from the case of GL2(Q))
[Br] and groups closely related to it [Abd) [Chel Kol [KX].

The existence of a supercuspidal support for complex irreducible representations is a
classical result [BZ, 2.9 Theorem]; for mod ¢ representations with ¢ # p it is unknown (even
for finite reductive groups of characteristic p outside the case of general linear groups),
except for inner forms of GL,(F) where, as above, it is not proved directly but is a
consequence of the classification of irreducible representations [MS, Théoréme A].

I.5. Asin [He2| [Abe] our classification is not established directly using supercuspidality.
Rather we get a classification in terms of supersingular representations of Levi subgroups
of G — the term was first used by Barthel and Livné for G = GLy(F) — and deduce
Theorems 1 to 3 from it. To define supersingularity, we need to make some choices, and
a priori the notion depends on these choices.

So we fix a maximal F-split torus S in G and a special point x( in the apartment
corresponding to S in the semisimple Bruhat-Tits building of G; we let K be the special
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parahoric subgroup of G corresponding to xg. We also fix a minimal parabolic subgroup
B of G with Levi subgroup Z, the F-points of the centralizer of S, and we write U for the
unipotent radical of B.

Let V be an irreducible representation of K — it has finite dimension. If (7, W) is an
admissible representation of G, then Homg (V, W) is a finite-dimensional C-vector space;
by Frobenius reciprocity Homy (V, W) is identified with Homg (ind% V, W), where ind%-
denotes compact induction, so that Homg (V, W) is a right-module over the intertwining
algebra Ha(V) = Endg(ind% V) of V in G. If Homg (V, W) is not zero we say that V is a
weight of 7; in that case the centreE] Za(V) of He(V) has eigenvectors in Hompg (V, W),
and we focus on the corresponding characters of Z¢(V'), which we call the (Hecke) eigen-
values of Zg(V) in 7.

For any parabolic subgroup P of G containing B, with Levi component M containing
Z and unipotent radical N, the space of coinvariants Vynx of N N K in V provides an
irreducible representation of M N K and by [Hell, [He2, [HV2] there is a natural injective
algebra homomorphism

S§: Ha(V) = Hu(Vvok)

with explicit image (see . It induces a homomorphism between centres Zg (V) —
Zy (Vg ). Both homomorphisms are localizations at a central element. A character
X : Z2¢(V) — C is said to be supersingular if, in the above situation, it can be extended
to a character of Zp/(Vnnk) only when P = G (see Chapter part A) for details).
A supersingular representation of G is an irreducible admissible representation (m, W)
such that for all weights V' of 7, all eigenvalues of Z5(V) in 7 are supersingula

A triple (P, 0,Q) as in|L.3|is a B-triple if P contains Bj; it is said to be supersingular
if it is a B-triple and o is a supersingular representation of the Levi quotient of P.

Theorems 1 to 3 are consequences of the following results.

Theorem 4. For each supersingular triple (P,o,Q), the representation I(P,o,Q) is ir-
reducible and admissible. If w is an irreducible admissible representation of G, there is a
supersingular triple (P, o0, Q) such that w is isomorphic to I(P,o,Q); moreover P and Q
are unique and o is unique up to isomorphism.

Theorem 5. Let m be an irreducible admissible representation of G. Then w is supercus-
pidal if and only if it is supersingular.

(For G = GLy this was discovered by Barthel and Livné.)

Note that Theorem 5 implies, in particular, that the notion of supersingularity does
not depend on the choices of S, K, B necessary for the definition — beware that in general
two choices of K will not even be conjugate under the adjoint group of G.

Remarks 1) We also show that, if 7 is an irreducible admissible representation of G, and
for some weight V' of 7 there is an eigenvalue of Z5(V') in m which is supersingular, then
7 is supersingular /supercuspidal.

2) Let (P, 0, Q) be a supersingular (or supercuspidal) B-triple. Then I(P, 0, Q) is finite
dimensional if and only if P = B and @ = G.

INote that He (V) is commutative in many cases, for example when G is split, but not in general [HVT].
2That is consistent with the definition in [He2! [Abel; but the reader should be aware that the definition
in [HVZ2] is slightly different, maybe not equivalent.
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1.6. Asin [He2] and [Abe€], a lot of our arguments bear on the relation between parabolic
induction Ind% in G' and compact induction ind% from K to G.

Let V be an irreducible representation of K, and let P be a parabolic subgroup of G
containing B, with Levi component M containing Z, and unipotent radical N. In [HV2],
inspired by [Hell], [He2], a canonical intertwiner

7 :ind% V — Id$(ind¥ - x Vrk)

was investigated. In fact the morphism SJ\C;} of is such that for f in ind?( V and ® in
Ha(V) we have

Z(®(f)) = S5r(®)(Z(f)),
where the action of S§;(®) on Z(f) is via its natural action on ind}f-; Vankx. Under a
suitable regularity condition of V' with respect to P [HV2], cf. Theorem, Z induces
an isomorphism
X ®ind% V 5 Ind%(x ® ind}fnx Vivak)

for any character x of Z¢ (V') which extends to Zy(Vynxk): such an extension is unique, we
still denote it by x; the first tensor product is over Z5(V'), the second one over Zy;(Vynk ).
Here we obtain a generalization of that result, which we now proceed to explain.

We consider an irreducible representation V' of K, and a character x : Zg(V) — C.
There is a smallest parabolic subgroup P containing B — we write P = M N as above
— such that x extends to a character, still written x, of Zy/(Vynk); there is a natural
parabolic subgroup P,, containing P, such that the representation x ® (ind3~x Vanr)
of M, inflated to P, extends to a representation of P, — write ¢(x ® ind}x Vni) for
that extension. Using similar notation as in we write I (P, x ® ind¥ - x Vnnk, Q) for
IndIGge (*(x @ ind¥ - j Vvng ) @ Stge) when @ is a parabolic subgroup between P and F..

Theorem 6 (Filtration Theorem). With the previous notation, T = x ® indf(V has a

natural filtration by subrepresentations T7q, where Q runs through parabolic subgroups of

G with P C Q C P. and ¢ C 7¢ if Q' C Q. The quotient 7¢/ > 7¢ is isomorphic to
Q'CQ

Le(P, x ® ndjjnk Vi, Q)-

This last theorem should be compared to the following (the proof, in Chapter explains
that comparison). Let 7 = Ind%(x ® ind¥ % Vivak). It also has a natural filtration by
subrepresentations g for () as above, but this time wg: C mq if Q' O @, and the quotient
To/ Y. mg is isomorphic to I (P, x ®@ind} - Vank, Q). In particular the filtrations on

Q20
7 and 7 give rise to the same subquotients, but in reserve order, so to say. (We note that
the representation mg above corresponds to the representation I in Chapter )

A striking example is when V is trivial character of K and x is the “trivial” character of
Za(V) =Ha(V): in that case P=B = ZU, P, = G, and x ® ind%mK Vunk is the trivial
character of Z. In m = Ind% 1, the trivial character of G occurs as a subrepresentation and
the Steinberg representation Stg as a quotient, whereas the reverse is true in y ® ind?( 1.

Theorem 6 is new even for GL,, (n > 2). A weaker version of this theorem is proved
in [Abel Proposition 4.7] when G is split with simply connected derived subgroup and
P = B (and in [BL2] in the further special case when G = GL3). On the way, following
the ideas of [Abe], we prove the freeness of Ry @z, (v) ind%’; V as Rp;-module, where R
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denotes the “supersingular quotient” of Zj;(Vnnx). This may be of independent interest.
Again this result was established for G = GLg in [BLI], but see also the recent paper
[GK2].

I.7. To prove Theorem 4 we follow the same strategy as in [He2l [Abe] (see the intro-
duction of [He2] for an outline). If (P,0,Q) is a supersingular triple, we need to prove
that 7 = I(P,0,Q) is irreducible; that is done by showing that for any weight V' of 7
and any eigenvector ¢ for Z5(V) in Homg (V, ) with corresponding eigenvalue y, m is
generated as a representation of G by the image of ¢. When V is suitably regular, that is
seen as a consequence of the isomorphism y ® ind[G( V ~ IndIG;(X ®@ind} i Vvax) recalled
in above (see . We reduce to that suitably regular case by using a change of
weight theorem, which gives explicit sufficient conditions on V, V’, and x for having an
isomorphism y ® indIG( Veexy® ind% V'. (Here, V' is an irreducible representation of K
that is “slightly less regular” than V and such that (V')ynx ~ Vunk.) We refer the reader
to Sections for the precise statement and its use in the proof of Theorem 4.

The main novelty in our methods is our proof of the change of weight theorem. It is also
the hardest and most subtle part of our arguments. Previously, for split groups, a version
of this theorem was established in [He2, §6] and [Abe, §4] by computing the composition
of two intertwining operators and applying the Lusztig-Kato formula. We do not know
if this approach can be generalized. Our new proof does not involve Kazhdan—Lusztig
polynomials, but rather proceeds by embedding ind?( V, ind?{ V' into the parabolically
induced representation X = Ind%(ind%. ¥v) using the intertwiner Z of where ¢y :
Z N K — C* describes the action of Z N K on Vyng ~ (V')unk. The representation
ind[G( V' contains a canonical (up to scalar) fixed vector under a pro-p Iwahori subgroup
I C K which generates ind[G( V' as a representation of G, and similarly for ind?{ V'. Our
proof then studies the action of the pro-p-Iwahori Hecke algebra Endg(ind? 1) on &7 to
relate the two compact inductions inside X. We crucially rely on the description of the
pro-p-Iwahori Hecke algebra recently given for general G by the fourth-named author in
[Vig3], in particular the Bernstein relations in this algebra.

We arrive at a dichotomy in Theorem and Corollary, namely our change of
weight results depend on whether or not iy is trivial on a certain subgroup of Z N K.
When G is split, the triviality is always guaranteed, but that is not always so for inner
forms of GL,, [Ly3, Lemme 3.10.1] and even for unramified unitary groups in 3 variables.
This dichotomy may explain why we did not find an easy generalization of the previous
proofs for split G.

I.8. Let 7w be an irreducible admissible representation of G, P = M N a parabolic sub-
group of GG, and 7 an irreducible admissible representation of M inflated to P. In a sequel
to this article we will apply our classification to tackle natural questions as the compu-
tation of the N-coinvariants or the P-ordinary part of 7, the description of the lattice
of subrepresentations of Indg T, the generic irreducibility of the representations IndIG; TX
where y runs over the unramified characters of M (this question was raised by J.-F. Dat).

1.9. We end this introduction with some comments on the organization of the paper. In
Chapter [[T we fix notation and we examine when a representation of a parabolic subgroup
of G, trivial on its unipotent radical, can be extended to a larger parabolic subgroup. For
a triple (P, 0, Q) as in[[.3] we construct I(P, 0, Q) and show that it is admissible if ¢ is. In
Chapter [[TT] we give most of the proof of Theorem 4. The irreducibility proof was outlined
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in The proof that 7 = I(P,0,Q) determines P, ), and o up to isomorphism comes
from examining the possible weights and Hecke eigenvalues for 7 . Finally, to prove
that every irreducible admissible representation m of G has the form I(P, o, Q) we use the
filtration theorem (Theorem 6). The proof of the change of weight theorem is given in
Chapter [[V} this is the technical heart of our paper. In Chapter [V]we deduce the filtration
theorem from the change of weight theorem. We trust that the reader will see easily that
there is no loop in our arguments. Finally, Chapter [V]] gives the proof of Theorems 1, 2,
3, 5 and other consequences of the classification, already stated in That section can
essentially be read independently, taking Theorem 4 for granted.

Acknowledgments We thank the following institutions, where part of our work was
carried out: THES, IMJ Paris 7, IMS Singapore, MSRI, Paris 11. We thank the referee
for helpful comments.

II. EXTENSION TO A LARGER PARABOLIC SUBGROUP

II.1. Let us first fix notation, valid throughout the paper. As stated in the introduction,
our base field F' is locally compact and non-archimedean, of residue characteristic p; its
ring of integers is O, its residue field k, and ¢ is the cardinality of k; we write | | for the
normalized absolute value of F.

A linear algebraic group over F' will be written with a boldface letter like H, and its
group of F-points will be denoted by the corresponding ordinary letter H = H(F)lﬂ

We fix our connected reductive F-group GEL and a maximal F-split torus S in G; we
write Z for the centralizer of S in G, N for its normalizer, and Wy = W(G,S) for the
Weyl group N'/Z; we recall that Wy = N'/Z [Bo, 21.2 Theorem]. We also fix a minimal
F-parabolic subgroup B of G with Levi subgroup Z, and write U for its unipotent radical.
As is customary, we say that P is a parabolic subgroup of G to mean that P = P(F),
where P is an F-parabolic subgroup of G. If P contains B, we usually write P = M N
to mean that M is the Levi component of P containing Z, and N the unipotent radical
of P; we then write P, = M N, for the parabolic subgroup opposite to P with respect
to M; in particular Bop = ZU,p.

We let @ be the set of roots of S in G, so @ is a subset of the group X*(S) of characters
of S; we let ®T be the subset of roots of S in U, called positive roots, and A for the set
of simple roots of S in U. If X,.(S) is the group of cocharacters of S we write ( , ) for
the natural pairing X*(S) x X.(S) — Z; for « in ®, the corresponding coroot [SGA3)
exposé XXVI, §7] is written o" and for I C ® we put IV = {a" | « € I}. We choose
a positive definite symmetric bilinear form on X*(S) ®z R, invariant under W}, which
induces a notion of orthogonality between roots; for roots a, 5 we have a | S if and only
if (o, BY) = 0.

For o in ® we write U, = Uy(F), for the corresponding root subgroup (U, is written
U, in [Bol §21]), and s, € Wp for the corresponding reflection. For I C A we let W
be the subgroup generated by {s, | @ € I'}, N for the inverse image of W; in N, Py for
the parabolic subgroup UN;U (it contains B), P; = M;Nj for its Levi decomposition,
M containing Z; if I is a singleton {a} we rather write P, = M,N,. We set Ap = I if
P = P;. We note that for I, J C A, Pjng= PN\ Py, M~y = M;nNMj.

3We shall use a similar convention for groups over k.
4G is fixed, but otherwise arbitrary, so the results we establish for G can be applied to other reductive
groups over F.
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I1.2. As announced in the introduction, we tackle here a preliminary question: if P is
a parabolic subgroup of G and ¢ a representation of P trivial on its unipotent radical N,
when can o be extended to a larger parabolic subgroup @ of G? Dividing by the unipotent
radical of ), which is contained in N, we loose no generality in assuming that @ = G.
If o extends to G, then any extension has to be trivial on the normal subgroup ( “N) of
G generated by N, so that o has to be trivial on P N (GN>. So we need to understand
what (¢N) is. That question, which involves no representation theory, will be dealt with
presently.

I1.3. Of particular importance in our setting will be the subgroup G’ of G generated by
U and U,,. Beware that the notation, which will be applied to other reductive groups
(like the Levi subgroups of G), is unusual, and that G’ is not generally the group of points
over F' of a reductive subgroup of G: this occurs already for G = PGLs. Since G is
generated by U, U, and Z, see e.g. [BoT), Proposition 6.25], G’ is normal in G so is also
the subgroup of GG generated by the unipotent radicals of the parabolic subgroups of G,
and we have G = ZG'. Sometimes we have G' = G, though.

Proposition Assume that G is semisimple, simply connected, almost F'-simple and isotropic.
Then G' = G, and G has no non-central proper normal subgroup. Moreover, Z is generated
by the Z N M/, a running through A.

Proof The first assertion is due to Platonov [PIR), Theorem 7.6] and the second one then
follows from work of Tits [PIR, Theorem 7.1]. The final assertion is due to Prasad and
Raghunathan [PrR] — actually their result is valid over any field. [

Remark Let G be as in the proposition, let « € A and G, the subgroup of G generated
by U, and U_,; since G,, satisfies the hypotheses of the proposition, we have M) = G/ =
Ga.

I1.4. In the following sections (II.5HIL.8)) our strategy is to reduce statements for G to a
much simpler group G' via a homomorphism G*® — G whose image is G’. The group G
has the property that it is a product of groups of the form considered in Proposition,
and the homomorphism G — G restricts to an isomorphism on unipotent radicals of
parabolic subgroups.

Let G*¢ be the simply connected covering of the derived group G of G. Recall that
G®¢ is the direct product of its almost F-simple components. We let B be an indexing
set for the isotropic almost F-simple components of G5 and for b € B we write Gy
for the corresponding component. We put G = [] Gb, and denote by ¢ the natural

beB
homomorphism G — G, factoring through G* — G — G — G.

We need to understand the relation between parabolic subgroups of G and parabolic
subgroups of G*. The following comes from [Bal, §21, §22], going through the factorization
of ¢.

The connected component of :~1(S) is a maximal F-split torus S of G5, and S is the
product of L(g) and the maximal F-split torus in the centre of G. The centralizer of S in
G is Z = 1=(Z), its normalizer N' = ¢~ (N/), and ¢ induces an isomorphism W (G, S) =
W (G, S) (see in particular [Bo, 22.6 Theorem]); in particular Wy has representatives in
L(G®). As G* is a direct product [[ Gy (over b € B) we have corresponding natural
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decompositions S = [[Sy, Z = [[Zy, N = [[ N} and W(G®,S) = [[W(Gy,Ss). Note
that ¢(G) is normal in G for each b € B.

The map P — P = t~Y(P) is a bijection between F-parabolic subgroups of G and
F-parabolic subgroups of Gis, and ¢ induces an isomorphism (cf. [Bo, 22.6 Theorem]) of
the unipotent radical N of P onto the unipotent radical N of P. Also, M = ;= (M) is the
Levi component of P containing Z. In particular B=1. ~1(B) is a minimal F- parabolic
subgroup of G; it is the direct product of minimal _parabolic subgroups B, of Gy, and
its unipotent radical U is the direct product of the Uy, with Uy, the unipotent radical of
By. Via t we get an 1dent1ﬁcat10nl of the roots of 8 in U with the roots of S in U, so
that A, in particular, also appears as the set of simple roots of S in U; as such A is a
disjoint union of the sets Ay, b € B, where Ay is the set of roots of S (or Sb) in Up; that
partition of A is the finest partition into mutually orthogonal subsets. Those subsets are
the connected components of the Dynkin diagram of G (with set of vertices A) so we can
view B as the set of such components.

Proposition G’ = ((G*).
Proof By Proposition we have @g = Gy, for each b € B so (G*) = G'; since ¢ induces
an isomorphism of U onto U and Uy, onto Usyp, we get G' = +(G™). O

Note that the proposition implies that Z NG’ = 1(Z).

IL.5. Notation For I C A, set B(I) ={be B|INA, # Ap}.
Proposition Let I C A. Then the normal subgroup (“Ni) of G generated by Ny is

o II Gw)-

beB(I)

Proof We have N; = II (]\71 N éb) and ]\71 N Gb is the unipotent subgroup of éb corre-
beB

sponding to I N A, C Ay. For b e B—B(I), Ny N éb is trivial; for b in B(I), Ny N Gy is
non-trivial, and provides a non-central subgroup of Gy, 50 by [[1 - 3| Proposition the normal
subgroup of G generated by N; N Gy is Gy; the proposition follows. O

Corollary
(i) P (9N = [] BrnGy)),
beB(I)
(i) My (9N =[] (M1 Gy)),
beB(I)

(iii) M (“Np) =G,
(iv) (YNy) contains Ny op.

Proof Parts (i) and (ii) are immediate consequences of the previous considerations. Let
us prove (iii). From the proposition (GNp) contains t(Gy) for b € B(I), but for b €
B —B(I), M; contains t(G}), so finally M;{%N;) contains ¢(G*) = G’. Since M; contains

SMore precisely the natural map S — S induces a group homomorphism X*(S) — X*(S) through
which the roots of S in U are identified with the roots of S in U. By [SGA3, Exp. XXVI, 74] if a is a
root of S in U and & the corresponding root of S in fJ, then & goes to a" via the transposed morphism
X.(S) — X.(S). In the sequel we make no distinction between o and &, o and &V .
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Z and G = ZG', we get (iii). Part (iv) follows from the proposition because Npp is

o TI (N1opNGy)). O
beB(I)

Remark For b € B, M; N Gy can be also described as the product [] Ma, over the

(&
connected components ¢ of the Dynkin diagram obtained from that of G, by deleting
vertices outside I. (We note that the product is not direct.)

I1.6. There is another useful characterization of My N (¥ Ny).

Proposition Let I C A. Then M N (CNj) is the normal subgroup of My generated by
Z N M/, for a running through A — 1.

Proof Let « € A — I and let b € B be such that o € A, so that M/, C 1(G}). As a ¢ I,
b belongs to B(I) so «(Gy) is included in (“Ny) by Proposition, and consequently
Z N M, c M;n(9N;). To prove that M; N (“Ny) is the normal subgroup of M;
generated by the Z N M/, a € A — 1, it is enough, by to work within Gp. So we
now assume that G = G and G is almost F-simple. If I = A, Ny is trivial so there is
nothing to prove. So let us assume I # A, so that (9N;) = G by since Ny is not
trivial. We can apply to My all the considerations applied to G in the current chapter,
so we see that M = Z [[ Hy where J runs through connected components of the Dynkin
diagram with set of vertices I associated to M, and Hj is the corresponding semisimple
simply connected almost F-simple subgroup of M. Let J be such a connected component.
As the Dynkin diagram attached to G is by assumption connected, there is o in A — [
with (J,aV) # 0. Choose o' in J with (o/,a") # 0 and z € F* with o/(a"(z))? # 1.
We have o¥(z) € ZN M/, Uy C Hy C My, and the map from Uy to itself given by
u = oY (z)ua (z) " tut s ont(ﬂ The normal subgroup of M; generated by Z N M/,
contains av(x)ﬂ and ua(z)"tu~! for u € Uy, so it contains U,. By Proposition
it contains H; and in particular Z N M/, for all o” € J. We conclude that the normal
subgroup of M generated by the ZN M/, a € A — I, contains Z N M/, for all « € A. By
Proposition it contains Z; since we have seen that it contains each Hj, it is equal to
Mr=Z][]H;. O

I1.7. Keeping the same notation, we can now derive consequences for representations.

Proposition Let I C A, and let o be a representation of M. Then the following condi-
tions are equivalent:

(i) o extends to a representation of G trivial on Ny,

(ii) for each b € B(I), o is trivial on (M N Gy),

(iii) for each « € A — I, o is trivial on Z N M.

When these conditions are satisfied, there exists a unique extension o of o to G which
1s trivial on Ny, and it is smooth, admissible or irreducible if and only if o is.

Proof As already said in if o extends to a representation of G trivial on Nj, the
extension is trivial on (“Nj) so ¢ is certainly trivial on M; N (“Ny). Consequently, (i)
implies (ii) and (iii) by Conversely, under assumptions (ii) or (iii), o is trivial on

6If 20/ is not a root, then a” (x) acts on U, (a vector group) via multiplication by o/ (o (z)). If 20/ is
a root, then oY (x) acts on Usy via o (¥ (x))? and on Uy /Uses via o (o (z)).
It follows from , footnote 5, that o (x) belongs to M/; on the other hand it belongs to S C M.
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M N {9Ny) hence extends, trivially on { ¢ N;), to a representation of M;{“N;), which is
G by Corollary (iii). The extension o is necessarily unique. Assume that o extends
to a representation ‘o of G trivial on N;. Since ¢ and “c have the same image, o is
irreducible if and only if ¢ is. As Py is a topological subgroup of G, ¢ is smooth if ¢o
is. Conversely, assume that o is smooth and let x be a vector in the space of o, J its
stabilizer in Pr; by Corollary (iv), N op acts trivially on “o and the stabilizer of x in
G, which contains Ny op.J, is open in G, so “o is smooth.

As Py is a topological subgroup of G, ¢o is admissible if ¢ is. Conversely assume o is
admissible; for each open subgroup J of M7, a vector in ¢ fixed by J is also fixed by the
subgroup generated by J, Ny and Np o, which is open in G, so o is admissible. [

Remark 1 By [IL5 Remark, condition (ii) illustrates that o can extend to G (trivially on
Nr) only for very strong reasons: for any connected component Ay of the Dynkin diagram
of G meeting A — I, o has to be trivial on M} for any connected component A, of the
Dynkin diagram of M; included in Ay. By Proposition applied to M gc that last
condition is also equivalent to o being trivial on Upg for some, or any, 8 € A..

Remark 2 The coefficient field plays no role here. Properties (i), (ii) and (iii) are equiva-
lent for a representation of M over a commutative ring. The last assertion of the propo-
sition remains also true for representations over a commutative ring (for admissibility,
suppose as usual that the ring is noetherian).

Notation Let P = MN be a parabolic subgroup of G containing B, and let ¢ be a
representation of M. We let A(o) be the set of & € A — Ap such that o is trivial on
Z N M/,. We let P(c) be the parabolic subgroup corresponding to A(c) U Ap.

Corollary 1 Let P = MN be a parabolic subgroup of G containing B, and let o be a
representation of M. Then the parabolic subgroups of G containing P to which o extends,
trivially on N, are those contained in P(c). In that case the extension is unique and is
smooth, admissible or irreducible if o is.

The corollary is immediate from the proposition applied to Levi components of parabolic
subgroups of G containing P.

Remark 2 Since any parabolic subgroup P of G is conjugate to one containing B, it
follows, as stated in the introduction, that if o is a representation of P trivial on its
unipotent radical, there is a maximal parabolic subgroup P(c) of G to which o can be
extended, and the extension is smooth, admissible or irreducible if (and only if) o is.

Corollary 2 Keep the assumptions and notation of Corollary 1, and assume further
that A(o) is not orthogonal to Apr. Then there is a proper parabolic subgroup @ of M,
containing M N B, such that o is trivial on the unipotent radical of QQ; moreover o is a
subrepresentation of Indg(U‘Q), and o\q s irreducible or admissible if o is. In particular,
o cannot be supercuspidal.

Proof We may assume that G = P(0). Let a € A(0) not orthogonal to Aps, and let b € B
such that o € Ay. Then Ay N Aps # Ay, so o is trivial on o(M N Gy) by the proposition.
As « is not orthogonal to Ay, Ap N Aps is not empty. If @ is the (proper) parabolic
subgroup of M corresponding to Ap; — Ay, then L(M N éb) contains the unipotent radical
Ng of Q and o is trivial on Ng. Then, obviously, o is a subrepresentation of Indg (U‘Q)
and by the proposition, applied to M instead of G, if ¢ is irreducible or admissible, so is
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its restriction to the Levi component of ). By the definition of supercuspidality, o cannot
be supercuspidal. [J

Remark 3 The last assertion of Corollary 2 explains why the case of interest to us is when
Ajpr and A(o) are orthogonal — an analogous result will be obtained when o is assumed
supersingular instead of supercuspidal Corollary). As a special case, assume that
the (relative) Dynkin diagram of G is connected, and o is a supercuspidal representation
of M extending to G. Then either M = G or M = Z; in the latter case, o is trivial on
Z NG’ and finite dimensional.

Remark 4 For the record, let us state a few useful facts when A is the disjoint union of
two subsets I and J, orthogonal to each other. Then M; and M/, are normal subgroups
of G, commuting with each other. We have G' = M;M/),, M; = ZM;, My = ZM,
M;N My = Z and in particular My N M}, = Z N M/, for o € J. Also, M; N M) is finite
and central in G: indeed, decomposing G as G x Gy, MyN M ’ is simply the image under
(91,92) — t(g1) of Kert C G; x G. The inclusion of M; in G induces an isomorphism
M;/(M;n M) ~ G/M/, (and similarly for Mj).

Remark 5 Let o € A belong to the component Ap. The normal subgroup of G generated

by Z N M/, is 1(Gy) because Z N M, is not central in M/,. If ¢ is a representation of G

which is trivial on Z N M/,, it is then trivial on +(G}p) and the conclusions of Corollary 2
hold (with M = G).

I1.8. To go further we need the generalized Steinberg representations already recalled
in the introduction.

Lemma Let Q) be a parabolic subgroup of G. Then lifting functions on G to functions on
G™ wia v gives an isomorphism of Indg 1 with Indgls 1. The representation Stg ov of G

s isomorphic to Stgis ; the restriction of Stg to G' is irreducible and admissible.

Proof We have ZG' = G and @ contains Z, so G = QG’'. Besides Q NG = 1(Q). Tt
follows that ¢ induces a bijection of Q\Gis onto Q\G; that bijection is continuous hence
is a homeomorphism by Arens’ theorem [MZ, p. 65]. The first assertion follows and the
others are immediate consequences. [J

Now let P = M N be a parabolic subgroup of G, let o be a representation of M, inflated

to P. Then by Corollary 1, o extends (uniquely) to a representation o of P(c). For

each parabolic subgroup @ with P C @ C P(0) we can form the representation 60@8‘05(0)

of P(o).
)

Proposition o is irreducible (resp. admissible) if and only if o ® Stg(g is irreducible

(resp. admissible).
From this, we get (see for instance [Vig2, Lemma 4.7]):
Corollary o is admissible if and only if IndIGD(U) (Co® Stg(a)) is admissible.

Proof of the proposition The unipotent radical of P(o) acts trivially on both o and
Stg(g). Therefore we may assume P(o) = G.
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Gis
' Q
B—B(Ag), Ag N Ay = Ay so that by construction Stgls is trivial on Gp; consequently, its
restriction to H = [[ Gy is irreducible. On the other hand by [[I.5] ¢o is trivial on
beB(Ag)
the normal subgroup «(H). If ¢ is irreducible, the irreducibility of o ® Stg comes then
from Clifford theory as in [Abel Lemma 5.3}@
Assume that o is admissible, so o is admissible too. As above «(H) acts trivially on ¢o
and the restriction of Stg to «(H) is admissible. If L is an open subgroup of G, the vectors

By the lemma above Stg ot is the generalized Steinberg representation StZ . For b in

in Stg fixed under L N «(H) form a finite dimensional vector space X. The vectors fixed
by L in o ® Stg are in ®c ® X. There is an open subgroup L’ of L acting trivially on X
and (‘o ® X)V = ¢o ® X is finite dimensional. Consequently, o ® Stg is admissible.

Conversely, if e0®Stg is irreducible, obviously o is irreducible. If ea@Stg is admissible
sois 0. Indeed, if J is an open subgroup of G then (EU)J®(Stg)J is contained in (%@Stg)‘],
so if J is small enough for (Stg)‘] to be non-zero, we deduce that (°c)” is finite-dimensional;
thus o is admissible and so is o by Proposition. [

Remark Assume that Ay is orthogonal to A — Ayy. Let o be a representation of M
which extends to G trivially on N, and let QQ be a parabolic subgroup of G containing P.
1) The representation o ® Stg of G determines o and Q.

2) Any subquotient ™ of ‘o ® Stg is of the form o, ® Stg for some representation o
of M which extends to G trivially on N.
Proof 1) We put J = A — Ay. As @ contains M, Stg is trivial on the normal subgroup
M’ and restricting to M functions on G gives an isomorphism of Stg onto Stgg M, The
restriction of ea®Stg to M/, is a direct sum of irreducible representations Stg | M and that
representation determines @) Lemma). Seen as a representation of G, HomMg (Stg,
‘o ® Stg) is isomorphic to ¢o (use for example [Abe, Lemma 5.3]), and ¢o determines o.

2) The restriction of 7 to M/, is a sum of copies of the irreducible representation Stg | M,
By Clifford theory [Abe, Lemma 5.3], 7 is isomorphic to Homy, (Stg, ) ®Stg. Moreover,
Hom M/J(Stg, ) is a representation of G trivial on M/, hence determines a representation
or of M via the map M — G/M, and o, ~ Hom,y (Stg, 7) as a representation of G. [

III. SUPERSINGULARITY AND CLASSIFICATION

ITI.1. This chapter is devoted to the proof of Theorem 4, and is rather long. It is
divided into parts A) to H). In part A) we give some more detail on supersingularity,
and in part B) we describe a parametrization for the irreducible representations of K.
The next step in part C) is to determine the weights and eigenvalues of parabolically in-
duced representations. We then proceed to the analysis of the representations I(P, o, Q):
we first determine P(o) in part D), and after that we compute the weights and eigen-
values of I(P,o,Q) for a supersingular triple (P, o, Q) in part E). The subsequent proof
of the irreducibility of I(P,o,Q) in part F) uses a change of weight theorem proved in
Chapter From the knowledge of weights and eigenvalues, we easily deduce in part G)

8To apply that lemma, note that Schur’s lemma is valid for the restriction of Stg to «(H).
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when I(Py,01,Q1) is isomorphic to I( P, 02,Q2) for supersingular triples (P, 01,Q1) and
(P2,09,Q2). In part H) we finally prove exhaustion, i.e. that every irreducible admissible
representation of G has the form I(P,0,Q) for some supersingular triple (P,o,Q): that
uses a result established only in Chapter [V] as a further consequence of the change of
weight theorem.

Notation The special maximal parahoric subgroup K C G is fixed throughout; we write
K (1) for its pro-p-radical and H® for H N K, when H is a subgroup of G. Note that Z° is
the unique parahoric subgroup of Z and that Z(1) = Z N K(1) is the unique pro-p Sylow
subgroup of Z°.

A) Supersingularity

ITI.2. Consider an irreducible representation (p, V) of K; it is finite-dimensional and
trivial on K (1). The classification of such objects will be recalled in part B).

We view the intertwining algebra Hg (V) as a Hecke algebra, the convolution algebra
of compactly supported functions ® : G — End¢ (V) satisfying

®(kgk') = p(k)®(g)p(K') for gin G, k and k' in K.
The convolution operation is given by

(I11.2.1) (@xW)(g)= D ®h)T(h'g) for &, ¥ in Ha(V).
heG/K

The action on ind?( V is also given by convolution:

(I11.2.2) (@xf)(g)= > On)f(h'g) for feindfV, ®eHa(V).
heG/K

ITI.3. We need to recall the structure of Hg(V) and its centre Z¢(V), as elucidated
in [HV1], building on [Hell He2]; note that Hg(V) is commutative in the context of
[Hell He2, [Abe].

Let P = M N be a parabolic subgroup of G containing B. Then the space of coinvariants
Vyo of NV in V affords an irreducible representation of M (which is the special parahoric
subgroup of M corresponding to the special point xg). For each representation o of M on
a vector space W, Frobenius reciprocity and the equalities G = KP = PK, P* = M°N©,
give a canonical isomorphism:

(I11.3.1) Homg (ind% V, Ind% W) — Hom y (ind3, Ve, W)

The natural algebra homomorphism S, : Ha(V) — Hy (Vo) of is given con-
cretely by

(I11.3.2) [ST(@)(m)o = > T(nm)(v) for m in M, vinV,
neNO\N

where a bar indicates the image in Vyo of a vector in V' [HV2, Proposition 2.2]. Recall
that (I11.3.1) is Heg(V)-linear if we let H(V) act on the right-hand side via S{. Recall
also that S{; is injective [HV2, Proposition 4.1].

For varying P = M N, the homomorphisms SAG4 satisfy obvious transitivity properties,
and S identifies Hg (V) with a subalgebra of Hz(Vy0) which we now describe. For a
root @ in ® = ®(G,S), the group homomorphism |a| : z — |a(x)| from S to R extends
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uniquely to a group homomorphism Z — Ri trivial on Z°, and we still write |a| for
that extension. We write ZT for the set of z in Z such that |a|(z) < 1 for all o € A.
Then by [HIV2, Proposition 4.2] H¢(V) is identified via S with the subalgebra of Hz(Vy0)
consisting of elements supported on Z*. By [HVT], 1.8 Theorem|, Z5 (V) is the subalgebra
Ha(V) N Z2(Vyo) of Z7(Vio) consisting of elements supported on Z 7.

II1.4. The group Z normalizes Z° and its pro-p radical Z(1) and the quotient Z/Z° is
a finitely generated abelian group. The coinvariant space Vjo is in fact a line, and Z°
acts on it via a character 1y : Z0 — C* trivial on Z(1): see part B), for the difference
between the notation vy here and in [HV2]. For z € Z, the coset Z°z supports a non-zero
function in Hz (Vo) if and only if z normalizes 1y, and such a function is in Zz (Vo) if
and only if 1y (22'2712'71) = 1 for all 2’ € Z normalizing 1y .

Notation We let Z,, be the subgroup of Z defined by this last condition. It contains S
and Z°.

For z € Z normalizing ¢y we write 7, € Hz (Vo) for the function with support Z%z
and value idy, , at z; we have

T, % Ty = T,y for z, 2/ in Z normalizing vy .

Identifying He (V) and H s (Vo) with subalgebras of Hyz(Vio) via S§ and S, we can
now describe H s (Vo) as the localization of Hg (V') at some central element [HV2], Propo-
sition 4.5] (so that Zp;(Vyo) is the localization of Z5(V') at the same element).

Proposition Let M = Mj for some I C A, and let s € S satisfy |a|(s) < 1 fora € A—1,
lal(s) =1 for aw € I. Then Hpr(Vo) is the localization of Ha(V') at 7s, and Za (Vo)
the localization of Zq(V') at 7s.

Notation For each oo € A, we choose z, in S such that |a|(z,) < 1 and |&/|(24) = 1 for
o' € A —{a}. For a character x of Zg(V), we let Ag(x) = {a € A | x(12,) = 0}.

In the above proposition, we can take s = [] 2z4; then 75 is the product 74 =
acA-T

[ 7., in any order.
acA-T
Lemma Let x be a character of Z¢(V). Then I = Ag(x) is the smallest subset of A such
that x extends to a character of Zpy, (VN?). For z in Z* N Zy, we have x(7.) # 0 if and
only if |a|(z) =1 for all & € Ag(x). In particular, Ao(x) does not depend on {z,}.
Proof As ZMI(VN?) is the localization of Z5(V) at  [[ 7.,, x extends to a character

aeA-T
of Zu; (Vo) if and only if x(72,) # 0 for a € A —I. The first assertion follows. Let
z € ZT N Zy,; if for some a € Ag(x) we have |a|(z) < 1, then for some positive integer r,
2" = zot with t € ZT N Zy,,, and x(72)" = x(72.)x(t) = 0, so x(7) = 0; if |a|(z) = 1 for
all v € Ag(x) then with s = [I  za there is a positive integer = such that s" = zt
a€A—Ao(x)

for some ¢t € Z* N Zy,, and similarly x(7.) # 0 since x(75) # 0. O

We write Zx for the set of z € Z with |a|(z) = 1 for all @ € A. Using the lemma, we
can restate the definition of supersingularity ([.5)) for a character of Zg (V).

Corollary For a character x of Zq(V), the following conditions are equivalent:
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(i) x is supersingular,

(i) Ao(x) = A,

iii) x (1) = 0 for all z in Zt N Zy, not in Zx.
Yy A

B) Irreducible representations of K

III.5. For a subgroup H C G we put H = (HN K)/(H N K(1)). As recalled above,
irreducible representations of K factor through K = K/K(1). Information about K
comes from [BTT, BT?2], see also [Ti]. The group K is naturally the group of points (over
the residue field k£ of F'), of a connected reductive group, which we write Gy, so that
G=K-= Gk(k)ﬂ We also have S = Si(k), where S, is a maximal split torus in Gy,
with a natural identification of X*(Sy) and X*(S); if Zj is the centralizer of S; in Gy
then Z = Z;(k), and similarly for the normalizer N of Sy in Gj. As K is a special
parahoric subgroup, every element of Wy has a representative in K so that Wy = NV/Z°,
and reduction mod K (1) yields an identification of Wy with W (G, Sy) = N /Z.

Similarly B = By(k) for a minimal parabolic subgroup By of Gy with Levi component
Z;, (which is a torus since k is finite) and unipotent radical Uy such that U = Uy (k).

ITI1.6. The root system of Sy in Gy is a sub-root system of the root system of S in G,
using the above-mentioned identification of X*(Sy) and X*(S). We write ®j, for the set
of roots of Sy in Gyg; we have &, C ®. A reduced root a € ® belongs to ¥y, if 2a is not a
root in ®; if & and 2« are roots in @, then a or 2« or both are in @, — all three cases can
occur.

So we get a natural bijection o — @ from reduced roots in ® to reduced roots in Py,
which sends positive roots to positive roots, and the set A of simple roots in ® to the set
Ay, of simple roots in ®. When « € ® is reduced, we have U, = Uy (k). Henceforward
we identify the reduced roots of ®; with those of ®, hence ®; with ®, A, with A, via
a +— a. Then for I C A the parabolic subgroup P; = M Ny is such that P; = P;i(k),
My =Mjy(k), Np = Np(k).

IIL.7. Let B,y be the parabolic subgroup of G opposite to BIT_GI (with respect to Z) and
U, its unipotent radical; then Eop = By, op(k) where By, op is the parabolic subgroup of
G, opposite to Bg. Similarly we have Uop = Uy, op(k) for their unipotent radicals.

From [BoT| Proposition 6.25] we get that G is generated by the union of Z, U, Ugp.
The subgroup G of G generated by the union of U and Uop is normal in G; it is the image
in G of G sc(k) where Gy is the simply connected covering of the derived group of Gy.
Not that G’Y certainly contains U° and (U,p) so that its image in G contains G'. But

it can be larger, so we need to distinguish G and the discrepancy is actually quite
important in Chapter

Lemma (i) The map (UNK(1)) x Z(1) x (Usp N K (1)) = K(1) given by the product law
1s bijective, and similarly for any order of the factors.

9We warn the reader that when G is semisimple, Gy is not necessarily semisimple. If Hy is an algebraic
group over k, we put Hy = Hy(k), so that for many algebraic subgroups H of G in the current chapter,
we can use indifferently the notations H or Hy, for (H N K)/(H N K(1)) — we mostly use H.

10When convenient, we put the index op on top.

HRecall G’ is the subgroup of G generated by U and Usp.

1276 avoid confusion, we sometimes write G, rather than G



A CLASSIFICATION OF IRREDUCIBLE MOD p REPRESENTATIONS OF p-ADIC GROUPS 17

(ii) K is generated by the union of U, Z° and (Uyp)°.

Proof Assertion (i) is due to Bruhat and Tits [BT2, 4.6.8 Corollaire]. Since G is generated
by the union of Z, U and U,p, K is generated by the union of Z% U, (U,p)? and the
normal subgroup K (1); then (ii) follows from (i). O

The lemma has a consequence which will be useful later. As in [[I1.4{ we write Z i for
the set of 2 € Z such that |a|(z) = 1 for all @ € A. Equivalently, Zx = Kervyz in the
notation of [HVT] 3.2]. (We have in fact that |a|(z) = ¢~(*¥2(3) for o € A and z € Z.)

Corollary Zi 1s the normalizer of K in Z.

Proof If z € Z normalizes K it also normalizes U? for all @ € ®. Given the action of
z on the filtration of U, [T1i], that is equivalent to |a|(z) = 1 for a € ®. Conversely if
|a|(z) = 1 for @ in A then |a|(z) =1 for all @ in ® and z normalizes U2 for all a € ®; it
then normalizes U? and (Usp)?, so it normalizes K. That proves that Z i is the normalizer
of Kin Z. O

Remark By the Cartan decomposition the normalizer of K in G is Z KK .

ITI.8. We can now recall (see [HV1,[HV2] and the references therein) the parametrization
of the irreducible representations of G, up to isomorphism.

If (p, V) is an irreducible representation of G, then V'V is a line, on which Z acts via a
character, say n: Z — C*. Let A(n) be the set of simple roots a € A such that 7 is trivial
on ZNM o (Where M, i, is the Levi subgroup of G corresponding to {a}), and as in
M ék is the subgroup of M, generated by (the union of) U, and U_,. The stabilizer
of the line VV in G is a parabolic subgroup containing B corresponding to a subset Ay
of A(n), and V is characterized up to isomorphism by the pair (n, Ay ); all such pairs do
occur. In [HV2], (n, Ay) is called the standard parameter of V.

II1.9. In this paper, we are interested in coinvariants rather than invariants, so we use
different parameters. Let V' be an irreducible representation of G with standard parameter

(n, Av).

Lemma The group Z acts on the line Vi via the character nowo where wo is the longest
element in Wo. Moreover the stabilizer of the kernel of V. — Vi is the parabolic subgroup
of G corresponding to the subset —woAy of A.

Proof By [HV2, Proposition 3.14] the projection V — Vi7 induces a Z-equivariant iso-
morphism of VUer onto Vir; the first assertion comes from [HV2, 3.11]. The stabilizer we
look at is also the stabilizer of the line (V*)U in the contragredient representation V* of
V; the second assertion follows from by [HV2] 3.12]. O

Definition The parameter of V is the pair (v, A(V')) where Z acts on Vi via ¢y and
the stabilizer in G of the kernel of V — Viz is PA(V)-

Remarks 1) We have ¢y = nowg and A(V) = —woAy.

2) The antistandard parameter of V' [HV2, 3.11] is (v, —A(V)).

3) V is determined up to isomorphism by its parameter. One has A(V') C A(yy ), and all
pairs (¢, I) with I C A(v) occur as parameters.
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II1.10. Lemma Let V be an irreducible representation of K, and let P = MN be a
parabolic subgroup of G containing B.

(i) Vi is an irreducible representation of M with parameter (v, Ay NA(V)).
(ii) V is Pop-regular in the sense of [HV2l Def. 3.6] if and only if A(V) C Apy.

Here, Py, = M N,y is the parabolic subgroup of G opposite to P (relative to M).

Proof By [HV2, 3.11] VNer is an irreducible representation of M and its antistandard
parameters are (v, —(Ay NA(V))). On the other hand, the projection V' — V3 induces
an M-equivariant isomorphism of V™er onto Vi, so (i) comes from Remark 2) above.
By [HV2, Def. 3.6] V is Pyp-regular if and only if —A(V) € —Ap ie. A(V) C Ay,
whence (ii). O
Remarks 1) Since PA(V) is the stabilizer of the kernel of the projection V' — Vi, V is
one-dimensional if and only if A(V) = A. It follows from part (i) of the lemma that V5
is one-dimensional if and only if Ay, C A(V). That provides a useful characterization
of A(V).

2) In this paper we will not use the terminology of a weight V' being Fop—regular. We
will phrase everything in terms of the equivalent condition A(V) C Ajs of the above
lemma.

Examples 1) Consider the case where V is the trivial representation of G. Then 1y = 1
and A(V) = A. Representations V with parameter (1,1) for I C A are particularly

important to us (cf. [[1I.18| below).

2) Let 1 be a character of Z; then 7 extends to a character of MA(n)i indeed, that
extension is the irreducible representation of M A, with parameter (1, A(n)).

II1.11. Consider the simply connected covering Gy, ¢ of the derived group Gy, ger of Gy,
and write j : Gy sc — Gy, for the natural morphism. Put Gj s« = G (k). We can repeat
exactly the same considerations as in in this context of finite reductive groups, and
we use the analogous notation — note however that since k is finite, every almost k-simple
component of Gy s is isotropic. In particular j induces an isomorphism between U and

Uy, and Ay, also appears as the set of simple roots of Sy, in Uy,.

From recall that
G, = J(Gse)-
Proposition Let (p, V') be an irreducible representation of Gy, with parameter (v, A(V)).
Then (po j, V) is an irreducible representation of Gy s. with parameter (Vv 17> A(V)).

Here, Z, = Zk(k:), where Zj, is the centralizer of S, in G, sc; we use similarly abbreviated
notation below. By the fact above and the inclusion G = Gca (LIL.7)), we get:
Corollary The restriction of p to G, and a fortiori to G', is irreducible.

Proof of the proposition Since V~k, equal to V%7, is one-dimensional, the cosocle of poj

is irreducible. Similarly V Uk.op equal toj/'Uop is one dimensional, so the socle of po j is
irreducible too. As the projection of VUer to Vz7 is non-zero, the map from the socle of
poj to its cosocle is non-zero, and poj is indeed irreducible. Clearly Zj acts on VUk =V
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by z — ¥y o0 j(z), and PA(V),k = j_l(PA(V)) stabilizes the kernel of V' — Vp; . But for
I C A, we have P; = 7j(]31,k), so if ]517143 stabilizes that kernel, I C A(V). O

C) Weights of parabolically induced representations

II1.12. Let P = MN be a parabolic subgroup of G containing B, and (7,W) a rep-
resentation of M. We investigate the weights of Indi and the corresponding Hecke

eigenvalues. From now on, we identify the irreducible representations of K and those of
G=K/K(1).

In this part C) we let (p, V) be an irreducible representation of K, with parameter
(v, A(V)). Recall that if (m, X) is a representation of G, for example X = IndE W,
then Hompg (V, X) is a right Hg(V)-module via Frobenius reciprocity. The formula for
the action is

(I11.12.1) (@®)(v) = > gp(®(g ) for v eV, p € Homg(V, X),
geG/K

and ® € Hqg(V).

Proposition (i) The natural isomorphism
Hom g (V, Ind% W) <= Hom 0 (Vyo, W)
is Ha(V)-linear, where Ha(V) acts on the right-hand side via SS.
(ii) V is a weight for IndS W if and only if Vo is a weight for W.
(i1i) The map S]GW identifies the eigenvalues of V in Indg W and the eigenvalues of Vo
in W.

Proof (i) comes from and (ii) is an immediate consequence. We have seen that
Zn (Vo) is the localization of Z4(V') at some element 75. Clearly 75 acts invertibly on
Hom 0 (Vyo, W); as the canonical isomorphism is Hg(V)-linear, 75 also acts invertibly on
Hom g (V, Ind% W), which gives (iii). O

A useful consequence of (II1.12.1) is the following lemma. Recall that for z € ZTNZy,,,
Z¢(V) contains a unique element T, such that Supp7, = KzK and T.(z) € Endo(V)
induces the identity on VUer [HV1 7.3, 2.9].
Lemma Let (7, X) be a representation of G and ¢ € Homg (V,X). Let z € Zy,,. Assume
z € Zx, i.e. that z normalizes K. Then SZ(T.) = 7, and (¢1.)(v) = 27 Lp(v) for v in
VUep, If ¢ is an eigenvector for Zg(V) with eigenvalue x, then 2~ acts on @(VUOP) by
X(72).
Proof By assumption zK = Kz, and the endomorphism T,(z) satisfies p(k)T.(z) =
T.(2)p(z kz) for k € K [HVI, 7.3]. As z normalizes U? and (Usp)?, T.(z) induces
endomorphisms of V and Vﬁop; since the natural map VUer Vi is an isomorphism,
T.(2) induces the identity on V. From (IIL3.2) we get SS (1) = 7., and (I1I1.12.1) gives

(oT2)(v) = 2 Yp(T.(2)v) for v €V,

hence the result. OJ
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II1.13. Let ¢ € Homg(V,Ind% W) and ¢y € Hom pso(Viyo, W) correspond via (I11.3.1).
Then ¢ gives rise to a G-morphism, again written ¢, from indf( V to Indg W, and similarly
we get an M-morphism ;s : ind%o Vo — W.

Consider the following diagram, where horizontal maps are canonical isomorphisms

can

Homg (ind% V, Ind%(ind}%, Viyo)) —=— Homps(ind¥, Viyo, ind¥, Vo)

lIHdIGD ©M lSOM

can

Homg (ind% V, Ind% W) —~—  Homyy(ind}%, Viyo, W)

By naturality, the vertical maps obtained by composing with IndIGa wn and @, as
indicated, make the diagram commutative. The identity map of ind%o Vo yields the
canonical intertwiner

(IT1.13.1) 7 : ind§ V — Ind$(ind}, Vivo)
mentioned in We get:
Lemma IndJGD pp oL = .
By [HV2, Proposition 4.1], 7 is injective. As 7 is Hg(V)-linear, it factors as follows:

ind% V — 2y (Viyo) ®z(vy ind% V =5 Hay (Viyo) @ vy ind% V
25 Tnd% (ind, Vo),
for some canonical map ©. Since Hps(Vyo) is the localization of Hg (V') at some central
element, and Zjs(Vyo) is the localization of Z5 (V') at the same element, the map w is an
isomorphism.

ITI.14. The main result of [HV2] is, taking into account [III.10| Lemma (ii):
Theorem Let (¢y, A(V)) be the parameter of V.. If A(V') C Aps then the map

Har(Vao) @pe(v) 0d% V2 Ind$ (ind3h Vo)
of [IL.13] is an isomorphism.

We derive some consequences.

Corollary 1 Let ¢ € Homg (V,IndE W) be an eigenvector for Z¢(V). If A(V) C Ay
and if ppr(Viyo) generates W as a representation of M, then (V) generates IndG W as
a representation of G.

Proof By the theorem, O is surjective. By hypothesis @ : ind%o Vo — W is surjective,
so by Lemma the map induced by ¢

Zr (Vo) @ z4(v) indf V — Indg W

is surjective. But Zg(V) acts on ¢ via a character which extends to Zp;(Vyo) (II11.12
Proposition (ii)) so we conclude that o(ind$ V) = Ind% W, hence the result. O

Corollary 2 Assume that (1, W) is irreducible and admissible. Then Indg W is irreducible
if and only if every non-zero subrepresentation of it contains a weight V with A(V) C Ayy.
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Proof Since W has some weight, by Proposition (i) and [[T1.10{ Lemma (i), Ind% W
has a weight V' with A(V) C Ajs. Conversely if a subrepresentation X of Indg W contains
a weight V' with A(V) C Ay, there is an eigenvector ¢ € Homg (V, X) for Z¢(V). As 7
is irreducible, @7 (Vo) generates W and by the proposition X = Indg W. O

D) Determination of P(o) for supersingular o

II1.15. We want to apply the preceding corollary to prove the irreducibility of I(P, o, Q)
for a supersingular triple (P, 0,@Q). That can only be done in stages. First we determine
P(0) in terms of weights and eigenvalues of o. In other words, we determine the set A(o)
of @ € A — Ay such that o is trivial on Z N M}, (IL7).

As the generality will be useful in Chapter [V] we consider the situation where P = M N
is a parabolic subgroup of G containing B, and (o, W) is a representation of M satisfying
the following hypothesis:

(H) There is an irreducible representation (p, V) of M® and some ¢ in Hom,o(V, W)
such that o is generated by ¢(V') as a representation of M.

Hypothesis (H) is certainly true if o is irreducible and admissible, and then we can take
¢ to be an eigenvector for Z3;(V'), and the corresponding eigenvalue is supersingular if o
is. As before, write (¢, A(V)) for the parameter of V.

Lemma Assume Hypothesis (H). Let « € A. If o is trivial on Z N MY, then vy is trivial
on ZON M,

Proof If o is trivial on Z N M), then certainly Z N M/, acts trivially on ¢(V). As
¢ € Hom 0 (V, W) is injective, Z° N MY, acts trivially on V hence on Viyo and 1y is trivial
on Z°NM!. O

I11.16. Proposition Let a € A.
(i) If v is trivial on Z° N M/, then Z N\ M}, C Zy,, .
(ii) || (Z N M) is isomorphic to Z.
(iii) Let z € Z N M!,. Then |a|(z) =1 if and only if z € Z° N M.

Notation By the proposition the group (Z N M.)/(Z° N M) is isomorphic to Z. By (ii)
there is an element a,, in ZN M/, with |o|(aq) > 1, such that |«|(aq) generates |a|(ZNM],);
by (iii) the element a, is well-defined modulo Z° N M/.. Note that if « is orthogonal to
Ajs then a, € ZXM (see proof of Corollary) and 7,, is a unit of Zy/(V). If ¢y is
trivial on Z° N M, the element 7, of Zz(Vyyna0) does not depend on the choice of a,,
so we write it 7.

Proof of the proposition Assume that 1y is trivial on Z° N M/, and take z € Z N M/;
then, for 2/ € Z (in particular for 2’ € Z%), 22’2712’ belongs to Z° N M/, (because Z/Z°
is abelian and Z N M/, is normal in Z), so we get ¥y (2227 12/~1) = 1. That shows that z
normalizes ¢y and belongs to Zy,,, hence (i).

Let us introduce the isotropic part M, = M of the simply connected covering of
the derived group of My, its minimal Levi subgroup Z, lifting Z, and the maximal split
torus S, of Z,. Write j for the canonical map M, — M,. We have M = j(Ma) and
JHZ) = Za, 50 ZOM!, = §(Zy).

Let vz : Z — X.(S) ® Q be the homomorphism such that y(vz(z)) = valp(x(z)) for
all z € S and all F-characters x of S, where valp is the valuation of F' with image Z;
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its kernel is the maximal compact subgroup of Z. Let wg : G — X*(Z((A})IF)"F be the
Kottwitz homomorphism of G [Kotl, §7.7], where G denotes the dual group, Ir the inertia
subgroup of Gal(F*P/F), and op a Frobenius element of Gal(F*?/F'). The parahoric
subgroup ZY of Z is equal to Kerwyz. By [HVI] 6.2], Ker wy = Ker vz N Ker wg.

We have the analogous map vz and a commutative diagram

Zo —22, X,(S.) ©Q
|

Z 25 X,(S)®Q
where the vertical maps are induced by j.

As M, is semisimple and simply connected, w 47, 1s trivial and by functoriality of the
Kottwitz homomorphism wg is trivial on M/, = j(Ma); in particular Z°nN M! =KervzN
M!,. The vertical map on the right of the above diagram is injective so j 1Z°nM!) =
Kervy . Thus (Z N M!)/(Z° N M) is isomorphic to Zo/ Kervy , ie. to the image of
vy . Since S, has dimension 1, that image is isomorphic to Z. Now for z € Z, we have
la|(j(2)) = g~ {@wzl@) = ¢=(@vz. () and (ii), (iii) follow. O

Remark From the above proof it is clear that vz (a,) is a (negative) rational multiple of

aV. See also [IV.11] Example 3.
IT1.17. Let us derive consequences of [[IT.16]

Proposition Assume Hypothesis (H) (II1.15). Let o € A be orthogonal to Aps. Then the
following conditions are equivalent:

(i) o is trivial on Z N M},

(i) by is trivial on Z° N M, and (p74)(v) = p(v) for v € Y UopnM®,
Proof Apply first Lemma to get
(%) (¢7a)(v) = ag p(v)
for v € VU»"M°  Now assume (i). By [[IL.15{ Lemma, vy is trivial on Z°N M/; then, since
a is orthogonal to Ay, aq belongs to Zx =~ and (x) implies (ii). Conversely assume (ii).
Applying [IT1.16| Proposition and (*) again we get that Z N M/ acts trivially on the line
(VUM "Byt as o is orthogonal to Aps, M normalizes M/, and hence also Z N M,;
consequently, the set of fixed points of Z N M/, in W is invariant under M. As it contains
(VU M?) it contains (V) since VUerMM"
Z N M/, acts trivially on W. O

generates V over MY and by hypothesis (H),

Corollary Assume Hypothesis (H) and that moreover ¢ is a Zy(V)-eigenvector with
supersingular eigenvalue x. Then A(o) as in (I1.7)) is the set of & € A, orthogonal to Ay,
such that 1y is trivial on Z° N M., and x(74) = 1.

Proof Assume a € A(o) is not orthogonal to Ay;. By Corollary 2 and Remark 5,
there is a proper parabolic subgroup @ = MgNg of M (containing M N B) such that o
is trivial on Ng and is a subrepresentation of Indg (0|mg)- By [HL.12 Proposition (iii), no
eigenvalue of o can be supersingular. Consequently, any « in A(o) is orthogonal to Ay
and the result follows from the proposition. [J
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In particular, we have determined P(o) for a supersingular representation o of M.

E) Weights and eigenvalues of I(P,0,(Q)

ITI.18. In this section, for a supersingular triple (P, o, @) (L.5)), we determine the weights
and eigenvalues of I(P, 0, Q). A slightly more general situation is useful in part G) though.

Proposition Consider a B-triple (P,0,Q) as in with P = MN, and assume that
A(o) is orthogonal to Apr. Let V' be an irreducible representation of K, with parame-

ter (Yy, A(V)).

1) The following conditions are equivalent:

(i) V is a weight of I(P,o,Q),

(11) Vo is a weight of o and A(V)NA(o) = Ag NA(0).

2) If V is a weight of I(P,0,Q), then the eigenvalues of Za(V) in I(P,0,Q) are in
bijection with those of Zy (Vo) in o via S

The proof of 1) is in below, that of 2) in which actually gives more

precise information.

Remark 1 Consider the case where P = B and o is the trivial representation of B.
Then P(o) = G and I(B,0,Q) = Stg. From [Lyll §8] we get that Stg has a unique
weight Vg , with multiplicity one, and parameter (1, Ag). That weight also occurs with
multiplicity one in Indg 1 and the natural map HomK(VG IndG 1) — HomK(VG,Stg)
is an isomorphism; similarly VQG occurs with multiplicity one in IndB 1 and the natural
map HomK(VG,Indg 1) — HomK(VG,Indg 1) is an isomorphism. Those isomorphisms
are Hc;(VQG )-equivariant, and the algebra Hg(Vg ), isomorphic to the monoid algebra

C[Z*+)Z", acts via the augmentation character sending 7, to 1 for 2 € Z*. That special
case will be used in the proof of part 2) of the proposition.

The proposition may be applied to a supersingular triple, by Corollary.

Corollary Assume (P,0,Q) is a supersingular triple; if V is a weight of I1(P, o,Q) then
for any eigenvalue x of Zq(V') in I(P,0,Q), we have Ag(x) = Ans.

Proof By part 2) of the proposition, x extends to a character of Zp;(Vyo) so Ag(x) C Axy.
On the other hand the extended character is an eigenvalue of ¢ which is supersingular so
Ay C Ao(X). ]

Remark 2 In the context of the corollary, if P # G, then no eigenvalue of I(P,0,Q) is
supersingular.

I11.19. By Proposition, we immediately reduce the proof of part 1) of the propo-
sition to the case where P(0) = G. In the course of the proof we shall glean more
information on the weights and eigenvalues.

We put Ay = Ay and Ay = A(o), so that A is the union of two orthogonal subsets
Ay and Ag. Asin we introduce the group G = G5, Tt appears as the product of two
factors G1 and Gg attached to A1, Asg. Note that G and G have the same semlslmple
building and their actions on it are compatible. Let K be the parahoric subgroup of G
attached to the point x¢. It decomposes as K1 x Ky where for i = 1,2, Ki=KnG,is
a parahoric subgroup of G;. Write ¢ for the natural map G — G. For 1=1,2, let M; be
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the Levi subgroup Ma, of G. Then M = «(G;) and M; = ZM]. By [IL.7] Remark 4, M
and M) commute with each other, Z normalizes each of them and G = Z M| M.

Proposition (i) K = Y(K), Z° = 17(2°) and «(K;) = K N M| fori=1,2.
(i1) Let o € ®; then v induces a group isomorphism of U = U,NK onto UO UsNK.

Here, U, denotes the root subgroup of G attached to a € ®.

Proof By functoriality of the Kottwitz homomorphism, since G is semisimple simply
connected, w¢ o ¢ is trivial; on the other hand an element = € G fixes the point xq if and
only if +(z) fixes xo. So we have K = (K and intersecting with Z = +=1(Z) we get
7% = 7 1Z%). If x € K; then «(z) € K N«(G;) = KN M]. Conversely if z € G; and
Wz) € K then z € K N G K;. This proves (i).

(ii) Let a € ®. As «(K) € K we have «(U2) c UY. Conversely for = € Uy, 1(x) € UY
implies z € U, N~ (K) = U2 by (i). O

Corollary We have K = ZO(K). Fori=1,2, M? = Z°4(K;).
Proof This comes from (ii) of the proposition, given [II11.7] Lemma. [J

Remark By Remark 4, M| N M/ is finite and central in G. As it is contained in
Ker wg, it follows that Z° contains M} N M}, which is equal to ¢(K7) N ¢(K3).

ITI.20. Let now (p, V) be an irreducible representation of K. We want to write V' as a
tensor product adapted to the orthogonal decomposition A = A U Ag.
Write (p, V) for the representation of K obtained from p via ¢ : K — K. By [[IL.19| m

Proposition (ii) L(K) contains G, so by [I 1] Corollary p is irreducible. Since K =
K 1 X Kg, 1% decomposes as a tensor product V1 ® V2 where for i =1, 2, V is an irreducible
representation of K; which is trivial on Kj_;.

To decompose V' as a tensor product V3 ® V5 of irreducible representations of K, where

Vi restricts to V3 via t, and V5 to V5, we have to take some care, as K is not the direct
product MY x MJ.

Proposition (i) For i = 1,2, let V; be an irreducible representation of K trivial on
KNM;_,. Then Vi ®Vy is irreducible with parameter (v, Yv,, A(Vi)NA(Vz)). Moreover,
A(V;) contains As—;.

(ii) Let V' be an irreducible representation of K. If V5 is an irreducible representation
of K trivial on K N M with Hompnpy(V2,V) # 0, then Vi = Hompnpy(V2, V) is an
irreducible representation of K trivial on K N M} and V ~ Vi ® Va.

(i1i) Let V' be an irreducible representation of K. Then V ~ Vi ® Vo with V; as in (i)
if and only if V' is trivial on M{ N M.

We will not need part (iii), we only included it for completeness.

Proof (i) Let V; be the pullback of V; to K via ¢. Then V; is trivial on Ks_;, so Vi ® Vs
is an irreducible representation of K. Hence V := V; ® V5 is an irreducible representation
of K. If Q = MgNg is a parabolic subgroup containing B, then

Vig 2 (Vi) @ (Vo) ng, as NG = (NN M{) x (NN My).
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Hence by Ag C A(V) if and only if Ag € A(V;) for i = 1,2, s0 A(V) = A(V1) N
A(Va). Taking Q = B, we deduce ¢y = ¥y, ¢y,. As K N M, . is trivial on Vj, we get
As_; C A(VZ)

(ii) This follows from Clifford theory [Abe, Lemma 5.3].

(i) The “if” direction is obvious. Assume that V is trivial on M| N Mj. Let W be
an irreducible representation of K N M} such that Hom M} (W, V) # 0. Via ¢, W is an

1rredu01ble representation of K, which we consider as a representation W of K trivial on

. As V, hence W, is trivial ¢(K;) N ¢(K>) by assumption, it follows that W is trivial
on Ker t, so we have extended W to an irreducible representation of K N G’, which is
trivial on K N M]. We may view W as an irreducible representation of G’ and we choose
an irreducible representation V5 of G such that W occurs in Valer. By 111.11] Corollary
W =~ Va|g and hence Hompenpyy (Va, V) # 0. By part (i), V ~ Vi ® Va with V; as in (i).
O

ITI.21. Let (P,0,Q) be a B-triple with P(0) = G. We are now finally ready to determine
the weights of o ® Stg. We keep the notation of Recall that by construction €o is
trivial on M} and Stg is trivial on M.

Let us fix a weight V of I(P,0,Q) = ‘0 ® StQ We decompose the pullback V of V to
a representation of K = Ky x Ko, via ¢, as V ~ V; @ Va. Therefore Hompg (V, %0 ® StQ)
injects into

Hom(V,% ® Stg) ~ Hom (1, “0) ® Hom j (Va, Stg),
where we used that f(l acts trivially on ffg, Stg and Rl acts trivially on ffl, €o. As Stg

has a unique weight , Vs is the pullback via ¢ of the unique weight V5 of Stg By
lifting via ¢ : Ky — o(K3) = K N Mj, we deduce Homperyy (Va, V) = Hompg, (V2,V) # 0.
By [[IL.20] Proposition (i), V ~ V4 ® V5 for some irreducible representation Vj of K trivial
on K N M}. We also see by [[I1.20 Proposition (i) and [[IL.18| Remark 1 that A(V) N Ay =
A(V2) N Ay = Ag N Ay. The natural injection HOH]K(‘/Q, StQ) — HomKnM/(Vz, StQ) is
an isomorphism of 1-dimensional vector spaces, because the right-hand side is isomorphic
to Hom f{(f/g, Stg) via t. Thus the following lemma, in our situation, implies that V7 is a
weight of o, so Vo is a weight of o. This proves that (i) implies (ii) in Proposition
1).

Lemma Let o1 be a representation of G trivial on M), oo a representation of G trivial
on M. Let Vi be an irreducible representation of K trivial on K N MY}, Vi an irreducible
representation of K trivial on K N M{ Assume that the inclusion Hompg (Va,02) —
HOmeMé(VQ,O'Q) is an isomorphism. Then the natural inclusion of Hompg(V1,01) ®
Hompg (Va, 02) into Homg (Vi @ Va, 01 ® 09) is an isomorphism.

Proof Look first at points fixed by K N M} in Hom(V; ® Va,01 ® 02). As K N M) acts
trivially in V4 and o1, it is simply Hom(V1, 01) ® Hompenyy (V2, 02), so by the assumption
it is also Hom(Vj, 01) ® Homg (Va, 02). Now K acts trivially on Homg (V2, 02), so taking
fixed points under K indeed gives Homg (V1,01) ® Hompg (Va, 02). O

We now prove that (ii) implies (i) in [III.18| Proposition 1). Let V be an irreducible

representation of K satisfying (ii). From [[I1.12| Proposition (i), V is a weight of Ind% o ~
o ® Indg 1. Therefore, V is a weight of I(P,0,Q’) for some parabolic @' D P. As
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we have already proved that (i) implies (ii) in [III.18) Proposition 1), we deduce that
AQIQAQZAQQAQ, so Q' =Q. O

IIT1.22. It remains to prove part 2) of [[II.18 Proposition. We in fact establish something
more precise, which gives what we need by Proposition. Also, by that proposition
we may assume P(0) = G.

Lemma 1 Let (p,V') be a weight of I(P,0,Q) where P(c) =G.
(i) The quotient map Indg 1— S‘cgv induces an Hg(V')-isomorphism

Hom (V,Ind§ ‘o) — Homg (V, I(P, 0, Q)).
(i1) The inclusion Indg 1 — Ind$ 1 induces an Hq(V)-isomorphism

Hompg (V, Indg °s) — Homg (V, Ind% o).

Proof It is clear that the maps in (i), (ii) are Hg(V)-equivariant. As in|I11.21| write V as
V1 ® Vo where V3 is the unique weight of Stg (it has parameter (1, Ag)). By [[II.21| Lemma

(the hypothesis is verified by pulling back via ¢, as in [[11.21)), we get isomorphisms

Hompg (Vi ® Va,%0 ® Stg) ~  Homg(Vi,¢0) @ Homg (Va, St§),
Hompg (V) ® Vo, %0 ® Indg 1) ~ Hompg(V1,%) ® Homg (Va,Indg 1),
Hompg (V) @ V3,0 @ Indp 1) ~ Hompg (Vi,°0) ® Homg (Va, IndB 1).

2

The maps Indg 1— Stg and Indg 1 — Ind% 1 induce on each side vertical maps which
give commutative diagrams. As the vertical maps on the right-hand side are isomorphisms
by Remark 1, so are the vertical maps on the left-hand side, and (i), (ii) are implied
by the following well-known lemma. []

Lemma 2 Let H' be a closed subgroup of a locally profinite group H and indg/ the smooth
compact induction functor. Let V be a smooth representation of H' and W a smooth
representation of H. Then there is an isomorphism ® of representations of H, W ®
ind?, Vv =5 ind®, (W @ V), given by the formula

S(w® f): h— hw f(h) for w € W, f € ind¥, V.

F) Irreducibility of I(P,0,Q)

II1.23. Proposition Let (P,0,Q) be a supersingular triple. Then I(P,o0,Q) is irre-
ducible.

Proof It is enough to prove that if V is an irreducible representation of K and ¢ €
Hompg (V,I(P,0,Q)) is a Z5(V)-eigenvector with eigenvalue x, then the subrepresentation
X of I(P,0,Q) generated by ¢(V) is I(P,0,Q). So we fix such a situation and write
(vYy, A(V)) for the parameter of V. We prove the result by induction on the cardinality
of A(V).

By Corollary 1 we have X = I(P,0,Q) if A(V) C Ap(y), so we assume that
this is not the case. We pick o in A(V') but not in Ap(,), and let V' be an irreducible
representation of K with parameters (v, A(V) — {a}). Note that V}, and Vjo are
isomorphic, so that y defines a character of Z5(V’) via the Satake isomorphism, which
we also denote by .
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Via ¢, X is a quotient of x ®z,(v) ind% V. By [[IL.18 Corollary Ag(x) = Ays, hence

a ¢ Ao(x). By the change of weight theorem (IV.2| Corollary), x ®z,(v) indIG(V and

X®zq(v1) ind%’; V' are isomorphic unless « is orthogonal to Ag(x), ¥y is trivial on Z°N M,
and x(7,) =1 (see for the notation 7,). By induction then, we are reduced to the
case where « is orthogonal to Ag(x), vy is trivial on Z° N M/ and x(74) = 1. As
Aop(x) = Aypy, the conditions imply Corollary) that o belongs to A(o) C Ap(,)
contrary to assumption. [J

G) Injectivity of the parametrization
II1.24. Let (Py,01,Q1) and (P, 02,Q2) be supersingular triples such that

I(Py,01,Q1) = I(P2,02,Q2).
Let V' be a weight of I(P;,01,Q1), with parameter (y, A(V)), and x an eigenvalue of
Z¢(V) in I(P1,01,Q1). We have seen Ag(x) = Ap, ([1I1.19] Corollary) so we deduce
Ap, = Ap, and P; = P,. Write P, = M;N; as usual. By [[II.18| Proposition, Vyo is a
weight of o; with supersingular eigenvalue x (via SA%) Then [I11.17| Corollary implies that
P(o1) = P(02). Taking the ordinary part functor [Emel [Vig2] with respect to P(o1), we

deduce that €01 ® Stg(lal) and ¢y ® Stggm) are isomorphic as representations of P(c1) =

P(02). From Remark, we get Q1 = Q2 and o1 =~ 02. This completes the proof of the
uniqueness in [[.5| Theorem 4.

We insert here a consequence of the irreducibility of I(P, o, Q) and of the injectivity of
the parametrization, which we shall use in part H) and generalize in Chapter

Proposition Let P = MN be a parabolic subgroup of G containing B, and o a super-
singular representation of M, inflated to P. Then the irreducible components of Ind}Gpa
are the I(P,0,Q), Q a parabolic subgroup of G with P C QQ C P(0); each occurs with
multiplicity 1. In particular Indga has finite length.

(9) P(o)

o is isomorphic to ‘0 ® Indp"’ 1 (I11.22] Lemma 2),

which has a filtration with subquotients o ® Stg(a), one for each parabolic subgroup @
with P C Q C P(o). The proposition then follows from [I11.23| Proposition by parabolic
induction from P(c) to G. O

Proof The representation Indi

H) Surjectivity of the parametrization

IT1.25. Let (m, W) be an irreducible admissible representation of G. To prove that 7 has
the form (P, 0, Q) for a supersingular triple (P, o, @), we use induction on the semisimple
rank of G.

If Ap(x) = A for all weights V' of m and corresponding eigenvalues x, then 7 is super-
singular and 7 ~ I(G,7,G). So we fix a weight V for = with Zg(V')-eigenvalue x such
that Ag(x) # A. By construction 7 is a quotient of x ®z, ind% V.

Let P = MN be the parabolic subgroup such that Ap = Ag(x). Consider o =
X®ind%0 Vio. By the filtration theorem Theorem 6, proved in Chapter, X®ind§( \%
has a filtration with subquotients I.(P, 0, Q) = Ind, (‘o ® Stge) where P C QQ C P.. So
is a quotient of some I.(P,0,Q). If P. # G, then by [HV2l, Proposition 7.9] (note that o
has a central character byLemma) there is an irreducible admissible representation p
of the Levi quotient of P, such that 7 is a quotient of Indge p. By the induction hypothesis
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and Proposition, p is an irreducible constituent of Ind% p1 where P is a parabolic
subgroup of P, containing B, and p; is a supersingular representation of the Levi quotient
of P;. Then 7 is an irreducible constituent of IndIGJ1 p1, So by Proposition it is
isomorphic to I(Py, p1, Q") for some Q'

If P. = G, 7 is a quotient of some ‘0 ® Stg. By Proposition and Remark, 7 is
isomorphic to ‘o, ® Stg for some irreducible admissible representation o, of M. The
eigenvalues of o, are those of m by Proposition, and since Ay = Ap(x), o has
a supersingular eigenvalue. As A # A, the induction hypothesis implies that o is
supersingular, cf. Remark 2, and 7 ~ I(P,0,,Q). O

IT1.26. It is worth commenting on the admissibility assumptions in our results. The
reader may notice that, since admissibility plays no role in Chapters [[V] and [V] our re-
sults would still be true if instead of irreducible admissible representations, we considered
irreducible representations (o, W) such that for some weight (p, V) of o, Homg (V, W)
contains an eigenvector for Z5(V'). But the classification thus obtained would depend
on the choice of K, S, B, whereas we shall see in Chapter [VI] that with the admissibil-
ity assumption it does not depend on those choices. Of course one may hope that the
condition above actually implies admissibility or even, as is the case for complex repre-
sentations, that any irreducible representation of G is admissible. Note that because of
our admissibility condition we do not assert that G has any supersingular representation.
When G = GL,(F) and F has characteristic 0, we will show in forthcoming work that
supersingular representations of G exist.

IV. CHANGE OF WEIGHT

IV.1. The main goal of this chapter is to establish our change of weight theorem ([V.2
Corollary) used in Before commenting on the method of proof, let us state pre-
cisely what we prove here. We fix an irreducible representation p of K on a space V,
with parameter (¢, A(V)) as defined in We consider the “universal” representa-
tion ind% V, which we see as a sub-representation of Ind%(indZ,(Vy)) via the injective
canonical intertwiner (II1.13.1).

We assume that A(V') is non-empty, and we choose av € A(V) and let (p/, V') be the
irreducible representation of K with parameter (v, A(V) — {a}). Similarly we consider
the universal representation ind% V' as a subrepresentation of Ind%(indZ, o)-

To compare the two universal representations, we fix non-zero vectors v in V and v’ in V’
which are invariant under ng. The image of v in Vo is then a basis of V0, and similarly
for v'. Using those images as basis vectors, we obtain embeddings of ind[G( V and indIG( Vv’
into the same representation Indg(indgo Yy ). Moreover the Satake isomorphism induces
an algebra homomorphism Hq(V) — Hz(vy); the algebra Hz(vy) acts on ind%, ¢y,
hence on Ind%(ind%, ¢v), and the embedding ind% (V) — Ind%(indZ, ¢y) is He(V)-
equivariant. We have similar properties for V’. Note that Hg (V) and Hg(V') have the
same image in Hy(¢y), so we identify them with that common image, which we write
Hea, and similarly we write Z4 for their common centre.

For z in Z normalizing vy, we have the function 7, in Hz(vy) with support Z%z and
value 1¢ at z. Recall fromthe notation a, € ZN M, and 7o, = 7o, € Z7(¢by), when
Yy is trivial on Z° N MY,
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Theorem Let z € ZT. Assume that z normalizes 1y and that |a|(z) < 1. We have:
(1) 7-(ind% V) C indZ V.

(i) If sy is not trivial on Z° N M, then 7, (ind% V') C ind% V.

(i34) If sy is trivial on Z° N M/, then 7,(1 — 7,)(ind% V') C ind% V.

Remark In (iii) 7,(1 — 7o) = 7, — T.q, belongs to Zg(V) if z € Z,, and za, belongs to
Z7T; moreover, if |a|(z) is small enough, za, belongs to Z*.

IV.2. We obtain our change of weight theorem:

Corollary Let x be a character of Zg and assume that a ¢ Ao(x). Then x @z, ind$ V
and XXz, ind?( V' are isomorphic unless a is orthogonal to Ag(x), Yy is trivial on Z°NM,
and x(1q) = 1.

We remark that x(74) is well defined if « is orthogonal to Ag(x) (I11.4} I1I.16|Notation).

Proof Choose z as in the theorem, with y(7,) # 0. For example, we can take for z the
element z,, of since o ¢ Ag(x): then x(.,) # 0. Multiplying by 7, in Ind (indZ, ¢v’)
is Zg-linear, so, when 1y is not trivial on Z° N M/, by (i) and (ii) of the theorem, 7,
induces G-equivariant maps from ind% V to ind% V' and back. The composites in both
directions are given by the action of 72. Tensoring with , we see that the representations
X ®zq indIG(V and x @z, ind?( V' are isomorphic, because x(72) # 0. That gives the
desired result when 1)y is non-trivial on Z° N M.

Assume then that iy is trivial on Z° N M/. Replacing z by a positive power, we
may assume za, € Z 1. If a is not orthogonal to Ag(x) then there is 8 in Ag(x) with
|Bl(zaq) < 1 and then X (T, ) = 0, so the same reasoning applies, using (iii) instead of
(ii). It similarly applies if « is orthogonal to Ag(x) and x(74) # 1. O

IV.3. Let us now comment on the proof of Theorem. We abbreviate ¢ = ¢y, J =
A(V),J = J —{a}, and X = Ind%(ind%, ). Let I be the pro-p Iwahori subgroup of G
which is the inverse image in K of U, gp@

We first remark that indf( V' is generated, as a representation of GG, by a single element,
the function with support K and value v at 1g. We write f for its image in X; it is
described explicitly in below. Similarly we have a function f’ in X, corresponding
to v/, which generates the subrepresentation indf( V'. We use work of the fourth-named
author [Vig3] which determines the structure of the Hecke algebra H = H(G,I), the
intertwining algebra in G of the trivial character of I. The space X! is a right module
over H, and for x € X1 and T in H, 2T belongs to the G-subspace generated by x.
By construction, f and f’ belong to X’ and to prove the theorem we show that: for (i)
T.f € f'H; for (i) T.f" € Zaf + fH; for (iil) 7,(1 — 1) f € Zaf + fH. That is not an
easy matter and takes up the rest of this chapter.

IV.4. Let us first identify the element f € X'; the obvious analogue will hold for f’.

As G = BK it is enough to specify f at ¢ € K. Going through the construction of
the embedding ind?{ V — Indg(indgo 1) we get that for g in K, f(g) is the function in
indgo 1 with support Z° and value £(g) at 1, where gv = £(g)v in V0, bars indicating the
images under V' — Vo.

13Beware of the notation: here, for convenience, we write I for a pro-p “lower” Iwahori subgroup.
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The value £(g) depends only on the image g of g in K/K (1), we write accordingly £(9).
By [HV2, Corollary 3.19] we have £(g) # 0 if and only if g belongs to ByPyB," (recall
from Definition that Pjj is the stabilizer in Gy of the kernel of the quotient map
V' — Vyo); that last set is also PypU.". We can be more precise; we obviously have
e(gx) = e(g) for z € U.P, so it is enough to describe €|p;,- Since Py is the stabilizer in
G, of the kernel of V' — Vo, the restriction ¢ Pri is a character Py, — C*; as such it

is trivial on unipotent elements. On Zj it is given by the action of Z; on VU or Vu,.s
so it is equal to ¢ there. In other words, on Pjj the character ¢ is simply the (unique)
extension of 9 to Pjy.

IV.5. To relate f and f’ we shall express both of them in terms of Hecke operators in
the subalgebra H (K, I) of H(G, I) acting on a single function fo in X7,

We first describe the double coset spaces I\G/I and B\G/I. Recall that the Weyl
group Wy of G can be seen as N°/Z% or Ny /Z,. As G = BK the inclusion of K in G
induces a bijection B\ K /I ~ B\G/I; as moreover I contains the normal subgroup K (1)
of K, reduction mod K (1) induces a bijection BY\K/I ~ By\Gy/U.* and the Bruhat
decomposition in G}, gives a bijection Ny/Z, ~ Bi\Gy/U.". All in all, we see that the
map NV — B\G/I g+ Bgl induces a bijection Wy = N°/Z° ~ B\G/I.

On the other hand, the map N — I\G/I induces a bijection N'/(Z N K (1)) ~ I\G/I
and, by restriction, a bijection NV/(Z N K (1)) ~ I\K/I. Under reduction modulo K (1)
we get the bijection Ny ~ U ,Sp\Gk / U,?p given by the Bruhat decomposition.

Notation Recall that Z(1) = ZNK(1) is the unique pro-p Sylow subgroup of Z° and that
it is normal in Z. We write 1 W for the group N'/Z(1) and W, for the group N°/Z(1)
(naturally isomorphic to N%), W for the group N/Z°. We have obvious exact sequences
of groups

1—>Zk—>1W0—>W0—>1,
1—Z, — W —W — 1.

Moreover W is the semi-direct product of A = Z/Z° with Wy viewed as N°/Z°. We also
put 1A = Z/Z(1) and AT = ZT/Z(1).

For g in G we write T'(g) for the double coset Igl viewed as an element of H(G, I). On
an element ¢ in X7 it acts via

(IV.5.1) (eT()(h)= > @(hag™) for heG.
zel/(INg—1Ig)

When g € N, T(g) depends only on the class w of g modulo Z(1), and we write T'(w)
for T(g). In a similar manner, reduction modulo K (1) gives an isomorphism of H(K,I)
onto H (G, U.?); accordingly for g € K, T(g) depends only on the reduction g of g in
Gy, and we write also T'(g). In fact we shall also have use of the Hecke algebras with
integer coefficients Hz (G, I) and Hz(K,I) (isomorphic to Hz (G, U,Y)) and we use the
same notations T'(g), T'(w),T(9q).

IV.6. Basic generators and relations for Hyz (G, I) and Hyz (K, I) are given in [Vig3]. By
tensoring with C' they give generators and relations for H(G,I) and H(K,I). We now
state the results we use, referring to [Vig3] for details. We need a bit more notation,
though.
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For B € A, we let sg be the corresponding reflection in Wy. We put g = {sg | § € A}.
The pro-p Iwahori subgroup I is attached to an alcove a in the (semisimple) Bruhat-Tits
building of GG, with vertex the special point xg, and we let X be the set of reflections across
the walls of a, so that Xy appears as the subset of reflections across walls passing through
xg. Then ¥ generates an affine Weyl group W¢ canonically identified with the subgroup
(NNKerwg)/Z° of W; also W is the semi-direct product of its normal subgroup W% and
the subgroup 2 stabilizing the alcove a. We let £ be the length function of the Coxeter
system (W% ¥) and we extend it to W, trivially on , i.e. so that {(ww) = ¢(w) for
w € W w e Q; on Wy it restricts to the length function of the Coxeter system (W, 3g).
Inflating through {W — W we get a length function on W and Wy, still written £. The
operators T'(w) in Hz (G, I) for w € W satisfy the “braid relations”

(Iv.6.1) T(w)T(w') = T(ww") when £(ww') = £(w) + £(w).

There are other relations, the “quadratic relations” [Vig3l Proposition 4.3]. Essentially
there is one such relation for each s € ¥. It comes directly from the finite field case,
treated in [CEl 6.8]. For s € ¥y, s = sg for some € A, we may describe the relation as
follows: let ng be a lift of sg in AN M/;’,k and define Zy, ; = Z, ﬂMé}k (so that n2 belongs
to Zys); then the quadratic relation for T'(ny) is

(IV.6.2) T(ns)(T(ns) — cn,) = qsT(n?),

where ¢; > 1 is a power of p and

= Y en,(DT(1)

tEZk,s

for positive integers c,,(t) = c,,(—t), constant on each coset of {zs(z)™' | z € Z}, of
sum ¢gs — 1. Moreover, we have ¢,, = ¢; mod p, where

(IV.6.3) cs 1= (qs — D|Zrs| ™" ) T().
tGZk’S

We have T'(ns)cn, = cn,T(ns).

Remark In the C-algebra H(G,I), g5 equals 0 and ¢, equals —|Z | dotez, . T(t), so
the relations simplify somewhat. We always embed the group algebra of Z over C into
H(G,I) by sending ¢t to T'(t); for s = sg as above we have 1(c,,) = —1 if ¢ is trivial on
Zs (i.e. B belongs to the set A(¢)) of [IL8} which contains .J), and ¢(cp,) = 0 otherwise.

Proposition There is a unique extension of the map s — ng from Yo to N to a map
w > Ny from Wy to Ni such that Ny = Ny for w, w' in Wy such that (ww') =
l(w) + L(w').

Proof (Another proof is in [Vig3, Proposition 3.4].) Uniqueness is obvious, as we must
have n,, = ng, - - - ns, for each reduced decomposition w = sg - - - s, of w in Wy with the s;
in ¥y. Existence will be consequence of [Bkl §1, n® 5, Proposition 5] once we prove:

(%) For s, §' distinct in Xg, and m the order of ss’, then (ngng)’ = (ngns)t if m = 2¢
and (nsng)ns = (ngns)ng if m =20+ 1.

To prove (*) we may assume that Gy is semisimple simply connected of relative rank
2, with Wy generated by s and s’, corresponding to the two simple roots S and 3. But
then the result follows from [BTI, 6.1.8] applied to the valued root datum associated
to (G, Sk, Bg): indeed, we can always put reduced roots of ® in a “circular order” as
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required by [BT1, 6.1.8], with § first and 8’ in the m-th position, in which case formula
(9) of [BTT 6.1.8] gives exactly the required equality (x) above. O

Henceforward we use the extension w — n,, and we put v, = n;ll for w € Wpy; in
particular if w, w’ in Wy satisfy £(ww’) = £(w) + £(w'), then vy = Vil

IV.7. We are now ready to define fy (as promised in [IV.5) and study the action of
H(K,I) on it. We let wy be the longest element in Wj.

Definition The function fo in X has support Bvy,I and its value at vy, is the function
€y N indgo Y with support Z° and equal to v on Z°.

Note the abuse of notation: we should choose a representative 7, of vy, in N but
neither the coset Bi,,I nor the value at 7, depend on that choice. We shall allow similar
abuse of notation below. Note also that fy depends on the choice of v, (but the support
of fy is independent of this choice).

Notation For z € Z;, and w € Wy we put w-z = nwzng,l (it is simply the natural action
of w € Wy = Ni/Zj, on Z); more generally we shall use a dot to denote a conjugation
action, which will be clear from the context.

Lemma For z € Z;, we have 2! fo = ¥(wo - 27 1) fo = foT'(2) = Twy-»fo-
The last equality in the lemma will be generalized below (IV.10)).

Proof Since Z° normalizes I, the first equality in the lemma comes from an immediate
computation, whereas the equality foT(z) = 27! fy comes from (IV.5.1). The equality

T.fo = (271 fo is equally easy. [J
Proposition Let w € Wy. Then foT(ny) has support Bry,wl and value ey at Vi -

Proof As fyT(ny) is I-invariant, it is enough to compute its value at 1, for w’ in W.
By definition (foT'(nw))(9) = 3. fo(ghny') for g € G, where the sum runs over h in
I/(ngtIng, NI). Assume that for such an h, fo is not 0 at v,yhng!. Then looking modulo
K (1), we get that v,y U;"ny,' N B, U, is non-empty, and, multiplying on the right by
Ve's that v, UPngtvgd N By # 0 and hence By UL N Byrwynw U # 0; by the Bruhat
decomposition in G}, that implies w’ = wow. Assume that w’ = wow; then h belongs to
vt By In,. However note that £(wow) + £(w™!) = £(wg) (because wy is the longest
element in Wp), so that v v,—1 = 1y,,; we deduce that the image of h in G} belongs to
ng'BPn, NUY = ng'UPn, N ULY. But that shows that h belongs to n,'In, NI and

consequently (£o7 () (Vuyw) = fo(Wupwnin!) = foviy) = ey O

Corollary f= Y. foT(ny).

wewo Wy

Proof By the description in for w in Wy, f(vw) is equal to ey if w belongs to
W; and is 0 otherwise: we only have to remark that Pjka;jp = B;,W;U.®, and since
Y(Zx N Mp,) =1 for B € J, the character € of [[V.4]is trivial on v,, for w € W;. O
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IV.8. We need to determine the action of ¢, on fyT'(n,) for s = sg, f € J. We recall
that J C A(v).

Proposition Let 5 € A(y)), s =sg and z € Z N M/A(UJ) e For w € woWa(y), we have

foT(nw)T(2) = foT(ny) and
JoT(nw)en, = —fo T(nw).

In particular fc,, = —f.

Proof By Example 2, 1 is trivial on Z; N M,A(w),k' By Lemma then, we
get foT(z) = fo for z € Zx N wOM’A(w)’ka_l. The braid relation gives T'(ny,)T(t) =
T(w-t)T (ny) for t € Zy, w € Wy. For z € Z N M/A(w),k we have w - z € Zj, ﬂM’A(w),k for
w € Wa(y), hence (wow) - 2 € Z; N wOM’Aw)’kwal, and consequently foT' (nyw)T'(z) =
JfoT (nwyw). That gives the first assertion.

The second one comes from the expression of ¢,, in (IV.6.3), noting that g5 gives 0 in
C; the last assertion follows from [[V.7] Corollary. [

IV.9. Notation Let w; be the longest element in W; C Wy and put w’ = wowy (note
that w; and wg have order 2). We put f; = foT'(n,.7).

Lemma 1 For w € W we have (i) f(w/w) = L(w”) +£(w), (i) T'(nyry) = T (s )T (M),
and (ii) foT (n1,) = f1T ().

Proof We have f(w/w) = f(wowjw) = L(wy) — L(wyw); if w € W; we also have
l(wyw) = £(wy) —L(w) so we get £(w’w) = £(w!)+£(w); by the braid relation T'(n,,,,) =
T'(ny7)T (nw), and the last assertion follows. [

By Lemma 1, and [IV.7| Corollary, [IV.§ Proposition, we have f = >~ f;T(n,) and for
weWy

w e Wy

(Iv.9.1) fiT(ny)en, = — 7T (ny).

For s € ¥y we put T*(ns) = T(ns) — ¢y, so that in Hz(K,I) we get
T(ns)T*(ns) = T*(ns)T(ns) = ¢sT(n2) (=0 in H(K,I)).

That definition can be extended to defining 7%(n,,) for w € Wy, so that T (nyw) =
T* (N T* (N ) if £(ww’) = (w) 4+ £(w') [Vig3l Proposition 4.13]. We now use the Bruhat
order < on the Coxeter group W (see for example [Deo]).

Proposition For w € W; we have

fi( Z T(ny,)) = fsT*(ny) and in particular

v<w
f= fJT*(an) = fOT(an)T*(an)'
A similar proposition can be found in [OlI2) Lemma 5.1].

Proof We use induction on ¢(w). The result is true for w = 1. If {(w) = £ > 1, we
write w = w's with £(w') = £ — 1,4(s) = 1. As l(w) = L(w') + £(s) we have T*(n,) =
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T* (N ) T*(ns) = T*(ny ) (T(ns) — ¢y, ). By induction f;T*(ny) = Y. f;T(ny). Remem-
v<w’
bering that for v in W; we have T'(n, )T (ny,) = T'(ny,7,) and by (IV.9.1) f;T(ny)c,, =
—f;T(ny). So finally we obtain
fiT*(nw) = f5T7 (n ) (T'(ns) + 1).
By induction f;T*(n. ) = > f;T(ny), so we want to compute A = > f;T(ny,)T(ns).

v<w’ v<w’
Divide the set of v < w' in the disjoint union X UY UY's where
Y = {veW;, v<wvs<u'},
Ys = {veW; vs<v<uw}
X = {veW;, v<w and vs £ w'}.

In A, the subsum over Y LI Y's is

Z fi(T(nvs) + T(ny))T (ns).

veY
But for v € Y, we have v < vs s0 T'(nys) = T'(ny)T'(ns) and fi(T(nys) + T'(ny))T(ns) =
f1T(ny)(T(ns)+1)T'(ns). By (IV.9.1) that equals f;7'(n,)T™(ns)T (ns) which is 0 because
T*(ns)T(ns) = 0in H. So A= > f;T(ny)T(ns). Since for v € X, we have v < vs we

veX
get A= Z fJT(nvs)-
veX
The proof will be complete once we get:

Lemma 2 Xs={ve W, v <wand v £ w'}.

Proof We use properties of the Bruhat order [Deo, Theorem 1.1 (II) (ii)]. Let a, b in Wy
with ¢ < b. Then:

(1) If a < as then a < bs; (2) if b > bs then as < b.

Let v € X, l.e. v < w', vs £ w'. Then by (2) applied to a = v,b = w, we get vs < w.
Conversely let v € W verify v < w and v £ w'; if v < vs then v < w’ by (1) applied to
a = v, b =w, which is a contradiction; so vs < v < w, which gives vs < w' by (1) applied
to a = vs and b = w. That proves the lemma. [J

IV.10. We now turn to the promised generalization of [[V.7] Lemma which will be used
in V.15

Proposition Let z € Z with z=' € ZT. Assume that vy, - z normalizes 1. Then
foT'(2) = 70,2 fo-

Remark If 27! belongs to Z*, v, - 2z also belongs to Z*, and conversely.

Proof As both terms are I-invariant, we only need to check that they are equal at vy,
for w € Wy. Now (foT(2))(9) = 3. fo(ghz™!') for g € G, where the sum runs over
h € I/(z7'IzN1I). But I has an Iwahori decomposition and the assumption that z~!
belongs to Z*t gives z " 1(INU)z C INU, 2= Y(INUyp)z D I N Uep, thus the inclusion of
INU into I induces of bijection of (INU)/(z~'I1zNU) onto I/(2~1IzN1I), and it is enough
to let h run through (INU)/(z~'1zNU). For such an h, v,hz~! belongs to Buy,,I only
if w = wo: indeed, v,hz"' € Bn,U and Buvy,I C Bny,U, so the Bruhat decomposition
in G implies w = wy. Consequently, both terms of the desired equality vanish at v, for

w # wp.
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Consider now (foT(2))(Vw,)- Let h € INU with v, hz~! = buy,j for some b in B, j
in I; again by the Iwahori decomposition of I, we may assume that j belongs to I N U
and then the equality h = (v brw,)z(271jz), where vy bry,z € B and 2 1jz € U,
shows that h is equal to 271jz and belongs to 2~ 11z N U; consequently, (foT'(2))(Vuw,) =
foWwez™) = fo((Vw - 27 Hwy) = Wy - 271) fo(vu,). That is equal to (v, - 27 1)ey,
which sends 2’ to ey (2/(vy, - 271)). On the other hand if 14, - z normalizes 9, we have
(Tvry-2F) (Vawg) = Ty 264, sending 2’ to ey (v, -271)2"). That gives the result since vy, - 2
normalizes 1. UJ

IV.11. To go further, we need more notation. We have the vector space V,q = X« (Saq)®
R, where S,q is the torus image of S in the adjoint group G,q of G, the dominant Weyl
chamber DT = {v € V,q, B(v) > 0 for B € A}, and the antidominant Weyl chamber
D~ = —D' = wyD". We recall the natural map v : Z — V,q used in [Vig3] 3.3]: the
action of z € Z on V,q is via translation by v(z). We remark that v is the composite of
—vz : Z — X.(S) ® R with X,(S) ® R = V,q. By [Vigd], Z" is the set of z € Z such
that v(z) belongs to the closure of D~ (i.e. fov(z) <0 for 5 € A). The map v factors
through 1A and A, and we still write v for the corresponding maps.

Note however that in citing [Vig3, Ch. 5], some care is needed:

Firstly, the roots in [Vig3, Ch. 5] are in the reduced root system ®, on V,q attached
to the collection of affine root hyperplanes in V,q (it is denoted by ¥ in [Vig3, Ch. 5]).
It is not in general the root system & attached to (Gaq,Saq). Let us describe what is
happening. The space V,q = X,(Saq) ® R is naturally a quotient of X, (S) ® R, and its
dual X*(S,q) ®R appears as the subspace of X*(S)®R generated by the roots in ®, which
are then the same for (G, S) and (Gaq, Saq). The coroot in V,4 attached to a given root
B in @ is the image of 3Y € X,(S), we also write it 3Y. The root system ®, on V,q can be
described from ® as follows. For each 8 € @, there is a positive integer eg such that @, is
the set of 3, := egf for B € ®; in particular, egg = eg/2 if 28 € ®. The root systems @,
and ® share the same Weyl group Wy, and consequently the same Weyl chambers. The
choice of Weyl chamber defining ®* also defines ®; and 3 — 3, gives a bijection of A
onto the set A, of simple roots in ®,. Note also that (5, 0 v)(A) C Z and that the coroot
in V,q associated to 8, € @, is B} = eglﬂv.

Examples 1) If G is split, then &, = @, eg =1 for g € P.

2) For G = GL,(D), where D is a central division algebra over F, of finite degree d?,
then eg = d for all 8 € ®.

3) Assume that G is semisimple simply connected of relative rank 1. Then there is
only one positive root § and S, o v(A) = 2Z [Vig3], 5.14]. Going back to the situation
of with no condition on the reductive group G we deduce that v(ag) = 8, since

a’
(Ba, By ) = 2. In particular vz(ag) = —eglﬁv.

Secondly, the choice of Iwahori subgroup corresponds to a choice of alcove with vertex
Xq, and positivity conditions are with respect to that choice. As we work with the “lower”
pro-p Iwahori subgroup I, the alcove with vertex xg which corresponds to I is the one
contained in D™, so positive roots in [Vig3, Ch. 5] correspond to negative roots here. In
citing [Vig3, Ch. 5] therefore we either have to exchange positive and negative roots or
replace v with —v; we choose the first solution. For example 1, D in [Vig3] Ch. 5]
correspond to ®,, D~ here.
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IV.12. Other bases of Hyz(G,I) are constructed in [Vig3, Ch. 5] using (spherical) orien-
tations. They generalize the Bernstein-Lusztig basis of an affine Hecke algebra. We need
not know what such an object is, only that it is determined by a Weyl chamber in V,g4;
the action of Wy on Weyl chambers determines an action on orientations; but as in [Vig3),
Ch. 5], we let Wy (and hence W via {W — Wj) act on the right on orientations by
(0,w) — o - w, so that if an orientation o corresponds to the Weyl chamber D, then o - w
corresponds to w™1(D).

Let o be an orientation. By [Vig3l Corollary 5.26] it gives a basis (E,(w))ye,w for
Hz(G,I). In Hz(G, I) some computations are easier because it is a “characteristic zero”
algebra. The above basis of Hyz(G, I) specializes to a basis (E,(w))we,w of H over C: we
use the same notation, making the context precise when necessary.

To w € 1W is attached an element g, in Z, such that ¢,, = gs for s € ¥p and ¢, = 1
if /(w) = 0. The main relations in Hz(G,I) satisfied by the E,(w) are the following
relations: for w, w' in {W,

(IV.12.1) Eo(w) Bopp(W') = quyar Bo(ww') with gy = (quwurdpe) >

Beware that in general o-w # o, although it is the case when w € ;A. Note that gy, =1
if and only if £(ww') = £(w) + £(w'), and gy gives 0 in C' otherwise [Vig3, Remark 4.18
and Lemma 4.19)].

In particular, if A, is the subspace of H with basis (E,(A)) for A € 1A, the multiplication
in A, is straightforward:

B, i 60N = £(\) + 6(V),

0 otherwise.

(IV.12.2) E,(\)E,(\N) = {

Thus A, is a subalgebra of H. In fact the condition £(AX) = £(\) + £(\) means that v(\)
and v()\') belong to the same closed Weyl chamber in V,q [Vig3, 5.12].

If o is an orientation, we let A, be the set of A € A such that v(\) belongs to the
closure of the corresponding Weyl chamber; we similarly define 1A,. For A in 1 A,, we have
E,(\) =T()) [Vig3, Example 5.30].

We shall need the orientation o; attached to a subset I of A: by definition it is the
orientation corresponding to the Weyl chamber w;(D~). Hence oa corresponds to DT, oy
corresponds to D™, oy = oa - w!, Ay, = wy - AT (hence 1Ay, = vy, - 1AT). For w € Wy
we then have E,, (ny) = T'(nyw) [Vigdl Example 5.32]. (Note that w;(D™) here equals
wy(D") in [Vig3], which corresponds to o, (a) in [Vig3].)

IV.13. We need some length formulas ([Vig3, Corollaries 5.10 and 5.11]). We have to
be careful to remember that 3T in [Vig3] corresponds to @, . For A € A, w € Wy, we have

(IV.13.1) Lw-A) =Y [Bov(\)] =L(N),
Beds
(IV.13.2) ((w)) = > 1Bov(\)|+ > 1Bov(\) —1],
BEDL Nw=1(2F) BEDL Nw—1(®g)
(IV.13.3) (w)= DY BovWl+ > |Bowr(N)+1].

BEDT Nw(®]) BEDS Nw(®y)
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Note that for 8 € A and w = sg = w, sz permutes @7 — {f,} and sends 3, to —f3, so
@j N 85((1);) = {Ba}'
Lemma Let I C A. Then, for A € A,,, £L(w!)\) = £(w!) + £(N).

Proof By (IV.13.2) we need to check that Bov(\) < 0 for 8 € @ N (w!)~1(®7); but
A € A,, means that Bov()\) >0 for 8 € w;(®7) = (w!)~H@+). O

IV.14. An important result in this chapter is the following.

Theorem Let w € Wj. Then for A € 1A,

T(Vw,nw) - N) FaT*(nw)  if (Vw,mw) - A € 1AT and normalizes 1),
0 if (Vw,nw) - A ¢ 1AT.

The proof of the theorem is in[[V.I5HIV.18] Taking w = w; we get by Proposition:
Corollary For A € 1A,

fEOJ()\) = {

FaT™ (nw) Eo, (A) = {

TN f if A € 1AT and normalizes 1,
0 A AT

Remarks

1) We have used the notation 7(p) for g € 1A" to mean 7, for z € Z* with image
i € 1AT. The shift of indices is only for typographical convenience.

2) As ¢ extends to a character of M by each n,, for w € Wy normalizes 1),
and it follows that A normalizes v if and only if so does (v, nw) - A

3) The subspace of A,, generated by the E,,(\) for A in 1A normalizing 1 is a subal-
gebra A, (1) of A,, The map A,,(¢) = Hz(v) sending E,, (N) to 7((va,nw) - A)
if (1, nw) - A € 1A and to 0 otherwise is an algebra homomorphism 0y, ;n0» and
for T' € A,, (1) we have

foT*(n)T = ngan (T) fT" ().

4) The theorem says nothing when (14, ,n,) - A € 1A1 and does not normalize 1. We
do not use this case.

IV.15. We treat first the case where w = 1. Recalling that f; = foT'(n,), we want
to compute foT(n,7)E,,(\). By we have T'(n, ) = Eo,(n,s), so we look at
Fo (1) Eo, (V).

Assume first that 14, - A belongs to 1A™, i.e. that A belongs to 1A,,, and that vy, - A
normalizes ¢. Then Lemma gives £(n,,s) + ¢(A\) = ¢(n,sA), hence E,, (n,s\) =
Eo, (nyt)Eo, (X). Since £(n,,s-A) = £(X) by (IV.13.1), we also obtain £(n,,s - \)+£(n,) =
l(ny, ) hence E,, (nys\) = Egp (Nyyr - AN)Ega (n,7), and finally

Eop (41 - N Eop (1) = Eop (1) oy (A) = T(1y,1) Eo, (A).

We can apply Proposition to n,s - A. Indeed, vy, - (N7 - A) = (Vwgnys) - A and
Vo Myt = V- Since by Eo (ngs - A) = T(ng,s - ), that gives foEy, (N, - A) =
T(Vw, - A) fo, 80 (v, - N f1 = foEop(nys - N)T'(nys) = frEo, (), which is the desired
formula when v, - A belongs to 1A™.

Fix a regular such A and let N € {A —1A,,. Then E,,(A\)E,,(\) =0 by (IV.12.2), and
f7Eo,(N)E,,(X) = 0, implying 7(vy, - A) f7E,,(X) = 0. Since 7(vy, - A) is invertible in
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Hz (), we get f1E,,(N) =0, which is the formula we want for \'. The theorem is proved
for w = 1.

IV.16. We prove the theorem by induction on ¢(w) (see [Olll, Section 5] for GL,,). Let
l(w) = £ > 1, and write w = w's with {(w') = £ —1 and s = sg for some § € J —
note that w'(8) € ®* since £(w's) = £(w') + 1. In particular n,, = nyns and T*(n,) =
T* (N )T*(ns).

We need to investigate T*(ns)E,, () for A € 1A. Suppose we can prove

(%) T ()T (ns) Eo, (A) = fiT™ (N ) Eo, (ns - )T (ns);

then the desired formula follows from the induction hypothesis. So we need to compare
E,,(ns-A\)T*(ns) and T*(ns)E,, (). By [Vig3l, Corollary 5.53] we have, for any orientation
o such that Ker g is a wall of the Weyl chamber corresponding to o:

(IV.16.1) If Bov(A\) =0, Es(ns-A)Eo(ns) = Ey(ns)Es(N\);
if Bowv(A\) >0, E,(ns-A\Ey(ns) = E,s(ns)Es(\);
if Bov(N) <0, Eo(ns-ANEss(ns) = Ey(ns)Eo(N).

We now apply the results in [Vig3, §5.4] to our case, where o = 0. (We need to point
out that since § € J, Ker(f) is a wall of the Weyl chamber corresponding to oy; also
[Vig3] uses the notation s for an element of 1 Wy, where we use n,, but we do have n? € Zj,
as required by [Vig3|, 5.35 and 5.36].) Since 5 € J, we have E,,(ng) = T(ny) and
E,,.s(ns) = T*(ns) by [Vig3, Example 5.32]. So we get:

(IV.16.2) If Bov(A) =0, E,, (ns AT (ns)=T(ns)E,,(N)
if Bov(A) >0, E, (ns-AN)T(ng)=T"(ns)E

0 (V)
if Bov(A) <0, Ey (ns AN)T*(ns)=T(ns)Eo,(N)

IV.17. Accordingly we distinguish the three cases.
Assume first 8 o v(\) = 0; then formula (x) of [V.16| follows from (IV.16.2) and the

following lemma.
Lemma Assume fov(\) =0. Then E,,(ns - X)cp, = cn,Eo, (N).

Proof We work within the Levi subgroup Mg of G. As o v(A) = 0, A normalizes
K N Mg Corollary). (Note that K N Mg is the parahoric subgroup of Mg attached
to our special point xg; A also normalizes the pro-p radical K(1) N Mg of K N Mg.)
Consequently, A acts via conjugation on Mg y; that action stabilizes Ug ) and Ugg{, SO
it also stabilizes the subgroup M ék they generate. Consequently, \ acts via conjugation
on Zps = Zp N Mék On the other hand, an element ¢t in Zj ; has length 0, implying
E,,(ns - NT(t) = E,,((ns - A\)t) and T(t)E,,(N) = E,,(tA). Now, computing in W,
(ns - MEA™L = (nsAng IATH (AEATL). As ¢ runs through Z 5, so does AtA™!; on the other
hand, by construction ns belongs to Mék SO nsx\ns_l/\_1 belongs to Zj . The result
follows. [J

IV.18. Assume now that Sor(\) < 0. Since w'(f) is positive, (wyw's)(8) = —wyw'(B) is
positive too. But ((wyw's)(5))ov, evaluated on vy, ,ny,y (X) gives (s(5)ov)(X) = —Bov(A) >
0 SO Yy, Ny (A) is not in AT, and consequently f;T™*(ny,)E,,(A) = 0 by the induction
hypothesis. But by (IV.16.2)

FaT™ ()T (n5) Eo ; (A) = Eo, (115 - )T (115)] = = £ T (), Eo y (A).-
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Since fiT*(ny)en, = —f7T*(ny) by Proposition, — f;T™(ny )cn, Eo, (A) is equal to
fiT*(ny )Eo, (), which is 0 by the above, and (x) is true in that case too.
The case where §ov(\) > 0 is dealt with similarly: in that case we find
FaT™ () [T (ns) Eo; (A) = Eo, (ns - AT ()] = [T (1) Eo s (15 - Men,

by (IV.16.2) and that is 0 by induction because 14, ,1,(A) is not in (A" (as (wyw(B)) ov
is positive on it). This completes the proof of [V.14] Theorem. [J

IV.19. We now reach the easier part of our change of weight (IV.19| Theorem (i)), which
is a consequence of the following theorem.

Theorem Assume that A € 1A normalizes 1. Then

, 1 . TN f Ae 1At and aov(N) <0,
F oy (A o, )T (Mg 1) = {() otherwise.
Taking z € Z*, normalizing 1, and with |a|(z) < 1, we get f'T = 7, f for some T in H,
which gives Theorem (i). To prove the theorem, we first prove:

Lemma ' = f;T*(nw,w w;) T (Nww,)-
Proof By [[V.7| Corollary, f" = fo Y. T(nw), which can also be written as f' =

wGWQWJ/

Jo > T(nwyvw,, ) For vin Wy, write wovwy = w’ (wyvwy)(wywy). We have
UEWJ/

L(wovw ) = L(wp) — L(vwy) = L(wy) — L(wy) + £(v) (since v € W),

and
w”) = L(w) — L(wy), Llwyvwy) = L), Lwwy) = wy) —(wy),
so L(wovw ) = £(w’) + L(wvwy) + €(wywy). Consequently,

Z T(nwova/) :T(an)( Z T(anUwJ))T(anle)

’UGWJ/ ’UEWJ/
and f, = fJ( Z T(anva))T(anwJ/)'
veW 5
Now J” = —wy(J') is a subset of J and w;Ww; = Wyn; the element wjw ywy is the

longest element of that group, hence

S Tlwu) = Y. Tm).

veW v<wjw pwy

By Proposition
0 )2 Tw) = £1T* (Nwjw ;)

v<wyw pw g
so f = FiT*(Nwyw )T (Mg 5, ). O

Proof of the theorem Put v = wjw . Note that since v € Wy, n, - A normalizes 1), see

V.14 Remark 2).
By the relations (IV.12.1) we get

qnv,)\nilEoJ(nv ’ )‘) = EOJ (nv)EOJ-v(Angl)'
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On the other hand E,,(ny) = T(ny) for w € Wy, so we get
T(ny)Eoyo(Mny ) = gy 31 Bo,y (1 - N).
We now compute

f/EOIU()‘n;l) = fiT" (anwJ/wJ)T(nU)EOJ‘U(An’ljl)
= qnv,)\nglfJT* (anwJ/’wJ)EOJ (nv ’ A)

ByTheorem we see that fJT*(TLwaJ,wJ)E ( )\) isOif A ¢ (AT, If aov () =0,
since v(a) € &7, L(Av™1) > L(A) — (v~ L) =L(v- \) bym, S0 ¢, Apo1 = 0.

Assume aov(\) < 0 and A € 1AT. Let 8 € <I>+ W1th v(B) € D Since v € Wy, 8
is a linear combination of roots in J (with non-negative integer coefﬁcients). Moreover
wy(B) € ®*, so the coefficient of o in A3 is positive. Then for B € @+ Nv~1(®~) we have
Bov(A) <aov(A) by the above, so o v(A) < 0, which implies by that ((Av~1!) =
Cv-A) =L t) and frT* (Nwyw w,) Boy (e A) = T(A) fT* (N yw ) by Theorem
(indeed, £(wjwywy) + £(v) = £(wy) implies Ny juw ,w; Mo = Mw;, SO Vi, M yw jywy Mo = 1).
The theorem follows on multiplying by 7 (n,), noting T (1w uw,w,)T" (M) = T*(nw,)
and oy = o0y -v. O

IV.20. We now turn to the other part of the change of weight theorem (IV.19| Theorem
(i), (iii)), which is harder. From now on, we put s = s,.

Lemma f/ = f - fJT*(ans) = fJT*(ans)T(ns)'

Proof By [[V.9| we have f = f]( > T(nw)) and frT™*(ny,s) = fJ< > Tw) so f —

wlwy wlwys
LiT* (N, s) = f7(O°T(nyw)) where the sum runs over w in Wy with w £ wys; but for
w € Wy, w < wys is equivalent to s < wjyw, so w f w s means that wjyw belongs to Wy.
Consequently, f — fJT*(ans) = fJ( %/ T(anwJ/w)) = fOT(an)( % T(anwJ/w))-
weW g weW g1
For w in Wy, L(wjwpw) = l(wy) — lwpw) =Lwy) — Lwy) + L(w) = L(wywy) + L(w)
$0 T(Nwyw,w) = T(Nwjw, )T (nw). On the other hand, L(w?) + L(wywy) = £(wo) —
Uwy) + L(wy) — Lwy) = Lw!") so T(nyr) = T(Ny1)T(Nwyw,, ). It follows that f —
FiT*(nwys) = foT (ngr)( > T(ny)) = f' by [IV.7] Corollary applied to J’. Moreover,
wGWJ/
as l(wys) + U(s) = L(wy) we have T*(ny,) = T (nw,s)T*(ns) and f = f;T*(ny,,) =
FiT* (N, s)(T(ng) + 1), as seen in above, so f' = f;T*(ny,s)T(ns). O

IV.21. Let now A € 1AT and put X = ng-\. It is the element fE,,.s(ns\’) that we want
to relate to f’. To get an expression for it, we again need to distinguish cases, according
to the integer r = —ay, o v(A) > 0 (recall that «, is the simple root in ®, corresponding
to o). We first deal with the “easy” relations in H.

Lemma (i) N (ns - X) =ns- (AN) € 1AT.
(i3) If r > 0, £(nsN) = LX) — 1 and T(ns)E,,.s(nsX) = T(n2)E,,(\).
(iii) If r > 2, then E,,(N)E,, (ns\') = 0.
(iv) If r = 1, then EOJS( sN) = E,, (ns\') and

Eoy(\)Eo;(nsX') = Eo, (X (ns - )T (ns).
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Proof (i) The first equality is clear. Let us prove that X (ns-\') is in 1A*T. We have
agov(N(ng-XN))=0. For € A, 8 # «a we compute

Baov(N(ns- X)) = Baov((ns: )\)(ng - A))
= (Ba + 5(Ba)) (¥(N)).

It is < 0 since B4, 8(8,) > 0 and A is in 1AT. So we get (i).

(ii) Assume 7 > 0. We need to work in Hyz, and then specialize to H. By (IV.13.2),
we get L(ng\') = £(N) — 1 because oo v(N) > 0. So the relation (IV.12.1) gives
Eo,.s(ns)Ey, (N) = qsE,,.s(ns\). We also have E,,(ns)E,,.s(ns) = qsE,,(n?), which
gives

qsEo, (”8)E01~5(ns)\/) = qsEo, (ng)EOJ (/\/)-

Cancelling g5, using E,,(n?) = T'(n?), and specializing to H we get (ii).

(iii) We proved £(ns\') = £(N') — 1 in (ii), so £(N) + £(ns\") = 26(N') — 1. On the other
hand N'ng\' = N (ng - N)ng and ag o v(N(ns - X)) =0 so £(Nns\) = (N (ns - X)) +1 by
(IV.13.3). But £(N (ns- X)) = (X)) +L(ns-N')—2r by (IV.13.1) so we get £(N) +L(ns\') —
((Nns\') = 2r —2. Thisis > 0 if » > 2, so in that case E,,(N)E,,(ns\") = 0 by the
relations (IV.12.1).

(iv) Assume now that r = 1. The first formula is given by [Vig3, Lemma 5.34]. In the
proof of (i) we have seen that £(\) + £(ns\') = £(A'ng)\') so we get E,,(N)E,, (ns\') =
E,,(NnsX'). On the other hand N'ns\' = XN (ns - A')ns and we have seen ¢(AN'ng)\) =
(N (ns- X))+ 1,80 E,,(NnsN) = E,, (N(ns - N))E,, (ns) = Eo, (N (ns - X))T(ns). O

IV.22. In the sequel it is convenient to put ¢ = f;T™*(ny,s) so that f' = ¢T(ns),
f=¢+ f'. From [[V.14 Theorem, we get the following: for u € 1A,

T(u)e if p € 1AT and normalizes 1,
(IV.22.1) Lo, (ns - 1) = {0 if o ¢ AT
Put E = E,,.s(ns\') with ' =ng- X as in — note that ) also normalizes 1.

By (ii) of Lemma, T(ns)E = T(n3)E,,(N), so ¢T(ns)E = 7(n2)pE,,(\) by
(IV.22.1). But 7(n?)p = ¢ because n?, which belongs to Z;, N M, ., acts trivially on ¢ by
Lemma. We deduce ¢T'(ns)E = ¢E,,(N) = 7(\)p, again by (IV.22.1).

We are now ready to prove a change of weight formula, in the special case where A € {A™
normalizes 1) and a, o v(X\) = —1. Indeed, by (IV.22.1) and (iv) of [[V.2]] Lemma we get
TN @E = pE, (N)E = @E,,(N(ns - X'))T(ns), hence 7(A\)pE = 7(AN)pT'(ns), using
again (IV.22.1). We deduce that o F = 7(X)pT (ns), as 7(X) is invertible in Hyz(v)).

Consequently, fE = oE + ¢T'(ns)E = 7(X)¢ + 7(XN)pT(ns) = 7(A)(f = f') + 7(X) f".
We have proved:

Proposition Let A € 1AT normalize 1, and assume ag o v(\) = —1. Then
TN f—fE=(t(\) —1(\)f.

Remark Note that 7(\)f belongs to ind% V because A € 1A, so we see that ind% V'
contains (7(\) — 7(X))(ind% V’). Note also that 7()\)f’ belongs to ind% V' for the same
reason; but 7(\)f’ does not necessarily belong to ind% V' because X is not in ;A%
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IV.23. We now seek a similar formula in the case where A € {A" normalizes ¥, r =
—agov(N) > 2, still with M =ng-Xand E = E,,.s(ns)\). By [Vig3l Proposition 5.48] we
have, in ‘Hz, an identity

r—1
(%) Eoy.s(nsX) = Eo,(nsXN) =Y q(k, N)gy (b, X) Eo, (u(k, X))
k=1

and by [Vig3, Proposition 5.49], in H only the terms for k = 1 and k = r — 1 may be
non-zero, so we get, in H,

E = EOJ (ns)\/) + ClEOJ (Ml)\/) + Cr—lEOJ (,ur—l)\/)v

where the last term disappears if r = 2. For the moment we need not know what ¢, ¢,_1
are in C[Zg], nor what py and p,—1 are in 1A except that they do not depend on A\ and
v(ug) = —kay by [Vigdl, formula (87)], so v(n;! - ux) = kay. From that it follows that
(ngt - p1)Ais in (AT, but not (n;t - py—1)X\ if 7 > 2. Also by [Vig3, 5.49], the g-terms
in the identity (%) above give 1 in C for k = 1 or k = r — 1. Indeed, we have to show
that £(\) — £(u”} /\’) =2 remarking that v(u_5, N') = v(N) — ay, that comes from the
length formula in As in we have goT(ns)E =7(\)ep. On the other hand

ok = (PEOJ (ns/\ ) pc1 By, (/il)\ )+ per1Ey, (/’I’T‘—l)\/)

where the last term disappears if r = 2.

But 7(\)p = @E,,(X) by (IV.22.1), so 7(X)pE,,(ns\') = ¢E,,(XN)E,,(ns\") which is
0 by [[V.21| Lemma (iii), and hence pE,,(ns\') = 0. For z € Z we have pE,,(ns - z) =
o = P(z7 Yy so we get pe1E,, (N) = Y1 (ngt - e1)pE,, (u1 '), with the obvious
notation for the conjugation action on C[Z], and the obvious extension of 1)~! from Zj
to C[Z;]. Similarly, if 7 > 3, wc,—1E,, (tr—1N) = (gt - erm1)@E,, (r—1 '), which is
0 by (IV.22.1) because (ng ! j,—1)A is not in 1A*. Thus for r > 2,

pE =97 (ngt - e1)pBo, ().

As ¢T'(ns)E = 7(\)¢ we obtain:
Proposition Let A € 1AT normalize v, and assume —ag o v(\) > 2. Then

FE=1(Ne+97 (ng' - c1)pEo, (1 X).

IV.24. We now apply the formulas given by Proposition and Proposition
to the case where A € A" normalizes 1, and deduce Theorem (ii) and (iii). We

first assume a4 o v(\) = —1. As we have seen in 2 Remark, X' normalizes ¢ and
(t(A) = (V) (ind% V') € indG V.
Proposition Let A € {AT normalize 1, and assume ag o v(\) = —1. Then v is trivial

on Z°N M., and 7(N) = 7(\) 7.

Proof We work within M,. The semisimple Bruhat-Tits building of M, is a tree, the
apartment corresponding to S is the line in V,q generated by «; the group Z acts on
that line via its quotient A, and A € A acts via translation by v with a, o V() = a,(v)
and as o, o v(A) = —1, A sends the (special) vertex xo to the adjacent (special) vertex
X] = X0 — %av in the apartment. We shall later prove the following claim.

For the claim the situation is the following:
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Assumption Assume that G has relative semisimple rank 1, and let x; be a vertex in
Vada (a line) adjacent to xg, and K the corresponding (special) parahoric subgroup of G.
Let Gy be the group over k attached to the parahoric subgroup Ki. (Note that both
K = Ky and K; contain Z° and Gy, Gy, contain Zj.)

Claim The subgroup of Zy generated by Zy N G}, and Zy, N G' ;. is the image of Z'na’
m .

We apply the claim to M,. Since A sends xg to xi, it conjugates Ky to Kj, and
conjugation by A induces an isomorphism of M, onto M, 1 j and of M&k onto M&lk As
1 is trivial on Z; N M(’Lk by hypothesis, and A stabilizes v, v is also trivial on Z; N Mc’v,l,k
and by the claim ¢ is trivial on Z° N M/. By the second line after formula (87) in
[Vigd], from aq o 1/()\) = —1 we get v(A71N) = aY; but M = ng - A by definition, so
AN = )\t ns/\n* Take z € Z with image A in 1A and 75 in K N M/, NN with image
ng in Ma k (the existence follows from [I11.7] m Lemma, for instance). Since M/, is normal
in M,, 2~ sz is in M, so A"ngAn ! is the image in 1A of an element of Z N M. It
follows that we can take A=) as the image in 1A of a, of Notation (which verifies
viay) = o, cf. Example 3), and then 7(\) = 7(\)7,. O

From the above proposition and [IV.22| Proposition, we get case (iii) of Theorem
when a, o v(A) = —1.

Corollary Let A € 1AT normalize ¢, and assume ag o v(\) = —1. Then ) is trivial on
Z9N M/, and T(\)(1 — 7,)ind% V' € ind$ V.

We note that Aa,, ¢ Z7 so in particular 7(\)(1 — 7,) ¢ Z¢-.
IV.25. We investigate the term 1 (n; ! - c1)pE,,(u1 ') in [[V.23| Proposition.

Proposition Let A\ € {AT normalize ¥, and assume —ag o v(\) > 2.
(i) The element ny' - uy € 1A is in the image on nM,.
(i3) If v is not trivial on Z° N MY, then 1~ ( Stee)=0.
(i) If v is trivial on Z° N M!,, then ¢~ (ng cl) —1 and 7((n;1 - p1)A) = T(A)7a.

Note that from (i) and [III.16| Proposition (i), ng ,ul normalizes ¢ if 9 is tr1v1al

on Z° N M!. In particular, in (iii) the element 7((n;! - u1)A) is defined. Using [I
Proposition and (IV.22.1) we get
1E = TN = 1) if ¢ is not trivial on Z% N M/,
TN = 1) (f — f) if 4 is trivial on 20N M.

This formula immediately yields Theorem (ii), (iii) when —ay, o v(A) > 2 (note that
this implies Aa, € 1A™):
Corollary Let A € 1A normalize ¥, and assume —a, o v(\) > 2.
(i) If ¢ is not trivial on Z° N M, then 7(\) ind$ V' C ind% V.
(ii) If v is trivial on Z° N M/, then
7(A\)(1 — 7o) ind% V' € ind% V.
To prove the proposition we need to know precisely what ¢; and p; are. We have to

distinguish cases: ag, o V(A) = 0Z for § = 1 or 2 [Vig3l Remark 5.3]. The generic case
is 0 = 1, which we tackle first. In that case choose A € A with a4 o v(As) = 1; then
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p1 = (ns - As)A; 1 and ¢; = (ns - Ag) - cn,. Recall that ¢, = |Z_kl| > zin C[Zg]. In
s ZEZkys
particular, ¥~ t(ngl-c1) = |Z;1 i > 7 (As-2). So we see that ¢~ !(ng ! c;) is non-zero
s ZEZ]C,S
if and only if 4 is trivial on )\SZ;C’S)\S_I, in which case it is equal to —1. Reasoning as in
IV.24 with A instead of A\ we see that ¥~ !(ng! - c;) # 0 if and only if ¢ is trivial on
Z%N M/, and the other assertions of the proposition are obtained as in [[V.24|as well (when

d = 1), noting that 7, is in the centre of Hz(1)).

IV.26. We continue the proof of Proposition. Now assume that § = 2. One situ-
ation where this may happen is when G has relative semisimple rank 1, or more generally
when the connected component of the relative Dynkin diagram of G containing « has rank
1. In that case, let 5 be the reflection in the affine Weyl group of M, corresponding to the
affine root o + 1; it corresponds to a vertex x; in the semisimple Bruhat-Tits building of
M,, (a tree) adjacent to the vertex xg. As in we let K1 be the parahoric subgroup of
M, corresponding to the vertex x; (which is special), and K;(1) its pro-p radical. Then
ZNK; =2° ZNK;y(1) = Z(1). The image of NNK; in K1/K1(1) = My is the group
N j; of k-points of the normalizer of Zj, in M, 1  and we can choose in N j a lift nz of §
which actually belongs to M, ; ; — note that § generates (N N K7) /Z9 which we identify,
via reduction with Nj ;/Zi. Then, inside ;W = N /Z(1), we can take (cf. [Vig3, Notation
5.37]) As = ngnz, 11 = A5 1, ¢1 = czn?, where cz = ﬁ GZZ: z, with Zj, 5 = Z’mec/v,Lkij
z k,s

We see that 971 (n;!-c1) # 0 if and only if 1 is trivial on Zg 3. As 1 is already trivial on
Z,s, We get by Claim that ¢ ~(n; ! ¢1) # 0 if and only if 4 is trivial on Z° N M,
in which case ¢ ~!(n;!-¢;) = —1. On the other hand, n ! - y; is in the image of Z N M/,
(by lifting ns and ns to N’ N M/, as in [[V.24). Moreover, by construction v(u1) = —a,
and as in we deduce that we can take the image of a, in 1A to be ns_l - p1 and that
7((ngt - 1)) = 7(\)7, if 9 is trivial on Z0 N M.

IV.27. The only other case when § = 2 may happen is when the connected component
of the Dynkin diagram of ®, containing « has type C,, n > 2, and « is a long root [Vig3,
Proposition 5.14]. Let then d, be the highest root in ®; lying in the same component as «,
and § be the reflection associated with &, + 1. Then (cf. [Vig3, Lemma 5.15 and Notation
5.37]) p—a, = swiw™! for some w € W* such that £(u_n,) = 2¢(w) + 2 and wiw ™! is
the reflection s’ associated with the affine root o, + 1 (whereas s is associated with «y).
Moreover ji_q, = s§' satisfies v(j_q,) = . In that case (cf. [Vigd]) ¢; = (w - cz)n? and
s = ng(w-nz), u1 = A\; ! with nz, cz defined similarly as before [Vig3), §4]; but conjugating
by w yields w - ¢z = ¢y and w - nz = ng where now cy,ny have a similar meaning, but in
the relative semisimple rank 1 group M,. The same reasoning as in [[V.20] then gives the
desired result.

IV.28. To finish the proof of Proposition we need only prove Claim. It is
convenient to deal first with the case where G = G!. Then W = W? is generated by the
involutions so (generating N°/Z%) and s; (generating (N N K1)/Z°). As sos1 acts as a
non-trivial translation on the apartment, sgs; has infinite order.

My principle those elements are defined in [Vig3] with respect to G, not My, but the above choices in
M, also work in G. The same remark applies in
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Identify NV/Z(1) with A} and similarly (NN K;)/Z(1) with the group N j of k-points
of the normalizer of Z; in Gy . Choose a lifting ng of so in N NG} C 1W and a lifting
ny of 81 in J\/Lk N G’L,C C 1W. An element w of W has a unique reduced expression
w = o1 -+ -0 With o; = sg or s1 and we put n,, = x1---xp with z; = ng if o5 = sg, ; = 1
if 0; = s1. We let X be the subgroup of Z, generated by Z; N G}, and Z; N G’Lk, and put
Y ={npzr|weWzecX}

Lemma 1 X and Y are normal subgroups of 1W.

Proof Let z € Zj; then nalzcng:n_l belongs to Zj; but Zj normalizes G, so nalmnom_l

belongs to Z N GY,. Similarly nl_la:m:c_l belongs to Zx N G’Lk. In particular, ng and
n1 normalize X. Since Z; also normalizes X, so W itself normalizes X. As n% and n%
belong to X, we deduce that for w, w’ € W nyny, € nyw X and n;l €n,-1X,s0Y is
indeed a normal subgroup of {W. [

Now let H = I'Y I with the usual abuse of notation.
Lemma 2 H is a normal subgroup of G and (HNZ%)/Z(1) = X

Proof We first prove that H is a subgroup of G. By Lemma 1, H is closed under inverses.
Working in Hz, it is enough to show that for y, ¢’ in Y, the product T(y)T'(y') in Hz is
a linear combination of T'(y") for y” in Y. But that is given by the relations in Hy: the
braid relations and the two quadratic relations T'(n;)? = ¢;T(n?) + ¢;T(n;) where ¢; € Z
and ¢; € Z[Z N G;k] for i =0, 1.

As Z9 normalizes I, and Zj, normalizes Y, ZY normalizes H. The normalizer of H
contains ng, n1 (which belong to H), Z° and I, so it is G itself. If an element x of H in
aclass Iyl, y € Y, is in Z° then y has to belong to Zj, so by the very definition of Y, y
belongs to X and x itself has image y in Z°/Z(1) = Z;. That gives the last assertion of
the lemma. [

Clearly H is not central in G, so H = G because the only non-central normal subgroup
of G is G itself Proposition). But then H N Z°% = GNZ° = Z° so X = Zj, which
gives the claim for G = G,

Let us now prove Claim in the general case. We show first that the claim is
equivalent to

(%) Z)(Z°NG) = z(1)(Z2°n(U°,US,), Z2° N (U N K1, Usp N K1)).

It suffices to show that the image of Z% N (U°,UQ)) in Zj equals Z, N G}, (and similarly
for the other term). It is clear that an arbitrary element of Z; N G} lifts to an element of
(Y, ng> N Z°K(1). Using the Iwahori decomposition of K (1) we can modify the
lift so that it is contained in Z° N (U°,UY).

The only non-trivial part of the equality () is the inclusion C. The inclusion is true
for G, and we deduce it for G by applying the natural homomorphism ¢ : G* — G, using
that (Z%)0 = ,=1(Z°) (IIL.19| Proposition) and that Z(1) is the pro-p Sylow of Z°. This
completes the proof of Claim and hence of Theorem. [

V. UNIVERSAL MODULES

V.1. In this chapter our goal is, for an irreducible representation V of K, to study the
“universal” representation ind% V' as a module over the centre Z¢(V) of the Hecke algebra
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Ha(V). In fact that structure is difficult to elucidate, so we consider various algebra
homomorphisms y : Z¢(V) — A and the corresponding A-module A ®, ind% V. As an
application, for a character x : Z5(V) — C, we prove Theorem 6 of the introduction
— used in Chapter [[I]] at the end of our classification — which gives a nice filtration of
C®y ind[G( V' as a representation of G. In this chapter we fix an irreducible representation
V of K and let (¢, A(V)) be its parameter as defined in |[I1.9]

A) Freeness of the supersingular quotient of indg \%4

V.2. Until [VI1] we fix a parabolic subgroup P = MN of G containing B. Recall from
[11.4| the subgroup ZﬁM of Z consisting of those z € Z with |B|(z) = 1 for all 5 € Ayy.

We write Z+M for the set of 2 € Z with |B](z) < 1 for B € Ajps. Recall from that
Z7(Vyo) is spanned by the 7, for z € Zy, and that the natural image of Zp;(Vyo) in
Z7(Vipo) (via SM) is spanned by the 7, for z € ZTM N Z,, — we identify Zp (Vo) with
that image.

Notation We let Ry be the quotient of Z3;(Vyo) by the ideal of elements supported on
(ZtMNZy) - Zx,,-

As Zy (Vo) is viewed as a subset of Zz(V0), we emphasize that the supports above
are subsets of Z. Note that the elements of Z3;(Vyo) supported on Z iM form a subalgebra
which maps isomorphically onto Rj;.

Our first main result in this chapter is:

Theorem Let P = MN be a parabolic subgroup of G containing B. Then Ry ®z,v)
indIG<V is free over Ry, where the tensor product is via the composite map Zg(V) —
ZM(VNO) — RM

We call Ry @z, vy ind% V the supersingular quotient of ind% V' (cf. Corollary).

The proof of that theorem is rather long (V.3 to . We first treat the case where
P = G (V.3| Proposition). The proof then proceeds by comparing with situations with a
more regular weight (i.e. smaller A(V')). Using the change of weight results of Chapter
we reduce the proof in general to a special case where, in particular, Ajs is orthogonal to

A — Ajps (V.7). Finally, we use a filtration argument (V.8[to [V.11)).
V.3. Proposition B¢ ®@z,(v) indf( V is free over Rg.

The proof in [V.4 requires several lemmas. We use again the Kottwitz homomorphism
weg and the map vg ([11.16)).

Lemma 1 Let z, z1, 20 in Z. If zz1290 € K21 K29K, then wg(z) = 0.

Proof The Kottwitz homomorphism w¢g is a homomorphism of G into a commutative
group; the result follows from wg(K) = 0. O

Lemma 2 Let z1 € Z normalizing v, and f € Hg(V) with support in Kz K. Then
SS(f) € Hz(Vyo) has support in (Z N Kerwg)z1.

Proof That is immediate from (III.3.2), once we note that wg is trivial on U. O

Lemma 3 Let 21 € Z1 normalizing v, and 2z € Z. If f € ind% V' has support in Kz K,
then 7., * f has support in K(Z NKerwg)zi122K.
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Proof By definition 7., as an element of Hz(V0), has support Z%z;. From Lemma 2,
T2, as an element of Hg(V'), has support in K(Z N Kerwg)z1 K. The result then follows
from the convolution formula in Hg (V) and Lemma 1. O

Lemma 4 Zi- NKerwg = 2°.

Proof Let z € Kerwg. Then vg(z) = 0. If moreover z € Zi, then vz(z) = 0 for the
analogous map vz, cf. [HVI 6.3 Remark 1]; from [HVI, 6.2 Lemmal, (i) and (iii), it
follows that z € ZY. Conversely Z° ¢ Z i N Ker wg is clear. O

V.4. We prove Proposition. We decompose ind$ V as @I(z), z € Z/(Z NKerwg),
where I(z) consists of the functions in ind% V with support in Kz(Z N Kerwg)K. For z
in Z* normalizing v, we have 7, * I(x) C I(2x) by E Lemma 3, with equality if z € Zx
since then 7, has inverse 7,-1. For z € Z/(Z N Kerwg), let I (z) be the sum of the
subspaces 7, * I(y) of I(z), where z € ZT N Zy, 2 ¢ Zx,y € Z/(Z NKerwg) and zy = x
in Z/(Z N Kerwg). By definition Rg ®z,(v) ind% V is the quotient of ind% V obtained
by killing all the subspaces I (z); thus it appears as ®,ez/(znKerwe) (I (x)/IT(z)). Let
z € Zx N Zy; then 7, x I(x) = I(2x), 7o % [T (z) = I (z2) for z € Z/(Z N Kerwg),
hence the corresponding element in R, still written 7, sends I(x)/I"(x) isomorphically
onto I(zx)/I*(2z). As Zx NKerwg = Z° by Lemma 4, the image of Zx N Z, in
Z/(Z N Kerwg) acts by multiplication without fixed points on Z/(Z N Ker wg); choosing
a set of representatives (2 for the orbits, we deduce that Rg ®z, v ind% V is isomorphic
to the free Rg-module Rg @c (@ I(x)/IT(z)). O
€N

For further use, we state a result proved in a similar manner.

Lemma Let z € ZT N Zy.
i) If va(z 0, 7, — 1 acts injectively on ind% V; if moreover z € Zx then 1, — 1 is
K A
not a divisor of 0 in Rg.
(i1) Let T € Za(V); if va(z) is linearly independent from vg(Supp(T)), then (1, —
Dind$VnTid$V = (r, - )Tind% V.

Remark The condition vg(z) = 0 is equivalent to vz(z) ERAY C X, (S) @ R.

Proof (i) Let f € ind% V, and write as above f =3 fo, x € Z/(Z NKerwg), f. € I(z).
Then for z € ZY N Zy, T, % f =Y, o * fp with 7, % f; € I(zx). The equality 7, * f = f
amounts to 7, * f = f., for all z € Z/(Z NKerwg). If vg(z) # 0 then the image of z in
Z/(ZNKer wg) has infinite order; since f,, = 0 for all but a finite number of z’s, 7, % f = f
implies f = 0, and 7, — 1 acts injectively on ind?{ V'; in particular, as Z5(V) acts faithfully
on ind% V, 7, — 1 is not a divisor of 0 in Zg (V). If moreover z € Zx then 7, — 1 is not a
divisor of 0 in the subalgebra of Z¢ (V') which maps isomorphically onto Rg.

(ii) Let I" be the subgroup of Z generated by the elements £ with vg (&) in ve(Supp T).
For y € Z/T, let J(y) be the space of functions in ind% V' with support in KyI'K’; then
TJ(y) € J(y) and for z € Z+ N Zy, 7. % J(y) C J(zy). Let f, f in ind%V with
(r.—1)f = f'. We have ind% V = ©®yez/rd (y) and decomposing accordingly f =} f, and
fr=22f, weget 7. x f, = fo + fl, fory € Z/T. Let f' € T'ind% V; then fy € Tind% V
for all y € Z/T so if f, belongs to Tind?{ V, then so do 7, * f, and f.,. The hypothesis
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on z in (ii) implies that its image in Z/T" has infinite order, so f,-r, is 0 for large r. So
we get, using descending induction on r, that f, does indeed belong to Tind% V. Q4

V.5. We now turn to the general case of Theorem. For each parabolic subgroup
Py = M;N; of G containing P, we let Vp, be the irreducible representation of K with
parameter (¢, Ap, N A(V)) — for P, = G we have Vg = V; we choose a basis vector for
(VP1)U0-

For such a P; consider the sequence of canonical (injective) intertwiners:
(V.5.1)  ind§ Vp, —Indf, indf‘]@) (V) wo = IndB indjfo (Vp, ) yo — Indf indZo (Vi ) o

As (Vp,) NO has the same parameter as VN?, there is a unique isomorphism between them
that is compatible with the choice of basis vectors in (Vp,)yo and Vio; it induces an

isomorphism of (Vp,)yo onto Vyo. Using those isomorphisms we identify the sequence
(V.5.1) with

(V.5.2) ind% Vp, — Ind§, ind% Vo — Ind® indj7o Viyo — Indf indZ, .
The sequence (V.5.1) is equivariant for the sequence of Hecke algebras
(V.5.3) Ha(Ve) = Han (Ve vo) = Har (Ve ) vo) = Hz (Ve o)

)
given by the (injective) Satake homomorphisms. The choice of basis vectors gives an iso-
morphism Hz((Vp,)po) ~ Hz(¥), actually independent of that choice, and inside H (1))
the Hecke algebras in (V.5.3) do not depend on P;; accordingly we write He, Har,, Har,
‘H 7, and similarly for the centres. The sequence (V.5.2) is then equivariant for the sequence
of algebras Hg — Har, = Hy — Hz.

As in Chapter [[V| we identify the spaces in (V.5.2) with their images in Ind§ indgo (R
and similarly Hq, Har,, Har with their images in Hz.

Notation For P; as above containing P, we let mp, be the Z)/[G]-submodule Z); ®z,
ind% Vp, of Ind% ind}%, Viyo (which is then 7p).

Remark By [[I1.14 Theorem, 7p, is also Zy ®z,,, Indg1 ind%%J Vivo, which we also see as
1

Indg1 (Zm ®z,, ind%iJ Vo), cf. [HV2] Corollary 1.3.

For further use, let us recall some useful facts. Let X be a locally profinite space with a
countable basis. Then the functor X — C°(X, A) is exact on Z-modules A, C°(X,Z) is
free and C°(X,Z)®A — C°(X, A) is an isomorphism; if A is a free module over some ring
R, then so is C2°(X, A) and if R — R’ is a ring homomorphism, then R’ ®p C°(X, A) —
CX(X,R ®gr A) is an isomorphism of R’-modules. If Y is an open subset of X, we have
an exact sequence 0 — C°(Y,Z) — C*(X,Z) - CX(X —Y,Z) — 0 of free Z-modules.
We are particularly interested in the case X = J\H where H is a locally profinite second
countable group, and J a closed subgroup of H. If A is a smooth R[.J]-module for some
ring R, choosing a continuous section of H — J\H gives an isomorphism of R-modules
C®(J\H,A) ~ ind A, so we deduce that ind¥ is an exact functor on smooth R[J]-
modules, that ind A is free over R if A is, and that R’ ®g ind A — ind (R’ @ A) is
an isomorphism of R'[H]-modules for any ring homomorphism R — R'.
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V.6. We gather consequences of the change of weight results of Chapter [[V]

Proposition Let P, Py be parabolic subgroups of G containing P, with Ap, = Ap, U{a}.
(i) mp, C mp, with equality if o ¢ A(V) or if 1 is not trivial on Z°N MY,
(ii) If o € A(V) and 1 is trivial on Z° N M, then (1, — 1)7p, C 7p, (with T, as in
Notation). If moreover « is not orthogonal to Ay, the inclusion mp, C wp, induces
an isomorphism Ry ®z,, Tp, — Ry ®zp TP, -

Proof First note that if « ¢ A(V) then Vp, and Vp, are isomorphic, so mp, = mp, is
immediate. Assume o € A(V). We apply Theorem to Vp, (in lieu of V') and Vp, (in
lieu of V’). Choose z € Z, with |a|(z) < 1 and |5|(2) = 0 for 8 € A, B # «; thus 7, is
an invertible element of Zj;. By Theorem (i), we have the inclusion 7, ind% Vp, C
ind% Vp, of subspaces of Ind%(ind%, ¢). As 7, is invertible in Zy;, we get mp, C 7p,. If
t is not trivial on Z° N M! then Theorem (i) gives 7, ind% Vp, C ind% Vp, hence
7p, = mp,. If 1 is trivial on Z°NM,, Theorem (ii) gives 7,(1—7,) ind% Vp, C ind% Vp,
so (1o — 1)mp, C mp,. Now 7o = T4, for aq € Zy with v(a,) = ra” with some positive
rational number r Proposition (i), Example). If a is not orthogonal to Ay,
we have |(|(an) < 1 for some 5 € Ap; but 7, is sent to 0 in Rjps. This implies the last
assertion. [

V.7. We deduce a reduction for the proof of [V.2] Theorem. Let Ay = Ay U{a € A(V),
alAy, w(Z° N M!) =1} and let P, = M;N; be the corresponding parabolic subgroup
of G. By Proposition, the inclusion 7 C mp, induces an isomorphism Ry ®z,, 7 ~
Ry ®z,, mp,. But Ry ®z,, mp, is the same as Indgl(RM <-4 imd%l0 VN{)) V.5 Remark);
1

if the Rp/-module inside the induction is free, then so is Ry ®z,, mp, (V.5 Remark). As
a consequence, it is enough to prove when A; = A.

Assumption (until [V.11)): A = Ay UA(V), (A — Ap) LAy and 9(Z2° N ML) = 1 for
ae A — Ay

Notation We put ¢ = ind}, Vyo, so mp = Ind% 0. We also put W (M) = {w € Wy,
w™l(Apr) € @T}. The above assumption allows us to define 7, as in [[I1.16| Notation.

ByProposition, we know that Ry ®z,, 0 is free over Rys, and sois Ry ®z,, mp
Remark). We want to deduce the same for Ry ®z,, mg. For that we filter mp according
to the double cosets PwB for w € W (M) (recall that G is the disjoint union of the double
cosets PwB, w € W (M)).

We consider upper sets in W (M), i.e. subsets A such that v € A, v' € W(M) and v' > v
(in the Bruhat order) imply v" € A. For an upper set A, PAB = J, 4 PvB is open in G
and we let mp 4 be the subspace of functions in 7p = Ind]G; o with support in PAB; it is
a Zps-submodule of 7p.

Let A be non-empty upper set in W (M) and choose a minimal element w in A. Put
A" = A—{w}; then A’ is an upper set in W (M) and we have the submodule mp 4/ of mp 4.

Let A, A’ be the (open) images of PAB, PA'B in P\G. We have an exact sequence of
free Z-modules

0— CX(A,Z) — CX(A,Z) — CX(A—- A JZ) — 0 (cf. Remark).

Choosing a continuous section of G — P\G, and noting that A— A’ is the image of PwB in
P\G, we get from Remark that evaluating functions on PwB gives an isomorphism of
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mp.a/Tp A with the Zp-module of locally constant functions f : PwB — o with f(pg) =
pf(g) for p € P, g € PwB, and with compact support in P\ PwB; equivalently evaluating
on wU gives an isomorphism with the compactly induced representation indg,l Pwnt O

Lemma The inclusion mp s — mp induces an isomorphism of Ry ®z,, mpa onto the
subspace of Ry ®z,, mp = Indg(RM ®z,, 0) consisting of functions with support in PAB.
The sequence

0 — Ry ®z,, mpar — Ry ®z,, TpA — Ry @z, (tpa/mpa) — 0

is exact, and all three terms are free over Rj;.

Proof Choosing a continuous section of G — P\G, mp4 appears as C*(A,Z) ® o,
Ry ®z,, mp.a as CF(A, Z) ® (Rys ®ZMF)a so the result follows from Remark via the
exact sequence 0 — CX (A", Z) — CX(A,Z) — C*(A-A'Z) — 0. O

V.8. Let A, w, A’ be as in and let @ be a parabolic subgroup of G containing P.
Then 7o C mp and we let 79 4 = mpa N g, similarly for A’, so we get an inclusion of
Zy-modules

TQ,A/TQ.A" < TPA/TPA

Notation Set cqw = aeayw-1(a)<0(Ta — 1) € Zu.

Remarks 1) For a € A, w™!(a) < 0 is equivalent to s,w < w and it implies a ¢ Ay
since w € W(M). In particular for such an o we have vy (aq) # 0 by Remark.

2) By Lemma (i) (applied to M) cg., acts injectively on o hence on 7pa/mp ar;
moreover, cq,,, does not divide 0 in Rj;.

Proposition TFQ7A/7TQ7A/ = CQ,w (7Tp’A/7Tp7A/) inside 7Tp’A/7Tp7A/.
Before we give the proof, we derive consequences, in particular [V.2] Theorem.

Corollary 1 Ry ®z,, (7Q,.a/7g.a1) = Ry ®z,, (7pa/mp.ar) is injective, and Ry @z,
(mQ,a/m™Q,Ar) is free over Ryy.

Proof By the proposition, multiplication by cg , induces maps
TpA/TPA = TQA/TQA < TPA/TPA
Tensoring with Rp; over Z)s gives
Ry @z, (mpa/Tpar) = Ry ®z,, (7Q.a/mQ,a1) — Ry @z, (Tpa/Tp.ar)

whose composite is multiplication by cg .. By the above remark 2) cg ,, does not divide 0
in Ryy; since Ry ®z,, (mpa/mp.ar) is free over Ry by Lemma, multiplication by cq .
is injective on it so we get an isomorphism Ry ®z,, (7pa/mpa) =~ Ry ®@z,, (TQ,A/TQ.A7),
thus proving Corollary 1. [J

Corollary 2 Ry ®z,, 7g,A = Ry ®z,, Tpa is injective (in particular, for A =W (M),
Ry ®z,, mg = Ry ®z,, Tp is injective).

Proof By induction on #A4, Ry ®z,, 7q o — Ry ®z,, mp ar is injective. By [V.7] Lemma,
Ry ®z,, mpar — Ry ®z,, Tp,a is injective and by Corollary 1, Ry ®z,, (7g,.a/7Q,a7) —
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Ry ®z,, (mpa/mp ar) is injective too. The result follows from the snake lemma applied
to the commutative diagram (with exact rows)

Ry ®z,, Qo — Ry ®z,mQa — Ry ®z, (tga/mga) — 0
1 {

0 - Ry®z,mpa — Ry®z,mpa — Ruy®sz, (7TP7A/7rp,A/) — 0 0O

Corollary 3 Ry ®z,, T a4 — Ry ®z,,7Q,a and Ry @z, Q.4 — Ry ®z,, TQ are injec-
tive, and (Ry @z, mQ,4)/ (Rym @z, T A1) = Ry @z, (TQ,4/7Q,A7) s an isomorphism.
Proof In the left hand square of the previous diagram, the two vertical maps and the
bottom horizontal one are injective, hence so is the top horizontal one, giving the first
assertion, which immediately implies the last one. The second one follows from the first
by descending induction on #A. [

Now Theorem follows from the corollaries. Indeed, by Corollary 1 and Corollary 3,
Ry ®z,, mq is a successive extension of free modules. Therefore Ry ®z,, 7 is free.

V.9. The proof of Proposition will involve an induction argument on dim G. For
this, a further corollary is necessary.

Corollary 4 Let z € ZtMNZ,, and assume vp(2) # 0. Then moN(r,—1)7p = (1,—1)70.
The proof is given after a lemma. Let A, w, A’ be as in and use the notation mp 4,

Q.4 of V7]

Lemma (7, — 1)tpa = (7, — 1)mp N 7p4.

Proof By descending induction on # A, the case A = W (M) being trivial. ByLemma
(i), 7» — 1 acts injectively on o, hence also on mp 4/mp 4s which is a direct sum of copies
of o (V.5|Remark). By the snake lemma mp 4/ /(7, —1)7p 4/ injects into mp o /(7. — 1)7p A
ie (r, —1)mpaNmpa = (1, — 1)wpar. The assertion (17, — 1)mpa = (7. — 1)mp N7pA
then implies the similar assertion for A’. OJ

Proof of Corollary 4 Applying Lemma (ii) to T' = ¢gw € Zm whose support is in
Ker vy we get

(12 =)o Necguwo = (12 — 1)eguwo,
hence
(72 = D(mpa/mpar) NeQu(mpa/mpar) = (T: — 1equ(mpa/mpar).
But bymProposition cQu(mpA/TpAr) = TQ,A/TQ,Ar, 50 We obtain (7, —1)Tp ANTQ A C
(1. —1)mQ,A +mp.ar. By the lemma we get (7, —1)mpNmga C [(72 —1)mgN7pa]l +7par
As (1, — 1)mp N mg contains (7, — 1)mg, both give the same contribution to 7pa/7p 4.
Their equality now follows by induction on #A. [J

V.10. We now proceed to the proof of Proposition, keeping its notation. We first
deal with the (easier) statement that mg 4 /7 a4 contains cqu(mp.a/mp.ar).

Notation Let A, = {a € A, w™!(a) > 0} and let P, = M,N,, be the corresponding
parabolic subgroup of Gj it contains P, and w is in W (M,,).

Lemma Let A, w, A’ be as z’n Then 7p, A4 — Tpa/mp.a is surjective.
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Assume that lemma for a moment. Since mgnp, 4 contains wp, 4, the map mgnp, a4 —

Tp.A/Tp . is surjective as well. But by Proposition mg contains cg . Tgnp, , SO the im-
age of mg 4 in mp a/Tp A contains cq . (mpa/mp ar), i.e. the quotient mg 4/mg s contains
cQu(Tpa/mTpar).
Proof Let A>,, = {v € W(M), v > w} and As,, = {v € W(M),v > w}. We use the
abbreviations mp >y = TP A.,, TP>w = TPAs,- LThen mpg D Tp>y and Tp a7 D Tpsw;
MOreover mp a1 N Tp >y = 7r;3,>w, SO Tp>w/Tp>yw injects into mp 4 /mp 4. But evaluation
on PwB identifies both quotients with the same space of functions, so the injection is an
isomorphism. Hence it is enough to prove the lemma for A = A>,,.

Sublemma (i) w !PwNU =wUwnU=w"'P,wnU.
(ZZ) PAZwB = I—'vGW(Mw),vaPwUB-
Proof (i) The first equality comes from w € W (M), the second one from w € W (M,,).
(ii) By [Abel Lemma 4.20], w € W (M) implies WyrA>, = {v € Wp,v > w} and
similarly w € W (M,,) implies Wi, {v € W(My),v > w} = {v € Wp,v > w}. The result
follows on taking B-double cosets. [J

To prove the lemma (for A = A>,,) we need to consider closely the inclusion 7p, — 7p.
Both are parabolically induced from P,,, and the inclusion comes from the injective
map ¢ : Zy ®z,, ind%}j Vg — Ind]\}fﬁMw o obtained from the canonical intertwiner

(IT1.13.1), so mp, is simply the subspace Ind]G;w (Im®) of mp = Indgw (IndjgﬁMw o). See-
ing mp as induced from P, we let W};’zw be the subspace of functions with support in
UUGW(Mw)’Qw P,vB, and similarly 7T33’>w. An element f of 7p = Ind% o is seen as the
function f’ in Ind]Ggw(Ind]]\fﬁMw o) given by f'(g) : m — f(mg) for g € G, m € M,,.
Hence by (ii) of the sublemma 7mp>, = 7ps,, and Tp>y O Tp,. By (i) of the sub-
lemma (and Remark), choosing a continuous section of U — w™Uw N U\U gives
a Zy-linear isomorphism ¢ of 5., /7, With C*(w™'Uw NU\U,Z) ® Ind]\gﬁMw o, a
similar isomorphism of Fp,zw/ﬂ']::;w with C°(w™Uw NU\U,Z) ® o, and the quotient
map 7733’>w/7r§37>w — Tp>y/Tp>w corresponds to evaluation at 1 : Ind%;”Mw o — o. But
(mp, N 7r_}37>w)/(7rpw N Tp>,) is sent by ¢ to CP(w tUwNU\U,Z) ® Im ® so to get the
surjectivity of mp,, ﬂwjp’Zw — Tp>w /TPy it suffices to see that evaluationat 1 : Im® — o
Is surjective. But for 2 € Viyo the function in ind%ﬁ Vo with support MY and value z at
1, is sent in IndgﬁMw o to a function with value at 1 the function in o with support M°
and value at 1 the projection of x in Vyo; as those last functions, for varying z, generate
o as a representation of M, and Im ® — ¢ is M-equivariant, it is surjective. [

V.11. We turn to the inclusion 79 4/mg ar C cQu(mpa/7p.ar) in Proposition. We
need auxiliary lemmas, where o € A — Ay is fixed; we let P* = M*N® be the parabolic
subgroup corresponding to Ay; U {a} and we put 6 = o/(74 — 1)o. Note that Hypothesis
(H) of [[IL.15| holds with the map ¢ : Viyo — o — . We also note that o7, = Tap = ¢.

Lemma 1 ¢ extends to P%, trivially on N.

Proof By it suffices to prove that & is trivial on Z N M/. Since « is orthogonal to
Ay and 9 is trivial on Z9 N M/, by assumption, that comes from the fact that 7, acts

trivially on & (I11.17)). OJ
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We write ¢G for the extension of & to P®. Inside of mp/(7o — 1)mp ~ Ind% & we have
the subspace Ind$. €, cf. [[11.22| Lemma 2.

Lemma 2 The image of mpa — mp — wp/(To — 1)7p is contained in Indga €o.

Proof Since mpa — Ind% 6 is Zy[Gl-equivariant and wpa is generated as a Zy/[G]-
module by Vpa it is enough to prove that the inclusion of Hompg (Vpa,Ind%. ¢5) into
Homp (Vpa,Ind$ &) is an isomorphism. By Frobenius reciprocity, this means that

Hom 00 ((Vpa ) yao, €5) < Hom pjao (Vpa) oo, IndM5, 0 7)

is an isomorphism. The quotient of Ind¥<,,. & by ¢ is the representation ¢G ® St} .
and it is enough to show that (Vpa)pyaeo is not a weight of that representation. But the
parameter for (Vpa)pyao is (¢, (A U {a}) NA(V)) and o € A(V) whereas by the
weights of °G ® St4 ;e = (PN M®, 5, PN M®) have parameters (', I) where o ¢ I. [J

Lemma 3 Let P, = M{Ny and P» = M>Nsy be parabolic subgroups of G containing P,
and assume Ap, = Ap, U{a}. Let A, w, A’ be as z'n and assume that w=1(8) < 0
for all B € Ap, — Apr. Then

TP, A C (Ta — 1)7TP1,A +7rP,A"

Proof Let f € mp, 4 and let f be its image in Indg G. Asp, C mpa, we get f € IndIGga ‘G
by Lemma 2. If f does not vanish on PwB, its support, being P® invariant, contains
Ps,wB. But w™(a) < 0 means s,w < w and w being minimal in A, that contradicts
f € mpa. Hence f vanishes on PwB and there exist fi € 7p, fo € mpAr With f =
(Ta — 1) f1 + f2. The point is to prove that we can take fi in mp, 4. View mp, as Indg1 o1

witho1 = Zy ® 2, ind%i) VN{) and wp as Ind]Gg1 Ind%}] My O the inclusion mp, < 7p being

induced by the natural intertwiner indﬂj\% VN? — Ind%ﬁ M, O

Sublemma For v € A’ we have Py wB N PvB = 0.

Proof Indeed, if PywB N PvB # () there exists v’ in W)y, with v'w = v. Since A — Ay is
orthogonal to Ay, Wy, is the direct product of W), and the subgroup W; generated by
the sg for # € Ap, — Apr. For such a § we have sgw < w and it follows (using [Deo] as
in Lemma 2), by induction on length, that vyw < w for any v, € Wi. Writing v as
v, “v1 with v1 € Wi and v € Wy we get viw = vav. But vov > v and vyw <w sov < w
contrary to the assumption v € A’. O

Let us pursue the proof of Lemma 3.

Since fp € mp 4, it follows from the sublemma that, seen as an element of IndIGD o, it
vanishes on PywB; but then, seen as an element of Indlc_i:1 Ind%/[rl1 A, O 1t also vanishes on
PiwB. So for any x € PiwB, f(z) = (7 — 1) fi(z) in Ind]\g%Ml o. Now dim P; < dim G
SO roposition and all its corollaries are true for M. As vy (aq) # 0 we conclude
from Corollary 4 that there exists y € o1 with (7 — 1) fi(z) = (7o — 1)y. But 7, — 1
does not kill any element of Ind%% M, O by E Lemma (i), so fi(xz) = y belongs to o;.
We can choose f] in IndIGJ1 o1 Nmp, 4 with the same restriction as f1 on PiwB (use
Remark). Put f}, = f — (7o — 1)f] = (1o — 1)(f1 — f1) + f2. Then f; — f{ vanishes on
PiwB, fo vanishes on PwB so fj belongs to mp 4 and f = (17, — 1) f{ + f5 belongs to
(Ta — 1)7Tp17,4 +7p A O
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We now finish the proof of Proposition. Let R be the parabolic subgroup between
P and Q with Ag — Ay = {a € Ag,w 1 (a) < 0}. Applying Lemma 3 successively we
get TR A C CRwTP,A + Tp 4, hence the result since mg 4 C mg 4 and cgrw = cQuw. U

We can get more out of that:
Lemma 4 Let A, w, A’ be as in Then mg A C cQuwTp, A + TQ, A

Proof Lemma gives mpg C mp, 4 + Tp s so from Proposition we get mg 4 C
CQuwTP,,A + Tpa. But mp, C mgnp, and cgwmonp, C mQ by Proposition so
CQuwTP,,A C mQ,4 and the result follows. [J

B) Filtration theorem for x ®z, ind% V

V.12. We now turn to the filtration theorem . For that, as before, an irreducible
representation V of K is fixed, with parameter (¢, A(V')), but we also fix a character x of
Za = 2c(V). We let P = MN be the parabolic subgroup with Ap = Ag(x), so P is the
smallest parabolic subgroup of G containing B such that x extends to a character — still
written x — of Zy; = Zp(Vyo), and that character further factors through Zy; — Rjy.

Notation For a Zj;-module W, we put WX = x ®z,, W.

Recall that for each parabolic subgroup @ of G' containing P, Vi denotes the irreducible
representation of K of parameter (¢, Ag N A(V)); we make the same identifications as
in In particular we get a Zj[G]-submodule mg of 7p = Indg o — we keep writing
o = ind%o Vyo. Our main interest is in 7%, but its analysis goes through the 775, in
particular 5.

As oX satisfies property (H) of the maximal parabolic subgroup of G to which
oX extends, trivially on N, has associated set of roots Ajps U Opax where O,y is the set
of @ € A — Ay, orthogonal to Ay and such that ¢(Z° N M) =1 and x(7,) = 1 (I1.17
Corollary).

Notation We let © = Onax N A(V), P. = Pa,,ue and write “oX for the extension of
oX to P, trivial on N. (Note that [II1.22| Lemma 2 gives an identification of 73 with

G (e P,
Indp (‘oX ® Indp 1).)
Lemma The inclusion m¢ — wp, induces an isomorphism 5 — 71'32e

Proof It suffices to show that for P, C P, C P, with Ap, = Ap, U {«a}, the natural

map 7, — mp is an isomorphism. If o ¢ A(V) or if ¢ is not trivial on Z° N M/, or

« not orthogonal to Ajs, then by we even have an isomorphism Ry ®z,, 7p, -
Ry ®z,, mp,. Otherwise, x(7) # 1 and since (17, — 1)7p, C mp, C 7p, by we have
an isomorphism 7, — 7, . O

V.13. Notation Let D be the set of parabolic subgroups of G between P and P,.

eFor Q, Q1 inD, QD Q, put cgg, = I[I (ra—1) (then cgg,m7g, C mg by|V.6
aEAQ—AQl

Proposition).
e For Q € D, let 7 be the image of mg Teg Tp, — 7T]>S€(: m5), and let pg be the image
of g — mp — .
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o For Q € D, let Q° € D be the parabolic subgroup such that Age — Ay = Ap, — Ag,
and let ®g, ¥ be the G-equivariant maps

Qg T — ﬂl)ge — 7Té<26,
Vg : pg < 7r1>§ Cﬂ’}; ﬂ'éc.

Here, the last map is obtained from 7wp piily mge by tensoring by x.
e Let I the submodule IdeGge (CoX ®Indge 1) of 5. In particular, Ip = pp = 7. Note
also that 7p, = 7, .

Remark 1 The maps mq Ferg mp, < mQe and g < Tp ity mQe are equal because
cqQe,p = cp,,- Therefore Im &g = Im V.
Remark 2 For (), Q1 in D, ) D 1, we have 7, C 7¢ and pg, D pg-

Our second main result in this chapter is:

Theorem Let Q € D.

(i) pQ = Iq-
(ii) Ker ¥g = > por-
Q1€D,Q12Q
(iii) Ker &g = > T,
Q1€D,Q:16Q
(iv) Let P C D; then g N Y. To, = D>, TQNQ:-
Q1EP Q1EP

It implies [[.6] Theorem 6:

Corollary 1 For Q € D, 79/ >,  7q, is isomorphic to I.(P, X, Q).
Q1€D,Q1:Q

Proof By Remark 1 we have that 7o/ Ker @ is isomorphic to po/Ker ¥g. But pg =
Ig by (i) so we get by (ii) and (iii) a G-isomorphism between 7¢/ > 7Q, and
Q1€D,Q14Q
I/ > Ig, which is I.(P,0X,Q). O
Q1€D,Q12Q
Corollary 2 FEnumerate the parabolic subgroups in D as P = Q1,...,Q, = P., so that
i<jif Qi CQj. Fori=0,...,r,put l; = > 7q;. Then fori=1,...,r, I;/1; 1 =~

1<5<i
Ie(Pa GX? Qz)

Proof For i = 1,...,r I;/I;.1 = 7q,/(1q; N > 7g,) is also 7@,/ Y. 7q.nq; by (iv).
1< 1<<i
The assertion follows from Corollary 1. [J

Remark 3 The proofs below are in fact valid more generally: it would suffice, for a given
parabolic subgroup P = M N of GG containing B, to tensor ind?( V' with the quotient of
Rjs in which all 7, — 1 for o € © are killed.

Since we consider only parabolic subgroups in D, and all the representations we consider
are parabolically induced from analogously defined representations of the Levi quotient of
P,, it is enough to prove the theorem when P, = G, i.e. A = Ay LI O, which we assume
from now on.
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V.14. Under that assumption A = Ay, U O, we prove Theorem in a succession of
lemmas.
We fix () € D and let Mg be its Levi subgroup containing M.

Lemma 1 pg C Ij.

Proof Equality is clear when @ = P, so we assume ) 2 P. For each o € Ag — Ap, let
P% be as in By Lemma 2, ppe is included in Ipa so a fortiori pg C Ipa. But
the subgroup of G generated by the P%’s for « € Ag — Ap is @, 50 Nacag—aplpe = I,
and pg C Ip. O

To prove equality in Lemma 1, we resort to filtration arguments. In the following A,

w, A are as in and mp A, TQ, A as in
Remark 1 We can also filter )5 by support yielding (7)5)4 C 7). But from Lemma,

we get, after tensoring with x : Ry — C, that mp4 — 75 induces an isomorphism
(mpa)X > (7)) 4. We let %5 4 denote (%) 4.

We put pg,a = po N 7p s Ig.a = Ig N Tp 4,50 po.a = p@ N Ig,a-

Remark 2 By [V.§ Corollary 2 and Corollary 3,
0— Ry Rzy TQ,A — Ry Rz TQ — Ry Rz (WQ/WQ,A) — 0

is an exact sequence of free Ry/-modules (an extension of free Rj/-modules is free and
by induction Ry ®z,, mg,4 and Ry ®z,, mg are free Rjps-modules). Therefore the map
(mQ,A)X — 7T2<2 is injective.
Lemma 2 (i) If w ¢ W(Mgq) then Ig.a = Ig ar, and pg.a = pQ,a-

(i) If w € W(Myg) the maps n7g — po — Ig — ) induces isomorphisms

(mQ,a)*/(mQ.a ) = po.a/po,.ar = Ig.a/Ig.ar = T 4/T ar-
(ii) p,a is the image of TQ A in ).
Note w € W(Mg) means that for o € Ag, w™!(a) > 0; it is equivalent to ¢, = 1 (V.8).

Proof (i) Let f € Iga — Ig a; then f is not identically 0 on PwB, but its support is
left Q-equivariant, so for any v € Wyy,,, f is not identically 0 on PowB. If w ¢ W(Mg)
we can choose v € Wy, so that vw < w. That implies vw ¢ A by minimality of w, a
contradiction. So Ig a = Ig 4 and pg a = pg,ar follows by intersecting with pg.

(ii) Let w € W(Mg). Then cg, = 1 and Proposition gives that the map
7Q,A — Tp,A induces an isomorphism 7g 4/mgQ ar ~ wpa/mp.a. Tensoring with x gives
an isomorphism of (7g,4)¥/(mq,a)X onto (7pa)X/(mpa)X which is 5 4/7p 4 by Re-
mark 1; since the image of that isomorphism is contained in pg a/pg.ar, itself contained
in Ig a/lg ar, we get (ii).

(iii) We prove it by descending induction on #A, the case A = W(M) being true by
definition of pg. We assume that the result is true for A and prove it for A’. By
Lemma 4 we have

mQ,A C CQuTP, A+ TQ.A-
If w ¢ W(Mg) then x(cgw) = 0. Hence mg 4 and mg 4 have the same image in 7%,
which is pg 4 by induction and pg ar by (i). If w € W(Mg) we use the isomorphism
(mQ,4)X/(mq,a1)X ~ p,a/pg,a in (ii). Since (mg .a)X — pg.a is surjective by induction,
(mQ,a7)X — pg,ar has to be surjective too. [
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Lemma 3 pg = Ig.

Proof By induction on #A: if pg 4 = Ig 4/, then Lemma 2 (i), (ii), and Lemma 1 give
pQ7A - IQ7A. D

Lemma 4 For Q1 € D, Q1 2 Q, Ker ¥ contains pg, -

)4
Proof It enough to show that the composite map 7751 — 7'('25 — pQ —9 772‘26 is 0. But it

factors as 7751 — 772‘2 8 T = wéc since cge p = cqg. From cgo = cg,.0cq.0, we get
CG’Qﬂ'gl = ch’QcG7Q1W2<21 C ¢, oy which is 0 since x(cg,,g) = 0. O

Lemma 5 Ker Vg C > P

Q1€D,Q12Q
Proof We show by induction on #A that
(%) Ker ¥ N 71—1)—%/1 C Z PQ: -

Q1€D,Q12Q
We assume that (x) is true for A" and prove it for A. Note that Ker ¥ C pg C 7} so
Ker Vona) 4, = Ker WoNpg,a. If w ¢ W (Mg) then pg a = pg,a by Lemma 2 (i), so the
result is immediate. Assume w € W(Mg). On pg,a/pg.ar, Y¢ induces Uq : pg a/pg.a —

TH Al TH A iy (mge,a)X/(mge, 4r)X. By Lemma 2(ii), the first map is an isomorphism, so

we focus on the second map.
Notation Put d¥ = I (Ta —1), so that cge p = dgchvw because A —Ag =

a€A—-Ag,w™1(a)>0
AQC - AM

ByProposition and the remark before it, cqge , gives an isomorphism wp 4 /7p 4/ =
mQe.A/Tge.nr. I dS =1 then Ug is injective and Ker Wp Nl . = Ker W N7k, so ()
follows from the induction hypothesis. Let d< # 1, choose a € A — Ag with w™(a) > 0

and let Q“ be the parabolic subgroup of G corresponding to AgU{a}. Then w € W (Mg«)
and Lemma 2 (ii) gives the isomorphism

~ X X
PQ A/ PQe, AT — TP 4/ Tp 41

Let f € Ker g N 4, and choose f' € pge a4 with f— f' € 7} ,,. As f' € Ker Ug by

Lemma 4, f — f" € Ker g so f — f’ belongs to Y>> pg, by induction; as f’ also
Q1€D,Q12Q
belongs to that space, the result follows. [J

V.15. We have proved (i) and (ii) in Theorem, and now we turn to part (iii).
Describing Ker @ is analogous to describing Ker ¥o. We let A, w, A’ be as before, and
let 7Q,4 C 7q be the image of mg 4 (or (7,4)¥) in 7 = 7, via the map 7 ©g . We
observe that 79 4 C 7g,4 and 79, 4 C 7Q,4 if @1 C Q in D. We note also that by
Remark 2 we have (7g,4)X = 76,4 C 7.

Lemma 6 (i) If for some a € A — Ag, w'(a) > 0 then Q.4 = 7g . Otherwise, the
natural maps (7 A)X/(7g ar)X = 7Q.A/TQ.A — Tq,A/ TG, A1 are isomorphisms.
(it) TQ.A = TG,A N TQ.
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Proof (i) Let ¢ € mg 4. With P, as in Lemma 4 implies that we can write
¢ = cQubw+¢ with ¢, € mp, 4 and ¢’ € mg 4. Since dch,w = €G,0CQ.w We get cq.of =
dg(cG,wgbw)—l—cG,Qqﬁ’. But cg.w = ca,p, SO ¢Gwdw belongs to g byProposition. In the
first case of (i), X(dg) =0, so ¢ has the same image as ¢ in 7¢; this implies 7g 4 = 70, A’
Let us assume we are in the second case of (i), so dg = 1. Consider the natural inclusions
TG, A/TG A = TQA/TQ.A — TPA/TP.A.
By Proposition, the first space is ¢ (mp.a/7p.ar) and the second is ¢ w(7p,a/mp.ar).
Consequently, cq,o(7g,a/70.4’) = Ta,A/Tq, A since d¥ = 1. Thus cg,q induces a sur-
jective map of mg 4/mg ar onto mg a/mG 4. But by Lemma (i) (applied to M) ¢,
acts injectively on o hence on mp 4/mp 4, so we actually get an isomorphism. Tensoring
with x we get an isomorphism (7g 4)X/(7g a/)X = Tg,A/TG a5 but this factors as in the
statement of (i), so (i) follows again.

(ii) We proceed by descending induction on #A, the case A = W(M) being obvious.
The containment 79 4» C 7g arN7q is clear, and we have 79 4 = 7q,4 N7 by induction. In
the first case of (i) 7g a» = 7Q.4 = T¢,ANTQ D Ta,4NTQ S0 TQ ar = Ta,4N7Q. In the second
case of (i), 7Q,4/7Q A" = Ta,A/Ta, 4 is an isomorphism; as moreover 7g a4» N 7g C 7Q,4 by
induction, the result follows. [

Lemma 7 For Q1 € D, Q1 & Q, then 7, C Ker ®¢.

Proof Let P, be the parabolic subgroup corresponding to Ag, U(A —Ag) = Ag, UAge.
Since Q1 & Q, we get P & G. We have cp, g, g, C mp, C TQe 80 cq,Q,TQ, C €GP, TQe-

As x(cg,p,) = 0 the image of mg, et TQe — T is 0; but that image is ®o(7g,). O

Lemma 8 Ker ®g C > TO-

Q1€D,1&Q
Proof We prove that Ker ®g N 7 4 is contained in the right-hand side, by induction
on #A. In the first case of Lemma 6 (i), 79,4 = 7 a7, 50 Tq,a N TQ = Tg,.a N TQ by
Lemma 6 (ii). Consequently, Ker ®g N 7g 4 = Ker ®g N 7¢ 4 and we are done. So we
assume that for all @« € A — Ag = Age — Ap we have w™(a) < 0. On 79 .4/70.a’,

®g induces B : 9.a/To.a — (MG.A)X/ (TG A )X—(Tge 4)X/(Tge ar)X, Where the first
map is an isomorphism by Lemma 6 (i), and the second comes, upon tensoring with y,
from the inclusion of 7g a/7mq 4 into mge 4/mge ar. By Proposition, we have, inside
TPA/Tpars TGA/TGA = cGuw(Tpa/Tpar), and TQe a/Tqe,ar = cQew(Tpa/Tpar). I for
all &« € A — Age we have w™!(a) > 0, then cguw = cgew, and Tg a/TG a0 = TQe,A/TQe, A
thus Ker ®g N 7q,4 = Ker ®g N 7, 4/, so we conclude by induction. In the opposite case,
choose v € A — Age = Ag — Ap with w™(a) < 0, and let Q, correspond to Ag — {a}.
Then 7q,,4/7Q., A" = TG,A/TG, 4’ is an isomorphism by Lemma 6 (i). If f € Ker ®gN7g 4,
there is ' € 7g, 4 with f — f' € g ar. As 7q, C 7q we have f — ' € T¢ 4 NTQ = T a/
by Lemma 6 (ii). Lemma 7 gives ®g(f’) =0, so ®q(f — f') = 0 and by induction f — f
belongs to the right-hand side of Lemma 8; since f’ € 7, also belongs to that space, so
does f. O

V.16. It remains to prove (iv) of Theorem.

Lemma 9 Let P C D. Then ( > TQl) N7g,A = > TQ1,A-
Qi1€EP Q1€P
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Proof The containment D is clear; we prove the other direction by descending induction
on #A. Let P~ ={Q1 € P | w(a) <0 for any @ € A — Ag, }. If P~ is empty then
TQ1,A = TQ,, A for any Q1 € P (Lemma 6 (i)), and we have nothing to prove. Assume
P~ is not empty, and put Qn = () Q1. Then for a € A — Ag, we have w™!(a) < 0
Qi1EP—
so by Lemma 6 (i) the map 79, a4 — 7g,4/7G 4/ is surjective. For Q1 € P let fg, € 19,
be chosen so that >’ fo, € 7 as; by the inductive hypothesis we may assume that all
Q1€P
fo, € 71g,,4. For Q1 € P—P~, we even have fg, € 79, 4’ by Lemma 6 (i). Fix Q2 € P™;
for Q1 € P~, (1 # Q2 choose féh € TQn,A with le — fé)l € TQ.A- Since TQn,A C TQ1, A,

fo, — fél belongs to 7 a4r N 7Q, = TQ,,a’- S0 Y, fg, appears as fg, + > fél

Q1€P QEP,Q1#Q2
plus terms in Y 79, 4. But for Q1 € P7, Q1 # Q2, fbl belongs to 79, 4 C 7Q,,A SO
Q1P
fo, + > fo, belongs to 79, NTg.a =TQ, 4 C 3. 7@ - U
Q1EP~,Q1#Q2 Q1€P

We finally prove (iv) of Theorem. Fix Q € D and let P C D. It is clear that

( > TQ1> N> Y (e N1Q) D Y maine:

Q1€P Q1P Q1€P

We prove now

( Z TQ1> N71Q,A C Z TQ.n@ by induction on #A.
Q1€P Q1EP

If there is @ € A — Ag with w™(a) > 0 then 79 4 = 79 4 (Lemma 6 (i)) and there is
nothing to prove, so we assume the contrary. By Lemma 9

( Z TQl) N1QA = < Z TQLA) N7Q,A-

Q1EP Q1EP

Let P~ C P be the same subset as in the proof of Lemma 9. If P~ is empty, then
TQ1,A = TQ, A for any @1 in P. Hence

( Z TQ1> N71Q.A= ( Z TQl,A’) N71Q.A= ( Z TQl,A’> N71Q,A,

Q1€P Q1€P Q1€P

and the result follows from Lemma 9 and the induction hypothesis. Now assume P~ # (),
and write Qn = QN () Qi; then for a € A — Ag,,, w™l(a) < 0 and again 7o, 4 —
QL1EP—

T¢,A/Ta A is surjective. For Q1 € P let fo, € 7o, be chosen so that > fg, € 79.4.
Q1eP

By Lemma 9 we may assume fg, € 79 4. For ()1 € P~, choose fc/,gl € TQ,,A With
fo, — flel € 16,4’ (then fo, — fC[Ql € TQLA/)' Write

Sta= > a—tfo)+ D fat D fo

Q1€P Q1EP~ Q1EP—-P— Q1P

We examine the right hand side. The last term belongs to 79, 4 C 79, 4, so the sum of
the first two belongs to 7g. As each summand in those two terms indexed by @ is in

7Q, A/, their sum belongs to ( Y 79, a/) N7, which is in ) 79,ng by the induction
Q1P Q1€P
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hypothesis. But for Q1 € P, fc/gl € TQn,A, and Tg, C TQ,n@ since @n C Q1 N Q. Thus

the third term also belongs to )~ 7g,ng. O
Q1P

VI. CONSEQUENCES OF THE CLASSIFICATION

VI.1. We recall from that a representation of GG is supercuspidal if it is irreducible,
admissible, and does not appear as a subquotient of a parabolically induced representation
IndIGD o, where P is a proper parabolic subgroup of G and ¢ an irreducible admissible
representation of the Levi quotient of P.

It is well known [BL1l Br] that there exist irreducible admissible supercuspidal repre-
sentations when G = GL3(Q)), therefore the following proposition shows that we cannot
drop the condition that o be irreducible admissible in the definition of supercuspidality,
unlike for representations of G over a field of characteristic different from p.

Proposition Any irreducible representation m of G is a subquotient of Indg o for some
representation o of Z.

Proof The smoothness of 7 implies that 7 has a weight V. The irreducibility of 7 implies
that 7 is a quotient of ind$ V. The representation ind% V embeds in Ind$ (ind%o Vo) by
the intertwiner Z of [ILI3l O

VI1.2. We derive the desired consequences of [[.5| Theorem 4. Mostly we follow the pattern
of [He2].
We now prove [[.5| Theorem 5, which we recall.

Theorem Let 7 be an irreducible admissible representation of G. Then 7 is supercuspidal
if and only if w is supersingular.

As observed in the introduction, this theorem shows that the notion of supersingularity,
for an irreducible admissible representation of GG, is independent of the choices of S, B, K.

Proof Let 7 be supercuspidal. By Theorem 4, there is a supersingular B-triple
(P,0,Q) such that 7 ~ I(P,0,Q). By Proposition, I(P,o0,@Q) is a component
of Indg 0,80 P =G and 7w ~ ¢ is supersingular.

Let 7 be supersingular. Assume it occurs as a subquotient of Indga for a parabolic
subgroup P of G and an irreducible admissible representation o of the Levi quotient M
of P; we may and do assume that P contains B. By [[.5| Theorem 4, Proposition,
and transitivity of parabolic induction, we may assume that o is supersingular. By
Proposition, 7 is isomorphic to some I(P, o, Q) and [[.5| Theorem 4 implies that P = G, so
that 7 is indeed supercuspidal. [J

Theorems 1 to 3 in Section [[.3] are now rather immediate. They follow from [[.5] Theo-
rem 4 and the following elementary observations:

(i) Any triple is G-conjugate to a B-triple.
(ii) A B-triple is supersingular if and only if it is supercuspidal (by the theorem).
(iii) I(P,0,Q) ~I(P', o', Q") if the triples (P,0,Q), (P',0’,Q’) are G-conjugate.
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VI.3. We also have the desired consequence about supercuspidal support.

Proposition Let m be an irreducible admissible representation of G. Then there is a
parabolic subgroup P of G and a supercuspidal representation o of the Levi quotient of
P such that w is a subquotient of Indga. If Py is a parabolic subgroup of G and o
a supercuspidal representation of the Levi quotient of P, such that 7w is a subquotient
of IndIGJ1 o1, then there is g in G such that P, = gPg~' and that o1 is equivalent to
> o(glxg).

Proof By[L.3| Theorem 3, 7 has the form I(P, o, Q) for some supercuspidal triple (P, o, Q)
and the first assertion comes from Proposition. The uniqueness assertion is derived
in the same way from [[.3] Theorem 2. [J

We say that the supercuspidal support of 7 is the class of (P, o) for the equivalence
relation appearing in the proposition.

VI.4. We give one more consequence mentioned in the introduction.

Proposition Let (P, 0,Q) be a B-triple. Assume that o is a supercuspidal (or equivalently,
supersingular) representation of M. Then I(P,0,Q) is finite-dimensional if and only if
P=Baand Q =G.

Proof As Z is compact mod centre, any irreducible representation 7 of Z is finite di-
mensional [Hnl [Vigl] and consequently supercuspidal. If P(7) = G then I(B,7,G) = T
is finite dimensional. Conversely, let m be a finite-dimensional irreducible representation
of G. Then its kernel is an open normal subgroup of G. Considering ¢ : G — G as in
Chapter [II, Ker(o o ¢) is an open normal subgroup of G* which by Proposition has
to be G' itself. Thus 7 is trivial on G’ and since G = ZG’, 7 restricts to an irreducible

(supercuspidal) representation T of Z; we have P(7) = G and 7 =7, 7 = I(B,7,G). O

VI.5. It is worth noting that our results recover the classifications obtained previously
in special cases. Keep the notation of Chapter [[IIl When G is split, then for a € A,
Z N M, is simply the image in Z = S of the coroot oV, so our classification is the same
as that of [Abe]; it also gives the classification of [He2] for G = GL,. Other special cases
are worth mentioning: groups of semisimple rank 1 and inner forms of GL,. Of course
if G has relative rank 0, all irreducible representations of GG are finite dimensional and
supercuspidal, and our classification theorem says nothing. If G has relative semisimple
rank 1, the classification is rather simple (see also [BL1l [BL2, [Abd| [Chel Ko, Ly2]). An
irreducible admissible representation 7 of G falls into one (and only one) of the following
cases:

1) 7 is supercuspidal (hence infinite dimensional), i.e. 7 ~ I(G, 7, G).

2) 7 is finite dimensional; it is then trivial on G’ and restricts to an irreducible represen-
tation 7 of Z, trivial on ZNG’', and 7 ~ I(B, 1, G).

3) ™ ~ 0 ® St% where o is as in 2), i.e. 7 ~ I(B, 0|z, B).

4) m ~ I(B, T, B) where 7 is an irreducible representation of Z (hence finite dimensional
and supercuspidal) which is not trivial on Z N G'.
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VI.6. Let us briefly consider the case of inner forms of general linear groups. Thus
G = GL,,/)p where D is a central division algebra of finite degree over F. We take for S
the diagonal subgroup (F'*)" (so that Z is the diagonal subgroup (D*)™), and for B the
upper triangular subgroup. We can take K = GL,(Op) where Op is the ring of integers
of D; all other special parahoric subgroups of G are conjugate to K.

A parabolic subgroup P of G containing B is an upper triangular block subgroup, and
the corresponding Levi subgroup M is the block diagonal subgroup. If the successive blocks
down the diagonal have size nq,...,n,, then M appears as M; X - -- x M., M; = GL,,(D)
and an irreducible admissible representation of M factors as a tensor product m ®- - - Qm.,
where 7; is an irreducible admissible representation of M; for ¢ = 1,...,r determined up to
isomorphism. (Conversely such a tensor product is an irreducible admissible representation
of M: the reader can devise a proof as suggested in [He2], perhaps using [HV2, 7.10
Lemmal.) Note that the group G’ is the kernel of the non-commutative determinant
det : G — F*. Parameters for the irreducible admissible representations of G can then
be described in a way entirely parallel to the case D = F obtained in [He2]. (The cases of
GL,, (D) where n < 3 are treated in T. Ly’s Ph.D. thesis |[Ly2], [Ly3, Chapter 3].)

We simply state the results, leaving to the reader the translation from our classification
in this paper.

Fori=1,...,7 let m; be a representation of M; which is either supercuspidal or of the
form y; o det for some character y; : F'* — C*; if for two consecutive indices i, i + 1 we
have m; = x; odet and ;11 = X441 o det, assume x; # Xi+1-

For each index i such that m; = x; o det, choose an upper (block) triangular parabolic
subgroup Q; of M;, and put o; = (y; o det) ® Stcj\g/[f; for other indices i put o; = ;.

Then Ind%(o; ® - - - ® 7,.) is irreducible and admissible. Conversely any irreducible admis-
sible representation of G has such a shape, where the integers ni,...,n,, the parabolic
subgroups Q; of M; = GL,, (D), and the isomorphism classes of the m;, are determined.
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