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1 Introduction

The p-adic Langlands programme for the group GL2(Qp) is now well understood,
both from a local and a global point of view ([Col10], [Paš13], [CDP], [Eme11],
see [Bre10] for an overview). In particular, to (essentially) any continuous
representation ρ : Gal(Qp/Qp) → GL2(E) (where E is a finite extension of Qp)
one can associate a unitary continuous representation Π(ρ) of GL2(Qp) on a p-adic
Banach space over E. Likewise, to (essentially) any continuous representation
ρ : Gal(Qp/Qp)→ GL2(kE) (where kE is the residue field of E), one can associate
a smooth representation Π(ρ) of GL2(Qp) over kE. It is moreover expected that
the p-adic Langlands correspondence – if there is one – for any other group
beyond GL2(Qp) (e.g. GL2(L) or GL3(Qp) or GSp4(Qp)) will be significantly
more involved than for GL2(Qp) (see e.g. [Bre10, §3, §4] or [Sch]). The aim of
the present work is nevertheless to start to investigate the possible shape of the
representation(s) Π(ρ) and Π(ρ) when ρ, ρ take values in split reductive groups
other than GL2.

Let G be a split connected reductive algebraic group over Qp with dual Ĝ, E

a finite extension of Qp and ρ : Gal(Qp/Qp)→ Ĝ(E) a continuous representation.

Assume that both G and Ĝ have a connected centre and that (up to conjugation)

ρ takes values in a Borel subgroup B̂(E) of Ĝ(E). In this setting, at least when ρ is
sufficiently generic, we define a unitary continuous representation Π(ρ)ord that we

2



expect to be the maximal closed subrepresentation of Π(ρ) whose constituents are
subquotients of unitary continuous principal series of G(Qp) over E. We define an
analogous smooth representation Π(ρ)ord when G is a split connected reductive

algebraic group over Zp and ρ : Gal(Qp/Qp) → B̂(kE). When G = GLn and
ρ comes from some (automorphic) global Galois representation r, we moreover
prove using results of Gee and Geraghty ([Ger09], [GG12]) that (under suitable
assumptions) the GLn(Qp)-representation Π(ρ)ord occurs in the r-part of spaces
of mod p automorphic forms for certain definite unitary groups which are outer
forms of GLn. We only consider split reductive G in this paper because, when
G is not split, e.g. G = ResL/Qp GL2, the results of [BP12] (see the remarks at
the end of section 19 of loc. cit.) as well as [Hau13, Thm. 1.2] suggest that the
representations Π(ρ)ord, Π(ρ)ord are generically semi-simple and thus not very
interesting.

We now try to motivate the idea underlying the construction of Π(ρ)ord

and Π(ρ)ord. One crucial ingredient in the p-adic Langlands correspondence for
GL2(Qp) is the construction by Colmez ([Col10]) of a covariant exact functor F
from unitary continuous (resp. smooth) representations of GL2(Qp) over E (resp.
kE) with suitable properties to finite-dimensional representations of Gal(Qp/Qp)
over E (resp. kE) sending Π(ρ) (resp. Π(ρ)) to ρ (resp. ρ), see [Eme11, §3.4] for
more details in the ordinary case. One may hope that F has an analogue when
GL2 is replaced by G as above, see [SV11] for one tentative construction (see also
the recent [Bre14]). Denoting by L⊗ ◦ρ the tensor product of all the fundamental

algebraic representations of Ĝ(E) composed with ρ, evidence coming from var-
ious sources (explicit computations with Serre weights, locally analytic vectors,
the results of [Hau13], [Hau14], etc.) suggest that the internal structure of the
representation Π(ρ) (its constituents and socle filtration) should somehow “re-
flect” the internal structure of the Galois representation L⊗ ◦ρ, and that likewise
Π(ρ)ord should reflect the structure of an explicit subrepresentation (L⊗)ord ◦ ρ of
L⊗◦ρ (see below). Note that if ρ is the restriction of a global automorphic Galois
representation r, it is natural to expect that the r-part of spaces of p-adic/mod
p automorphic forms is a direct sum of finitely many copies of Π(ρ). (These

globally defined spaces are denoted by Ŝ(Up, E)[pΣ] and Ŝ(Up, E)[mΣ] in section
4.2.) This would be a (weak) analogue of Emerton’s local-global compatibility
when n = 2 ([Eme11]). Therefore, although we don’t have Π(ρ) and Π(ρ), if
a functor F exists when n > 2, one may ask whether F (Π(ρ)) = L⊗ ◦ ρ and
F (Π(ρ)) = L⊗ ◦ ρ (see §3.5 in the text for more details). Let us just emphasize
that, although we don’t know Π(ρ) or Π(ρ), we can use L⊗ ◦ρ as a guide to make
predictions about Π(ρ) or Π(ρ) and then test these predictions on cohomology.
This is what we start to do in this paper in the case where ρ (resp. ρ) takes

values in B̂(E) (resp. B̂(kE)) and is sufficiently generic. But we do hope that
the consideration of L⊗ ◦ ρ will also be of importance for Galois representations
which are not Borel-valued.
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In light of the expected local-global compatibility for GLn, our main theorems
suggest that Π(ρ)ord is contained in Π(ρ) and Π(ρ)ord is contained in Π(ρ), as
expected. Moreover, the expected local-global compatibility also gives evidence
for our expectation that Π(ρ)ord is distinct from Π(ρ) and Π(ρ)ord is distinct from
Π(ρ) for n > 2. In the mod p case, if ρ is semisimple and sufficiently generic, then
Π(ρ)ord contains n! irreducible GLn(Zp)-subrepresentations up to isomorphism,
whereas Π(ρ) should contain a lot more by the Serre-type conjecture of [Her09]
(see also [EGH13]). In the p-adic case, suppose for instance that n = 3 and that ρ
is crystabelian as in the second example of [Bre13a, §6.2] (see the case a1a2a3 6= 0
and a1a2 = a3 of loc. cit.). Then [Bre13c, Thms. 9.3, 9.10] and [Bre13b, Lem. 8.8]
show that the locally analytic representation C(sα, sαsβ) of [Bre13a, §6.2] should
occur as a subrepresentation of Π(ρ) but cannot occur as a subrepresentation
of Π(ρ)ord (see also the forthcoming [HM] for an analogous result in the mod p
case).

Let us now describe the main results of the paper.

In section 2, for any closed subgroup B̂C of B̂ containing the maximal torus,
we completely describe the maximal B̂C-subrepresentation (L⊗|B̂C )ord of L⊗|B̂C
such that all its weights are in the orbit under the Weyl group W of the highest
weight λ of L⊗. One finds a direct sum of indecomposable B̂C-representations:

(L⊗|B̂C )ord = ⊕w∈WC
L⊗C,w,

where WC := {w ∈ W : ẇ−1B̂Cẇ ⊆ B̂}.

Let ρ : Gal(Qp/Qp) → B̂(E) and χ̂ρ : Gal(Qp/Qp)
ρ→ B̂(E) � T̂ (E). In

section 3, we use this description to associate to any sufficiently generic such ρ an
admissible unitary continuous representation Π(ρ)ord of G(Qp) over E which is a
successive extension of finitely many unitary continuous principal series. First,
we associate to ρ a closed subgroup B̂Cρ of B̂ (defined as the smallest Zariski

closed subgroup of B̂ such that ρ takes values in B̂Cρ(E)). We may assume (after

conjugation) that B̂Cρ is minimal among all B̂(E)-conjugates of ρ. Then we
define Π(ρ)ord as

Π(ρ)ord := ⊕w∈WCρ
Π(ρ)Cρ,w,

where each Π(ρ)Cρ,w is a successive extension of unitary continuous principal se-
ries of G(Qp) over E. More precisely, Π(ρ)Cρ,w mimics the structure of L⊗Cρ,w in

the following way: each time the weight w′(λ) appears in (L⊗|B̂Cρ )ord (for some

w′ ∈ W ), the continuous principal series I(ρ)w′ :=
(

Ind
G(Qp)

B−(Qp) w
′−1(χρ)·(ε−1◦θ)

)C0

appears “at the same place” in Π(ρ)Cρ,w, where B− ⊆ G is the Borel oppo-

site to the dual of B̂, χρ : B−(Qp) � T (Qp) → E× corresponds to χ̂ρ by
the local correspondence for tori and ε−1 ◦ θ is a certain twist. The mini-
mality assumption on B̂Cρ guarantees that Π(ρ)ord only depends on the Ĝ(E)-
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conjugacy class of ρ. This construction also works in characteristic p for a generic
ρ : Gal(Qp/Qp)→ B̂(kE) (§2.5, §3.4) and produces an admissible smooth G(Qp)-
representation Π(ρ)ord = ⊕w∈WCρ

Π(ρ)Cρ,w, where each Π(ρ)Cρ,w is indecompos-

able and a successive extension of finitely many smooth principal series.

In section 4, we prove that the representations Π(ρ)Cρ,w all occur in some
spaces of mod p automorphic forms, and, when WCρ = {1}, that the representa-
tion Π(ρ)ord occurs in some spaces of p-adic automorphic forms. More precisely,
let F+ be a totally real field and G/F+ be a totally definite unitary group which
is an outer form of GLn /F

+ that splits over a totally imaginary quadratic ex-
tension F of F+ (and is quasi-split at all finite places). We assume that F/F+ is
unramified at all finite places and that p splits completely in F . If Up ⊆ G(A∞,pF+ )
is a compact open subgroup, we have the kE-vector space

S(Up, kE) := {f : G(F+)\G(A∞F+)/Up → kE, f locally constant}

of mod p automorphic forms of level Up which is equipped with a smooth action of
G(F+ ⊗Q Qp) ∼=

∏
v|p GLn(Qp) and with a commuting action of a certain Hecke

algebra T. If r : Gal(F/F ) → GLn(kE) is a continuous absolutely irreducible
representation, we can associate to r a maximal ideal m of T with residue field
kE. We denote by S(Up, kE)[m] ⊆ S(Up, kE) the corresponding eigenspace and
by S(Up, kE)[m]ord ⊆ S(Up, kE)[m] the maximal G(F+ ⊗Q Qp)-subrepresentation
all of whose constituents are subquotients of principal series. Following [GG12,
§6] we say that r is modular and ordinary if there exist Up (ramified only at places
of F+ that split in F ) and an irreducible representation σ of G(OF+ ⊗Z Zp) ∼=∏

v|p GLn(Zp) over kE (a Serre weight) such that the action of the Hecke algebra

H(σ) ∼= ⊗v|pkE[T1,v, . . . , Tn−1,v, T
±1
n,v ] on HomG(OF+⊗ZZp)

(
σ, S(Up, kE)[m]

)
has a

nonzero eigenvector (after possibly extending kE) on which each Ti,v is nonzero.
Let us choose a place ṽ of F above each v|p in F+ (this choice won’t matter)
and denote by rṽ the restriction of r to a decomposition subgroup at ṽ. If r
is modular and ordinary, then rṽ takes values in a Borel subgroup of GLn(kE)
so that the GLn(Qp)-representations Π(rṽ)

ord are defined (if rṽ is generic). Our
main local-global compatibility result is (cf. Theorem 4.4.7):

Theorem 1.1. Let r : Gal(F/F )→ GLn(kE) be continuous absolutely irreducible
and assume:

(i) r is modular and ordinary;

(ii) for each v|p the restriction of rṽ to inertia is generic;

(iii) r|Gal(F/F (ζp)) is absolutely irreducible, p > 2n+ 2 and ζp 6∈ F .

Then there is an compact open subgroup Up ⊆ G(A∞,pF+ ) and integers dw > 0 for
each w = (wv) ∈

∏
v|pWCrṽ

such that we have an essential injection of admissible
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smooth representations of G(F+ ⊗Q Qp) over kE,

⊕
w=(wv)

(⊗
v|p

(
Π(rṽ)Crṽ ,wv ⊗ ω

n−1 ◦ det
))⊕dw

↪→ S(Up, kE)[m]ord,

where ω is the mod p cyclotomic character.

We refer to §4.4 for a more precise statement, and to Theorem 4.4.8 for a
p-adic version assuming that all WCrṽ

are trivial and replacing S(Up, kE) by a
suitable p-adically completed E-vector space of automorphic forms. If all dw are
equal (e.g. if all WCrṽ

are trivial), note that the left-hand side of the injection in

Theorem 1.1 is exactly (up to twist) a direct sum of copies of ⊗v|pΠ(rṽ)
ord. The

assumption (ii) that rṽ is generic on inertia (which implies e.g. p > 2n) shouldn’t
be crucial and one should be able to replace it by just rṽ generic (not necessarily
on inertia) and p > 3. Following our “philosophy” that Π(ρ)ord should be the
maximal subrepresentation of Π(ρ) built out of principal series, we also conjecture
(cf. Conjecture 4.2.5):

Conjecture 1.2. Let r : Gal(F/F ) → GLn(kE) be continuous absolutely irre-
ducible and assume:

(i) r is modular;

(ii) rṽ is upper triangular and generic for each v|p.

Then for any compact open subgroup Up ⊆ G(A∞,pF+ ) such that S(Up, kE)[m] 6= 0
there is an integer d > 0 depending only on Up and r such that we have an
isomorphism of admissible smooth representations of G(F+ ⊗Q Qp) over kE,(⊗

v|p

(
Π(rṽ)

ord ⊗ ωn−1 ◦ det
))⊕d

∼−→ S(Up, kE)[m]ord.

We have an analogous conjecture in characteristic 0 (cf. Conjecture 4.2.2).

The proof of Theorem 1.1 goes as follows: using results of Gee and Ger-
aghty on ordinary Serre weights ([GG12], [Ger09], these results require the small
technical assumptions alluded to in (iii)) together with Frobenius reciprocity,
we first deduce that for each w = (wv) ∈

∏
v|pWCrṽ

the G(F+ ⊗Q Qp)-socle

⊗v|pI(rṽ)wv of ⊗v|p
(
Π(rṽ)Crṽ ,w ⊗ ωn−1 ◦ det

)
occurs in some S(Up, kE)[m] with

a certain positive multiplicity dw. We thus have an injection as in Theorem
1.1 but with Π(rṽ)Crṽ ,wv ⊗ ωn−1 ◦ det replaced by its socle I(rṽ)wv . Moreover,
combining the results of [GG12] with [Her11, Cor. 9.13], one easily checks that
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this injection is essential. The whole point is thus to prove that it extends to
⊗v|p

(
Π(rṽ)Crṽ ,w ⊗ ω

n−1 ◦ det
)
. This follows from a key local theorem (cf. The-

orem 4.3.9) which states that, under certain conditions on a smooth G(Qp)-
representation Π over kE, restriction to the G(Qp)-socle induces an isomorphism
HomG(Qp)(Π(ρ)Cρ,w ⊗ ωn−1 ◦ det,Π)

∼→ HomG(Qp)(I(ρ)w,Π). Here, we use an
important improvement due to Paškūnas in the proof of this local theorem.

Since the first version of this article, several results have been proven that
confirm some of our speculations and questions. In [Bre14] the first-named author
constructed a functor from smooth representations of G(Qp) over OE/$m

E to
étale pro-(ϕ,Γ)-modules over OE/$m

E for any m > 0 which satisfies the mod p
analogue of properties (i)–(iii) in §3.5 (see [Bre14, Cor. 9.5]). Hauseux [Hau13],
[Hau14] gave a positive answer to our question on extensions between principal
series representations (see Theorem 3.5.2) and proved our Conjecture 3.5.1 on
the unicity of Π(ρ)ord (assuming the irreducibility of the principal series (23)).

We now finish this introduction with some notation.

In the whole text E is a finite extension of Qp (the coefficient field) with ring
of integers OE and residue field kE. We denote by $E a uniformizer in OE. We
denote by ε : Gal(Qp/Qp) → Z×p ↪→ E× the p-adic cyclotomic character and by
ω its reduction mod p. If F is a number field and w a finite place of F , Frobw
is a geometric Frobenius at w. We normalize the reciprocity map of local class
field theory so that uniformizers correspond to geometric Frobenius elements.
We denote by nr(u) either the unramified character of Q×p sending p to u or the

unramified character of Gal(Qp/Qp) sending a geometric Frobenius element to u.

If H is a p-adic Lie group, e.g. H = G(Qp) where G is an algebraic group
over Qp, we call a continuous representation of H over E any p-adic Banach
space Π over E endowed with an E-linear action of H such that the action map
H × Π → Π is continuous. If G is a connected reductive algebraic group over
Zp, we call a Serre weight for G(Fp) any irreducible representation of G(Fp) (or
equivalently any irreducible smooth representation of G(Zp)) over kE. A Serre
weight is in fact absolutely irreducible and defined over Fp when G is split. The
other notation will be introduced in the body of the text.

We would like to thank L. Clozel, M. Emerton, W. T. Gan, G. Henniart, S.
Morra, S. W. Shin, and P.-J. White for discussions related to this work. We would
also like to thank especially T. Gee and D. Geraghty for patiently answering our
questions. The second author would like to thank the University of Paris 11,
where some of this work was carried out. Finally, we are deeply indebted to V.
Paškūnas for finding a much better proof of our main local result (Theorem 4.3.9)
which easily extends to characteristic 0 (Corollary 4.3.11) and for allowing us to
reproduce it here (our initial proof in the first version of that paper was long,
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laborious and less general).

2 The algebraic representation L⊗

We define the algebraic representation L⊗ and study its restriction to certain
subgroups of the Borel subgroup.

2.1 Definition of the representation L⊗

We define the algebraic representation L⊗.

Let H/E be a split connected reductive algebraic group. Let T ⊆ H be a split
maximal torus (over E), X(T ) = Homalg(T,Gm) the group of characters of T and
X∨(T ) = Homalg(Gm, T ) its group of cocharacters. We let

(
X(T ), R,X∨(T ), R∨

)
be the root datum of H, where R ⊆ X(T ) (resp. R∨ ⊆ X∨(T )) is the set of roots
(resp. coroots). For α ∈ R, we let sα be the reflection on X(T ) associated to α
and recall that sα(λ) = λ−〈λ, α∨〉α for λ ∈ X(T ). We let W be the Weyl group,
that is, the subgroup of automorphisms of X(T ) generated by the sα for α ∈ R.

We fix a choice of simple roots S ⊆ R and denote by R+ ⊆ R the positive
roots, i.e. the roots that are in ⊕α∈SZ≥0α. We finally let Hder be the derived

algebraic subgroup of H and Ĥ the dual algebraic group of H. We recall the
following standard proposition (see e.g. the proof of [DL76, Prop. 5.23] where the
fact that the base field is algebraically closed of char. p is here irrelevant).

Proposition 2.1.1. The following conditions are equivalent:

(i) the dual group Ĥ has connected centre;

(ii) the derived subgroup Hder is (semi-simple) simply connected;

(iii) there exists (λα)α∈S ∈ X(T )|S| such that for any β ∈ S:

〈λα, β∨〉 =

{
1 if α = β
0 if α 6= β.

We assume from now on that H satisfies the equivalent conditions of Propo-
sition 2.1.1. We recall that λ ∈ X(T ) is said to be dominant if 〈λ, α∨〉 ≥ 0
for all α ∈ R+. If λ ∈ X(T ) is a dominant weight, we denote by L(λ) the
irreducible algebraic representation of H over E with highest weight λ. Let
X0(T ) := {λ ∈ X(T ) : 〈λ, β∨〉 = 0 ∀β∨ ∈ R∨}. Then L(λ) has dimension 1
if and only if λ ∈ X0(T ). The weights λα of Proposition 2.1.1 for α ∈ S are
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clearly dominant and are called fundamental weights. They are uniquely de-
fined in X(T )/X0(T ), that is, one can obviously replace λα by λα + λ0 for any
λ0 ∈ Homalg(H,Gm) ∼= X0(T ). However this only changes L(λα) by a twist by a
1-dimensional L(λ0).

Definition 2.1.2. Assume Ĥ has connected centre or equivalently Hder is simply
connected. The fundamental algebraic representations of H are the irreducible
representations (L(λα))α∈S (defined up to twist).

Example 2.1.3. We briefly give the examples of H = GLn and H = GSp2n

(n ≥ 2).
When H = GLn, T is the torus of diagonal matrices and B the upper triangular
matrices, we have X(T ) = Ze1 ⊕ · · · ⊕ Zen, where ei is the character sending
diag(x1, . . . , xn) to xi and S = {ei − ei+1 : 1 ≤ i ≤ n − 1}. Then λei−ei+1

=
e1 + e2 + · · ·+ ei (up to an element of X0(T ) = Z(e1 + · · ·+ en)) and we have

L(λei−ei+1
) = Λi

E(Std) 1 ≤ i ≤ n− 1 (up to a twist),

where Std is the standard n-dimensional algebraic representation of GLn over E.
When H = GSp2n = {A ∈ GL2n : τ(A)

(
0 Jn
−Jn 0

)
A = ν

(
0 Jn
−Jn 0

)
for some ν ∈

Gm} (τ is the transpose in GLn, Jn is the anti-diagonal “identity” matrix of size
n), T is the torus of diagonal matrices in GSp2n and B the upper triangular
matrices in GSp2n, we have X(T ) = Ze1 ⊕ · · · ⊕ Zen ⊕ Ze, where ei (resp. e)
is the character sending diag(x1, . . . , xn, νx

−1
n , . . . , νx−1

1 ) to xi (resp. ν) and S =
{ei − ei+1 : 1 ≤ i ≤ n− 1, 2en − e}. Then λei−ei+1

= e1 + · · · + ei, 1 ≤ i ≤ n− 1
and λ2en−e = e1 + · · · + en (up to an element of X0(T ) = Ze). If Std is the
standard 2n-dimensional algebraic representation of GSp2n over E, there is for
2 ≤ i ≤ n a surjection ψi : Λi

E(Std) � Λi−2
E (Std)(ν) and we have L(λe1−e2) = Std,

L(λ2en−e) = Ker(ψn) and

L(λei−ei+1
) = Ker(ψi), 2 ≤ i ≤ n− 1 (all up to a twist)

(we refer to [FH91, §17.2] for more details).

We define the following algebraic representation of H over E:

L⊗ :=
⊗
α∈S

L(λα).

It is a reducible algebraic representation in general. The representation L⊗ de-
pends on the choice of weights λα as in Proposition 2.1.1(iii), but any change
in this choice only modifies L⊗ by a twist, which won’t affect the results of this
paper. We just keep in mind in the sequel that L⊗ is canonical only up to twist.

Proposition 2.1.4. There is an algebraic character λ0 ∈ Homalg(H,Gm) ∼=
X0(T ) such that (L⊗)∨ = L⊗ ⊗ L(λ0).
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Proof. Let w0 be the longest element of W . Then −w0 permutes the elements of
S, and thus we have from Definition 2.1.2

−w0(λα)− λ−w0(α) ∈ X0(T ) for any α ∈ S.

Since L(λα)∨ = L(−w0λα), we get

L(λα)∨ = L(λ−w0(α))⊗ L
(
− w0(λα)− λ−w0(α)

)
.

Setting λ0 :=
∑

α∈S(−w0(λα) − λ−w0(α)) ∈ X0(T ), we deduce (L⊗)∨ = L⊗ ⊗
L(λ0).

Remark 2.1.5. Any change in the choice of the λα that doesn’t affect
∑

α∈S λα
doesn’t change L⊗ either (as is immediately checked).

Note that, if H = H1 ×H2, then one has L⊗ = L⊗1 ⊗E L⊗2 (where we index by
i everything related to Hi, i = 1, 2).

2.2 Multiplicity one weights of L⊗

We determine the weights of L⊗|T which occur with multiplicity 1. We keep the
notation of §2.1.

We start with some lemmas.

Lemma 2.2.1. Let α ∈ R+ and β ∈ S. If sα(λβ′) = λβ′ for all β′ ∈ S except
possibly β, then sα(λβ) = λβ − α.

Proof. We have
〈λβ − sα(λβ), α∨〉 = 2〈λβ, α∨〉,

where 〈λβ, α∨〉 is the coordinate of β∨ in α∨ (using the properties of the funda-
mental weight λβ, see Proposition 2.1.1). Since sα(λβ′) = λβ′ for all β′ ∈ S\{β},
this coordinate is 0 for β′ 6= β and we thus get α∨ ∈ Zβ∨. Since Zβ∨∩R∨ = ±β∨
and α is a positive root, we have α = β which finishes the proof.

For λ, µ ∈ X(T ), we write µ ≤ λ (resp. µ ≥ λ) if λ − µ ∈ ⊕α∈SZ≥0α (resp.
λ − µ ∈ ⊕α∈SZ≤0α). We write µ < λ (resp. µ > λ) if µ ≤ λ and λ 6= µ (resp.
µ ≥ λ and λ 6= µ). Recall that, if λ is dominant, then w(λ) ≤ λ for all w ∈ W .

Lemma 2.2.2. Let λ ∈ X(T ) be a dominant weight and µ be a weight that
appears in L(λ)|T . Then there exist an integer s ≥ 1, a sequence of weights
µ1, . . . , µs in L(λ)|T and a sequence of positive roots α1, . . . , αs−1 satisfying the
following conditions:
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(i) µ1 = λ and µs = µ;

(ii) µi+1 ∈ µi + Zαi and sαi(µi) ≤ µi+1 < µi for all i ∈ {1, . . . , s− 1}.

Proof. Since (ii) is empty when s = 1, we can assume µ < λ. We use the following
result: there exists α ∈ R+ such that µ + α ≤ λ and µ + α is still a weight of
L(λ)|T . Indeed, if µ is not dominant, then we can take any α ∈ R+ such that
〈µ, α∨〉 < 0 (considering the restriction of L⊗ to the subgroup SL2 corresponding
to the root α, we see by [Hum78, Prop. 21.3] that the weight µ + α appears in
L(λ)|T being between µ and sα(µ) = µ − 〈µ, α∨〉α). If µ is dominant, then by
a result of Stembridge (see [Rap00, Lem. 2.3]) there exists α ∈ R+ such that
µ + α ≤ λ and µ + α is still a dominant weight, hence µ + α still appears in
L(λ)|T (use that w(µ+α) ≤ µ+α ∀ w ∈ W together with [Hum78, Prop. 21.3]).
Choosing such an α, the set of weights µ + iα for i ∈ Z that appear in L(λ)|T
is of the form {µ − i1α, µ − (i1 − 1)α, . . . , µ + i2α} for some i1 ∈ Z≥0 and some
i2 ∈ Z≥1, and we have µ− i1α = sα(µ + i2α) ≤ µ < µ + i2α (see again [Hum78,
§21.3]). If µ′2 := µ + i2α < λ, we start again with another positive root β such
that µ′2 + β ≤ λ (and µ′2 + β appears in L(λ)|T ) and get a weight µ′3 such that
sα(µ′3) ≤ µ′2 < µ′3. Since all weights in L(λ)|T are bounded by λ, we necessarily
reach λ after a finite number of iterations, say s− 1. We finally set µs := µ and
µi := µ′s+1−i for i ∈ {1, . . . , s− 1}.

Lemma 2.2.3. Let n ∈ Z≥1 and λ1, . . . , λn ∈ X(T ) be dominant. The weights
that appear in ⊗ni=1L(λi)|T are the weights that appear in L(

∑n
i=1 λi)|T (up to

multiplicity).

Proof. Since L(
∑n

i=1 λi) is a direct summand of ⊗ni=1L(λi), the weights that ap-
pear in L(

∑n
i=1 λi)|T clearly all appear in ⊗ni=1L(λi)|T . Let us prove the converse.

Let µ1 + · · · + µn be a weight of ⊗ni=1L(λi)|T , where µi is a weight of L(λi)|T .
We use the following well-known result: if λ ∈ X(T ) is a dominant weight, then
the weights that appear in L(λ)|T (up to multiplicity) are exactly all the weights
µ ∈ X(T ) satisfying the following condition:

λ− w(µ) ∈ ⊕α∈SZ≥0α ∀w ∈ W. (1)

For w ∈ W , we have λi − w(µi) ∈ ⊕α∈SZ≥0α by applying (1) to L(λi). By
summing, we get

n∑
i=1

λi − w
( n∑
i=1

µi

)
∈ ⊕α∈SZ≥0α ∀w ∈ W,

which implies that
∑n

i=1 µi is a weight of L(
∑n

i=1 λi)|T .

We now state the main theorem of this section.
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Theorem 2.2.4. The weights of L⊗|T that occur with multiplicity 1 are exactly
the weights {w

(∑
α∈S λα

)
: w ∈ W}.

Proof. Let λ :=
∑

β∈S λβ. Since λ occurs with multiplicity 1, the same holds
for all the weights in its W -orbit. Let µ ∈ X(T ) be a weight of L⊗|T , we have
to prove that either µ occurs with multiplicity > 1 or µ is in the W -orbit of
λ. By Lemma 2.2.3, µ occurs in L(λ)|T . We will make an induction on the
smallest integer s(µ) ≥ 1 such that there are weights µ1, . . . , µs(µ) in L(λ)|T and
positive roots α1, . . . , αs(µ)−1 as in Lemma 2.2.2. If s(µ) = 1, then µ = µ1 = λ
and the statement is obvious. Let us assume s(µ) > 1 (i.e. µ < λ) and that
the statement is true for all weights µ′ of L⊗|T with 1 ≤ s(µ′) < s(µ). By
the induction hypothesis applied to µs(µ)−1, we have that either µs(µ)−1 occurs
with multiplicity > 1 or µs(µ)−1 is in the W -orbit of λ. In the first case, we
immediately deduce that sαs(µ)−1

(µs(µ)−1) occurs with multiplicity > 1, as well as
all the weights of the form µs(µ)−1 +Zαs(µ)−1 between sαs(µ)−1

(µs(µ)−1) and µs(µ)−1

(use [Hum78, Prop. 21.3] as in the proof of Lemma 2.2.2). So in particular µ
occurs with multiplicity > 1 in L⊗|T . In the second case, let w ∈ W be such that
µs(µ)−1 = w(λ). Applying w−1 (which doesn’t change the multiplicities), we can
assume µs(µ)−1 = λ and sα(λ) ≤ µ < λ with µ ∈ λ+Zα, where α := w−1(αs(µ)−1)
(which is still a positive root). For β ∈ S, let nβ := 〈λβ, α∨〉 ∈ Z≥0. All the
weights λβ − iα for 0 ≤ i ≤ nβ appear in L(λβ)|T . Let i ∈ {1, . . . ,

∑
β∈S nβ} such

that µ = λ − iα. If i =
∑

β∈S nβ, then µ = sα(λ) is in the W -orbit of λ and we
are done. Let us assume 1 ≤ i ≤ (

∑
β∈S nβ) − 1. We can write i =

∑
β∈S iβ for

some iβ ∈ {0, . . . , nβ}. Since µ > sα(λ), there exists β1 ∈ S such that nβ1 6= 0
and 0 ≤ iβ1 ≤ nβ1 − 1. Since µ < λ, there exists β2 ∈ S such that nβ2 6= 0 and
1 ≤ iβ2 ≤ nβ2 . If we can find such β1, β2 which are distinct, then µ appears at
least twice in L(λ)|T since we can write

µ =
∑
β∈S

(λβ − iβα)

=

( ∑
β∈S\{β1,β2}

(λβ − iβα)

)
+
(
λβ1 − (iβ1 +1)α

)
+
(
λβ2 − (iβ2−1)α

)
.

If we can’t, then we have 1 ≤ iβ1 ≤ nβ1 − 1 and iβ = 0 for all β 6= β1. By Lemma
2.2.1, since nβ1 ≥ 2 there exists β2 ∈ S, β2 6= β1 such that nβ2 ≥ 1. Then µ again
appears at least twice in L(λ)|T since we can write

µ =
∑

β∈S\{β1}

λβ + (λβ1 − iβ1α)

=
∑

β∈S\{β1,β2}

λβ +
(
λβ1 − (iβ1 − 1)α

)
+
(
λβ2 − α

)
.
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Remark 2.2.5. By using Weyl’s character formula, one can actually prove the
stronger result that the weights of L(λ)|T (λ =

∑
β∈S λβ) that occur with multi-

plicity 1 are only the weights in the W -orbit of λ (it is indeed stronger because
of Lemma 2.2.3). Since any weight of L(λ)|T is in the W -orbit of some dominant
weight and since the multiplicity is constant on a W -orbit, we are reduced to
proving that if a weight µ of L(λ)|T is dominant and distinct from λ, then it
occurs with multiplicity > 1. Arguing as in the proof of lemma 2.2.2 and using
again the fact that, if µi occurs with multiplicity > 1 in L(λ)|T , then the same
holds for all the weights between sαi(µi) and µi, we can easily reduce to the case
µ is as big as possible for the order relation ≤. The same use of Stembridge’s
lemma as in loc. cit. then yields µ = λ− β for some β ∈ R+. If β ∈ S, we easily
check that λ− β = sβ(λ) and thus λ− β is not dominant, hence β ∈ R+\S. We
now use Weyl’s character formula for L(λ) which states that the multiplicity of a
weight ν in L(λ)|T is the coefficient of e(ν− (λ− ρ)) in the ratio (see e.g. [Jan03,
§II.5])∏

α∈R+(e(α)− e(−α))∏
α∈R+(e(α

2
)− e(−α

2
))

=
∏
α∈R+

(
e
(α

2

)
+ e
(
− α

2

))
= e(ρ)

∏
α∈R+

(1 + e(−α)),

where ρ := 1
2

∑
α∈R+ α (we have λ − ρ ∈ X0(T )W ⊗Z Q). Since β is not simple,

there exist γ ∈ R+ and δ ∈ S such that β = γ + δ and we see that the coefficient
of e(λ − β − (λ − ρ)) = e(ρ − β) is already 2 in the factor e(ρ)(1 + e(−β))(1 +
e(−γ))(1 + e(−δ)).

Definition 2.2.6. An ordinary weight of L⊗ is a weight w
(∑

α∈S λα
)

as in The-
orem 2.2.4.

Remark 2.2.7. In the sequel, we will actually only need the easy part of Theorem
2.2.4, that is, any ordinary weight of L⊗ occurs with multiplicity 1.

2.3 On the restriction of L⊗ to various subgroups I

For certain subgroups BC of the Borel subgroup B we define BC-representations
(L⊗|BC )ord and LC,wC . We keep the notation of §2.1 and §2.2.

Let B = TU ⊆ H be the Borel subgroup (over E) containing T which corre-
sponds to our choice of positive roots R+, where U ⊆ B is the unipotent radical
of B. If α ∈ R, recall that one has an associated root subgroup Uα ⊆ H such
that α is the only root of Uα (see e.g. [Jan03, §II.1.2]). We have α ∈ R+ if and
only if Uα ⊆ B. A subset C ⊆ R is said to be closed if the following condition
is satisfied: if α ∈ C, β ∈ C and α + β ∈ R then α + β ∈ C. If C ⊆ R+ is a
closed subset, we let UC ⊆ U be the Zariski closed subgroup of B generated by
the root subgroups Uα for α ∈ C. For instance one has U∅ = {1} and UR+ = U .
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The roots of the algebraic group UC are exactly the roots in C ([Jan03, §II.1.7]).
We let BC := TUC ⊆ B, it is a (Zariski) closed subgroup of B.

Lemma 2.3.1. Let B′ ⊆ B be a Zariski closed algebraic subgroup containing T .
Then there exists a closed subset C ⊆ R+ such that B′ = BC.

Proof. Since T ⊆ B′, we have B′ = TU ′, where U ′ := B′ ∩ U is stable under
conjugation by T (or T -stable in the sense of [Bor91]). By [Bor91, Prop. 14.4(2)],
we have Lie(U ′) = ⊕α∈CLie(Uα) for some subset C ⊆ R+. Now let α, β ∈ C such
that α+ β ∈ R. Since U ′ is closed, it contains the closure U ′′ of the commutator
group [Uα, Uβ]. By [Bor91, Prop. 3.17], Lie(U ′′) contains [Lie(Uα),Lie(Uβ)]. Since
[Lie(Uα),Lie(Uβ)] = Lie(Uα+β) ([Bor91, Rk. 14.5(2)], we use here that E has
characteristic 0), we finally get Lie(Uα+β) ⊆ Lie(U ′) and hence α + β ∈ C. This
shows that C is closed.

Lemma 2.3.2. Let C ⊆ R+ be a closed subset and I ⊆ C be a subset satisfying
the following conditions:

(i) a root in I is never the sum of more than one root in C;

(ii) for any distinct α, β ∈ I, one has (Z≥0α⊕ Z≥0β) ∩R = {α, β}.

Then I and C\I are closed subsets of R+, UC\I is a normal subgroup of UC, UI is
a commutative subgroup of UC (isomorphic to

∏
α∈I Uα) and one has a semi-direct

product UC = UC\I o UI .

Proof. Condition (ii) obviously implies that I is closed whereas condition (i)
together with C being closed imply C\I is also closed. Thus UI and UC\I are well-

defined subgroups of UC and one has an isomorphism of varieties UIUC\I
∼→ UC .

Let α ∈ I, u ∈ Uα and β ∈ C\I, then the commutation formula [Jan03, §II.1.2(5)]
together with condition (i) imply uUβu

−1 ⊆ UC\I . This implies that UC\I is
normal in UC and hence that UC = UC\I o UI . Finally, if α, β are distinct roots
in I, by (ii) there exist no positive integers i, j such that iα + jβ ∈ R and by
[Jan03, §II.1.2(5)] again we see that Uα and Uβ must commute with each other
in UC . This finishes the proof.

If L1, L2 ⊆ L⊗|BC are two BC-subrepresentations such that all their
weights are ordinary, it is clear that the same holds for L1 + L2 ⊆ L⊗|BC .

Definition 2.3.3. We let
(L⊗|BC )ord ⊆ L⊗|BC

be the maximal BC-subrepresentation of L⊗|BC such that all its weights are ordi-
nary. We say (L⊗|BC )ord is the ordinary part of the algebraic BC-representation
L⊗|BC .
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By (the easy direction in) Theorem 2.2.2, the representation (L⊗|BC )ord is
multiplicity free.

Example 2.3.4. For C = ∅, one obviously has (L⊗|T )ord = ⊕w∈Ww
(∑

α∈S λα
)
.

Remark 2.3.5. (i) Since the ordinary weights occur with multiplicity 1 in L⊗

and also occur in its direct summand L(
∑

α∈S λα) (Lemma 2.2.3), we see that
(L⊗|BC )ord ⊆ L(

∑
α∈S λα)|BC for all C.

(ii) If H = H1 ×H2 and C = C1 q C2 ⊆ R+ = R+
1 q R+

2 then one easily checks
that (L⊗|BC )ord = (L⊗1 |BC1

)ord ⊗E (L⊗2 |BC2
)ord (where we index by i everything

related to Hi, i = 1, 2).
(iii) One could also define the maximal quotient (L⊗|BC )ord of L⊗|BC such that
all its weights are ordinary. From Proposition 2.1.4, it is easy to deduce an
isomorphism (L⊗|BC )ord

∼= ((L⊗|BC )ord)∨ ⊗ L(−λ0) for λ0 as in that proposition.

We now define certain BC-representations LC,wC . We will show in the next
section that they appear in (L⊗|BC )ord.

We first define the following subset of W :

WC := {w ∈ W : w−1(C) ⊆ R+}. (2)

For instance one has W∅ = W and WR+ = {1}. One immediately checks that
w−1(C) is again a closed subset of R+ for w ∈ WC . Let NH(T ) be the normalizer
of T inH and recall that the algebraic groupNH(T )/T is a finite group isomorphic
to W . For w ∈ W , we let ẇ be a representative of w in NH(T ) (the choice of
which essentially won’t matter). The following (easy) lemma gives an alternative
description of WC .

Lemma 2.3.6. Let C ⊆ R+ be a closed subset. Then one has

WC = {w ∈ W : ẇ−1BCẇ ⊆ B}.

Proof. For w ∈ W and α ∈ R one has ẇ−1Uαẇ = Uw−1(α) ([Jan03, §II.1.4(5)]).
Assume w ∈ WC , then we get ẇ−1BCẇ = Bw−1(C) ⊆ B. Assume ẇ−1BCẇ ⊆ B,
then in particular ẇ−1Uαẇ = Uw−1(α) ⊆ B for any α ∈ C which implies w−1(α) ∈
R+, hence w ∈ WC .

Recall that two roots α, β ∈ R are orthogonal if 〈α, β∨〉 = 0, or equivalently
〈β, α∨〉 = 0.

Lemma 2.3.7. Let C ⊆ R+ be a closed subset, wC ∈ WC and I ⊆ wC(S)∩C be
a subset of pairwise orthogonal roots. Then I satisfies conditions (i) and (ii) of
Lemma 2.3.2.
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Proof. Let α, β be two distinct orthogonal roots in wC(S) ∩ C and assume iα +
jβ ∈ R for some nonzero integers i, j. Applying w−1

C , we get iw−1
C (α)+jw−1

C (β) ∈
R with w−1

C (α) and w−1
C (β) being orthogonal simple roots. In particular i and

j must have the same sign. But we also have sw−1
C (α)(iw

−1
C (α) + jw−1

C (β)) =

−iw−1
C (α) + jw−1

C (β) ∈ R which is impossible since −i and j now have different
signs. Thus condition (ii) of Lemma 2.3.2 holds (even in the stronger form (Zα⊕
Zβ)∩R = {±α,±β}). Now assume α ∈ wC(S)∩C is the sum of several roots in
C, then w−1

C (α) ∈ S is the sum of several roots in w−1
C (C) ⊆ R+ which is again

impossible since w−1
C (α) is simple. This gives condition (i) of Lemma 2.3.2.

For C and I as in Lemma 2.3.7, we thus have UC = UC\I o UI with UI
commutative (Lemma 2.3.2).

Now let C ⊆ R+ be a closed subset, wC ∈ WC , I ⊆ wC(S)∩C be a subset of
pairwise orthogonal roots, and set λ :=

∑
α∈S λα. Let HI be the Levi subgroup

of H that contains T and whose roots are ±I. Then BI = TUI is the Borel
subgroup HI ∩B of HI . We have

〈wC(λ), α∨〉 = 1 ∀α ∈ I. (3)

In particular, wC(λ) is a dominant weight for HI . Let LI be the BI-representation
obtained by restriction from the irreducible HI-representation over E of highest
weight wC(λ). We view LI as a representation of BC via the quotient map
BC � BI = BC/UC\I (see Lemma 2.3.2). If I ′ ⊆ I, it is clear that there is
a BC-equivariant injection LI′ ↪→ LI which is unique up to multiplication by a
nonzero scalar (its image is the BI′-subrepresentation of LI generated by wC(λ)).
We fix a compatible system of such injections, that is, such that for any inclusions
I ′′ ⊆ I ′ ⊆ I the corresponding diagram of injections is commutative (it is always
possible to do so, note that there is only a finite number of I). We then define
the inductive limit

LC,wC := lim
−→
I

LI , (4)

where I runs among the subsets of wC(S)∩C of pairwise orthogonal roots. More
explicitly, LC,wC is the quotient of ⊕ILI by the subrepresentation generated by
elements x⊕−x ∈ LI′ ⊕LI for all x ∈ LI′ and all subsets I ′ ⊆ I ⊆ wC(S)∩C of
pairwise orthogonal roots. Up to isomorphism the representation LC,wC does not
depend on the above choice of compatible system of injections and note that the
canonical maps LI → LC,wC are all injections.

One can give a more explicit description of LI . By the same proof as for
Lemma 3.1.4 below (applied to H and I, use that w−1

C (I) ⊆ S) we have HI
∼=

T ′I × GLI2 for some subtorus T ′I ⊆ T . Correspondingly, T ∼= T ′I ×
∏

α∈I Tα and
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BI
∼= T ′I ×

∏
α∈I Bα. Then

LI ∼= wC(λ)|T ′I ⊗
(⊗

α∈I

Lα

)
, (5)

where Lα is the restriction to Bα of the irreducible GL2-representation over E
of highest weight wC(λ)|Tα . Equation (3) shows that Lα is the unique non-split
extension of sαwC(λ)|Tα by wC(λ)|Tα .

Example 2.3.8. For C = ∅ and w∅ ∈ W∅ = W , one obviously has L∅,w∅ =
w∅
(∑

α∈S λα
)
.

The following lemma follows directly from the construction of LC,wC since the
socle filtration is compatible with subobjects.

Lemma 2.3.9. Let C ⊆ R+ be a closed subset and wC ∈ WC. The BC-
representation LC,wC has socle filtration 0 = Fil−1LC,wC ( Fil0LC,wC ⊆ · · · such
that for j ∈ Z≥0,

FiljLC,wC/Filj−1LC,wC
∼=

⊕
I⊆wC(S)∩C
|I|=j

((∏
α∈I

sα

)
wC

)(∑
α∈S

λα

)

=
⊕

I⊆wC(S)∩C
|I|=j

wC

(∑
α∈S

λα

)
−
∑
α∈I

α

for I running among the subsets of wC(S) ∩ C of pairwise orthogonal roots.

2.4 On the restriction of L⊗ to various subgroups II

We completely describe (L⊗|BC )ord for all closed subsets C ⊆ R+ in terms of the
representations LC,wC of (4). We keep the notation of §2.1, §2.2 and §2.3.

This section entirely consists of the proof of the following theorem.

Theorem 2.4.1. Let C ⊆ R+ be a closed subset, then

(L⊗|BC )ord ∼=
⊕

wC∈WC

LC,wC .

Proof. As the weights w(λ) occur with multiplicity 1 in L⊗, we often identify
w(λ) ∈ X(T ) with the corresponding 1-dimensional subspace of L⊗.

Step 1: We prove socBC (L⊗|BC )ord = ⊕wC∈WC
wC(λ).

We first prove that the stabilizer of the highest weight space λ in H is B. It
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is a closed subgroup of H that contains B, hence it is a parabolic subgroup
([Bor91, Cor. 11.2]). But it cannot contain any of the root subgroups U−α for
α ∈ R+. Indeed, otherwise it would also contain ṡα but we never have sα(λ) = λ
as 〈λ, α∨〉 =

∑
β∈S〈λβ, α∨〉 is always positive (in particular never 0). Thus this

stabilizer must be B itself. Then w(λ) is a weight of socBC (L⊗|BC ) if and only
if BC fixes the subspace w(λ) if and only if ẇ−1BCẇ fixes the subspace λ if and
only if ẇ−1BCẇ ⊆ B if and only if w ∈ WC by Lemma 2.3.6. This finishes the
proof of Step 1.

Step 2: We prove that for w ∈ W such that w(λ) is a weight of (L⊗|BC )ord

the following properties hold:

(i) the elements of C ∩ −w(R+) are contained in −w(S) and are pairwise
orthogonal;

(ii)
(
(
∏

α∈I sα)w
)
(λ) = w(λ) +

∑
α∈I α for all subsets I ⊆ C ∩ −w(R+);

(iii)
(
(
∏

α∈C∩−w(R+) sα)w
)
(λ) is a weight of socBC (L⊗|BC )ord.

Note that the order of the sα in (ii) and (iii) is irrelevant by (i). We induct
on |C ∩ −w(R+)|. If C ∩ −w(R+) = ∅, then w ∈ WC , (i) and (ii) are triv-
ial and (iii) is proven in Step 1. Otherwise, pick β ∈ C ∩ −w(R+). We have
sβw(λ) = w(λ) + nββ, where nβ = −〈w(λ), β∨〉 = 〈λ,−w−1(β)∨〉 > 0, as
β ∈ −w(R+). Thus all weights w(λ) + nβ for 0 ≤ n ≤ nβ have to occur in the
Uβ-subrepresentation generated by w(λ) as immediately follows from the prop-
erties of algebraic representations of SL2 in characteristic 0, hence in (L⊗|BC )ord.
However, none of the intermediate weights with 0 < n < nβ can be ordinary.
Indeed, otherwise we could use the Weyl group action to map such an interme-
diate weight to λ. But since any other weight of L⊗ is smaller than λ in the
dominance order it cannot lie on the line segment spanned by two other weights.
Therefore sβw(λ) = w(λ)+β and, since 〈λ, γ∨〉 > 1 for all γ ∈ R+\S, we see that
−w−1(β) ∈ S. In other words, (i′) β ∈ −w(S). As sw−1(β) is a simple reflection,
it maps precisely one positive root to a negative root, namely −w−1(β). There-
fore C ∩ −w(R+) = (C ∩ −(sβw)(R+)) q {β} is a disjoint union. The induction
hypothesis for sβw shows that:

(i′′) C ∩ −(sβw)(R+) consists of pairwise orthogonal roots in −w(S);

(ii′)
(
(
∏

α∈I sα)sβw
)
(λ) = (sβw)(λ) +

∑
α∈I α = w(λ) +

∑
α∈I∪{β} α for all sub-

sets I ⊆ C ∩ −(sβw)(R+);

(iii)
(
(
∏

α∈C∩−(sβw)(R+) sα)sβw
)
(λ) is a weight of socBC (L⊗|BC )ord.
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It remains to show that β is orthogonal to any α ∈ C ∩ −(sβw)(R+) as then (i)
follows from (i′) and (i′′) and (ii) follows from (ii′) by considering all choices of
β ∈ C ∩ −w(R+). From (ii′) we see that (sαsβw)(λ) = w(λ) + α + β. But, by
applying the above argument with α instead of β, it also equals sα(w(λ) + β) =
w(λ) + α + sα(β), so sα(β) = β, i.e. α and β are orthogonal. This finishes the
proof of Step 2.

Step 3: We prove that for w ∈ W such that w(λ) is a weight of (L⊗|BC )ord the
BC-subrepresentation 〈BC ·w(λ)〉 of (L⊗|BC )ord (or equivalently of L⊗|BC ) gener-
ated by w(λ) is isomorphic to one of the representations LI in (5).
Let I := C ∩ −w(R+), wC := (

∏
α∈I sα)w and note that I ⊆ wC(S) ∩ C by

(i) of Step 2 (use that I = −(
∏

α∈I sα)(I)) and that wC(λ) is a weight of
socBC (L⊗|BC )ord by (iii) of Step 2. By Step 1 it follows that wC ∈ WC . Note
that UC\I acts trivially on the subspace w(λ), as U acts trivially on the highest
weight space λ. By Lemma 2.3.2, it follows that 〈BC ·w(λ)〉 = 〈BI ·w(λ)〉. Also
note that U−I fixes w(λ) (where U−I is the unipotent subgroup generated by the
U−α, α ∈ I), so 〈BI · w(λ)〉 is the irreducible HI-representation of lowest weight
w(λ). Its highest weight is ((

∏
α∈I sα)w)(λ) = wC(λ). By definition of LI we

therefore have 〈BI · w(λ)〉 ∼= LI as BC-representation.

Step 4: We prove the theorem.
For any wC ∈ WC and any subset I ⊆ wC(S)∩C of pairwise orthogonal roots, it is
easy to check that w := (

∏
α∈I sα)wC ∈ W is such that the BC-subrepresentation

of L⊗ generated by w(λ) has socle wC(λ) and constituents
(
(
∏

α∈I′ sα)wC
)
(λ)

for I ′ ⊆ I (use that 〈λ, β∨〉 = 1 for all β ∈ S, we leave here the details to
the reader), in particular sits in (L⊗|BC )ord. Moreover we clearly have I = C ∩
−w(R+) and this BC-subrepresentation is thus LI . Conversely, we have seen
that for any w ∈ W such that w(λ) is a weight of (L⊗|BC )ord there is wC ∈ WC

and a subset I ⊆ wC(S) ∩ C such that the BC-subrepresentation of (L⊗|BC )ord

generated by w(λ) is LI . Let W (wC) ⊆ W be the subset of w such that the
BC-subrepresentation generated by w(λ) sits in (L⊗|BC )ord and has socle wC(λ),
and let L⊗C,wC ⊆ (L⊗|BC )ord be the sum of all these BC-subrepresentations for all
w ∈ W (wC). By what is just above we have

L⊗C,wC = lim
−→
I

LI , (6)

where I runs among the subsets of wC(S) ∩ C of pairwise orthogonal roots and
where the injections are the canonical inclusions inside (L⊗|BC )ord. Since, for
I ′ ⊆ I, there is only one injection LI′ ↪→ LI up to multiplication by a nonzero
scalar (as both representations have the same socle), we deduce from Step 3 that
the inductive limit lim

−→
LI of (6) is isomorphic to the inductive limit lim

−→
LI of (4)

and that we have a BC-isomorphism L⊗C,wC
∼= LC,wC for all wC ∈ WC . Now, the
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canonical map given by the direct sum of the inclusions⊕
wC∈WC

L⊗C,wC −→ (L⊗|BC )ord

is BC-equivariant, surjective (as any w(λ) being a weight of (L⊗|BC )ord sits in one
L⊗C,wC ) and injective (as it is an isomorphism on the socles). This finishes the
proof of the theorem.

Remark 2.4.2. (i) Note that we have used in Step 2 of the above proof that E
has characteristic 0.
(ii) If H = H1 × H2, C = C1 q C2 ⊆ R+ = R+

1 q R+
2 and wC = (wC1 , wC2) ∈

WC = WC1 ×WC2 ⊆ W = W1 ×W2, one has LC,wC = LC1,wC1
⊗E LC2,wC2

(where
we index by i everything related to Hi, i = 1, 2), see Remark 2.3.5(ii).

2.5 Variant mod p

We give a variant of the previous results when the ground field is kE and not E.

We consider H/OE a split connected reductive algebraic group, T ⊆ H a
split maximal torus over OE and B a Borel subgroup over OE containing T .
We define

(
X(T ), R,X∨(T ), R∨

)
, S, R+ and W as before. We assume that the

derived subgroup Hder is simply connected and denote by λα ∈ X(T ), α ∈ S the
fundamental weights.

For λ ∈ X(T ) a dominant weight, we consider the following algebraic repre-
sentation of H over OE:

L(λ)/OE :=
(
indHB−λ

)
/OE

,

where B− is the Borel opposite to B and ind means the algebraic induction
functor of [Jan03, §I.3.3] and we set

L(λ) := L(λ)/OE ⊗OE kE =
(
indHB−λ

)
/kE

,

where the last equality follows from [Jan03, II.8.8(1)]. We then define as in §2.1,

L
⊗

:=
⊗
α∈S

L(λα) =
(⊗
α∈S

L(λα)/OE

)
⊗OE kE. (7)

It follows from Theorem 2.2.4 and the second equality in (7) that the weights

w(
∑

α λα) for w ∈ W are the only weights that occur exactly once in L
⊗|T and

we call them ordinary weights of L
⊗

. If C ⊆ R+ is a closed subset and if BC ⊆ B
is the associated closed subgroup of B (§2.3), as in Definition 2.3.3 we define
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(L
⊗|BC )ord ⊆ L

⊗|BC to be the maximal BC-subrepresentation of L
⊗|BC such that

all its weights are ordinary.

For wC ∈ WC (see (2)) and I ⊆ wC(S) ∩ C a subset of pairwise orthogonal
roots, we define an algebraic BI-representation LI over kE as in (5) (using (3))
which is still the restriction to BI of the irreducible HI-representation over kE of
highest weight wC(λ). If I ′ ⊆ I then LI′ embeds into LI (uniquely up to nonzero
scalar) and we set LC,wC := lim

−→
I

LI as in (4). Lemma 2.3.9 still holds for LC,wC .

Definition 2.5.1 ([SS70, §4.3]). We say that p is a good prime for H if 〈λα, β∨〉 <
p for all α ∈ S and β ∈ R+.

Explicitly, p fails to be a good prime only in the following cases: p = 2 and
the root system of H has an irreducible component not of type Ar; p = 3 and the
root system of H has an irreducible component of type Er, F4, G2; p = 5 and the
root system of H has an irreducible component of type E8. In particular, note
that p is a good prime for H if p > 5 or if H = GLn.

Theorem 2.5.2. Let C ⊆ R+ be a closed subset.
(i) We have an embedding of BC-representations over kE,⊕

wC∈WC

LC,wC ↪→ (L
⊗|BC )ord,

which is an isomorphism on the BC-socles.
(ii) Assume that p is a good prime for H. Then⊕

wC∈WC

LC,wC
∼−→ (L

⊗|BC )ord.

Proof. (i) Step 1 in the proof of Theorem 2.4.1 works over kE and

yields socBC (L
⊗|BC )ord = ⊕wC∈WC

wC(λ) (here λ =
∑

α∈S λα). Let wC ∈ WC and
I ⊆ wC(S) ∩ C a subset of pairwise orthogonal roots, then the same proof as in

Step 3 of Theorem 2.4.1 shows that the BI-subrepresentation of L
⊗|BI generated

by ((
∏

α∈I sα)wC)(λ) is LI . (To see that 〈BI · ((
∏

α∈I sα)wC)(λ)〉 is irreducible as
HI-representation, note that by [Jan03, Lem. II.2.13] it is a quotient of the Weyl
module of HI of highest weight wC(λ) and that wC(λ) is a minuscule weight for

HI .) So we have LI ↪→ L
⊗|BI for all such I and thus LC,wC ↪→ L

⊗|BC . We deduce

a map
⊕

wC∈WC
LC,wC → (L

⊗|BC )ord which is injective as it is an isomorphism on
the socles.
(ii) The crucial point in the proof of Theorem 2.4.1 where we use characteristic 0
is in Step 2, see Remark 2.4.2(i). (We freely use the notation of this proof now.)

First, using the argument in Step 2 that an ordinary weight of L
⊗

cannot lie on
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the line segment spanned by two other distinct weights, it suffices to show that
w(λ) + β is a weight of the Uβ-subrepresentation generated by w(λ). (Note that
sβw(λ) = w(λ) + nββ is the highest weight of this subrepresentation.) Suppose
that A is a kE-algebra (it would suffice to take A = kE) and that u ∈ Uβ(A). For
α ∈ S suppose that xα ∈ L(λα) ⊗kE A is of weight λα, and let x := ⊗α∈Sxα ∈
L
⊗ ⊗kE A. By [Jan03, II.1.19(5)–(6)] we know that uxα − xα is contained in the

sum of weight spaces of weights w(λα) + iβ with i > 0. Thus

[ux− x]w(λ)+β =
∑
α∈S

(
[uxα − xα]w(λα)+β ⊗

⊗
δ∈S\{α}

xδ

)
,

where [·]µ denotes the projection to the µ-weight space. Since the sum∑
α∈S

(
L(λα)w(λα)+β ⊗

⊗
δ∈S\{α}

L(λδ)w(λδ)

)
⊆ L

⊗

is direct, it suffices to show that w(λα)+β is a weight of the Uβ-subrepresentation
generated by w(λα) for some α ∈ S. Thus by the properties of algebraic represen-
tations of SL2 in characteristic p it is enough to show that −p < 〈w(λα), β∨〉 < 0
for some α ∈ S. The lower bounds holds for all α since p is a good prime, and
the upper bounds holds for at least one α since w−1(β) ∈ −R+.

Remark 2.5.3. Recall that the height of a positive root α =
∑

β∈S nββ is by
definition the positive integer h(α) :=

∑
β∈S nβ. We let h := 1 + max{h(α) : α ∈

R+} ∈ Z>0 (when the root system associated to R is irreducible, h is called its
Coxeter number). Note that, for α ∈ S, the representation L(λα) is no longer
irreducible in general, but it is irreducible e.g. when p ≥ 2h−2 (by [Jan03, II.5.6])
or when H = GLn (as λα is minuscule then). But the above argument does not
depend on the choice of H-stable OE-lattice L(λα)/OE in L(λα). It only uses that
L(λα) is an H-representation over kE that has λα as its unique highest weight
and such that the λα-weight space has dimension one.

3 The G(Qp)-representation Π(ρ)ord

We construct the representation Π(ρ)ord of G(Qp) over E associated to a suffi-
ciently generic ordinary representation ρ of Gal(Qp/Qp) over E.

3.1 Some preliminaries

We first give a few representation-theoretic preliminaries.
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We fix G/Qp a connected split reductive algebraic group, T ⊆ G a split
maximal torus over Qp and we let

(
X(T ), R,X∨(T ), R∨

)
be the root datum of

G. We fix a choice S ⊆ R of simple roots, we let R+ ⊆ R be the positive roots
and B ⊆ G (resp. B− ⊆ G) the Borel subgroup corresponding to R+ (resp. −R+).
The triple (G,B, T ) is determined up to inner automorphism by the based root
datum

(
X(T ), S,X∨(T ), S∨

)
. The dual based root datum

(
X∨(T ), S∨, X(T ), S

)
determines a dual triple (Ĝ, B̂, T̂ ), where Ĝ is the dual group of G (over E) and

X(T̂ ) ' X∨(T ). We let W be the Weyl group of (G, T ) or equivalently of (Ĝ, T̂ ).

We endow the groups G(Qp), B(Qp), B
−(Qp), T (Qp), Ĝ(E), B̂(E) and T̂ (E)

with their natural structure of p-adic analytic groups (in particular they are all
topological groups).

Let χ : T (Qp)→ O×E be a continuous character that takes values in O×E ⊆ E×

(we say χ is unitary). By inflation B−(Qp) � T (Qp)
χ−→ O×E , we consider χ as

a continuous character of B−(Qp). Following [Sch06], we define the continuous
parabolic induction,(

Ind
G(Qp)

B−(Qp) χ
)C0

:= {f : G(Qp)→ E, f is continuous and

f(bg) = χ(b)f(g) ∀b ∈ B−(Qp), ∀g ∈ G(Qp)} (8)

that we endow with an E-linear left action of G(Qp) by (gf)(g′) := f(g′g) (g, g′ ∈
G(Qp)). This is a p-adic Banach space with a unit ball given by

{f : G(Qp)→ OE, f is continuous and f(bg) = χ(b)f(g) ∀b, g}. (9)

By [Sch06, Prop. 2.4], the above G(Qp)-action makes
(

Ind
G(Qp)

B−(Qp) χ
)C0

an ad-

missible unitary continuous representation of G(Qp) (over E). Recall that, by
continuous, we mean that the “evaluation” map

G(Qp)×
(

Ind
G(Qp)

B−(Qp) χ
)C0

−→
(

Ind
G(Qp)

B−(Qp) χ
)C0

is continuous. By admissible, we mean that the continuous dual((
Ind

G(Qp)

B−(Qp) χ
)C0
)∗

:= Homcont

((
Ind

G(Qp)

B−(Qp) χ
)C0

, E
)

is of finite type over the Iwasawa algebra E⊗OEOE[[G(Zp)]] of G(Zp) (here G(Zp)
is the Zp-points of an integral model of G over Z). Indeed, Iwasawa decompo-
sition shows that restriction of functions in (8) from G(Qp) to G(Zp) yields an

embedding of
(

Ind
G(Qp)

B−(Qp) χ
)C0

into the Banach space of continuous functions from

G(Zp) to E. As the dual of this latter space is the Iwasawa algebra of G(Zp),
this implies that

((
Ind

G(Qp)

B−(Qp) χ
)C0)∗

is a quotient of E ⊗OE OE[[G(Zp)]]. Finally,

by unitary, we mean that
(

Ind
G(Qp)

B−(Qp) χ
)C0

contains an open ball stable by G(Qp),
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for instance the unit ball (9). Recall that admissible unitary continuous repre-
sentations of G(Qp) on p-adic Banach spaces over E form an abelian category
([Sch06], in fact unitarity is unnecessary).

Theorem 3.1.1. (i) The G(Qp)-representation
(

Ind
G(Qp)

B−(Qp) χ
)C0

is topologically
of finite length.
(ii) Assume that, for all α ∈ S, the reduction χ ◦ α∨ : Q×p → k×E is not the trivial

character, then
(

Ind
G(Qp)

B−(Qp) χ
)C0

is topologically irreducible.

(iii) One has
(

Ind
G(Qp)

B−(Qp) χ
)C0 ∼=

(
Ind

G(Qp)

B−(Qp) χ
′)C0

if and only if χ = χ′.

Proof. (i) It is enough to prove that the reduction mod $E of the unit ball (9)
is of finite length as a smooth representation of G(Qp) over kE. When G = GLn,
this is due to one of us ([Her11, Cor. 1.2(i)]). The general split case is due to
Abe ([Abe13, Cor. 5.13]).
(ii) It is enough to prove that the reduction mod $E of the unit ball (9) is
irreducible as a smooth representation of G(Qp) over kE. When G = GLn, this
is due to Ollivier ([Oll06, Thm. 4]). The general split case is again due to Abe
([Abe13, Thm. 1.3]).
(iii) It is a direct consequence of [Eme10a, Cor. 4.3.5].

Let us mention the following “folklore” conjecture which is a (straightforward)
strengthening of a special case of [Sch06, Conj. 2.5].

Conjecture 3.1.2. Let χ : T (Qp)→ O×E ⊆ E× be a unitary continuous charac-

ter. Then the G(Qp)-representation
(

Ind
G(Qp)

B−(Qp) χ
)C0

is topologically irreducible if

and only if χ ◦ α∨ 6= 1 for every α ∈ S.

We now make the following two assumptions on G: its centre is connected and
its derived subgroup is simply connected (or equivalently by Proposition 2.1.1 the

centre of its dual Ĝ is connected). As we have seen, this is equivalent to the fact

that both G and Ĝ admit fundamental weights (Proposition 2.1.1). Following
[BG], we define a twisting element (for G) as an element θ ∈ X(T ) such that
for any α ∈ S one has 〈θ, α∨〉 = 1. It is obviously unique modulo X0(T ). If
(λα)α∈S denote the fundamental weights of G, it is straightforward to check that
θ :=

∑
α∈S λα is such a twisting element.

Remark 3.1.3. A split connected reductive group with connected centre can
have a twisting element without having fundamental weights. For instance con-
sider the group (GL2 × GL2)/Gm, where Gm embeds diagonally into the centre
of GL2 ×GL2.
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For α ∈ R, we denote by Uα ⊆ G the root subgroup as in §2.3. If C ⊆ R
is a closed subset, we denote by GC the Zariski closed algebraic subgroup of G
generated by T , Uα and U−α for α ∈ C. If C = {α}, we write Gα instead of
G{α}. If J ⊆ S is a subset of pairwise orthogonal roots, then the same proof as
in Lemma 2.3.7 shows that J is closed and thus GJ is defined (and its positive
roots are exactly J). Moreover, in this case GJ is a Levi subgroup.

Lemma 3.1.4. Let J ⊆ S be a subset of pairwise orthogonal roots. Then there
is a subtorus T ′J ⊆ T which is central in GJ such that GJ

∼= T ′J ×GLJ2 .

Proof. Denote by ZJ (resp. ZR) the sublattice of X(T ) generated by the roots in
J (resp. in R). Since J ⊆ S we have that ZJ is a direct summand of ZR. Since
ZR is a direct summand of X(T ) (as G has a connected centre), the same holds
for ZJ and hence GJ also has a connected centre Z(GJ). Replacing G by its dual

Ĝ gives that the derived subgroup Gder
J of GJ is simply connected (Proposition

2.1.1). From the assumption on J , we easily get Gder
J
∼= SLJ2 and thus its centre

Z(Gder
J ) is µJ2 . Consider the natural exact sequence

1 −→ Z(Gder
J ) −→ Z(GJ)×Gder

J −→ GJ −→ 1,

where Z(Gder
J ) ∼= (

⋂
J ker(α)) ∩ Gder

J
∼= Z(GJ) ∩ Gder

J embeds diagonally into
Z(GJ)×Gder

J . As Z(GJ) is connected (a torus), by the elementary divisor theo-
rem, we can find an isomorphism Z(GJ) ∼= T ′J ×GJ

m for some torus T ′J ⊆ T ⊆ GJ

such that the natural map Z(Gder
J ) ↪→ Z(GJ) is identified with the natural em-

bedding µJ2 ↪→ GJ
m ↪→ T ′J ×GJ

m. Therefore we have

GJ
∼= T ′J ×

(
Gm × SL2

µ2

)J
∼= T ′J ×GLJ2 .

Recall that, if A is any commutative Qp-algebra, one has

T (A) = HomSpec(Qp)

(
Spec(A), Spec(Qp[X(T )])

)
= HomZ

(
X(T ), A×

)
= HomZ

(
X(T ),Z

)
⊗Z A×

= X(T̂ )⊗Z A×,

whereA× is the multiplicative group of units inA. If χ̂ is any continuous character

χ̂ : Gal(Qp/Qp) � Gal(Qp/Qp)
ab −→ T̂ (E),

we associate to χ̂ a continuous character χ : T (Qp)→ E× by taking the composite
of the maps

T (Qp) ∼= X(T̂ )⊗ZQ×p ↪→ X(T̂ )⊗ZGal(Qp/Qp)
ab → X(T̂ )⊗Z T̂ (E)→ E×, (10)
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where the first injection is induced by local class field theory. One can check that
the character χ is uniquely determined by the relation χ ◦ λ = λ ◦ χ̂ (we will

always suppress the Artin map from such formulas) for all λ ∈ X(T̂ ) = X(T )∨

and that, if w ∈ W , the character w(χ) (defined as w(χ)(t) := χ(ẇ−1tẇ) for ẇ
as in §2.3) corresponds to w(χ̂) (defined as w(χ̂)(g) := ẇχ̂(g)ẇ−1).

Example 3.1.5. If G = GLn and χ̂ =

(
χ̂1

...
χ̂n

)
then we have (via Q×p ↪→

Gal(Qp/Qp)
ab)

χ

x1
...

xn

 = χ̂1(x1)χ̂2(x2) · · · χ̂n(xn).

3.2 Good conjugates of generic ordinary ρ

We associate closed subsets of R+∨ to a sufficiently generic “ordinary” represen-
tation of Gal(Qp/Qp). We keep the notation of §3.1.

We consider a continuous homomorphism ρ from Gal(Qp/Qp) to Ĝ(E):

ρ : Gal(Qp/Qp) −→ Ĝ(E).

When ρ takes values in our fixed Borel subgroup B̂(E) of Ĝ(E) we say ρ is
ordinary (this terminology is usually rather used in a more specific situation,
but we don’t want to introduce a new terminology). For any ordinary ρ, we let

Cρ ⊆ R+∨ be the closed subset of roots such that B̂Cρ is the smallest closed

subgroup of B̂ containing T̂ such that ρ takes values in B̂Cρ(E), that is such that
we have

ρ : Gal(Qp/Qp) −→ B̂Cρ(E) ⊆ B̂(E) ⊆ Ĝ(E).

Note that Cρ exists thanks to Lemma 2.3.1. Equivalently, Cρ is the smallest

closed subset of R+∨ such that B̂Cρ(E) contains all the ρ(g) for g ∈ Gal(Qp/Qp).

For any closed subset C ⊆ R+∨ we denote by ÛC the unipotent radical of B̂C

and set Û := ÛR+∨ . For any α∨ ∈ R+∨ we denote by Uα∨ ⊆ Û the root subgroup
associated to α∨. Recall that the product induces an isomorphism of varieties
(for any order on the α∨):

ϕ :
∏
α∨∈C

Uα∨
∼−→ ÛC . (11)

There is a concrete way to get Cρ using (11). First let b = tu ∈ B̂(E) with t ∈
T̂ (E), u ∈ Û(E) and write u =

∏
uα∨ in (11) (for C = R+∨) with uα∨ ∈ Uα∨(E).
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Let
Cb,ϕ := {α∨ ∈ R+∨ : uα∨ 6= 1}.

Then we see that b ∈ B̂C is equivalent to Cb,ϕ ⊆ C for any closed subset C ⊆ R+∨.
Therefore Cρ is the smallest closed subset of R+∨ containing all the subsets Cρ(g),ϕ

for all g ∈ Gal(Qp/Qp).

Lemma 3.2.1. Let C ⊆ R+∨ be a closed subset and let α∨1 , . . . , α
∨
n be distinct

roots in R+∨\C. Then there is a permutation σ on {1, . . . , n} such that for
all i, α∨σ(i) is not in the smallest closed subset containing C and the α∨σ(j) for
1 ≤ j ≤ i− 1.

Proof. We first prove that if α∨ and β∨ are two distinct roots in R+∨\C such
that β∨ belongs to the smallest closed subset containing C and α∨ then h(α∨) <
h(β∨) (where h(·) is the height of a positive root, see Remark 2.5.3). Indeed, by
assumption we have β∨ = nα∨+γ∨1 + · · ·+γ∨r for some γ∨i ∈ C and some n ∈ Z>0

hence h(β∨) = nh(α∨)+h(γ∨1 )+· · ·+h(γ∨r ) > h(α∨). To get the statement, we can
thus take any permutation σ such that h(α∨σ(1)) ≥ h(α∨σ(2)) ≥ · · · ≥ h(α∨σ(n)).

For ρ ordinary, we define χ̂ρ : Gal(Qp/Qp)
ρ−→ B̂(E) � T̂ (E).

Lemma 3.2.2. Let ρ : Gal(Qp/Qp) → B̂Cρ(E) ⊆ B̂(E) be a continuous homo-
morphism and assume that α∨ ◦ χ̂ρ 6= 1 for all α∨ ∈ R+∨\Cρ. If α∨ ∈ R+∨\Cρ
and uα∨ ∈ Uα∨, uα∨ 6= 1, then the subset Cu

α∨ρu
−1
α∨

is equal to the smallest closed

subset containing Cρ and α∨.

Proof. Denote by Cρ,α∨ the smallest closed subset containing Cρ and α∨ and let

C̃ρ,α∨ ⊆ Cρ,α∨ be the subset of roots that are not the sum of at least two roots of

Cρ,α∨ . Then Cρ,α∨ is also the smallest closed subset containing α∨ and C̃ρ,α∨∩Cρ.
It is thus enough to prove:

(i) Cu
α∨ρu

−1
α∨
⊆ Cρ,α∨ ;

(ii) {α∨} ∪
(
C̃ρ,α∨ ∩ Cρ

)
⊆ Cu

α∨ρu
−1
α∨

.

For g ∈ Gal(Qp/Qp), write ρ(g) = t(g)
∏

β∨∈Cρ ρ(g)β∨ with t(g) ∈ T̂ (E) and

ρ(g)β∨ ∈ Uβ∨(E) (decomposition (11) for C = Cρ), and note that t(g) = χ̂ρ(g).

For all g ∈ Gal(Qp/Qp) we have uα∨t(g)u−1
α∨ ∈ T̂ (E)Uα∨(E) and because of the

commutation formula [Jan03, II.1.2(5)] and the commutativity of Uα∨ , we also
have

uα∨
( ∏
β∨∈Cρ

ρ(g)β∨
)
u−1
α∨ ∈

∏
β∨∈Cρ,α∨\{α∨}

Uβ∨(E) ∀g ∈ Gal(Qp/Qp). (12)
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So uα∨ρ(g)u−1
α∨ ∈ T̂ (E)

∏
β∨∈Cρ,α∨

Uβ∨(E) for all g ∈ Gal(Qp/Qp) which already

implies (i) by the discussion preceding Lemma 3.2.1. Now if β∨ ∈ C̃ρ,α∨ ∩Cρ, the
commutation formula [Jan03, II.1.2(5)] again shows that ρ(g)β∨ is not touched
in the conjugation by elements of Uα∨ , that is, ρ(g)β∨ is still the entry of (12)

in the factor Ûβ∨(E). Since ρ(g)β∨ 6= 1 for some g ∈ Gal(Qp/Qp) (otherwise β∨

wouldn’t be in Cρ), this implies C̃ρ,α∨∩Cρ ⊆ Cu
α∨ρu

−1
α∨

by the discussion preceding

Lemma 3.2.1. In order to get (ii), it remains to prove that α∨ ∈ Cu
α∨ρu

−1
α∨

. Let

us choose an isomorphism xα∨ : Ga
∼→ Uα∨ . Then uα∨ = xα∨(a) for some a ∈ E×

and we compute:

uα∨t(g)u−1
α∨ = t(g)

(
t(g)−1uα∨t(g)

)
u−1
α∨

= t(g)
(
t(g)−1xα∨(a)t(g)

)
xα∨(−a)

= t(g)xα∨
(
α∨(t(g)−1)a

)
xα∨(−a)

= t(g)xα∨
(
a(α∨(t(g))−1 − 1)

)
.

Since a 6= 0 and since there exists g ∈ Gal(Qp/Qp) such that α∨(t(g))−1 =
α∨(χ̂ρ(g))−1 6= 1 by assumption, we see that the entry in Uα∨(E) of uα∨ρ(g)u−1

α∨

in the decomposition (11) is nontrivial for some g ∈ Gal(Qp/Qp), and hence
α∨ ∈ Cu

α∨ρu
−1
α∨

.

Proposition 3.2.3. Let ρ : Gal(Qp/Qp)→ B̂(E) be a continuous homomorphism

and assume that α∨ ◦ χ̂ρ 6= 1 for all α ∈ R+. Then there is b0 ∈ B̂(E) such that

Cb0ρb−1
0
⊆ Cbρb−1 for all b ∈ B̂(E).

Proof. Since T̂ normalizes the B̂C , one can restrict to b = u ∈ Û(E). Since

Cuρu−1 ⊆ Cρ for all u ∈ ÛCρ(E), replacing ρ by a suitable conjugate u0ρu
−1
0 with

u0 ∈ ÛCρ(E) we can assume

Cuρu−1 = Cρ ∀u ∈ ÛCρ(E). (13)

It is enough to prove that Cρ ⊆ Cuρu−1 for all u ∈ Û(E). By Lemma 3.2.1, we can
enumerate the roots α∨n , . . . , α

∨
1 in R+∨\Cρ so that α∨i is not in the smallest closed

subset containing Cρ and the α∨j for 1 ≤ j ≤ i−1. Since (11) holds for any order,

we can write any u ∈ Û(E) as u = unun−1 · · ·u1uCρ , where ui ∈ Uα∨i (E) and

uCρ ∈ ÛCρ(E). Moreover we have CuCρρu
−1
Cρ

= Cρ by (13). Then it follows from

Lemma 3.2.2 (and a straightforward induction) that Cuρu−1 is the smallest closed
subset containing Cρ and {α∨i : ui 6= 1}. A fortiori we thus have Cρ ⊆ Cuρu−1 .

Note that if ρ ordinary is such that α∨ ◦ χ̂ρ 6= 1 for all α ∈ R+, then this

condition is satisfied by any other conjugate ρ′ of ρ taking values in B̂(E) (as is
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easily deduced from the fact that χ̂ρ′ is conjugate to χ̂ρ in Ĝ(E) by the Jordan
decomposition).

Definition 3.2.4. Let ρ : Gal(Qp/Qp)→ Ĝ(E) be a continuous homomorphism.

Assume that ρ′ is a conjugate of ρ taking values in B̂(E) and such that α∨◦χ̂ρ′ 6= 1
for all α ∈ R+. We say that ρ′ is a good conjugate (of ρ) if Cρ′ ⊆ Cbρ′b−1 for all

b ∈ B̂(E).

By Proposition 3.2.3, good conjugates always exist (under the assumptions of
Definition 3.2.4).

Lemma 3.2.5. Let ρ : Gal(Qp/Qp) → Ĝ(E) be a continuous homomorphism
and let ρ′ be a good conjugate of ρ as in Definition 3.2.4. Then any bρ′b−1 for
b ∈ B̂Cρ′

(E) and any ẇ−1ρ′ẇ for w ∈ WCρ′
⊆ W (see (2)) is a good conjugate of

ρ. Moreover we have Cbρ′b−1 = Cρ′ and Cẇ−1ρ′ẇ = w−1(Cρ′).

Proof. The statement is obvious for b ∈ B̂Cρ′
(E). If w ∈ WCρ′

, from the dis-

cussion preceding Lemma 3.2.1 and ẇ−1Uα∨ẇ = Uẇ−1(α∨), we already see that
Cẇ−1ρ′ẇ = w−1(Cρ′) (we don’t need here that ρ′ is a good conjugate). From the
proof of Proposition 3.2.3, it is enough to have Cuẇ−1ρ′ẇu−1 = Cẇ−1ρ′ẇ for all

u ∈ Ûw−1(Cρ′ )
(E). But uẇ−1ρ′ẇu−1 = ẇ−1(ẇuẇ−1)ρ′(ẇu−1ẇ−1)ẇ with ẇuẇ−1 ∈

ÛCρ′ (E) and since ρ′ is a good conjugate we have C(ẇuẇ−1)ρ′(ẇu−1ẇ−1) = Cρ′ . We
deduce

Cuẇ−1ρ′ẇu−1 = w−1
(
C(ẇuẇ−1)ρ′(ẇu−1ẇ−1)

)
= w−1(Cρ′) = Cẇ−1ρ′ẇ,

which finishes the proof.

Proposition 3.2.6. Let ρ : Gal(Qp/Qp)→ Ĝ(E) be a continuous homomorphism
and let ρ′, ρ′′ be good conjugates of ρ as in Definition 3.2.4. Then there exist
b ∈ B̂Cρ′

(E) and w ∈ WCρ′
such that ρ′′ = ẇ−1(b−1ρ′b)ẇ. In particular, one has

Cρ′′ = w−1(Cρ′).

Proof. By assumption there is x ∈ Ĝ(E) such that ρ′′(g) = xρ′(g)x−1 for all

g ∈ Gal(Qp/Qp). By the Bruhat decomposition Ĝ(E) = B̂(E)WB̂(E), we can

write x = tu′ẇ−1u with t ∈ T̂ (E), w ∈ W and u, u′ ∈ Û(E). As in the proof
of Proposition 3.2.3, we use Lemma 3.2.1 to enumerate the roots α∨n , . . . , α

∨
1 in

R+∨\Cρ′ so that α∨i is not in the smallest closed subset containing Cρ′ and the
α∨j for 1 ≤ j ≤ i− 1, and we write u = unun−1 · · ·u1uCρ′ , where ui ∈ Uα∨i (E) for

all i and uCρ′ ∈ ÛCρ′ (E). Replacing ρ′ by uCρ′ρ
′u−1
Cρ′

, we can assume uCρ′ = 1. By

Lemma 3.2.2 and an obvious induction, Cun···u1ρ′u
−1
1 ···u

−1
n

is the smallest closed sub-

set containing Cρ′ and the α∨i such that ui 6= 1. Since ẇ−1(un · · ·u1ρ
′u−1

1 · · ·u−1
n )ẇ
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still takes values in B̂(E), the discussion preceding Lemma 3.2.1 together with
the ẇ−1-conjugate of (11) show that we must have w−1

(
Cun···u1ρ′u

−1
1 ···u

−1
n

)
⊆ R+∨,

i.e. w ∈ WCρ′
and w−1(α∨i ) ∈ R+∨ for all i such that ui 6= 1. Setting vi := ẇ−1uiẇ,

we have
ρ′′ = t(u′vn · · · v1)(ẇ−1ρ′ẇ)(v−1

1 · · · v−1
n u′−1)t−1,

where u′vn · · · v1 ∈ B̂(E) and where ρ′′, ẇ−1ρ′ẇ are good conjugates of ρ (the
latter by Lemma 3.2.5). This already implies Cρ′′ = Cẇ−1ρ′ẇ = w−1(Cρ′). Writing
again u′vn · · · v1 = u′nu

′
n−1 · · ·u′1u′w−1(Cρ′ )

, where u′i ∈ Uβ∨i (E) and u′w−1(Cρ′ )
∈

Ûw−1(Cρ′ )
(E) with β∨n , . . . , β

∨
1 ∈ R+∨\w−1(Cρ′) as in Lemma 3.2.1, we see from

Lemma 3.2.2 that we must have u′i = 1 for all i (otherwise Cρ′′ would be strictly
bigger than Cu′

w−1(Cρ′ )
ẇ−1ρ′ẇu′−1

w−1(Cρ′ )
= w−1(Cρ′)). Setting

b := ẇtu′w−1(Cρ′ )
ẇ−1 ∈ ẇB̂w−1(Cρ′ )

(E)ẇ−1 = B̂Cρ′
(E)

(see the proof of Lemma 2.3.6 for the last equality) gives the statement.

3.3 Construction of Π(ρ)ord for ρ generic ordinary

In this section, we associate to a generic ordinary representation ρ of Gal(Qp/Qp)
a representation Π(ρ)ord of G(Qp) which is “modelled” on the representation
(L⊗|B̂Cρ )ord of §2.3. We keep the notation and assumptions of §3.1 and of §3.2

and we denote by θ a twisting element for G.

We fix a good conjugate ρ as in Definition 3.2.4:

ρ : Gal(Qp/Qp) −→ B̂Cρ(E) ⊆ B̂(E) ⊆ Ĝ(E),

that is, such that the closed subset Cρ ⊆ R+∨ is minimal under conjugation

by B̂(E). We denote by χρ the character (10) on T (Qp) corresponding to the

character χ̂ρ : Gal(Qp/Qp)
ρ−→ B̂Cρ(E) � T̂ (E). Note that χρ is unitary since

Gal(Qp/Qp) is a compact group and that, from the condition in Definition 3.2.4,
we have χρ ◦ α∨ 6= 1 for all α ∈ R+. Recall that ε is the p-adic cyclotomic
character that we view as a continuous character ε : Q×p → O×E ↪→ E× via class
field theory.

Definition 3.3.1. We say that ρ is generic if α∨ ◦ χ̂ρ /∈ {1, ε, ε−1} for all α ∈ R+

(or equivalently all α ∈ R).

This is equivalent to χρ ◦ α∨ /∈ {1, ε, ε−1} for all α ∈ R+. In fact, one could
slightly weaken this genericity condition (see e.g. Remark 3.3.4 below).
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Lemma 3.3.2. Let ρ′ be another good conjugate of ρ as in Definition 3.2.4. Then
ρ is generic if and only if ρ′ is generic.

Proof. By Proposition 3.2.6, replacing ρ by a conjugate in B̂Cρ(E) (which doesn’t
change χ̂ρ nor Cρ), there is w ∈ WCρ such that ρ′ = ẇ−1ρẇ. Since χ̂ρ′ =
ẇ−1χ̂ρẇ = w−1(χ̂ρ), we have α∨ ◦ χ̂ρ′ = w(α)∨ ◦ χ̂ρ for α ∈ R from which the
statement is obvious.

We now assume that our good conjugate ρ is generic.

We let (λ̂α)α∈S be fundamental weights for Ĝ and define (L⊗|B̂Cρ )ord as in §2.3.

We also define the following subset of W :

Wρ := {w ∈ W : w
(∑
α∈S

λ̂α

)
is a weight of (L⊗|B̂Cρ )ord}. (14)

Of course WCρ ⊆ Wρ and we can describe Wρ as in Lemma 2.3.9.

Proposition 3.3.3. Let wCρ ∈ WCρ, I ⊆ wCρ(S
∨) ∩ Cρ a subset of pairwise

orthogonal roots and set J := w−1
Cρ

(I)∨ ⊆ S. There exists a unique admissible

unitary continuous representation Π̃(ρ)I of GJ(Qp) over E with socle filtration

FiljΠ̃(ρ)I such that

0 = Fil−1Π̃(ρ)I ( Fil0Π̃(ρ)I ( · · · ( Fil|I|−1Π̃(ρ)I ( Fil|I|Π̃(ρ)I = Π̃(ρ)I ,

where for j ∈ {0, . . . , |I|}

FiljΠ̃(ρ)I/Filj−1Π̃(ρ)I ∼=⊕
I′⊆I
|I′|=j

(
Ind

GJ (Qp)

B−(Qp)∩GJ (Qp)

(( ∏
α∈I′∨

sα
)
wCρ

)−1

(χρ) · (ε−1 ◦ θ)
)C0

(15)

and where we view any character of T (Qp) as a character of B−(Qp) ∩ GJ(Qp)
by inflation B−(Qp) ∩GJ(Qp) � T (Qp).

Proof. For J ′ ⊆ J , we set

ΠJ ′ :=
(

Ind
GJ (Qp)

B−(Qp)∩GJ (Qp)

(( ∏
α∈wCρ (J ′)

sα
)
wCρ

)−1

(χρ) · (ε−1 ◦ θ)
)C0

.

Step 1: We prove several statements on ΠJ ′ .
The set J being a subset of S of pairwise orthogonal roots, by Lemma 3.1.4
we can fix an isomorphism T ′J × GLJ2

∼= GJ . Under this isomorphism we have
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T ′J × (
∏

β∈J Tβ) ∼= T , where Tβ is a split maximal torus in the copy of GL2

corresponding to the β entry. Letting χ′ρ,J := w−1
Cρ

(χρ)|T ′J (Qp) and χρ,J ′,β :=(
(
∏

α∈wCρ (J ′) sα)wCρ
)−1

(χρ)|Tβ(Qp) for J ′ ⊆ J and β ∈ J , we can rewrite ΠJ ′

as

ΠJ ′
∼=χ′ρ,J ·(ε−1◦ θ|T ′J (Qp))⊗E

(
Ind

GL2(Qp)J

( ∗ 0
∗ ∗ )

J ⊗β∈J
(
χρ,J ′,β · (ε−1◦ θ)|Tβ(Qp)

))C0

∼=χ′ρ,J ·(ε−1◦ θ|T ′J (Qp))⊗E
(
⊗̂β∈J

(
Ind

GL2(Qp)

( ∗ 0
∗ ∗ )

χρ,J ′,β · (ε−1◦ θ)|Tβ(Qp)

)C0)
,(16)

where ⊗̂ is the completed tensor product in the category of p-adic Banach spaces.
We have

χρ,J ′,β =
(( ∏

α∈wCρ (J ′)

sw−1
Cρ

(α)

)
w−1
Cρ

)
(χρ)|Tβ(Qp) =

{
w−1
Cρ

(χρ)|Tβ(Qp) if β /∈ J ′
(sβw

−1
Cρ

)(χρ)|Tβ(Qp) if β ∈ J ′ (17)

and also(
χρ,J ′,β · (ε−1 ◦ θ)|Tβ(Qp)

)
◦β∨ = (χρ,J ′,β ◦β∨) ·

(
(ε−1 ◦ θ) ◦β∨

)
= (χρ ◦w(β)∨) · ε−1,

where w :=
(∏

α∈wCρ (J ′) sα
)
wCρ ∈ Wρ and where we use 〈θ, β∨〉 = 1 (as β ∈ J ⊆

S). Since ρ is generic it follows from Definition 3.3.1 that this is never the trivial
character (of Q×p ) and from Proposition B.1, we get that the representation (16)
is always topologically irreducible. If J ′1, J

′
2 are two distinct subsets in J , we have(

(
∏

α∈wCρ (J ′1) sα)wCρ
)−1

(χρ) 6=
(
(
∏

α∈wCρ (J ′2) sα)wCρ
)−1

(χρ). Indeed, assume, say,

there exists β such that β /∈ J ′1, β ∈ J ′2. By (17) we have χρ,J ′1,β = w−1
Cρ

(χρ)|Tβ(Qp)

and χρ,J ′2,β = sβ(w−1
Cρ

(χρ)|Tβ(Qp)) and, since Tβ is a split maximal torus in GL2,

it suffices to have w−1
Cρ

(χρ) ◦ β∨ 6= 1 or equivalently χρ ◦ wCρ(β)∨ 6= 1. But this

follows from Definition 3.3.1. By Theorem 3.1.1(iii), we get ΠJ ′1
� ΠJ ′2

. All the
ΠJ ′ have scalar endomorphisms and are residually of finite length, as follows from
(16) and Proposition B.1.

Step 2: We prove the existence of a representation as in the statement.
If β ∈ J and χβ : Tβ(Qp)→ O×E ⊆ E× is a unitary continuous character, define

Πβ(χβ) :=
(

Ind
GL2(Qp)

( ∗ 0
∗ ∗ )

χβ · (ε−1 ◦ θ)|Tβ(Qp)

)C0

.

Consider the following admissible unitary continuous representation of T ′J(Qp)×
GL2(Qp)

J :

Π̃(ρ)I := χ′ρ,J · (ε−1 ◦ θ|T ′J (Qp))⊗E
(
⊗̂β∈JEβ

)
,
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where the GL2(Qp)-representation Eβ is the unique non-split extension of
Πβ(sβ(w−1

Cρ
(χρ)|Tβ(Qp))) by Πβ(w−1

Cρ
(χρ)|Tβ(Qp)), see Proposition B.2. From Propo-

sition B.1 its constituents are

χ′ρ,J · (ε−1 ◦ θ|T ′J (Qp))⊗E
(
⊗̂β∈JΠβ(χβ)

)
for χβ ∈ {w−1

Cρ
(χρ)|Tβ(Qp), sβ(w−1

Cρ
(χρ)|Tβ(Qp))} and we see from (16) and (17)

that they are exactly the ΠJ ′ . Now let β ∈ J and choose χβ′ ∈
{w−1

Cρ
(χρ)|Tβ′ (Qp), sβ′(w

−1
Cρ

(χρ)|Tβ′ (Qp))} for all β′ ∈ J\{β}. The GL2(Qp)
J -repre-

sentation
Eβ⊗̂E

(
⊗̂β′∈J\{β}Πβ′(χβ′)

)
(a subquotient of Π̃(ρ)I) is still a non-split extension between its 2 irreducible
constituents by Lemma A.6 applied inductively to V1 := Eβ⊗̂E

(
⊗̂β′∈J ′Πβ′(χβ′)

)
and Π2 := Πβ′′(χβ′′) for J ′ ( J\{β} and β′′ ∈ J\({β} q J ′) (all the assumptions
are satisfied by Proposition B.1 and by Step 1). It is then easy to check that the

socle filtration of Π̃(ρ)I is exactly as in the statement. More generally, the same
argument shows that, for any J1 ⊆ J2 ⊆ J , the representation

χ′ρ,J · (ε−1 ◦ θ|T ′J (Qp))⊗E
(
⊗̂β∈J\J2Πβ(w−1

Cρ
(χρ)|Tβ(Qp))

)
⊗̂E(

⊗̂β∈J1Πβ(sβ(w−1
Cρ

(χρ)|Tβ(Qp)))
)
⊗̂E
(
⊗̂β∈J2\J1Eβ

)
(18)

has socle filtration with graded pieces ⊕J1⊆J ′⊆J2
|J ′|=j

ΠJ ′ .

Step 3: We finally prove unicity.
Let J1 ⊆ J2 ⊆ J , we prove the following statement by induction on |J2\J1|: there
is (up to isomorphism) at most one representation of GJ(Qp) such that the graded
pieces of its socle filtration are ⊕J1⊆J ′⊆J2

|J ′|=j
ΠJ ′ . Denote by Π such a representation.

Note first that by Lemma A.6 (applied inductively with G2 = GL2 together
with Proposition B.1, Proposition B.2, and Lemma A.4), a constituent ΠJ ′ has a
(unique) non-split extension with another (distinct) constituent ΠJ ′′ if and only
if either J ′′ ( J ′ and |J ′\J ′′| = 1 or J ′ ( J ′′ and |J ′′\J ′| = 1. If J ′′ = J ′ q {β0},
this implies (together with the fact that all constituents are distinct by Step 1)
that Π has a unique subquotient with constituents ΠJ ′ and ΠJ ′′ . Let us prove
by induction on |J ′\J1| that this subquotient is necessarily a non-split extension
of ΠJ ′′ by ΠJ ′ . If |J ′\J1| = 0, this is obviously the case, otherwise ΠJ ′′ would
be in a lower socle layer of Π. Assume |J ′\J1| ≥ 1, and suppose that the above
subquotient is not a non-split extension of ΠJ ′′ by ΠJ ′ . Then the only other
possibility (in view of the socle filtration of Π) is ΠJ ′ ⊕ΠJ ′′ . Let β1 ∈ J ′ be such
that the unique non-split extension of ΠJ ′′ by ΠJ ′′\{β1} occurs as a subquotient
of Π (β1 necessarily exists because otherwise ΠJ ′′ would be in the socle of Π).
By induction (applied to J ′\{β1}), Π has a (unique) subquotient which is the
unique non-split extension of ΠJ ′′\{β1} by ΠJ ′\{β1} (namely the representation (18)
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replacing J1 by J ′\{β1} and J2 by J ′′\{β1}). Hence Π has a unique subquotient
Π′ with socle ΠJ ′\{β1}, cosocle ΠJ ′′ , and unique intermediate constituent ΠJ ′′\{β1}.
(Here we used that there is no extension between ΠJ ′′ and ΠJ ′ .) But it follows
from Lemma A.6(i) by induction that such a representation Π′ doesn’t exist. We
now prove the unicity statement at the beginning of Step 3. When |J2\J1| = 0,
the result is trivial and when |J2\J1| = 1 it follows from Proposition B.2(i).
Assume it is true when |J2\J1| = n and let us prove it for |J2\J1| = n + 1 ≥ 2.

Let Π̃(ρ)J1,J2 be such a representation and fix J ′2 such that J1 ⊆ J ′2 ( J2 and
J2\J ′2 = {β0}. By what we have seen above, there is a (unique) subrepresentation

of Π̃(ρ)J1,J2 with constituents all the ΠJ ′′ for J1 ⊆ J ′′ ⊆ J ′2 and a (unique) quotient

of Π̃(ρ)J1,J2 with constituents the ΠJ ′ for J ′1 ⊆ J ′ ⊆ J2 where J ′1 := J1 q {β0}.
Since the socle filtration induces the socle filtration on subrepresentations, we
already have by induction that this subrepresentation is necessarily Π̃(ρ)J1,J ′2

. To

prove (by induction) that this quotient is Π̃(ρ)J ′1,J2
, we need to check that the

graded pieces of its socle filtration are ⊕J ′1⊆J ′⊆J2

|J ′|=j
ΠJ ′ . But this easily follows from

the fact that any subquotient (of this quotient) with two constituents ΠJ ′ , ΠJ ′′ ,
where J ′ ( J ′′ and |J ′′\J ′| = 1, is a non-split extension between them (see above).
Now set Π1 := Πβ0(w−1

Cρ
(χρ)|Tβ0

(Qp)), Π′1 := Πβ0(sβ0(w−1
Cρ

(χρ)|Tβ0
(Qp))) and

Π2 := χ′ρ,J · (ε−1 ◦ θ|T ′J (Qp))⊗E
(
⊗̂β∈J\J2Πβ(w−1

Cρ
(χρ)|Tβ(Qp))

)
⊗̂E(

⊗̂β∈J1Πβ(sβ(w−1
Cρ

(χρ)|Tβ(Qp)))
)
⊗̂E
(
⊗̂β∈J ′2\J1

Eβ
)
.

By (18) we must have Π̃(ρ)J1,J ′2
∼= Π1⊗̂EΠ2 and Π̃(ρ)J ′1,J2

∼= Π′1⊗̂EΠ2. Moreover,
since |J2\J ′2| = 1, any J between J1 and J2 is necessarily either between J1 and J ′2
or between J ′1 and J2. This implies that Π̃(ρ)J1,J2 is an extension of Π̃(ρ)J ′1,J2

by

Π̃(ρ)J1,J ′2
. This extension is non-split otherwise it wouldn’t have the right socle.

But Lemma A.6 tells us that such a non-split extension is necessarily unique.
(Note that in order to deal with the assumption dimE Ext1

G2
(Π2,Π2) < ∞ in

(ii) of this lemma, we actually need to apply Lemma A.6 inductively replacing
Π2 first by χ′ρ,J · (ε−1 ◦ θ|T ′J (Qp)), then Π1, Π′1 by Π1 ⊗ χ′ρ,J · (ε−1 ◦ θ|T ′J (Qp)),

Π′1 ⊗ χ′ρ,J · (ε−1 ◦ θ|T ′J (Qp)) and Π2 by Πβ(w−1
Cρ

(χρ)) for some β ∈ J\J2 etc., we

leave the easy details to the reader.) This proves the unicity of Π̃(ρ)J1,J2 , and in

particular of Π̃(ρ)I = Π̃(ρ)∅,J .

Remark 3.3.4. (i) It follows from the proof of Proposition 3.3.3 that one could
replace the condition in Definition 3.3.1 by the two conditions: χρ ◦ α∨ 6= 1 for
α ∈ R+ and χρ ◦ α∨ 6= ε for α ∈ w(S) and w ∈ Wρ (one can check that Lemma
3.3.2 still holds with this weaker condition of genericity).
(ii) From the proof of Proposition 3.3.3 (in particular Step 3), one also gets

that the representation Π̃(ρ)I is rigid, that is, its cosocle filtration equals its
socle filtration (up to numbering). In fact, the proof shows that the submodule

structure of Π̃(ρ)I is given by a “hypercube”.
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If I ′ ⊆ I and J ′ := w−1
Cρ

(I ′)∨ ⊆ J , then (B− ∩GJ)GJ ′ is a parabolic subgroup
of GJ with Levi GJ ′ and we easily get from (18) (with the same notation as in

the previous proof, see in particular Step 3 for Π̃(ρ)∅,J ′),

Π̃(ρ)∅,J ′ ∼=
(

Ind
GJ (Qp)

(B−(Qp)∩GJ (Qp))GJ′ (Qp) Π̃(ρ)I′
)C0

, (19)

where we consider Π̃(ρ)I′ by inflation as an (admissible) unitary continuous rep-
resentation of (B−(Qp) ∩ GJ(Qp))GJ ′(Qp) and where the parabolic induction is
analogous to that in (9) (see [Eme10a, §4.1] for details). For I, J as in Propo-
sition 3.3.3, B−GJ ⊆ G is the standard parabolic subgroup of G containing B−

with Levi subgroup GJ . We set

Π(ρ)I :=
(

Ind
G(Qp)

B−(Qp)GJ (Qp) Π̃(ρ)I
)C0

,

where Π̃(ρ)I is seen as a (unitary continuous) representation of B−(Qp)GJ(Qp)
by inflation. The representation Π(ρ)I of G(Qp) is admissible unitary continuous
of finite length (by Proposition 3.3.3 and Theorem 3.1.1). Moreover by [Eme10a,
Thm. 4.4.6] and [Eme10a, Cor. 4.3.5] we have for I ′ ⊆ I,

HomG(Qp)(Π(ρ)I′ ,Π(ρ)I) ∼=

HomGJ (Qp)

((
Ind

GJ (Qp)

(B−(Qp)∩GJ (Qp))GJ′ (Qp) Π̃(ρ)I′
)C0

, Π̃(ρ)I

)
and we deduce from (19) and the proof of Proposition 3.3.3,

HomG(Qp)(Π(ρ)I′ ,Π(ρ)I) ∼= HomGJ (Qp)

(
Π̃(ρ)∅,J ′ , Π̃(ρ)I

)
= E

(for the last equality, note that any GJ(Qp)-equivariant morphism Π̃(ρ)∅,J ′ →
Π̃(ρ)I is necessarily scalar since Π̃(ρ)∅,J ′ is contained in Π̃(ρ)I and these two rep-
resentations have the same irreducible socle, Π∅, which has scalar endomorphisms
and appears only once). We can then proceed as in (4) fixing a compatible system
of injections Π(ρ)I′ ↪→ Π(ρ)I for I ′ ⊆ I (the choice of which won’t matter) and
define in the abelian category of admissible unitary continuous representations of
G(Qp) over E the inductive limit

Π(ρ)Cρ,wCρ := lim
−→
I

Π(ρ)I ,

where I runs among the subsets of wCρ(S
∨) ∩ Cρ of pairwise orthogonal roots.

Finally we set
Π(ρ)ord := ⊕wCρ∈WCρ

Π(ρ)Cρ,wCρ .

This is an admissible unitary continuous representation of G(Qp) of finite length
(see §3.5 for more on its constituents).
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Lemma 3.3.5. Let ρ′ be another good conjugate of ρ as in Definition 3.2.4. Then
Π(ρ)ord ∼= Π(ρ′)ord.

Proof. By Proposition 3.2.6, replacing ρ by a conjugate in B̂Cρ(E) (which doesn’t
change χρ nor Cρ and hence doesn’t change Π(ρ)ord), there is w ∈ WCρ such
that ρ′ = ẇ−1ρẇ. We have χρ′ = w−1(χρ) (see the proof of Lemma 3.3.2)
and it is easy to check we also have Cρ′ = w−1(Cρ) and WCρ′

= w−1WCρ . Let
wCρ′ ∈ WCρ′

, I ′ ⊆ wCρ′ (S
∨) ∩ Cρ′ a subset of pairwise orthogonal roots and

set wCρ := wwCρ′ ∈ WCρ and I := w(I ′) ⊆ wCρ(S
∨) ∩ Cρ (also a subset of

pairwise orthogonal roots). Then one has Π̃(ρ′)I′ = Π̃(ρ)w(I′). Indeed, they are
representations of the same GJ(Qp) and by Proposition 3.3.3 it suffices to check
they have the same constituents in the socle filtration, which is immediate as, for
any I ′′ ⊆ I ′,(( ∏

α∈I′′∨
sα
)
wCρ′

)−1

(χρ′) =
(( ∏

α∈I′′∨
sw−1

Cρ′
(α)

)
w−1
Cρ′

)
(χρ′)

=
(( ∏

α∈I′′∨
sw−1

Cρ
(w(α))

)
w−1
Cρ
w
)

(w−1(χρ))

=
(( ∏

α∈w(I′′)∨

sα
)
wCρ

)−1

(χρ).

We deduce Π(ρ′)I′ = Π(ρ)w(I′), Π(ρ′)Cρ′ ,wCρ′
= Π(ρ)Cρ,wCρ and finally Π(ρ)ord =

Π(ρ′)ord.

Therefore Π(ρ)ord doesn’t depend on the choice of a good conjugate in the
sense of Definition 3.2.4. Using Proposition 3.3.3 and arguing as in the proof of
Proposition 4.2.1 below, one can check more generally that Π(ρ)ord only depends

on the conjugacy class of ρ in Ĝ(E) and not on the choice of the Borel B̂ (we
leave the details to the reader).

Remark 3.3.6. If G = G1 × G2, ρ = ρ1 ⊕ ρ2 with ρi : Gal(Qp/Qp) −→ Ĝi(E)
generic ordinary (i = 1, 2) and wCρ = (wCρ1 , wCρ2 ) ∈ WCρ = WCρ1

× WCρ2
⊆

W = W1×W2, one easily checks that Π(ρ)Cρ,wCρ = Π(ρ1)Cρ1 ,wCρ1 ⊗̂EΠ(ρ2)Cρ2 ,wCρ2
and that one has Π(ρ)ord = Π(ρ1)ord⊗̂EΠ(ρ2)ord (where we index by i everything
related to Gi), see Remark 2.3.5(ii) and Remark 2.4.2(ii).

3.4 Variant mod p

We construct the representation Π(ρ)ord of G(Qp) over kE associated to a suffi-
ciently generic ordinary representation ρ of Gal(Qp/Qp) over kE.
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We first modify the setting of §3.1 so as to deal with characteristic p. In this
section, G/Zp is a connected split reductive algebraic group over Zp, T ⊆ G a
split maximal torus over Zp and we let as usual

(
X(T ), R,X∨(T ), R∨

)
be the root

datum of G. We fix a choice S ⊆ R of simple roots, we let R+ ⊆ R be the positive
roots, B ⊆ G (resp. B− ⊆ G) the Borel subgroup over Zp corresponding to R+

(resp. −R+) and (Ĝ, B̂, T̂ ) the dual triple of (G,B, T ) over OE. We moreover

assume that both G and Ĝ have a connected centre and denote by θ a twisting
element for G. We also assume that p is large enough so that the following lemma
holds (so this is no restriction if G = GLn).

Lemma 3.4.1. Suppose that p > 3 or that p is a good prime for G (Definition
2.5.1). Let B′ ⊆ B be a Zariski closed algebraic subgroup containing T . Then
there exists a closed subset C ⊆ R+ such that B′ = BC.

Proof. The proof of Lemma 2.3.1 still holds by [BT65, §2.5] (even under a slightly
weaker condition on p).

Let ρ : Gal(Qp/Qp) −→ Ĝ(kE) be a continuous homomorphism. When ρ

takes values in B̂(kE) ⊆ Ĝ(kE) we say ρ is ordinary. For any ordinary ρ, we

let Cρ ⊆ R+∨ be the closed subset of roots such that B̂Cρ is the smallest closed

subgroup of B̂ containing T̂ such that ρ takes values in B̂Cρ(kE) (Cρ exists thanks

to Lemma 3.4.1). For ρ ordinary, we define χ̂ρ : Gal(Qp/Qp)
ρ−→ B̂(kE) � T̂ (kE).

If α∨◦χ̂ρ 6= 1 for all α ∈ R+, the same proof as in §3.2 shows that, conjugating

ρ by an element in B̂(kE) if necessary, it is always possible to assume that Cρ
is minimal under conjugation by elements in B̂(kE) (indeed, the fact that E
has characteristic 0 is never used in §3.2). As in Definition 3.2.4, we call “good
conjugates” ordinary ρ such that Cρ is minimal, and as in Proposition 3.2.6, we
can show that any two good conjugates ρ and ρ′ are related by ρ′ = ẇ−1(b−1ρb)ẇ

for some b ∈ B̂Cρ(kE) and some w ∈ WCρ .

Definition 3.4.2. An ordinary ρ is generic if α∨◦χ̂ρ /∈ {1, ω, ω−1} for all α ∈ R+

(or equivalently all α ∈ R).

This is equivalent to χρ◦α∨ /∈ {1, ω, ω−1} for all α ∈ R+, where χρ corresponds
to χ̂ρ as in (10).

From now on we fix a good conjugate ρ : Gal(Qp/Qp)→ B̂Cρ(kE) ⊆ B̂(kE) ⊆
Ĝ(kE) that is generic. Then Proposition 3.3.3 still holds replacing ρ by ρ and
E by kE and allows to define a finite length admissible smooth representation
Π̃(ρ)I of GJ(Qp) over kE (for I ⊆ wCρ(S

∨) ∩ Cρ a subset of pairwise orthogonal
roots and J = w−1

Cρ
(I)∨, where wCρ ∈ WCρ) with socle filtration as in Proposition
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3.3.3. Indeed, the proof of this proposition is essentially based on the results of
Appendix A and Appendix B, but all these results hold replacing E by kE and
“unitary continuous” by “smooth” (and are easier to prove over kE than over E!).

We then proceed exactly as in §3.3 and define Π(ρ)I := Ind
G(Qp)

B−(Qp)GJ (Qp) Π̃(ρ)I
and Π(ρ)Cρ,wCρ := lim

−→
I

Π(ρ)I , where I runs among the subsets of wCρ(S
∨)∩Cρ of

pairwise orthogonal roots. But now, arguing as in the proof of Theorem 3.1.1(ii)
and using [Eme10a, Cor. 4.3.5] (and the genericity of ρ), we know that the socle
filtration FiljΠ(ρ)Cρ,wCρ of Π(ρ)Cρ,wCρ is such that for j ∈ Z≥0,

FiljΠ(ρ)Cρ,wCρ/Filj−1Π(ρ)Cρ,wCρ
∼=⊕

I⊆wCρ (S∨)∩Cρ
|I|=j

Ind
G(Qp)

B−(Qp)

(( ∏
α∈I∨

sα
)
wCρ

)−1

(χρ) · (ω−1 ◦ θ)

(I being a subset of pairwise orthogonal roots). Finally, we set

Π(ρ)ord := ⊕wCρ∈WCρ
Π(ρ)Cρ,wCρ

and check as in Lemma 3.3.5 that Π(ρ)ord doesn’t depend on which good conjugate
we choose. Also, the genericity of ρ implies that all the irreducible constituents
of Π(ρ)ord are distinct.

We now give the link between Π(ρ)ord and certain Serre weights of ρ. Let
X1(T ) := {λ ∈ X(T ) : 0 ≤ 〈λ, α∨〉 ≤ p − 1 ∀α ∈ S}. Since Gder is simply
connected, Serre weights for G(Fp) are exactly given by the kE-representations

F (λ)|G(Fp),

where λ ∈ X1(T ) and F (λ) is the unique (absolutely) irreducible representation of
the algebraic group G×ZpkE of highest weight λ. We have F (λ)|G(Fp)

∼= F (µ)|G(Fp)

if and only if λ − µ ∈ (p − 1)X0(T ) (for all this see e.g. [Her09, §3.1]). In the
sequel, we often write F (λ) instead of F (λ)|G(Fp) for a Serre weight.

Definition 3.4.3. The set of ordinary Serre weights of ρ is the set of irreducible
constituents of socG(Zp)

(
Π(ρ)ord|G(Zp)

)
(up to isomorphism).

Equivalently, it is the union for wCρ ∈ WCρ (forgetting possible multiplicities)
of the irreducible constituents of socG(Zp)(Π(ρ)Cρ,wCρ |G(Zp)).

We now make more explicit the ordinary Serre weights of ρ in a special but
important case.

Definition 3.4.4. We say that ρ is inertially generic if (α∨ ◦ χ̂ρ)|Gal(Qp/Qnr
p ) /∈

{1, ω, ω−1} for all α ∈ R+ (or equivalently all α ∈ R).
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Again, this is equivalent to (χρ ◦ α∨)|Z×p /∈ {1, ω, ω−1} for all α ∈ R+. Of
course, ρ inertially generic implies ρ generic. Note that the existence of inertially
generic ρ implies that p is large enough so that Lemma 3.4.1 holds: if G is not a
torus then one has p > 3 (otherwise all powers of ω belong to {1, ω, ω−1}). When
G = GLn, one can check that there are inertially generic ρ if and only if p > 2n.

Since any continuous character Z×p → k×E is an (integral) power of the re-
duction mod p on Z×p , one easily checks that, for any continuous character
χ : T (Qp)→ k×E such that (χ ◦ α∨)|Z×p 6= 1 for all α ∈ S, there exists λχ ∈ X1(T )

uniquely determined modulo (p−1)X0(T ) such that λχ|T (Zp) = χ|T (Zp). One then
has 〈λχ, α∨〉 ∈ {1, . . . , p− 2} for all α ∈ S. If moreover (χ ◦ α∨)|Z×p /∈ {1, ω, ω−1}
for all α ∈ S, one has 〈λχ, α∨〉 ∈ {2, . . . , p− 3}.

Proposition 3.4.5. Assume ρ is ordinary and inertially generic. Then λw−1
Cρ

(χρ)−
θ ∈ X1(T ) for all wCρ ∈ WCρ and the set of ordinary Serre weights of ρ is

{F (λw−1
Cρ

(χρ) − θ) : wCρ ∈ WCρ} (20)

= {F (λχρ1 − θ) : ρ1 is an ordinary conjugate of ρ}. (21)

Moreover, the Serre weights in (20) are distinct.

Proof. We first claim that for all w ∈ W , we have λw−1(χρ) − θ ∈ X1(T ). Note
that (w−1(χρ)◦α∨)|Z×p = (χρ◦w(α)∨)|Z×p /∈ {1, ω, ω−1} for α ∈ S, as ρ is inertially

generic. Hence 〈λw−1(χρ) − θ, α∨〉 = 〈λw−1(χρ), α
∨〉 − 1 ∈ {1, . . . , p − 4} (α ∈ S),

which proves the claim.

Next we show that the Serre weights F (λw−1(χρ) − θ) for w ∈ W are distinct.
If F (λw−1

1 (χρ) − θ) ∼= F (λw−1
2 (χρ) − θ) for distinct elements w1, w2 of W , then

w−1
1 λχρ ≡ w−1

2 λχρ (mod (p− 1)X(T )) since these weights induce the same char-
acter T (Zp)→ k×E . This implies that λχρ−w1w

−1
2 λχρ is an element of (p−1)X(T ),

but it is also clearly contained in ZR. As the centre of G is connected, it follows
that it is even an element of (p−1)ZR. In other words, λχρ is fixed by a non-trivial
element of the affine Weyl group (p− 1)ZRoW . By [Bou81, Prop. V.3.3.1], λχρ
is fixed by an affine reflection, i.e. 〈λχρ , α∨〉 ∈ (p−1)Z or equivalently χρ◦α∨ = 1.
But this contradicts the inertial genericity of ρ.

We now prove that F (λw−1
Cρ

(χρ) − θ) is the G(Zp)-socle of Π(ρ)Cρ,wCρ . First, it

follows from [Her11, (2.13)] that F (λχ) is the G(Zp)-socle of Ind
G(Qp)

B−(Qp) χ for any

χ : T (Qp) → k×E such that (χ ◦ α∨)|Z×p 6= 1 ∀α ∈ S. In particular F (λw−1(χρ) −
θ) ∼= socG(Zp)

(
Ind

G(Qp)

B−(Qp)w
−1(χρ) · ω−1 ◦ θ

)
for any w ∈ W . Since the Serre

weights F (λw−1(χρ)− θ) are all distinct, an obvious dévissage on the constituents
of Π(ρ)Cρ,wCρ shows that dimkE HomG(Zp)(F (λw−1(χρ) − θ),Π(ρ)Cρ,wCρ ) ∈ {0, 1}.
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Moreover, when the dimension is 1, it follows from Corollary 4.3.5 below that
the Hecke algebra HG

(
F (λw−1(χρ) − θ)

)
of §4.3 acts on HomG(Zp)(F (λw−1(χρ) −

θ),Π(ρ)Cρ,wCρ ) via an ordinary character (see Definition 4.3.2, since the dimen-

sion is 1 there is no place for any other character). From Corollary 4.3.5 again we
deduce that restriction to the G(Zp)-socle induces an isomorphism for all w ∈ W ,

HomG(Qp)

(
Ind

G(Qp)

B−(Qp)w
−1(χρ) · ω−1 ◦ θ,Π(ρ)Cρ,wCρ

)
∼→

HomG(Zp)

(
F (λw−1(χρ) − θ),Π(ρ)Cρ,wCρ

)
.

But from the socle filtration of Π(ρ)Cρ,wCρ , we know that the left-hand side is

nonzero (of dimension 1) if and only if w = wCρ .

Finally, to see the equality of (20) and (21), note that if ρ ∼= ρ1 are both
ordinary, then by the Bruhat decomposition there is a w ∈ W such that ẇ−1ρẇ
is ordinary (which implies w ∈ WCρ) and w−1(χρ) = χρ1 .

Example 3.4.6. Assume G is GLn, T is the torus of diagonal matrices and B
the upper triangular matrices, then we can identify X(T ) (resp. X1(T )) with
n-tuples λ := (λ1, . . . , λn) ∈ Zn (resp. n-tuples λ := (λ1, . . . , λn) ∈ Zn such that
0 ≤ λi − λi+1 ≤ p − 1). Choose θ := (n − 1, n − 2, . . . , 0) ∈ X(T ) as a twisting
element. Then the set of ordinary Serre weights of ρ (inertially generic ordinary)
in the sense of Definition 3.4.3 coincides with the set of F (λ) for λ ∈ X1(T ) such

that ρ has a conjugate ρ1 : Gal(Qp/Qp)→ B̂(kE) = B(kE) with

ρ1|Gal(Qp/Qnr
p ) =


ωλ1+(n−1) ∗ · · · ∗

0 ωλ2+(n−2) ...
...

...
... ... ∗

0 . . . 0 ωλn

 . (22)

Alternatively, F (λ) for λ ∈ X1(T ) is an ordinary Serre weight of ρ if and
only if a conjugate of ρ admits an upper-triangular crystalline lift ρ such that
χ̂ρ|Gal(Qp/Qnr

p ) = diag(ελ1+(n−1), · · · , ελn) (use [GG12, Lem. 3.1.5]).

Remark 3.4.7. For ρ ordinary, semi-simple and sufficiently generic, the set of
ordinary Serre weights of ρ is also the set of Serre weights F (λ) of [Her09, Prop.
6.28] for which ρ|Gal(Qp/Qnr

p )
∼= τ(1, λ+ θ) in the notation of loc. cit. (note that G

is assumed here to be GLn but the statement can easily be extended to G as in
the present paper).

3.5 Some questions

We state some questions on the representations Π(ρ)ord, Π(ρ)ord, (L⊗|B̂Cρ )ord and

(L
⊗|B̂Cρ )ord.
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Start first with ρ : Gal(Qp/Qp) −→ B̂Cρ(E) ⊆ B̂(E) ⊆ Ĝ(E) such that

the closed subset Cρ ⊆ R+∨ is minimal under conjugation by B̂(E) (i.e. ρ is
a good conjugate) and such that ρ is generic, and let Π(ρ)ord be as in §3.3.
Conjecture 3.1.2 and the genericity of ρ imply that, for wCρ ∈ WCρ , the irreducible
constituents of Π(ρ)Cρ,wCρ should be exactly the principal series(

Ind
G(Qp)

B−(Qp)

(( ∏
α∈I∨

sα
)
wCρ

)−1

(χρ) · (ε−1 ◦ θ)
)C0

(23)

for I running among the subsets of wCρ(S
∨) ∩ Cρ of pairwise orthogonal roots.

Note that this is indeed true if (χρ ◦ α∨) · ε−1 is never the trivial character of Q×p
in k×E for all w ∈ Wρ and all α ∈ w(S) (see (14), Remark 3.3.4(i) and Theorem
3.1.1(ii)). More precisely, one can conjecture the following (compare with Lemma
2.3.9):

Conjecture 3.5.1. There exists a unique admissible unitary continuous repre-
sentation Π(ρ)Cρ,wCρ of G(Qp) over E with socle filtration 0 = Fil−1Π(ρ)Cρ,wCρ (
Fil0Π(ρ)Cρ,wCρ ⊆ · · · such that for j ∈ Z≥0,

FiljΠ(ρ)Cρ,wCρ/Filj−1Π(ρ)Cρ,wCρ
∼=⊕

I⊆wCρ (S∨)∩Cρ
|I|=j

(
Ind

G(Qp)

B−(Qp)

(( ∏
α∈I∨

sα
)
wCρ

)−1

(χρ) · (ε−1 ◦ θ)
)C0

for I running among the subsets of wCρ(S
∨) ∩ Cρ of pairwise orthogonal roots.

Hauseux has very recently announced a proof of this conjecture (assuming the
irreducibility of the representations in (23)), see [Hau14]. One can also ask the
stronger question if there exists a unique admissible unitary continuous represen-

tation of G(Qp) over E with socle (Ind
G(Qp)

B−(Qp) w
−1
Cρ

(χρ)·(ε−1◦θ))C0
and (multiplicity

free) constituents given by (23) (that is, we only fix the socle and the constituents
instead of the whole socle filtration). Let us also mention the following recent
theorem due to Hauseux (which was raised as an open question in the first version
of this paper).

Theorem 3.5.2 ([Hau13]). Let χ : T (Qp) → O×E ⊆ E× unitary continuous. If
χ′ : T (Qp)→ O×E ⊆ E× is unitary continuous, we have

Ext1
G(Qp)

((
Ind

G(Qp)

B−(Qp) χ
′ · (ε−1 ◦ θ)

)C0

,
(

Ind
G(Qp)

B−(Qp) χ · (ε
−1 ◦ θ)

)C0
)
6= 0

if and only if χ′ = χ or χ′ = sα(χ) for α ∈ S. If moreover χ ◦ α∨ 6= 1 for every
α ∈ R+, then the above Ext1

G(Qp) with χ′ = sα(χ) (α ∈ S) has dimension 1.
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Remark 3.5.3. Emerton informed us that, at least assuming χ ◦ α∨ 6= 1 for
every α ∈ R+, he always expects a nonzero element in

Ext
`(w)
G(Qp)

((
Ind

G(Qp)

B−(Qp) w(χ) · (ε−1 ◦ θ)
)C0

,
(

Ind
G(Qp)

B−(Qp) χ · (ε
−1 ◦ θ)

)C0
)
,

where `(w) is the length of w in the Weyl group W ([Jan03, §II.1.5]). Note that
`(w) = 1 when w = sα if and only if α ∈ S.

The underlying hope behind this paper is that there may exist a direct “func-
torial” link between the G(Qp)-representation Π(ρ)ord of §3.3 and the
Gal(Qp/Qp)-representation

(L⊗|B̂Cρ )ord ◦ ρ,

where (L⊗|B̂Cρ )ord is the algebraic B̂Cρ-representation of §2.3. More precisely,

one can ask whether, for any choice of fundamental weights (λ̂α)α∈S ∈ X(T̂ )|S|

and (λα)α∈S ∈ X(T )|S| as in §2.1, there exists a covariant additive functor F ,
generalizing that of [Col10] in the case of G = GL2, from the abelian category of
finite length admissible unitary continuous representations of G(Qp) over E to the
abelian category of finite-dimensional continuous representations of Gal(Qp/Qp)
over E satisfying (at least) the following properties:

(i) for any unitary continuous χ : T (Qp)→ O×E ⊆ E× one has

F
((

Ind
G(Qp)

B−(Qp) χ · (ε
−1 ◦ θ)

)C0
)

=
(∑
α∈S

λ̂α
)
◦ χ̂,

where χ̂ is the character of Gal(Qp/Qp) corresponding to χ in §3.1 and
θ :=

∑
α∈S λα;

(ii) F is exact when restricted to the full subcategory of representations such
that all their irreducible constituents are subquotients of unitary continuous
principal series of G(Qp) over E;

(iii) F (Π(ρ)ord) = (L⊗|B̂Cρ )ord ◦ ρ.

Assume that p is a good prime for G and consider ρ : Gal(Qp/Qp) −→
B̂Cρ(kE) ⊆ B̂(kE) ⊆ Ĝ(kE) such that the closed subset Cρ ⊆ R+∨ is minimal

under conjugation by B̂(kE) and such that ρ is generic. One can ask all the
previous questions in the setting of §3.4 replacing Π(ρ)ord (resp. Π(ρ)Cρ,wCρ ) by

Π(ρ)ord (resp. Π(ρ)Cρ,wCρ ) and (L⊗|B̂Cρ )ord by (L
⊗|B̂Cρ )ord. Note that Theorem

3.5.2 also holds over kE (see the proof of [Hau13, Thm. 5.2.3]) and that one
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can prove the statement in Remark 3.5.3 over kE modulo a conjecture of Emer-
ton ([Eme10b, Conj. 3.7.2]): see [Hau13, Thm. 5.3.2]. Finally see [Hau14] for a
proof of the mod p analogue of Conjecture 3.5.1 and [Bre14] for the construction
of a functor F on mod p representations which satisfies the mod p analogue of
properties (i)–(iii) above.

4 Local-global compatibility results and conjec-

tures

We conjecture that the representations Π(ρ)ord or Π(ρ)ord of G(Qp) defined in
§3.3 and §3.4 occur (under suitable conditions) in spaces of automorphic forms
for unitary groups that are compact at infinity and split at places above p. Over
kE we prove a weak form of this conjecture.

4.1 The global setting

We define the relevant spaces of automorphic forms and state some of their prop-
erties.

We let F+ be a finite totally real extension of Q with ring of integers OF+

and F a totally imaginary quadratic extension of F with ring of integers OF . We
denote by c the non-trivial element of Gal(F/F+). If v (resp. w) is a finite place
of F+ (resp. F ), we let F+

v (resp. Fw) be the completion of F+ (resp. F ) at v
(resp. w) and OF+

v
(resp. OFw) the ring of integers of F+

v (resp. Fw). If v splits in

F and w,wc are the two places of F above v, we have OF+
v

= OFw
c' OFwc , where

the last isomorphism is induced by c. We let OF+,p := OF+ ⊗Z Zp =
∏

v|pOF+
v

and A∞F+ (resp. A∞,pF+ ) denote the finite adèles of F+ (resp. the finite adèles of F+

outside p). Finally we assume that all places of F+ above p split in F and, for
each v|p in F+, we choose one place ṽ ∈ {w,wc} of F above v (this choice won’t
be important).

We let n ∈ Z>1, N a positive integer prime to p and G a connected reductive
algebraic group over OF+ [1/N ] satisfying the following conditions:

(i) there is an isomorphism ι : G×OF+ [1/N ] OF [1/N ]
∼−→ GLn/OF [1/N ];

(ii) G×OF+ [1/N ] F
+ is an outer form of GLn/F+ ;

(iii) G×OF+ [1/N ] F
+ is quasi-split at all finite places of F+;

(iv) G×OF+ [1/N ] F
+ is isomorphic to Un(R) at all infinite places of F+.
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It is easy to see that such groups exist (cf. e.g. [EGH13, §7.1.1]). Condition
(i) implies that if v is any finite place of F+ that splits in F and if w|v in F the
isomorphism ι induces ιw : G(F+

v )
∼→ GLn(Fw) which restricts to an isomorphism

still denoted by ιw : G(OF+
v

)
∼→ GLn(OFw) if v doesn’t divide N . Condition (ii)

implies that c ◦ ιw : G(F+
v )

∼→ GLn(Fwc) (resp. c ◦ ιw : G(OF+
v

)
∼→ GLn(OFwc ) if

v doesn’t divide N) is conjugate in GLn(Fwc) (resp. in GLn(OFwc )) to τ−1 ◦ ιwc ,
where τ is the transpose in GLn(Fwc) (resp. in GLn(OFwc )). Conditions (iii) and
(iv) force n[F+ : Q] to be divisible by 4 when n is even.

If U is any compact open subgroup of G(A∞,pF+ ) × G(OF+,p) and M any OE-
module endowed with an OE-linear action of G(OF+,p), we let S(U,M) be the
OE-module of functions

f : G(F+)\G(A∞F+) −→M

such that f(gu) = u−1
p (f(g)), where g ∈ G(A∞F+) and up ∈ G(OF+,p) is the

projection of u ∈ U ⊆ G(A∞,pF+ ) × G(OF+,p). If M is a finite type OE-module,
then so is S(U,M). We also define

S(Up,M) := lim
−→
Up

S(UpUp,M),

where Up is a (fixed) compact open subgroup of G(A∞,pF+ ) and where Up runs
among compact open subgroups of G(OF+,p). We can identify S(Up,M) with
functions f : G(F+)\G(A∞F+)/Up → M for which there exists a compact open
subgroup Up of G(OF+,p) such that f(gu) = u−1

p (f(g)) for g ∈ G(A∞F+) and
u ∈ Up. When the action of G(OF+,p) on M is trivial, we endow S(Up,M) with
a linear left action of G(F+ ⊗Q Qp) by (hf)(g) := f(gh) (h ∈ G(F+ ⊗Q Qp),
g ∈ G(A∞F+)).

If U is any compact open subgroup of G(A∞,pF+ )×G(OF+,p), following [EGH13,
§7.1.2] we say that U is unramified at a finite place v of F+ which splits in F
and doesn’t divide N if we have U = U v ×G(OF+

v
), where U v is a compact open

subgroup of G(A∞,vF+ ). Note that a compact open subgroup of G(A∞,pF+ )×G(OF+,p)
is unramified at all but a finite number of finite places of F+. If U is a compact
open subgroup of G(A∞,pF+ ) × G(OF+,p) and Σ a finite set of finite places of F+

containing the set of places of F+ that split in F and divide pN and the set
of places of F+ that split in F at which U is not unramified, we denote by
TΣ := OE[T

(j)
w ] the commutative polynomial OE-algebra generated by formal

variables T
(j)
w for j ∈ {1, . . . , n} and w a place of F lying above a finite place of

F+ that splits in F and doesn’t belong to Σ. The algebra TΣ acts on S(U,M) by

making T
(j)
w act by the double coset

ι−1
w

[
GLn(OFw)

(
1n−j

$w1j

)
GLn(OFw)

]
,
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where $w is a uniformizer in OFw . Explicitly, if we write

GLn(OFw)
(

1n−j
$w1j

)
GLn(OFw) =

∐
i

gi

(
1n−j

$w1j

)
GLn(OFw),

we have for f ∈ S(U,M) and g ∈ G(A∞F+),

(T (j)
w f)(g) :=

∑
i

f

(
gι−1
w

(
gi

(
1n−j

$w1j

)))
.

One checks that T
(j)
wc = (T

(n)
w )−1T

(n−j)
w on S(U,M). If S is any TΣ-module and I

any ideal of TΣ, we set S[I] := {x ∈ S : Ix = 0}.

For a compact open subgroup Up of G(A∞,pF+ ), we now focus on the spaces

S(Up,OE), S(Up,OE/$n
E), S(Up, kE).

In particular, S(Up,OE) is a free OE-module and S(Up,OE) ⊗OE OE/$n
E =

S(Up,OE/$n
E). These spaces are admissible smooth representations of G(F+⊗Q

Qp) since their subspaces of Up-invariant vectors for any Up are S(UpUp,OE),
S(UpUp,OE/$n

E) or S(UpUp, kE). We also consider the p-adic completion of
S(Up,OE), that is

Ŝ(Up,OE) := lim
←−
n

(
S(Up,OE)/$n

E

) ∼= lim
←−
n

S(Up,OE/$n
E),

which has the induced action of G(F+ ⊗Q Qp). If we tensor Ŝ(Up,OE) by E,

we obviously get an admissible unitary continuous representation Ŝ(Up, E) of

G(F+ ⊗Q Qp) over E with Ŝ(Up,OE) as unit ball.

If Σ a finite set of finite places of F+ containing the set of places of F+ that
split in F and divide pN and the set of places of F+ that split in F and at which
Up is not unramified, the algebra TΣ acts on S(UpUp,OE), S(UpUp,OE/$n

E),
S(UpUp, kE) for any Up and thus also on S(Up,OE), S(Up,OE/$n

E), S(Up, kE),

Ŝ(Up,OE) and Ŝ(Up, E). This action commutes with that of G(F+ ⊗Q Qp).

Therefore, if I is any ideal of TΣ, Ŝ(Up, E)[I] is an admissible unitary continuous
representation of G(F+ ⊗Q Qp) over E which is a closed subrepresentation of

Ŝ(Up, E).

If mΣ is a maximal ideal of TΣ with residue field kE, we can define the localized
subspaces S(UpUp, kE)mΣ and their inductive limit

lim
−→
Up

S(UpUp, kE)mΣ = S(Up, kE)mΣ ,
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which inherits an induced (admissible smooth) action of G(F+⊗QQp). We have
S(UpUp, kE)[mΣ]⊆ S(UpUp, kE)mΣ ⊆ S(UpUp, kE) and thus inclusions of admissi-
ble smooth G(F+ ⊗Q Qp)-representations

S(Up, kE)[mΣ] ⊆ S(Up, kE)mΣ ⊆ S(Up, kE).

Moreover, as representations of G(F+ ⊗Q Qp), S(Up, kE)mΣ is a direct summand
of S(Up, kE) (the maximal vector subspace on which the elements of mΣ act
nilpotently). Finally, if U ′p ⊆ Up is a smaller compact open subgroup, if Σ′ ⊇ Σ is
as above with respect to U ′p and if mΣ′ := mΣ∩TΣ′ is the unique maximal ideal of
TΣ′ ⊆ TΣ with residue field kE that is contained in mΣ, then we have S(Up, kE) ⊆
S(U ′p, kE), S(Up, kE)mΣ ⊆ S(U ′p, kE)mΣ′ and S(Up, kE)[mΣ] ⊆ S(U ′p, kE)[mΣ′ ].

4.2 The conjectures

We state our local-global compatibility conjectures. We keep the setting and
notation of §4.1 and assume moreover that p splits in F+.

We start with the p-adic case.

Let r : Gal(F/F )→ GLn(E) be a continuous representation. We assume:

(i) r is ramified only at a finite number of places of F ;

(ii) rc ∼= r∨ ⊗ ε1−n (where rc(g) := r(cgc) for g ∈ Gal(F/F ));

(iii) r is an absolutely irreducible representation of Gal(F/F ).

Let Up ⊆ G(A∞,pF+ ) be a compact open subgroup and Σ a finite set of finite places
of F+ containing the set of places of F+ that split in F and divide pN , the set of
places of F+ that split in F at which Up is not unramified and the set of places
of F+ that split in F at which r is ramified. We associate to r and Σ the prime
ideal pΣ in TΣ generated by all elements(

(−1)jNorm(w)j(j−1)/2T (j)
w − a(j)

w

)
j,w
,

where j ∈ {1, . . . , n}, w is a place of F lying above a finite place of F+ that splits
in F and doesn’t belong to Σ, Norm(w) is the cardinality of the residue field at

w and where Xn+a
(1)
w Xn−1 + · · ·+a

(n−1)
w X+a

(n)
w is the characteristic polynomial

of r(Frobw) (an element of OE[X]).

For a finite place w of F , we denote by rw the restriction of r to a decompo-
sition subgroup at w. We assume finally:
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(iv) rw is generic ordinary (in the sense of §3.2 and Definition 3.3.1) for all places
w of F above p.

Recall this means that rw is upper triangular (up to conjugation) and its diagonal
characters (χw,j)1≤j≤n satisfy χw,iχ

−1
w,j /∈ {1, ε, ε−1} for i 6= j. By the relation

rc ∼= r∨ ⊗ ε1−n this is equivalent to rṽ being generic ordinary for all places ṽ
where v|p in F+. In particular we can define the G(F+

v )-representation Π(rṽ)
ord,

where G(F+
v ) acts via ιṽ : G(F+

v )
∼→ GLn(Fṽ) = GLn(Qp) and where we choose

θ := (n − 1, n − 2, . . . , 0) as twisting element and the upper triangular matrices
in GLn(Fṽ) as Borel subgroup (as in Example 3.4.6).

Lemma 4.2.1. Suppose that ρ : Gal(Qp/Qp) → GLn(E) is generic ordinary.
Then the GLn(Qp)-representation Π(ρ∨)ord⊗ (εn−1 ◦det) is isomorphic to Π(ρ)ord

but where GLn(Qp) acts via the inverse transpose on the latter.

Proof. Let w0 ∈ W be the longest element, J ⊆ S a subset of pairwise orthogonal
roots and GJ ⊆ GLn/Qp as in §3.1. The inverse transpose g 7→ τ−1(g) preserves
GJ . If ΠJ is an admissible unitary continuous representation of GJ(Qp) over E,
we let Π?

J be the admissible unitary continuous representation of G−w0(J)(Qp)
with the same underlying Banach space as ΠJ and where g ∈ G−w0(J)(Qp) acts
by τ(ẇ0gẇ

−1
0 )−1 = ẇ0τ(g)−1ẇ−1

0 ∈ GJ(Qp) (note that ẇ0GJẇ
−1
0 = Gw0(J) =

G−w0(J)). If χ : T (Qp)→ O×E ⊆ E× is a unitary continuous character, one checks
that ((

Ind
GJ (Qp)

B−(Qp)∩GJ (Qp) χ
)C0
)? ∼= ( Ind

G−w0(J)(Qp)

B−(Qp)∩G−w0(J)(Qp) w0(χ−1)
)C0

. (24)

Without loss of generality, ρ is a good conjugate, and we let ρ′ := ẇ0ρ
∨ẇ−1

0 (a
good conjugate of ρ∨). It is easy to see that Cρ′ = −w0(Cρ), WCρ′

= w0WCρw
−1
0

and χρ′ = w0(χ−1
ρ ). Since w0((ε−1 ◦ θ)−1) = (ε−1 ◦ θ) · (εn−1 ◦ det), this implies

by Proposition 3.3.3 and (24) that

Π̃(ρ)?I
∼= Π̃(ρ′)−w0(I) ⊗ (εn−1 ◦ det),

where I is as in Proposition 3.3.3. Finally, if Π is an admissible unitary continuous
representation of GLn(Qp) over E and if we denote by Π? the admissible unitary
continuous representation of GLn(Qp) with the same underlying vector space as
Π but where g ∈ GLn(Qp) acts by τ(g)−1, one checks that((

Ind
GLn(Qp)

B−(Qp)GJ (Qp) Π̃(ρ)I
)C0
)? ∼= ( Ind

GLn(Qp)

B−(Qp)G−w0(J)(Qp) Π̃(ρ)?I
)C0 ∼=(

Ind
GLn(Qp)

B−(Qp)G−w0(J)(Qp) Π̃(ρ′)−w0(I)

)C0

⊗ (εn−1 ◦ det)

from which it follows that
(
Π(ρ)ord

)? ∼= Π(ρ∨)ord ⊗ (εn−1 ◦ det) (see §3.3).
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Since rṽc ∼= r∨ṽ ⊗ ε1−n, we have Π(rṽc)
ord ∼= Π(r∨ṽ )ord⊗ (ε1−n ◦det) and Lemma

4.2.1 implies that the GLn(Qp)-representation Π(rṽc)
ord⊗(ε2(n−1)◦det) is isomor-

phic to Π(rṽ)
ord but where GLn(Qp) acts via the inverse transpose on the latter.

Equivalently, the GLn(Qp)-representation Π(rṽc)
ord ⊗ (εn−1 ◦ det) is isomorphic

to Π(rṽ)
ord ⊗ (εn−1 ◦ det) but where GLn(Qp) acts via the inverse transpose. As

c ◦ ιṽc is conjugate to τ−1 ◦ ιṽ (see §4.1), we see that the G(F+
v )-representation

Π(rṽ)
ord⊗ (εn−1 ◦ det) ultimately only depends on v|p and not on the choice of ṽ

above v.

If Π is an admissible unitary continuous representation over E of G(F+⊗QQp)
and if Π′,Π′′ ⊆ Π are two closed invariant subspaces such that all the irreducible
subquotients of both Π′ and Π′′ are isomorphic to irreducible subquotients of
(unitary continuous) principal series as in (8), then the same is true for the closed
invariant subspace Π′ + Π′′ ⊆ Π (since any irreducible subquotient of Π′ + Π′′

appears either in Π′ or in Π′′). Therefore one can define Πord ⊆ Π as the maximal
closed G(F+ ⊗Q Qp)-subrepresentation such that all its irreducible subquotients
are isomorphic to irreducible subquotients of (unitary continuous) principal series
of G(F+ ⊗Q Qp).

Conjecture 4.2.2. Let r : Gal(F/F )→ GLn(E) be a continuous representation
that satisfies conditions (i) to (iv) above and assume that there exist a compact
open subgroup Up ⊆ G(A∞,pF+ ) and a finite set Σ of finite places of F+ as above

such that Ŝ(Up, E)[pΣ] 6= 0. Then there is an integer d ∈ Z>0 depending only
on Up and r such that we have an isomorphism of admissible unitary continuous
representations of G(F+ ⊗Q Qp) =

∏
v|pG(F+

v ) over E,(⊗̂
v|p

(
Π(rṽ)

ord ⊗ (εn−1 ◦ det)
))⊕d

∼−→ Ŝ(Up, E)[pΣ]ord. (25)

Remark 4.2.3. Note that Ŝ(Up, E)[pΣ] 6= 0 implies assumption (i) above on r
and that both sides of (25) are admissible unitary continuous representations. It

should also be true that Ŝ(Up, E)[pΣ], and thus Ŝ(Up, E)[pΣ]ord, don’t depend on
Σ as above (for the latter, this is implied by the conjecture).

Remark 4.2.4. One can formulate a slight generalization of Conjecture 4.2.2
where we assume in (iv) above that rṽ is generic ordinary for some subset Σp of
the places v|p only and rṽ is potentially semi-stable with distinct Hodge–Tate
weights at the other v|p. In (25), one then has to replace the completed tensor
product over all places v of F+ dividing p on the left-hand side by the completed
tensor product over the places of Σp and Ŝ(Up, E)[pΣ]ord on the right-hand side
by

HomVp

(⊗
v|p
v/∈Σp

L(λṽ), Ŝ(Up, E)[pΣ]

)ord

.
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Here Vp is a suitable compact open subgroup of
∏

v|p
v/∈Σp

G(OF+
v

) and L(λṽ) is the

irreducible algebraic representation of G×OF+ [1/N ]F
+
v

ι' GLn/Fṽ over E of highest
weight λṽ = (λṽ,1, . . . , λṽ,n), where λṽ,1 > λṽ,2 − 1 > · · · > λṽ,n−1 − (n − 2) >
λṽ,n−(n−1) are the Hodge–Tate weights of rṽ (the Hodge–Tate weight of ε being
1 by definition).

We now state the mod p conjecture.

Let r : Gal(F/F )→ GLn(kE) be a continuous representation. We assume:

(i) rc ∼= r∨ ⊗ ω1−n;

(ii) r is an absolutely irreducible representation of Gal(F/F ).

Let Up ⊆ G(A∞,pF+ ) be a compact open subgroup and Σ a finite set of finite places
of F+ containing the set of places of F+ that split in F and divide pN , the set of
places of F+ that split in F at which Up is not unramified and the set of places of
F+ that split in F at which r is ramified. We associate to r and Σ the maximal
ideal mΣ in TΣ with residue field kE generated by $E and all elements(

(−1)jNorm(w)j(j−1)/2T (j)
w − a(j)

w

)
j,w
,

where j ∈ {1, . . . , n}, w is a place of F lying above a finite place of F+ that
splits in F and doesn’t belong to Σ, Xn + a(1)

w Xn−1 + · · ·+ a(n−1)
w X + a(n)

w is the

characteristic polynomial of r(Frobw) (an element of kE[X]) and where a
(j)
w is any

element in OE lifting a(j)
w .

For a finite place w of F , we denote by rw be the restriction of r to a decom-
position subgroup at w. We assume also:

(iii) rw is generic ordinary in the sense of Definition 3.4.2 for all places w of F
above p.

Again, by the relation (i) above, (iii) is equivalent to rṽ being generic ordinary for
all places ṽ where v|p in F+. In particular we can define the G(F+

v )-representation
Π(rṽ)

ord where G(F+
v ) acts via ιṽ : G(F+

v )
∼→ GLn(Fṽ) (and where we choose

θ := (n− 1, n− 2, . . . , 0) as twisting element). By the same proof as for Lemma
4.2.1, the G(F+

v )-representation Π(rṽ)
ord ⊗ (ωn−1 ◦ det) only depends on v|p and

not on the choice of ṽ above v.

If Π is an admissible smooth representation of G(F+ ⊗Q Qp) over kE, we
define Πord ⊆ Π as the maximal G(F+⊗QQp)-subrepresentation such that all its
irreducible subquotients are isomorphic to irreducible subquotients of principal
series of G(F+ ⊗Q Qp) over kE.
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Conjecture 4.2.5. Let r : Gal(F/F )→ GLn(kE) be a continuous representation
that satisfies conditions (i) to (iii) above and assume that there exist a compact
open subgroup Up ⊆ G(A∞,pF+ ) and a finite set Σ of finite places of F+ as above
such that S(Up, kE)[mΣ] 6= 0. Then there is an integer d ∈ Z>0 depending only on
Up and r such that we have an isomorphism of admissible smooth representations
of G(F+ ⊗Q Qp) =

∏
v|pG(F+

v ) over kE,(⊗
v|p

(
Π(rṽ)

ord ⊗ (ωn−1 ◦ det)
))⊕d

∼−→ S(Up, kE)[mΣ]ord. (26)

Remark 4.2.6. As in Remark 4.2.3, note that S(Up, kE)[mΣ] 6= 0 implies as-
sumption (i) above on r and that both sides of (26) are admissible representa-
tions. Also, Conjecture 4.2.5 in particular implies that S(Up, kE)[mΣ]ord doesn’t
depend on Σ, but in fact it shouldn’t be too hard to prove that S(Up, kE)[mΣ]
(and thus S(Up, kE)[mΣ]ord) is independent of Σ for any p, see e.g. [BDJ10, Lem.
4.6] for an analogous result.

4.3 A local result

In this section, we prove the main local theorems which our local-global compat-
ibility results (in §4.4) will rely on. We keep the same notation and assumptions
as in §3.4.

We start with some preliminaries. If σ is a Serre weight for G(Fp) (seen as a

representation of G(Zp)), we denote by c-Ind
G(Qp)

G(Zp) σ the usual smooth representa-

tion that is compactly induced from σ and by HG(σ) := EndG(Qp)

(
c-Ind

G(Qp)

G(Zp) σ
)

the (Hecke) kE-algebra of its endomorphisms (see e.g. [Her11, §2.1]). The kE-
algebra HG(σ) is commutative and of finite type, and for any smooth repre-
sentation π of G(Qp) over kE, the vector space HomG(Zp)(σ, π|G(Zp)) is natu-
rally a (right) HG(σ)-module via Frobenius reciprocity HomG(Zp)(σ, π|G(Zp)) ∼=
HomG(Qp)

(
c-Ind

G(Qp)

G(Zp) σ, π
)
. Moreover, HG(σ) can be identified with the kE-

vector space of compactly supported functions ϕ : G(Qp) → EndkE(σ) such
that ϕ(h1gh2) = h1 ◦ ϕ(g) ◦ h2 for h1, h2 ∈ G(Zp) and g ∈ G(Qp) endowed with
the multiplication given by convolution.

Let P = MUM be a standard parabolic subgroup of G over Zp, where UM
(resp. M) is the unipotent radical (resp. the Levi subgroup), P− the opposite
parabolic subgroup of P and U−M the unipotent radical of P−. Replacing G by M
and σ by the subspace of coinvariants σU−M (Zp) (which is a Serre weight for M(Fp),
see e.g. [Her11, Lem. 2.3]), one can define in an analogous way the (commutative
noetherian) algebra HM(σU−M (Zp)). When M = T , we write U− instead of U−T .
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Example 4.3.1. Let G = GLn, T the torus of diagonal matrices and B the upper
triangular matrices. For 1 ≤ j ≤ n letMj := GLn−j×GLj and Pj := MjUMj

. One
has HG(σ) = kE[Tσ,1, . . . , Tσ,n−1, Tσ,n, T

−1
σ,n], where Tσ,j, 1 ≤ j ≤ n, corresponds

to ϕj : G(Qp) → EndkE(σ) with support on G(Zp)
(

1n−j
p1j

)
G(Zp) sending(

1n−j
p1j

)
to the endomorphism σ � σU−Mj (Zp)

∼← σUMj (Zp) ↪→ σ.

By [Her11, §2] the map ϕ 7→
(
m 7→ pU−M

◦
(∑

u∈U−M (Zp)\U−M (Qp) ϕ(um)
))

(where

m ∈ M(Qp) and pU−M
is the projection σ � σU−M (Zp)) induces an injective ho-

momorphism of kE-algebras SM : HG(σ) ↪→ HM(σU−M (Zp)) which is a localization

map ([Her11, Prop. 2.12]). It follows that if η : HG(σ)→ kE is a morphism of kE-

algebras that factors as a morphism of kE-algebrasHG(σ)
SM
↪→ HM(σU−M (Zp))→ kE,

then the morphism HM(σU−M (Zp))→ kE is unique and we denote it by S−1
M (η).

Definition 4.3.2. We say that a morphism of kE-algebras HG(σ) → kE is an

ordinary character (ofHG(σ)) if it factors as a morphism of kE-algebrasHG(σ)
ST
↪→

HT (σU−(Zp))→ kE.

If η : HG(σ)→ kE is any morphism of kE-algebras, HomG(Zp)(σ, π|G(Zp))[η] will
denote the maximal kE-vector subspace of HomG(Zp)(σ, π|G(Zp)) on which HG(σ)
acts by the character η.

The following theorem (a special case of [Her11, Thm. 3.1]) will be crucial.

Theorem 4.3.3 ([Her11]). Let λ ∈ X1(T ) such that 1 ≤ 〈λ, α∨〉 ≤ p− 1 for all
α ∈ S and let η : HG(F (λ)) → kE be an ordinary character. Then we have a
canonical isomorphism of smooth G(Qp)-representations(

c-Ind
G(Qp)

G(Zp) F (λ)
)
⊗HG(F (λ)),η kE

∼−→ Ind
G(Qp)

B−(Qp) χ, (27)

where χ : B−(Qp) � T (Qp) → k×E is the smooth character giving the action of
T (Qp) on the 1-dimensional vector space(

c-Ind
T (Qp)

T (Zp) F (λ)U−(Zp)

)
⊗HT (F (λ)U−(Zp)),S

−1
T (η) kE.

Note that we necessarily have F (λ) ↪→ socG(Zp)

(
Ind

G(Qp)

B−(Qp) χ
)
, in particular

χ|T (Zp) gives the action of T (Zp) on F (λ)U−(Zp). Conversely, for any character
χ : T (Qp) → k×E such that χ|T (Zp)

∼= F (λ)U−(Zp), it is easy to see that there is a
unique morphism of kE-algebras η′ : HT (F (λ)U−(Zp)) → kE such that (27) holds
with η := η′ ◦ ST .
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Example 4.3.4. Keep the setting and notation of Example 4.3.1 and let σ :=
F (λ) with λ := (λ1, . . . , λn) ∈ Zn such that 1 ≤ λi − λi+1 ≤ p− 1. Then

η : HGLn(F (λ)) = kE[TF (λ),1, . . . , TF (λ),n−1, TF (λ),n, T
−1
F (λ),n] −→ kE

is ordinary if and only if ηλ,j := η(TF (λ),j) ∈ k×E for all j and we then have(
c-Ind

GLn(Qp)

GLn(Zp) F (λ)
)
⊗HGLn (F (λ)),η kE ∼=

Ind
GLn(Qp)

B−(Qp)

(
ωλ1 nr

(
ηλ,n−1
ηλ,n

)
⊗ · · · ⊗ ωλn−1 nr

(
ηλ,1
ηλ,2

)
⊗ ωλn nr

(
1

ηλ,1

))
.

Corollary 4.3.5. Keep the same assumptions as in Theorem 4.3.3 and let π be
a smooth representation of G(Qp) over kE. Then restriction to F (λ) induces an
isomorphism

HomG(Qp)

(
Ind

G(Qp)

B−(Qp) χ, π
) ∼−→ HomG(Zp)

(
F (λ), π|G(Zp)

)
[η].

Proof. By Frobenius reciprocity we have

HomG(Zp)

(
F (λ), π|G(Zp)

)
[η] = HomG(Qp)

(
c-Ind

G(Qp)

G(Zp) F (λ), π
)
[η]

= HomG(Qp)

((
c-Ind

G(Qp)

G(Zp) F (λ)
)
⊗HG(F (λ)),η kE, π

)
and the statement follows from Theorem 4.3.3.

The following proposition and its two corollaries are entirely due to Paškūnas.

Proposition 4.3.6. Let σ be a Serre weight for G(Fp), η : HG(σ) → kE a

morphism of kE-algebras and π(σ, η) :=
(

c-Ind
G(Qp)

G(Zp) σ
)
⊗HG(σ),η kE. Let Π be an

admissible smooth representation of G(Qp) over kE such that Π|G(Zp) is an in-
jective object in the category of smooth representations of G(Zp) over kE. If
HomG(Qp)

(
π(σ, η),Π

)
= 0 then Ext1

G(Qp)

(
π(σ, η),Π

)
= 0 (in the category of

smooth representations of G(Qp) over kE).

Proof. Let E be an extension 0 → Π → E → π(σ, η) → 0 in the category of
smooth representations of G(Qp) over kE. It is enough to prove that the functor
HomG(Qp)(π(σ, η), ·) is exact on that sequence. By Frobenius reciprocity as in the
proof of Corollary 4.3.5, this functor is HomG(Zp)(σ, ·)[η]. Since Π|G(Zp) is injective,
the extension splits when restricted to G(Zp), hence the sequence remains exact
after applying HomG(Zp)(σ, ·). If we denote with the subscript η the generalized
eigenspace for the action of the commutative algebra HG(σ) corresponding to the
eigencharacter η, the sequence is thus still exact after applying HomG(Zp)(σ, ·)η.
But the assumption implies HomG(Zp)(σ,Π)η = 0, hence HomG(Zp)(σ, E)η

∼→
HomG(Zp)(σ, π(σ, η))η and thus HomG(Zp)(σ, E)[η]

∼→ HomG(Zp)(σ, π(σ, η))[η]. This
finishes the proof.
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Corollary 4.3.7. Let Π be as in Proposition 4.3.6 and π be a smooth repre-
sentation of G(Qp) over kE which is of finite length such that its irreducible
constituents are all principal series. Let π1 ⊆ π be a subrepresentation such that
HomG(Qp)(C,Π) = 0 if C is an irreducible constituent of π/π1. Then restriction
to π1 induces an isomorphism

HomG(Qp)(π,Π)
∼−→ HomG(Qp)(π1,Π).

Proof. Note that we have HomG(Qp)

(
π/π1,Π

)
= 0 by dévissage. It follows

from [Her11, Lem. 2.5], [Her11, Lem. 2.14] and [Her11, Thm. 3.1] that, if C
is an (irreducible) principal series, there exist (σ, η) such that C ∼= π(σ, η) with
π(σ, η) as in the statement of Proposition 4.3.6. By Proposition 4.3.6 we thus
have Ext1

G(Qp)

(
C,Π

)
= 0 for all irreducible constituents of π/π1, which implies

Ext1
G(Qp)

(
π/π1,Π

)
= 0 by dévissage. Applying HomG(Qp)(·,Π) to the exact se-

quence 0→ π1 → π → π/π1 → 0 then gives the result.

We now give a p-adic version of Corollary 4.3.7. We refer to Appendix A for
the definition of an admissible unitary continuous representation π of G(Qp) over
E which is residually of finite length, and denote by πss the semi-simplification
of its mod $E reduction.

Corollary 4.3.8. Let Π be an admissible unitary continuous representation of
G(Qp) over E which has a unit ball Π0 such that (Π0⊗OE kE)|G(Zp) is an injective
object in the category of smooth representations of G(Zp) over kE. Let π be an
admissible unitary continuous representation of G(Qp) over E which is residually
of finite length such that the irreducible constituents of πss are principal series.
Let π1 ⊆ π be a closed subrepresentation such that HomG(Qp)(C,Π

0 ⊗OE kE) = 0

if C is an irreducible constituent of π/π1

ss
. Then restriction to π1 induces an

isomorphism
HomG(Qp)(π,Π)

∼−→ HomG(Qp)(π1,Π).

Proof. Let π0 be a unit ball in π and set π0
1 := π0 ∩π1. Note that π0/π0

1 is a unit
ball in π/π1. By the proof of Corollary 4.3.7 applied to Π0 ⊗OE kE, π0 ⊗OE kE
and π0

1 ⊗OE kE, we get

HomG(Qp)

(
(π0 ⊗OE kE)/(π0

1 ⊗OE kE),Π0 ⊗OE kE
)

= 0

Ext1
G(Qp)

(
(π0 ⊗OE kE)/(π0

1 ⊗OE kE),Π0 ⊗OE kE
)

= 0.

By [Hau13, Prop. B1] (and the lines before that proposition) we have

dimE Ext1
G(Qp)

(
π/π1,Π

)
≤ dimkE Ext1

G(Qp)

(
(π0/π0

1)⊗OE kE,Π0 ⊗OE kE
)

= 0

and likewise with Hom, where the first Ext1 is in the category of admissible
unitary continuous representation of G(Qp) over E. Thus HomG(Qp)

(
π/π1,Π

)
=

0 and Ext1
G(Qp)

(
π/π1,Π

)
= 0. We conclude as for Corollary 4.3.7.
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We now fix a continuous homomorphism

ρ : Gal(Qp/Qp) −→ B̂Cρ(kE) ⊆ B̂(kE) ⊆ Ĝ(kE),

such that the closed subset Cρ ⊆ R+∨ is minimal under conjugation by B̂(kE)
and we assume that ρ is inertially generic (Definition 3.4.4). We recall that this
implies that p is large enough so that Lemma 3.4.1 holds (see §3.4).

If σ is a Serre weight for G(Fp) and π an admissible smooth representation of
G(Qp) over kE, we write HomG(Zp)(σ, π|G(Zp))

ord for the maximal vector subspace
of HomG(Zp)(σ, π|G(Zp)) on which the action of HG(σ) extends to HT (σU−(Zp)).

Theorem 4.3.9. Let Π be an admissible smooth representation of G(Qp) over kE
such that Π|G(Zp) is an injective object in the category of smooth representations
of G(Zp) over kE. Let wCρ ∈ WCρ and assume

HomG(Zp)(F (λw−1(χρ) − θ),Π|G(Zp))
ord = 0 (28)

for all w =
(∏

α∈I∨ sα
)
wCρ, where I ⊆ wCρ(S

∨) ∩ Cρ runs among the non-
empty subsets of pairwise orthogonal roots and where λw−1(χρ) is as in the proof
of Proposition 3.4.5. Then restriction to the G(Zp)-socle induces an isomorphism

HomG(Qp)

(
Π(ρ)Cρ,wCρ ,Π

) ∼−→ HomG(Zp)

(
F (λw−1

Cρ
(χρ) − θ),Π|G(Zp)

)
[ηρ,wCρ ],

where ηρ,wCρ is the ordinary character of HG(F (λw−1
Cρ

(χρ) − θ)) associated to χ =

w−1
Cρ

(χρ) · ω−1 ◦ θ in Theorem 4.3.3.

Proof. First, the fact that F (λw−1
Cρ

(χρ)−θ) is the G(Zp)-socle of Π(ρ)Cρ,wCρ follows

from the proof of Proposition 3.4.5 (and the inertial genericity of ρ). By Corollary
4.3.5 applied to λ = λw−1

Cρ
(χρ) − θ and η = ηρ,wCρ , it suffices to prove that the

restriction to Π(ρ)∅ = Ind
G(Qp)

B−(Qp) w
−1
Cρ

(χρ) · (ω−1 ◦ θ) induces an isomorphism

HomG(Qp)

(
Π(ρ)Cρ,wCρ ,Π

) ∼−→ HomG(Qp)

(
Π(ρ)∅,Π

)
. (29)

Recall from §3.4 that the irreducible constituents of Π(ρ)Cρ,wCρ/Π(ρ)∅ are the

principal series Ind
G(Qp)

B−(Qp) w
−1(χρ) · (ω−1 ◦ θ) where w =

(∏
α∈I∨ sα

)
wCρ with

I ⊆ wCρ(S
∨) ∩ Cρ running among the non-empty subsets of pairwise orthogonal

roots. The result follows from Corollary 4.3.7 (with (28) and Corollary 4.3.5).

Taking the direct sum over wCρ ∈ WCρ in Theorem 4.3.9 yields the following
corollary.
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Corollary 4.3.10. We keep the notation of Theorem 4.3.9 and assume

HomG(Zp)(F (λw−1(χρ) − θ),Π|G(Zp))
ord = 0

for all wCρ ∈ WCρ and all w =
(∏

α∈I∨ sα
)
wCρ, where I ⊆ wCρ(S

∨) ∩ Cρ runs
among the non-empty subsets of pairwise orthogonal roots. Then restriction to
the G(Zp)-socle induces an isomorphism

HomG(Qp)

(
Π(ρ)ord,Π

) ∼−→
⊕

wCρ∈WCρ

HomG(Zp)

(
F (λw−1

Cρ
(χρ) − θ),Π|G(Zp)

)
[ηρ,wCρ ].

If ρ : Gal(Qp/Qp) −→ B̂Cρ(E) ⊆ B̂(E) ⊆ Ĝ(E) is a continuous homomor-
phism such that the closed subset Cρ ⊆ R+∨ is minimal under conjugation by

B̂(E), we let χρ : T (Qp) → k×E be the character χρ : T (Qp) → O×E ⊂ E× of §3.3
composed with O×E � k×E . Using Corollary 4.3.8 instead of Corollary 4.3.7, we
also have p-adic versions of Corollary 4.3.10 (and Theorem 4.3.9) that we state
without proof.

Corollary 4.3.11. Let ρ : Gal(Qp/Qp) −→ B̂Cρ(E) ⊆ B̂(E) be as above such
that (χρ ◦ α∨)|Z×p /∈ {1, ω, ω−1} for all α ∈ R+. Let Π be as in Corollary 4.3.8
and assume

HomG(Zp)(F (λw−1(χρ) − θ), (Π0 ⊗ kE)|G(Zp))
ord = 0

for all wCρ ∈ WCρ and all w =
(∏

α∈I∨ sα
)
wCρ, where I ⊆ wCρ(S

∨) ∩ Cρ runs
among the non-empty subsets of pairwise orthogonal roots. Then restriction to
the G(Qp)-socle induces an isomorphism

HomG(Qp)

(
Π(ρ)ord,Π

) ∼−→
⊕

wCρ∈WCρ

HomG(Qp)

((
Ind

G(Qp)

B−(Qp)w
−1
Cρ

(χρ)·(ε−1◦θ)
)C0

,Π
)
.

4.4 A global result

We apply the main results of §4.3 to prove a weak version of Conjecture 4.2.5
and a special case of Conjecture 4.2.2. We keep the notation of §4.1 and §4.2.
We suppose from now on that F/F+ is unramified at all finite places.

We say that a compact open subgroup U ⊆ G(A∞,pF+ )×G(OF+,p) is sufficiently
small if there exists a finite place v of F+ such that the projection of U to G(F+

v )
contains no element of finite order. We say a compact open subgroup Up ⊆
G(A∞,pF+ ) is sufficiently small if UpG(OF+,p) is sufficiently small. The following
lemma is well-known (see e.g. [EGH13, §7.1.2]).
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Lemma 4.4.1. Let M be an OE-module endowed with an OE-linear action of
G(OF+,p) and let U ⊆ G(A∞,pF+ ) × G(OF+,p) be a sufficiently small compact open

subgroup. Then one has a natural isomorphism S(U,M)
∼→M⊕r for some integer

r ≥ 0 that only depends on U .

Lemma 4.4.2. Let M be a finite-dimensional smooth representation of G(OF+,p)
over kE and Up ⊆ G(A∞,pF+ ) a compact open subgroup. Then one has

S
(
UpG(OF+,p),M

) ∼−→ HomG(OF+,p)

(
M∨, S(Up, kE)

)
.

Proof. The proof is essentially that of [EGH13, Lem. 7.4.3], so we just define the
map. We send f : G(F+)\G(A∞F+)→M to

` ∈M∨ 7→
(
g 7→ `(f(g))

)
.

Then up · ` is sent to
(
g 7→ `(u−1

p (f(g))) = `(f(gup))
)

= up ·
(
g 7→ `(f(g))

)
, where

up ∈ G(OF+,p), and the map is thus G(OF+,p)-equivariant. Since the action of
G(OF+,p) on M∨ is smooth, its image lies in S(Up, kE).

If Up ⊆ G(A∞,pF+ ) is a compact open subgroup, we denote by Σ a finite set of
finite places of F+ containing the set of places of F+ that split in F and divide
pN and the set of places of F+ that split in F at which Up is not unramified.

Proposition 4.4.3. Let Up ⊆ G(A∞,pF+ ) be a sufficiently small compact open sub-
group, Σ a set of places of F+ as above and mΣ a maximal ideal of TΣ (see §4.1)
with residue field kE. Then the admissible smooth G(F+ ⊗Q Qp)-representations
S(Up, kE) and S(Up, kE)mΣ are injective objects in the category of smooth repre-
sentations of G(OF+,p) over kE.

Proof. The second representation being a direct summand of the first (see §4.1),
it is enough to prove the statement for the first. By [Eme10b, Prop. 2.1.9], it is
enough to prove that S(Up, kE) is injective in the category of admissible smooth
representations of G(OF+,p) over kE. Let j : π ↪→ π′ be an injection of admissible
smooth G(OF+,p)-representations over kE, we have to prove that

HomG(OF+,p)

(
π′, S(Up, kE)

) ·◦j−→ HomG(OF+,p)

(
π, S(Up, kE)

)
is surjective. Write π′ = ∪mπ′m, where (π′m)m∈Z>0 is an increasing sequence of
finite-dimensional vector subspaces preserved by G(OF+,p) (recall π′ is admissi-
ble). It is enough to prove that all maps

HomG(OF+,p)

(
π′m, S(Up, kE)

) ·◦j|π∩π′m−→ HomG(OF+,p)

(
π ∩ π′m, S(Up, kE)

)
(30)
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are surjective. Indeed, since HomG(OF+,p)

(
π′m/(π∩π′m), S(Up, kE)

)
is finite-dimen-

sional (S(Up, kE) being admissible), the Mittag-Leffler conditions are satisfied
on the projective system

(
HomG(OF+,p)

(
π′m/(π ∩ π′m), S(Up, kE)

))
m∈Z>0

and the

surjection survives the projective limit. The surjection in (30) then follows from
Lemma 4.4.2 applied to M = (π′m)∨ and M = (π ∩ π′m)∨ and Lemma 4.4.1.

Let r : Gal(F/F ) → GLn(kE) be a continuous representation such that rc ∼=
r∨ ⊗ ω1−n and r is absolutely irreducible. If Up ⊆ G(A∞,pF+ ) is a compact open
subgroup we denote by Σ a finite set of finite places of F+ containing the set of
places of F+ that split in F and divide pN , the set of places of F+ that split in
F at which Up is not unramified and the set of places of F+ that split in F at
which r is ramified. Recall that we have associated to r and Σ a maximal ideal
mΣ of TΣ with residue field kE in §4.2.

We denote by Gp the restriction of scalars from OF+,p to Zp of the algebraic
groupG×OF+ [1/N ]OF+,p, so thatGp(Zp) = G(OF+,p) =

∏
v|pG(OF+

v
) (the algebraic

group Gp is isomorphic to
∏

ṽGLn/Zp). If σ is any Serre weight for Gp(Fp) and if
Up and Σ are as above, then the commutative kE-algebra

TΣ ⊗OE HGp(σ) = (TΣ ⊗OE kE)⊗kE HGp(σ)

(see §4.3 forHGp(σ)) acts on HomG(OF+,p)(σ, S(Up, kE)) = HomGp(Zp)(σ, S(Up, kE))

and also on HomG(OF+,p)(σ, S(Up, kE)mΣ). Identifying Gp(Zp) with
∏

v|pGLn(OFṽ)
via

∏
v|p ιṽ, a Serre weight σ for Gp(Fp) is of the form σ = ⊗v|pσṽ, where σṽ is a

Serre weight for GLn(OFṽ) = GLn(Zp). Using the proof of [Her11, Lem. 8.2] we
have HGp(σ) = ⊗v|pHGLn(σṽ). By Example 4.3.1 we thus have an isomorphism

HGp(σ) ∼= kE[Tσṽ ,1, . . . , Tσṽ ,n−1, T
±1
σṽ ,n

, v|p]. (31)

Recall that HomG(OF+,p)(σ, S(Up, kE)mΣ)ord ⊆ HomG(OF+,p)(σ, S(Up, kE)mΣ) was
defined in §4.3. Note that it is compatible with base change for algebraic exten-
sions of kE.

Proposition 4.4.4. Suppose that Up ⊆ G(A∞,pF+ ) is a compact open subgroup, Σ
is a finite set of places as above, and that r : Gal(F/F )→ GLn(kE) is absolutely
irreducible. Suppose that σ = ⊗v|pσṽ = ⊗v|pF (λṽ) is a Serre weight for G(OF+,p)
(so 0 ≤ λṽ,i − λṽ,i+1 ≤ p − 1 for all i) and that η : HGp(σ) → kE is an ordinary
character. If HomG(OF+,p)

(
σ, S(Up, kE)mΣ

)
[η] 6= 0, then

rṽ ∼=


ωλṽ,1 nr(uṽ,1) ∗ · · · ∗

0 ωλṽ,2−1 nr(
uṽ,2
uṽ,1

)
...

...
...

... ... ∗
0 . . . 0 ωλṽ,n−(n−1) nr(

uṽ,n
uṽ,n−1

)

 ,

where uṽ,j = η(T−1
σṽ ,n

Tσṽ ,n−j) ∈ k×E .
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Proof. Step 1: We make some easy reductions.
Let σ be any Serre weight for Gp(Fp). Since the actions of TΣ and HGp(σ)
commute we have

HomG(OF+,p)

(
σ, S(Up, kE)mΣ

)ord
= HomG(OF+,p)

(
σ, S(Up, kE)

)ord

mΣ

= S
(
UpG(OF+,p), σ

∨)ord

mΣ ,

where the second equality follows from Lemma 4.4.2. Since S(Up, kE)mΣ ⊆
S(U ′p, kE)mΣ′ if U ′p ⊆ Up and Σ′ ⊇ Σ (see §4.1), we have an analogous inclusion
with the HomG(OF+,p)(σ, ·)ord. Thus we can assume Up sufficiently small.

Step 2: We check some compatibilities with [Ger09] and [GG12].
Let Tp ⊆ Bp ⊆ Gp be the split maximal torus and the Borel subgroup in Gp which,
under ι, correspond respectively to diagonal and upper triangular matrices in∏

ṽGLn/Zp . We have σ∨ ∼= F (λ′), where λ′ ∈ X1(Tp) satisfies λ′ṽ,i = −λṽ,n−i+1 for
all ṽ, i. Let L(λ′)/OE = ⊗v|pL(λ′ṽ)/OE be the algebraic representation of Gp×ZpOE
given by (ind

Gp

B−p
λ′)/OE (algebraic induction functor of [Jan03, §I.3.3]). We con-

sider L(λ′) as a representation of Gp(Zp) = G(OF+,p) over OE and we have an in-
jection of smooth finite-dimensional G(OF+,p)-representations over kE: F (λ′) ↪→
L(λ′)⊗OE kE ([Jan03, §II.2]). Let Up ⊆ G(A∞,pF+ ) be a sufficiently small compact
open subgroup and Σ a set of finite places as above, then S(UpG(OF+,p), L(λ′)⊗OE
kE) ∼= S(UpG(OF+,p), L(λ′))⊗OE kE by Lemma 4.4.1 and we deduce an injection
of TΣ-modules S(UpG(OF+,p), F (λ′)) ↪→ S(UpG(OF+,p), L(λ′))⊗OE kE which in-
duces an injection of TΣ-modules

S(UpG(OF+,p), F (λ′))mΣ ↪→ S(UpG(OF+,p), L(λ′))mΣ ⊗OE kE.

By [Ger09, Def. 2.3.2] or [GG12, §6.1] there is an action on S(UpG(OF+,p), L(λ′))
(and thus on S(UpG(OF+,p), L(λ′))mΣ) of the “weighted” double cosets

p−
∑j
i=1 λ

′
ṽ,n−i+1ι−1

ṽ

[
GLn(OFṽ)

(
1n−j

p1j

)
GLn(OFṽ)

]
(32)

for v|p and j ∈ {1, . . . , n} whose reduction modulo $E preserve the subspace
S(UpG(OF+,p), F (λ′)) (and thus S(UpG(OF+,p), F (λ′))mΣ). Moreover, by a vari-
ant of [EGH13, Prop. 4.4.2], one can check that the action of (32)
on S(UpG(OF+,p),F (λ′)) ∼= HomG(OF+,p)(σ, S(Up, kE)) coincides with the action

of the operator T−1
σṽ ,n

Tσṽ ,n−j of (31). (In loc. cit., it coincides with the action of

Tσṽ ,j on (σ∨⊗S(Up, kE))G(OF+,p) as defined in [EGH13, §2.2], but this is the same
as the action of T−1

σṽ ,n
Tσṽ ,n−j on HomG(OF+,p)(σ, S(Up, kE)) as defined in §4.3, see

[Her11, §2.3].)

Step 3: We conclude.
Replacing E by a finite extension if necessary, by [EGH13, Lem. 4.5.1] and Step

58



2, the Hecke eigenvalues uṽ,j ∈ k×E of T−1
σṽ ,n

Tσṽ ,n−j on S(UpG(OF+,p), F (λ′))mΣ lift
to eigenvalues ũṽ,j ∈ O×E of (32) on the larger space S(UpG(OF+,p), L(λ′))mΣ ⊗OE
kE. Consider the embedding S(UpG(OF+,p), L(λ′))mΣ ⊆ S(L(λ′)) ⊗OE E, where
the latter is a semi-simple G(A∞F+)-representation (see §4.1 and [Ger09, Lem.
2.2.5]). If π is any irreducible constituent of S(L(λ′)) ⊗OE E such that π ∩
S(UpG(OF+,p), L(λ′))mΣ 6= 0, then its base change to GLn/F (which exists by
[Ger09, Lem. 2.2.5] and [Lab11, Cor. 5.3]) is a cuspidal automorphic repre-
sentation of GLn(AF ) since its associated p-adic representation of Gal(F/F )
is irreducible (as it reduces to the irreducible r). Now assume that the eigen-
values of the operators (32) on π ∩ S(UpG(OF+,p), L(λ′))mΣ = πU

pG(OF+,p) ∩
S(UpG(OF+,p), L(λ′))mΣ are all inO×E . We claim the proof of [Ger09, Cor. 2.7.8(1)]
applies to give the desired result. In our situation, the level is prime to p, so we
do not need the regularity condition on λ. The characteristic polynomial in the

proof becomes
∑

j(−1)jpj(j−1)/2+
∑j
i=1 λ

′
ṽ,n−i+1ũṽ,jX

j whose roots αj have (distinct)
valuations j − 1 + λ′n−j+1. Finally observe that in the notation of [Ger09, Cor.

2.7.8(1)], ψṽ,j(ArtFṽ(p)) =
∏j

i=1(αip
−(i−1)−λ′n−i+1) is congruent to ũṽ,j modulo

$E.

Following [GG12, §6] we say that r (continuous, absolutely irreducible) is
modular and ordinary if there exist a sufficiently small compact open subgroup
Up =

∏
v-p Uv ⊆ G(A∞,pF+ ) such that Uv is a hyperspecial maximal compact sub-

group of G(F+
v ) for all places v of F+ that are inert in F , a finite set of finite

places Σ as above and a Serre weight σ for Gp(Fp) such that

HomG(OF+,p)

(
σ, S(Up, kE)mΣ

)ord 6= 0.

(Note that the modularity assumption implies rc ∼= r∨ ⊗ ω1−n.) By Proposi-
tion 4.4.4 if r is modular and ordinary then rw is ordinary for all w|p in F .

Proposition 4.4.5. Let r : Gal(F/F ) → GLn(kE) be a continuous representa-
tion. We assume that r satisfies the following assumptions:

(i) r|Gal(F/F ( p
√

1)) is absolutely irreducible;

(ii) r is modular and ordinary;

(iii) p > 2n+ 2 and ζp 6∈ F .

Suppose that for all places v|p we have

rṽ ∼=


ωλṽ,1 nr(uṽ,1) ∗ · · · ∗

0 ωλṽ,2−1 nr(
uṽ,2
uṽ,1

)
...

...
...

... ... ∗
0 . . . 0 ωλṽ,n−(n−1) nr(

uṽ,n
uṽ,n−1

)

 , (33)
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where 1 ≤ λṽ,i−λṽ,i+1 ≤ p−1 and uṽ,i ∈ k×E for all i. Let σ = ⊗v|pσṽ := ⊗v|pF (λṽ),
a Serre weight for G(OF+,p).

Then there exist a sufficiently small compact open subgroup Up ⊆ G(A∞,pF+ )
and a finite set of finite places Σ as above such that

HomG(OF+,p)

(
σ, S(Up, kE)mΣ

)ord 6= 0.

If moreover the integers λṽ,i − (i− 1) are distinct modulo p− 1 (for any v|p),
then for any such (Up,Σ) and any finite extension k′E of kE, there is only one
ordinary character η of HGp(σ) such that HomG(OF+,p)

(
σ, S(Up, k′E)mΣ

)
[η] 6= 0

and this character sends Tσṽ ,j in (31) to u−1
ṽ,nuṽ,n−j ∈ k×E in (33) for v|p and

1 ≤ j ≤ n (where uṽ,0 := 1 for all v|p).

Proof. By [GG12, Lem. 3.1.5] it follows that for all v|p, rṽ has an ordinary crys-
talline lift of Hodge–Tate weights (λṽ,1, λṽ,2 − 1, . . . , λṽ,n − (n − 1)). The first
part of the proposition now follows from [GG12, Thm. 6.1.6] under assumptions

(i′) r(Gal(F/F ( p
√

1))) big and (iii′) F
Ker(ad(r))

does not contain F ( p
√

1) (instead
of (i) and (iii)). (Note that the extra condition on the level U at places v ∈ Sa in
[GG12, §6.1] is only used to guarantee that U is sufficiently small.) To conclude,
we replace the application of [GG12, Thm. 5.1.1] in the proof of [GG12, Thm.
6.1.6] by the proof of [BLGGT, Thm. 4.4.1] and Thorne’s improved modularity
theorem [BLGGT, Thm. 2.3.1] (to guarantee that π′ can be chosen to be ordinary
of level prime to p). (Note that crystalline ordinary local Galois representations
are potentially diagonalizable and that if ρ1 ∼ ρ2 in the notation of [BLGGT,
§1.4], then ρ1 is crystalline ordinary if and only if ρ2 is crystalline ordinary; see
[BLGGT, §1.4].) The last part follows from Proposition 4.4.4.

Note that the congruence condition on the λṽ,i − (i− 1) is satisfied whenever
rṽ is inertially generic.

Assume that, for all w|p in F , rw is ordinary (i.e. upper triangular up to
conjugation) and generic in the sense of Definition 3.4.2 (equivalently, assume rṽ
is ordinary and generic at all places ṽ where v|p in F+). We have associated to
rṽ ⊗ ωn−1 in Definition 3.4.3 a set of ordinary Serre weights for ιṽ(G(OF+

v
)) =

GLn(OFṽ) defined as the set of irreducible constituents of the GLn(OFṽ)-socle of
Π(rṽ)

ord⊗(ωn−1◦det). By Lemma 4.2.1 (more precisely its variant for rṽ) and the
discussion that follows, the set of ordinary Serre weights of rṽ ⊗ ωn−1 considered
as a set of G(OF+

v
)-representations via ιṽ is the same as the set of ordinary Serre

weights of rṽc ⊗ ωn−1 considered as a set of G(OF+
v

)-representations via ιṽc . We
say that a Serre weight σ = ⊗v|pσṽ for Gp(Fp) is an ordinary Serre weight of
r ⊗ ωn−1 if, for every v|p, σṽ is an ordinary Serre weight of rṽ ⊗ ωn−1. This
doesn’t depend on the choice of ṽ above v.
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Corollary 4.4.6. Suppose that r : Gal(F/F ) → GLn(kE) satisfies assumptions
(i)–(iii) of Proposition 4.4.5, and suppose in addition that

(iv) for all w|p in F , rw is (ordinary) inertially generic (Definition 3.4.4).

Then there exist a sufficiently small compact open subgroup Up ⊆ G(A∞,pF+ ) and a
finite set of finite places Σ as above such that, for any Serre weight σ for G(OF+,p),
we have

HomG(OF+,p)

(
σ, S(Up, kE)mΣ

)ord 6= 0

if and only if σ is an ordinary Serre weight of r ⊗ ωn−1.

Proof. This follows immediately from Propositions 4.4.4 and 4.4.5, and Exam-
ple 3.4.6.

The following statement is our main result and can be seen as a weak form of
Conjecture 4.2.5. Recall that an injection π ↪→ Π between smooth representations
ofG(F+⊗QQp) over kE is said to be essential if, for any nonzero subrepresentation
π′ ⊆ Π, we have π ∩ π′ 6= 0 in Π.

Theorem 4.4.7. Let r : Gal(F/F ) → GLn(kE) be a continuous representation
that satisfies conditions (i) to (iv) of Proposition 4.4.5 and Corollary 4.4.6 (so
in particular p > 2n+2). Fix a good conjugate of each rṽ and, for every ordinary
Serre weight σṽ of rṽ⊗ωn−1, let wσṽ ∈ WCrṽ

be the unique element corresponding

to σṽ ⊗ (ω1−n ◦ det) in Proposition 3.4.5 applied to ρ = rṽ. Fix Up ⊆ G(A∞,pF+ ) a
sufficiently small compact open subgroup and Σ a finite set of finite places as in
Corollary 4.4.6. Then, for each ordinary Serre weight σ = ⊗v|pσṽ of r ⊗ ωn−1,
there is an integer dσ > 0 such that we have an essential injection of admissible
smooth representations of G(F+ ⊗Q Qp) =

∏
v|pG(F+

v ) over kE,

⊕
σ=⊗σṽ

(⊗
v|p

(
Π(rṽ)Crṽ ,wσṽ ⊗ (ωn−1 ◦ det)

))⊕dσ
↪→ S(Up, kE)[mΣ]ord. (34)

Proof. For each ordinary Serre weight σ of r ⊗ ωn−1 let

dσ := dimkE HomG(OF+,p)

(
σ, S(Up, kE)[mΣ]

)
[η],

where η is the unique ordinary character of HGp(σ) in Proposition 4.4.5. We have
in particular dσ > 0. Write σṽ = F (λṽ) with λṽ = (λṽ,1, . . . , λṽ,n) ∈ Zn (1 ≤ λṽ,i−
λṽ,i+1 ≤ p− 1) and set ηṽ := η|HGLn (σṽ) (recall HGp(σ) = ⊗v|pHGLn(σṽ)). By def-
inition of wσṽ we have w−1

σṽ
(χ̂rṽ⊗ωn−1) = diag(ωλṽ,1+n−1 nr(uṽ,1), ωλṽ,2+n−2 nr(uṽ,2

uṽ,1
),
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. . . , ωλṽ,n nr( uṽ,n
uṽ,n−1

)) for some uṽ,i ∈ k×E , and by Proposition 4.4.5 we have

η(Tσṽ ,j) = u−1
ṽ,nuṽ,n−j. Thus we get from Example 4.3.4 that(

c-Ind
GLn(Fṽ)
GLn(OFṽ ) σṽ

)
⊗HGLn (σṽ),ηṽ kE

∼=

Ind
GLn(Fṽ)

B−(Fṽ) ω
λṽ,1 nr(uṽ,1)⊗ ωλṽ,2 nr(uṽ,2

uṽ,1
)⊗ · · · ⊗ ωλṽ,n nr( uṽ,n

uṽ,n−1
)

and hence that(
c-Ind

GLn(Fṽ)
GLn(OFṽ ) σṽ

)
⊗HGLn (σṽ),ηṽ kE

∼= Ind
GLn(Fṽ)

B−(Fṽ) w
−1
σṽ

(χrṽ⊗ωn−1) · (ω−1 ◦ θ), (35)

where χrṽ⊗ωn−1 = χrṽ⊗ (ωn−1 ◦det) is as in §3.4. Let Tp and Bp be as in Step 2 of
the proof of Proposition 4.4.4. By Proposition 4.4.3, Corollary 4.4.6 and (35) we
can apply Theorem 4.3.9 to (Gp, Bp, Tp), Π := S(Up, kE)mΣ , ρ := ⊕v|p(rṽ⊗ωn−1),
the Serre weight σ and the character ηρ,wCρ := η. By the analogue over kE of

Remark 3.3.6 and Corollary 4.3.5, we get that the restriction to the G(OF+,p)-
socle induces an isomorphism of TΣ-modules

HomG(F+⊗QQp)

(⊗
v|p

(
Π(rṽ)Crṽ ,wσṽ ⊗ (ωn−1 ◦ det)

)
, S(Up, kE)mΣ

)
∼−→

HomG(OF+,p)

(
σ, S(Up, kE)mΣ

)
[η].

Taking the mΣ-eigenspaces on both sides and using the fact that all constituents
of ⊗v|pΠ(rṽ)Crṽ ,wσṽ are principal series, we deduce

HomG(F+⊗QQp)

(⊗
v|p

(
Π(rṽ)Crṽ ,wσṽ ⊗ (ωn−1 ◦ det)

)
, S(Up, kE)[mΣ]ord

)
∼−→

HomG(OF+,p)

(
σ, S(Up, kE)[mΣ]

)
[η]. (36)

Let f1, . . . , fdσ be a kE-basis of the right-hand side of (36) and F1, . . . , Fdσ the
corresponding basis of the left-hand side, then ⊕dσi=1Fi induces a G(F+ ⊗Q Qp)-
equivariant map(⊗

v|p

(
Π(rṽ)Crṽ ,wσṽ ⊗ (ωn−1 ◦ det)

))⊕dσ
−→ S(Up, kE)[mΣ]ord,

which is injective as it is injective on the G(OF+,p)-socle. Summing over all σ,
we get by the same argument an injection as in (34). It remains to prove that it
is essential, and, since S(Up, kE)[mΣ]ord ⊗kE kE ↪→ S(Up, kE)[mΣ]ord, it is enough
to prove this replacing kE by an algebraic closure kE. Assume the injection
is not essential and let Π′ be a nonzero subrepresentation of S(Up, kE)[mΣ]ord

which has zero intersection with the left-hand side of (34) (tensored by kE).
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Since Π′ is admissible, it satisfies the descending chain condition and, replacing
Π′ by an irreducible subrepresentation, we can assume Π′ irreducible. Since
it lies in S(Up, kE)[mΣ]ord it is thus an irreducible subquotient of a principal
series of Gp(Qp) over kE. Let σ′ ⊆ Π′ be a Serre weight for Gp(Fp), then by
[Her11, Cor. 9.13(i)] (more precisely the last sentence in loc. cit.) the action
of HGp(σ

′) on HomGp(Zp)(σ
′,Π′) factors through STp (see §4.3 for SM) and thus

there is an injection σ′ ↪→ Π′ ↪→ S(Up, kE)[mΣ]ord which gives an element in
HomG(OF+,p)(σ

′, S(Up, kE)[mΣ])[η′] for some ordinary character η′ ofHGp(σ
′). But

Corollary 4.4.6 and the isomorphism

HomG(OF+,p)

(
σ′, S(Up, kE)[mΣ]

)
⊗kE kE

∼−→ HomG(OF+,p)

(
σ′, S(Up, kE)[mΣ]

)
(recall that σ′ is defined over kE) imply that σ′ must be an ordinary Serre weight
σ of r⊗ωn−1 and that η′ must be η, so that σ′ can’t have a zero intersection with
the left-hand side of (34) by construction. This proves we must have Π′ = 0.

The integers dσ in Theorem 4.4.7 a priori depend on all the data, that is, on
r, Up, Σ and σ. Note that if all dσ are equal, and if d is their common value,
then one recovers an essential injection as in (26).

We end this paper with some evidence for the p-adic case, i.e. Conjecture
4.2.2. If r : Gal(F/F ) → GLn(E) is a continuous representation, we denote by
r the semi-simplification of its mod $E reduction. If r is ramified only at a fi-
nite number of places of F , we recall that r is modular if there exist a compact
open subgroup Up ⊆ G(A∞,pF+ ), a finite set Σ of finite places of F+ (contain-
ing the set of places of F+ that split in F and divide pN , the set of places
of F+ that split in F at which Up is not unramified and the set of places of
F+ that split in F at which r is ramified) and irreducible algebraic represen-
tations L(λṽ) of G ×OF+ [1/N ] F

+
v ' GLn/Fṽ over E for v|p of highest weight

λṽ = (λṽ,1 ≥ · · · ≥ λṽ,n) such that HomUp

(⊗
v|p L(λṽ), Ŝ(Up, E)[pΣ]

)
6= 0 for Up

a small enough compact open subgroup of
∏

v|pG(OF+
v

) (see [EGH13, §7.1.4] and

note that HomUp

(⊗
v|p L(λṽ), Ŝ(Up, E)

)
= S

(
UpUp,⊗v|pL(λ′ṽ)

)
where λ′ṽ,i :=

−λṽ,n−i+1; also recall that the prime ideal pΣ of TΣ was defined in §4.2). More-
over r modular implies that rṽ is potentially semi-stable for all v|p and that
λṽ,1 > λṽ,2 − 1 > · · · > λṽ,n − (n − 1) are its Hodge–Tate weights (see [EGH13,
Thm. 7.2.1] together with our convention at the end of Remark 4.2.4).

Theorem 4.4.8. Let r : Gal(F/F ) → GLn(E) be a continuous representation
that satisfies the following assumptions:

(i) r is modular;

(ii) r|Gal(F/F ( p
√

1)) is absolutely irreducible;
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(iii) rw is generic ordinary for all w|p in F ;

(iv) (r)w is (ordinary) inertially generic with C(r)w maximal for all w|p in F ;

(v) p > 2n+ 2 and ζp 6∈ F .

Fix Up ⊆ G(A∞,pF+ ) a sufficiently small compact open subgroup and a finite set Σ of

finite places of F+ as above such that HomUp

(⊗
v|p L(λṽ), Ŝ(Up, E)[pΣ]

)
6= 0 for

Up small enough. Then there is an integer d ∈ Z>0 such that we have an injection
of admissible unitary continuous representations of G(F+ ⊗Q Qp) =

∏
v|pG(F+

v )
over E, (⊗̂

v|p

(
Π(rṽ)

ord ⊗ (εn−1 ◦ det)
))⊕d

↪→ Ŝ(Up, E)[pΣ]ord. (37)

Proof. Note that assumptions (i) and (iii) imply that r ⊗ ωn−1 is modular and
ordinary. Assumption (iv) implies WC(r)w

= {1}, or equivalently that (r)w is
upper triangular and “as indecomposable as possible” (see §3.2), or equivalently
again by Corollary 4.4.6 that r ⊗ ωn−1 has only one ordinary Serre weight. We
also get from assumptions (iii) and (iv) that WCrw = {1}, or equivalently that
Π(rw)ord has an irreducible socle. Moreover it follows from assumptions (i) and
(iii) that rw is potentially crystalline for all w|p in F with associated Weil–Deligne
representation corresponding to an irreducible smooth principal series of GLn(Fw)
over E. By [EGH13, Thm. 7.2.1(iv)] and the well-known description of the locally

algebraic vectors of Ŝ(Up, E) (see e.g. [Bre13c, Prop. 5.1]), we get a
∏

v|pG(F+
v )-

equivariant injection⊗
v|p

(
Ind

GLn(Fṽ)

B−(Fṽ) (χrṽ⊗εn−1) · (ε−1 ◦ θ)
)alg

↪→ Ŝ(Up, E)[pΣ]

where “alg” means the locally algebraic vectors of the irreducible unitary contin-

uous principal series
(

Ind
GLn(Fṽ)

B−(Fṽ) (χrṽ⊗εn−1) · (ε−1 ◦ θ)
)C0

. Either by an application

of Emerton’s functor of ordinary parts or by the fact that
(

Ind
GLn(Fṽ)

B−(Fṽ) (χrṽ⊗εn−1) ·

(ε−1 ◦ θ)
)C0

is the universal unitary completion of
(

Ind
GLn(Fṽ)

B−(Fṽ) (χrṽ⊗εn−1) · (ε−1 ◦
θ)
)alg

, we have

HomG(F+⊗QQp)

(⊗
v|p

(
Ind

GLn(Fṽ)

B−(Fṽ) (χrṽ⊗εn−1) · (ε−1 ◦ θ)
)alg

, Ŝ(Up, E)[pΣ]
)

=

HomG(F+⊗QQp)

(⊗̂
v|p

(
Ind

GLn(Fṽ)

B−(Fṽ) (χrṽ⊗εn−1) · (ε−1 ◦ θ)
)C0

, Ŝ(Up, E)[pΣ]
)
.
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Let d be the (finite positive) dimension of this space of homomorphisms, then, as

in the proof of Theorem 4.4.7, one applies Corollary 4.3.11 to Π := Ŝ(Up, E)pΣ

and ρ := ⊕v|p(rṽ ⊗ εn−1), and concludes as in the proof of Theorem 4.4.7.

Remark 4.4.9. (i) With some more work, one should be able to prove that the
injection (37) is essential for d as in the above proof, at least in some cases. First,
it follows from Corollary 4.3.5 and assumption (v) in the statement of Theorem

4.4.8 that an irreducible constituent in the G(F+⊗QQp)-socle of Ŝ(Up, E)[pΣ]ord

is always a full principal series (because it reduces to a full principal series).
Secondly (at least in some cases), one should be able to replace the control of
the G(OF+,p)-socle of S(Up, kE)[mΣ]ord given by Corollary 4.4.6 by a control of
the locally analytic vectors of the G(F+⊗QQp)-socle of S(Up, E)[pΣ]ord given by
[Bre13c, Prop. 8.1] and [Bre13c, §9], and get that any principal series in this socle

should always be (one copy of)
⊗̂ (

Ind
GLn(Fṽ)

B−(Fṽ) (χrṽ⊗εn−1) · (ε−1 ◦ θ)
)C0

. See also

the recent [BC14] for stronger results on Conjecture 4.2.2 when n = 3.
(ii) When G = GSp4, analogous results to those of Theorem 4.4.7 and Theorem
4.4.8 should follow by the same method from recent results on ordinary Serre
weights for GSp4 (see [HT13] and [GG12, §7]) and the transfer from compact
mod centre GSp4 to GL4 (see for example [Sor09, Thm. B], as well as [GT11,
Thm. 12.1]), showing that the representation Π(ρ)ord hopefully remains relevant
beyond GLn.
(iii) Finally, it is natural to wonder what happens with respect to L-packets when
the classical Langlands correspondence is involved, that is, when ρ is potentially
semi-stable with distinct Hodge–Tate weights. Let us assume for simplicity that
ρ is crystalline (and generic ordinary as in Definition 3.3.1). In that case, the
Weil representation associated to ρ is the same as the Weil representation W (χ̂ρ)

associated to χ̂ρ : Gal(Qp/Qp)→ T̂ (E) as in §3.3. The image of W (χ̂ρ) in T̂ (E) is
generated by one (semi-simple) element t sinceW (χ̂ρ) is unramified. As the center
of G is connected, a classical result of Steinberg ([SS70, §3.9]) implies that the

centralizer Z(t) of t in Ĝ is a connected reductive algebraic group. In particular,
the associated L-packet is a singleton (an irreducible unramified principal series
of G(Qp)). Therefore, at least in this case, no (classical) endoscopic phenomenon
occurs.

A Some results on unitary continuous represen-

tations I

In this appendix, we give technical results on admissible unitary continuous rep-
resentations of p-adic analytic groups that are used in the text. We didn’t try to
reach the greatest generality.
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We refer to [Sch06, §2] and [Eme10a, §2] for the definition and basic properties
of the abelian category of admissible unitary continuous representations of a p-
adic analytic group G on p-adic Banach spaces over E (more precisely, with the
notation of [Eme10a, §2], it is the category Mod$E−adm

G (OE)fl ⊗ Q, that is, the
category Mod$E−adm

G (OE)fl of [Eme10a, Prop. 2.4.10] up to isogeny). If Π,Π′ are
two admissible unitary continuous representations of G over E, we denote by
Ext1

G(Π′,Π) the E-vector spaces of Yoneda extensions in this abelian category.

We didn’t seek to be optimal in the statements that follow as they suffice for
our purpose (thus some of them might still be true under weaker assumptions).

Lemma A.1. Let (· · · →Mn →Mn−1 → · · · ) be a projective system of OE/$n
E-

modules (n ∈ Z>0) such that M := lim
←−
n

Mn is of finite type over OE. Let Π be a

p-adic Banach space over E and Π0 ⊆ Π be a unit ball. Then there is a topological
isomorphism

M ⊗OE Π ∼=
(

lim
←−
n

(Mn ⊗OE Π0)
)
⊗OE E,

where Mn ⊗OE Π0 = Mn ⊗OE Π0/$n
E is endowed with the discrete topology and

lim
←−
n

(Mn ⊗OE Π0) with the projective limit topology.

Proof. Since E is discretely valued, the Banach space Π admits an orthonormal-
izable basis (ei)i∈I by [Sch02, Prop. 10.1] and we can take Π0 to be the unit ball
for that basis. Then lim

←−
n

(Mn ⊗OE Π0) = lim
←−
n

(Mn ⊗OE (⊕i∈IOEei)) which can be

identified with the OE-module M̂ := {(mi)i∈I : mi ∈ M,mi → 0 when i → ∞},
where the convergence condition means that for any n ≥ 1 there exists a finite
subset In ⊆ I such that mi ∈ Ker(M → Mn) if i /∈ In. Since M = lim

←−
Mn,

the OE-submodules Ker(M → Mn) form a basis of open neighbourhoods of 0 in
M for the natural profinite (i.e. $E-adic) topology on M , and this convergence
condition is equivalent to asking that for any n ≥ 1 there exists a finite subset
In ⊆ I such that mi ∈ $n

EM if i /∈ In. In other terms M̂ together with its
projective limit topology is the $E-adic completion of M ⊗OE (⊕i∈IOEei). Since
M is of finite type over OE, this is just M ⊗OE Π0.

Lemma A.2. Let M be an OE-module such that each element is killed by a power
of $E, it has no nonzero divisible element and the submodule of elements killed
by $E is a finite-dimensional kE-vector space. Then M is of finite type over OE.

Proof. For n ∈ Z>0 let M [$n
E] ⊆ M be the submodule of elements killed by

$n
E and let r be the dimension of M [$E]. Then M [$n

E] is of finite type (as

follows from the exact sequence 0 → M [$E] → M [$n
E]

$E→ M [$n−1
E ] and a

straightforward induction on n) and isomorphic to ⊕ri=1OE/($
di(n)
E ) for some
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di(n) ∈ Z>0. Since M [$n−1
E ] = M [$n

E][$n−1
E ], we see that, up to a permutation

on the set {d1(n), . . . , dr(n)}, we have di(n− 1) ≤ di(n). We claim that there is
D ∈ Z>0 such that di(n) ≤ D for all i and all n. Indeed, if not, then for each
d ∈ Z>0, M [$E] contains a nonzero element which is in $d

EM . Since M [$E]
is a finite set (kE being finite), we see that M must contain a nonzero divisible
element which is impossible. Since the di(n) are bounded and increasing, we have
M [$n

E] = M [$n+1
E ] for n large enough which finishes the proof.

The following lemma will often be tacitly used in the sequel.

Lemma A.3. Let G1, G2 be two p-adic analytic groups and Π1, Π2 two ad-
missible unitary continuous representations of respectively G1 and G2 over E.
Then the completed tensor product Π1⊗̂EΠ2 is an admissible unitary continuous
representation of the p-adic analytic group G1 ×G2.

Proof. For i ∈ {1, 2} let Hi ⊆ Gi be a compact open subgroup and Π0
i ⊆ Πi a unit

ball. By [Sch06, Thm. 2.3] we have to prove that HomOE(Π0
1⊗̂OEΠ0

2,OE) (the
OE-dual) is an OE[[H1 ×H2]]-module of finite type, where OE[[H1 ×H2]] is the
Iwasawa algebra of H1×H2. Let (Hi,m)m∈Z≥1

be a decreasing sequence of normal
compact open subgroups of Hi so that OE[[Hi]] ∼= lim

←−
m

OE[Hi/Hi,m]. Since Π0
i /$

n
E

is (smooth) admissible, (Π0
i /$

n
E)Hi,m is a finite type OE-module for all n,m ∈ Z≥1

(and even a finite OE-module as OE/$n
E is finite). Since Π0

1/$
n
E ⊗OE Π0

2/$
n
E is

smooth, we have a topological isomorphism (for the profinite topology)

HomOE
(
Π0

1/$
n
E ⊗OE Π0

2/$
n
E,OE/$n

E

) ∼=
lim
←−
m

(
HomOE

(
(Π0

1/$
n
E)H1,m ,OE/$n

E

)
⊗OE HomOE

(
(Π0

1/$
n
E)H1,m ,OE/$n

E

))
.

(38)

Set Mi := HomOE(Π0
i ,OE) which is an OE[[Hi]]-module of finite type by assump-

tion. Since

(Π0
i /$

n
E)Hi,m = HomOE(Mi/$

n
E,OE/$n

E)Hi,m =

HomOE
(
Mi/$

n
E ⊗OE [[Hi]] OE[[Hi/Hi,m]],OE/$n

E

)
,

we have by biduality,

Mi/$
n
E ⊗OE [[Hi]] OE[[Hi/Hi,m]] ∼= HomOE

(
(Π0

i /$
n
E)Hi,m ,OE/$n

E

)
(39)

and thus an isomorphism of OE[[H1/H1,m]] ⊗ OE[[H2/H2,m]] = OE[[H1/H1,m ×
H2/H2,m]]-modules of finite type,

(M1/$
n
E ⊗OE M2/$

n
E)⊗OE [[H1]]⊗OEOE [[H2]] OE[[H1/H1,m ×H2/H2,m]] ∼=

HomOE
(
(Π0

1/$
n
E)H1,m ,OE/$n

E

)
⊗OE HomOE

(
(Π0

1/$
n
E)H1,m ,OE/$n

E

)
.
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Any finite type OE/$n
E[[H1 ×H2]] module M satisfies

lim
←−
m

(
M ⊗OE [[H1×H2]] OE[[H1/H1,m ×H2/H2,m]]

) ∼= M

(use π ∼= lim
−→
m

πH1,m×H2,m and (39), where π is the smooth representation of H1×H2

corresponding to M). Taking the projective limit over m and using (38) thus
yields an isomorphism of OE/$n

E[[H1 ×H2]]-modules of finite type,

(M1/$
n
E ⊗OE M2/$

n
E)⊗OE [[H1]]⊗OEOE [[H2]] OE[[H1 ×H2]] ∼=

HomOE
(
Π0

1/$
n
E ⊗OE Π0

2/$
n
E,OE/$n

E

)
.

Taking now the projective limit over n yields an isomorphism of OE[[H1 ×H2]]-
modules of finite type,

(M1 ⊗OE M2)⊗OE [[H1]]⊗OEOE [[H2]] OE[[H1 ×H2]] ∼=
lim
←−
n

HomOE
(
Π0

1/$
n
E ⊗OE Π0

2/$
n
E,OE/$n

E

) ∼= HomOE
(
Π0

1⊗̂OEΠ0
2,OE

)
,

which finishes the proof.

We say that an admissible unitary continuous representation Π of a p-adic
analytic group G is residually of finite length if for some (or equivalently any) unit
ball Π0 ⊆ Π preserved by G, the admissible smooth G-representation Π0 ⊗OE kE
is of finite length.

Lemma A.4. Let G1, G2 be two p-adic analytic groups and Π1, Π′1 (resp. Π2)
some admissible unitary continuous representation(s) of G1 (resp. G2) over E.
Assume that Π′1 is residually of finite length and dimE HomG1(Π′1,Π1) <∞. Then
there is a canonical equivariant isomorphism of admissible unitary continuous
representations of G2 over E,

HomG1(Π′1,Π1)⊗E Π2
∼−→ HomG1(Π′1,Π1⊗̂EΠ2).

Proof. Let Π0
1, Π′1

0 (resp. Π0
2) be invariant unit balls in Π1, Π′1 (resp. Π2), then

we have HomG1(Π′1,Π1⊗̂EΠ2) ∼= E⊗OE HomG1(Π′1
0,Π0

1⊗̂OEΠ0
2). We have obvious

isomorphisms

HomG1(Π′1
0
,Π0

1)
∼→ lim

←−
n

HomG1(Π′1
0
/$n

E,Π
0
1/$

n
E) (40)

HomG1(Π′1
0
,Π0

1⊗̂Π0
2)

∼→ lim
←−
n

HomG1(Π′1
0
/$n

E,Π
0
1/$

n
E ⊗ Π0

2/$
n
E). (41)
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Writing Π0
2/$

n
E = lim

−→
i

Mi, where (Mi)i∈I is an increasing sequence of free OE/$n
E-

submodules of Π0
2/$

n
E of finite rank, we have isomorphisms

HomG1(Π′1
0
/$n

E,Π
0
1/$

n
E ⊗ Π0

2/$
n
E) ∼= HomG1

(
Π′1

0
/$n

E, lim−→
i

(Π0
1/$

n
E ⊗Mi)

)
∼= lim

−→
i

HomG1

(
Π′1

0
/$n

E,Π
0
1/$

n
E ⊗Mi

)
∼= lim

−→
i

(
HomG1

(
Π′1

0
/$n

E,Π
0
1/$

n
E

)
⊗Mi

)
∼= HomG1

(
Π′1

0
/$n

E,Π
0
1/$

n
E

)
⊗Π0

2/$
n
E, (42)

where we use that Π′1
0/$n

E is a finite length representation of G1 for the second
isomorphism. Taking the projective limit over n and using (41), (40) together
with Lemma A.1 gives the result.

Note that the assumption dimE HomG1(Π′1,Π1) < ∞ in Lemma A.4 is au-
tomatically satisfied if also Π1 is residually of finite length (using
that HomG1(Π′1

0,Π0
1)/$E embeds into HomG1(Π′1

0/$E,Π
0
1/$E) which is finite-

dimensional over kE as both Π′1
0/$E and Π0

1/$E are admissible smooth repre-
sentations of G1 of finite length).

Lemma A.5. Let G1, G2 be two p-adic analytic groups and Π1, Π′1 (resp. Π2,
Π′2) be two admissible unitary continuous representations of G1 (resp. G2) over E.
Assume that Π1 and Π′1 are residually of finite length and dimE Ext1

G1
(Π′1,Π1) <

∞. Let Π be an extension of Π′1⊗̂Π′2 by Π1⊗̂Π2 (in the category of admissible
unitary continuous representations of G1 × G2 over E). Then we have an exact
sequence of admissible unitary continuous representations of G2 over E,

0→ HomG1(Π′1,Π1)⊗E Π2 → HomG1(Π′1,Π)→ EndG1(Π′1)⊗E Π′2 →
Ext1

G1
(Π′1,Π1)⊗E Π2.

Proof. Note first that HomG1(Π′1,Π1) and EndG1(Π′1) are finite dimensional E-
vector spaces, as we saw above. Let Π0

1, Π′1
0, Π0

2, Π′2
0 be invariant unit balls in

Π1, Π′1, Π2, Π′2 and Π0 an invariant unit ball in Π such that we have an exact
sequence of OE[G1 ×G2]-modules,

0 −→ Π0
1⊗̂Π0

2 −→ Π0 −→ Π′1
0⊗̂Π′2

0 −→ 0.

Let us first prove that it is enough to have an exact sequence for every n ≥ 1,

0→ HomG1(Π′1
0
/$n

E,Π
0
1/$

n
E)⊗ Π0

2/$
n
E → HomG1(Π′1

0
/$n

E,Π
0/$n

E)→
EndG1(Π′1

0
/$n

E)⊗ Π′2
0
/$n

E → Ext1
G1

(Π′1
0
/$n

E,Π
0
1/$

n
E)⊗ Π0

2/$
n
E, (43)

69



where the Ext1 is in the abelian category of smooth representations of G1 over
OE/$n

E-modules. The Mittag-Leffler condition on the projective system(
HomG1(Π′1

0
/$n

E,Π
0
1/$

n
E)⊗ Π0

2/$
n
E

)
n

is satisfied since Π0
2/$

n
E → Π0

2/$
n−1
E is surjective and HomG1(Π′1

0/$n
E,Π

0
1/$

n
E) is

a finite type OE/$n
E-module (as follows from the assumptions of residual finite

length and a dévissage, see above). Thus the sequence remains exact after taking
lim
←−

(decomposing a projective system of exact sequences 0 → An → Bn →
Cn → Dn as 0 → An → Bn → Im(Bn) → 0 and 0 → Im(Bn) → Cn → Dn

and noting that the second sequence always remains exact at the limit since
there is no surjectivity to check). One easily checks that the OE-module M :=
lim
←−

Ext1
G1

(Π′1
0
/$n

E,Π
0
1/$

n
E) is a submodule of Ext1

OE [G1](Π
′
1
0,Π0

1) (:= extensions as

linear representations ofG1 onOE-modules) and satisfies E⊗M ∼= Ext1
G1

(Π′1,Π1).
The natural surjection

HomG1(Π′1
0
,Π0

1/$E) � Ext1
OE [G1](Π

′
1
0
,Π0

1)[$E]

(see the notation in the proof of Lemma A.2) coming from the exact sequence 0→
Π0

1

$E→ Π0
1 → Π0

1/$E → 0 shows that Ext1
OE [G1](Π

′
1
0,Π0

1)[$E] is finite-dimensional
over kE. If Mtors is the torsion part of M , then a fortiori Mtors[$E] = M [$E]
is also finite-dimensional. Moreover Mtors has no nonzero divisible element as
it is contained in a projective limit of OE/$n

E-modules. Applying Lemma A.2,
we see that Mtors is of finite type over OE. Since E ⊗ M ∼= Ext1

G1
(Π′1,Π1) is

finite-dimensional over E, we get that M is a finite type OE-module. Using
isomorphisms like (40) and Lemma A.1 (which is were we use that M is of finite
type), we then conclude that taking the projective limit of (43) and tensoring by
E gives the result. Let us now prove (43). Applying HomG1(Π′1

0/$n
E, ·) to the

exact sequence 0 → Π0
1/$

n
E ⊗ Π0

2/$
n
E → Π0/$n

E → Π′1
0/$n

E ⊗ Π′2
0/$n

E → 0 and
using isomorphisms like (42) we get an exact sequence

0→ HomG1(Π′1
0
/$n

E,Π
0
1/$

n
E)⊗ Π0

2/$
n
E → HomG1(Π′1

0
/$n

E,Π
0/$n

E)→
EndG1(Π′1

0
/$n

E)⊗ Π′2
0
/$n

E → Ext1
G1

(Π′1
0
/$n

E,Π
0
1/$

n
E ⊗ Π0

2/$
n
E) (44)

(the Ext1 are still in the category of smooth G1-representations over OE/$n
E).

Let f ∈ EndG1(Π′1
0/$n

E) ⊗ Π′2
0/$n

E
∼= HomG1(Π′1

0/$n
E,Π

′
1
0/$n

E ⊗ Π′2
0/$n

E), then
f defines a natural G1-equivariant morphism Π′1

0/$n
E → Π′1

0/$n
E ⊗ Π′2

0/$n
E and

the image of f in the Ext1 on the right is given by 0→ Π0
1/$

n
E⊗Π0

2/$
n
E → V →

Π′1
0/$n

E → 0, where V is the fiber product

Π0/$n
E � Π′1

0/$n
E ⊗ Π′2

0/$n
E

↑ ↑ f
V → Π′1

0/$n
E

.
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Lift in V a finite set of generators of the G1-representation Π′1
0/$n

E (recall it is of
finite length). Since Π0/$n

E is a smooth representation of G2, this finite set and
the G1-representation it generates both lie in

V ∩
(
(Π0/$n

E)H2 × Π′1
0
/$n

E

)
for a sufficiently small compact open subgroup H2 of G2. Moreover we have an
exact sequence of G1-representations,

0→ Π0
1/$

n
E ⊗ (Π0

2/$
n
E)H2 → V ∩

(
(Π0/$n

E)H2 × Π′1
0
/$n

E

)
→ Π′1

0
/$n

E → 0,

which gives back V by pushout along Π0
1/$

n
E⊗(Π0

2/$
n
E)H2 ↪→ Π0

1/$
n
E⊗Π0

2/$
n
E. If

V is split, then any G1-equivariant section Π′1
0/$n

E ↪→ V lies in V ∩
(
(Π0/$n

E)H2×
Π′1

0/$n
E

)
for H2 sufficiently small (as follows again from the fact that Π′1

0/$n
E is

of finite length) and thus V ∩
(
(Π0/$n

E)H2 × Π′1
0/$n

E

)
is also split. Conversely,

if V ∩
(
(Π0/$n

E)H2 × Π′1
0/$n

E

)
is split, then so is the pushout V . All this shows

that one can replace Ext1
G1

(Π′1
0/$n

E,Π
0
1/$

n
E ⊗ Π0

2/$
n
E) in (44) by the inductive

limit
lim
−→
H2

Ext1
G1

(
Π′1

0
/$n

E,Π
0
1/$

n
E ⊗ (Π0

2/$
n
E)H2

)
.

Since Π0
2/$

n
E is admissible, this inductive limit can also be computed replacing

the increasing sequence of submodules (Π0
2/$

n
E)H2 by an increasing sequence of

free OE/$n
E-submodules of Π0

2/$
n
E of finite rank, the union of which is Π0

2/$
n
E.

Thus we see that it is isomorphic to Ext1
G1

(Π′1
0/$n

E,Π
0
1/$

n
E)⊗ Π0

2/$
n
E, giving at

last (43).

Lemma A.6. Let G1, G2 be two p-adic analytic groups and Π1, Π′1 (resp. Π2,
Π′2) be two admissible unitary continuous representations of G1 (resp. G2) over
E. Assume that Π1 is residually of finite length, dimE Ext1

G1
(Π′1,Π1) < ∞,

HomG1(Π′1,Π1) = 0 and EndG1(Π′1) = E.
(i) Assume that Π′1 is residually of finite length and either HomG2(Π′2,Π2) = 0 or
Ext1

G1
(Π′1,Π1) = 0. Then we have

Ext1
G1×G2

(Π′1⊗̂EΠ′2,Π1⊗̂EΠ2) = 0.

(ii) Assume that Π2 is residually of finite length, dimE Ext1
G1

(Π′1,Π1) = 1,
dimE Ext1

G2
(Π2,Π2) <∞ and EndG2(Π2) = E. Then we have

dimE Ext1
G1×G2

(Π′1⊗̂EΠ2,Π1⊗̂EΠ2) = 1,

where the corresponding unique non-split extension is realized by V1⊗̂EΠ2, V1

being the unique non-split extension of Π′1 by Π1.
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Proof. (i) Let Π be an extension of Π′1⊗̂Π′2 by Π1⊗̂Π2, applying HomG1(Π′1, ·) we
get by Lemma A.5 an exact sequence of admissible unitary continuous represen-
tations of G2,

0→ HomG1(Π′1,Π)→ Π′2 → Ext1
G1

(Π′1,Π1)⊗ Π2.

If HomG2(Π′2,Π2) = 0 or Ext1
G1

(Π′1,Π1) = 0 the map on the right is zero and
tensoring by Π′1 we deduce a commutative G1 ×G2-equivariant diagram,

Π′1⊗̂HomG1(Π′1,Π)
∼−→ Π′1⊗̂Π′2

↓ ‖
Π −→ Π′1⊗̂Π′2

yielding a splitting of Π.
(ii) Let us first prove dimE Ext1

G1×G2
(Π′1⊗̂Π2,Π1⊗̂Π2) ≤ 1. Let Π be an extension

of Π′1⊗̂Π2 by Π1⊗̂Π2, applying HomG2(Π2, ·) we get by Lemma A.5 an exact
sequence of admissible unitary continuous representations of G1,

0→ Π1 → HomG2(Π2,Π)→ Π′1 → Ext1
G2

(Π2,Π2)⊗ Π1.

Since HomG1(Π′1,Π1) = 0, the map on the right is zero and thus HomG2(Π2,Π)
gives an element of Ext1

G1
(Π′1,Π1). Tensoring by Π2 we deduce a short exact

sequence,
0→ Π1⊗̂Π2 → HomG2(Π2,Π)⊗̂Π2 → Π′1⊗̂Π2 → 0

yielding a canonical G1 × G2-equivariant isomorphism HomG2(Π2,Π)⊗̂Π2
∼→ Π.

This implies that tensoring by Π2 induces a canonical surjection,

Ext1
G1

(Π′1,Π1) � Ext1
G1×G2

(Π′1⊗̂Π2,Π1⊗̂Π2)

and in particular, we get

dimE Ext1
G1×G2

(Π′1⊗̂Π2,Π1⊗̂Π2) ≤ dimE Ext1
G1

(Π′1,Π1) = 1.

Now the representation V1⊗̂Π2 yields an element in Ext1
G1×G2

(Π′1⊗̂Π2,Π1⊗̂Π2).

This element is nonzero since HomG1(Π′1, V1⊗̂Π2) = HomG1(Π′1, V1)⊗Π2 = 0 (as
follows from HomG1(Π′1,Π1) = 0, EndG1(Π′1) = E, V1 non-split and Lemma A.4)
and thus a fortiori HomG1×G2(Π′1⊗̂Π2, V1⊗̂Π2) = 0. This finishes the proof.

B Some results on unitary continuous represen-

tations II

We recall here more or less well-known results concerning unitary continuous
principal series of GL2(Qp) or of a product of GL2(Qp) that are used in the text.
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Proposition B.1. For i ∈ {1, . . . , n} (n ∈ Z≥1) let χ1,i, χ2,i : Q×p → O×E ⊆ E× be
unitary continuous characters such that χ1,i 6= χ2,i. View χ2,i⊗χ1,i as a character
of ( ∗ 0

∗ ∗ ) ⊆ GL2(Qp) by
(
x 0
t y

)
7→ χ2(x)χ1(y) and define

Πi :=
(

Ind
GL2(Qp)

( ∗ 0
∗ ∗ )

χ2,i ⊗ χ1,i

)C0

,

where the continuous parabolic induction is as in §3.1. Then the unitary continu-
ous representation Π1⊗̂E · · · ⊗̂EΠn of the product group GL2(Qp)×· · ·×GL2(Qp)
(n times) is admissible, topologically irreducible, residually of finite length and
has only scalar endomorphisms.

Proof. Throughout this proof, irreducible means topologically irreducible. The
admissibility follows from Lemma A.3. For the finite length mod $E and the
scalar endomorphisms, it is enough to prove that the reduction Π1⊗kE · · ·⊗kE Πn,

where Πi := Ind
GL2(Qp)

( ∗ 0
∗ ∗ )

χ2,i ⊗ χ1,i (smooth induction), is of finite length and has

scalar endomorphisms. From [BL94, Thm. 30] and the (classical) fact that the
tensor product of two smooth irreducible representations over kE with scalar en-
domorphisms is an irreducible representation of the product group with scalar
endomorphisms, we deduce that this tensor product over kE is of finite length,
indecomposable and with distinct constituents. Thus its endomorphisms are just
kE. Let us indicate how one can prove the irreducibility. Note that this is
straightforward if all the Πi are irreducible. First each Πi is irreducible. Indeed,
if Πi is reducible, then it is a non-split extension of a twist of the Steinberg rep-
resentation (which is irreducible) by a 1-dimensional representation (see [BL94,
Thm. 30]). It implies that any nonzero strict invariant closed subspace Π′i ( Πi

has to be 1-dimensional, which is easily checked to be impossible since we as-
sumed χ1,i 6= χ2,i (one can also use locally analytic vectors as in what follows
or as in [Eme06, Prop. 5.3.4]). Secondly, it is enough to prove that any nonzero
closed invariant subspace of the completed tensor product contains an element
of the form v1 ⊗ v2 ⊗ · · · ⊗ vn. Indeed, by irreducibility of each Πi (and since
it is a closed subspace) it will then contain the whole usual tensor product and
hence the completed tensor product (again as it is closed). To prove this we use
locally analytic vectors. As the completed tensor product of principal series is
a principal series for the product group (in both continuous and locally analytic
worlds) and as χ1,i, χ2,i, being continuous characters of Q×p , are automatically
locally analytic, one easily checks that the subspace of locally analytic vectors
of Π1⊗̂E · · · ⊗̂EΠn is the representation Πan

1 ⊗̂E · · · ⊗̂EΠan
n , where Πan

i denotes the

locally analytic principal series
(

Ind
GL2(Qp)

( ∗ 0
∗ ∗ )

χ2,i⊗χ1,i

)an
([Sch06, §3]). By density

of locally analytic vectors in continuous admissible representations ([Sch06, Thm.
4.2]), it is enough to prove that the irreducible constituents of Πan

1 ⊗̂E · · · ⊗̂EΠan
n

are the finitely many representations C1⊗̂E · · · ⊗̂ECn, where Ci is an irreducible
constituent of Πan

i . Indeed, any nonzero closed invariant subspace will contain
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such a constituent and thus a fortiori a vector v1 ⊗ v2 ⊗ · · · ⊗ vn. In other words
one has to prove that C1⊗̂E · · · ⊗̂ECn is irreducible. Changing the numbering,
we can assume (see [ST01, §4]) that Ci is locally algebraic if 1 ≤ i ≤ m (in the
sense of the Prasad’s appendix in [ST01]) and is an irreducible locally analytic
principal series if m + 1 ≤ i ≤ n (where 0 ≤ m ≤ n). We can then rewrite
the completed tensor product as (C1 ⊗ · · · ⊗ Cm) ⊗ (Cm+1⊗̂ · · · ⊗̂Cn) and one
easily proves that it is irreducible if the factor Cm+1⊗̂ · · · ⊗̂Cn is irreducible (as
C1 ⊗ · · · ⊗ Cm is obviously irreducible and the tensor product in the middle is a
usual - i.e. not completed - tensor product). But this factor is a locally analytic
principal series for the group GL2(Qp) × · · · × GL2(Qp) (n −m times), and the
fact it is irreducible follows then from the fact that the “corresponding” Verma
module over the enveloping algebra of this group is obviously irreducible (be-
ing the tensor product of irreducible Verma modules for GL2): see [OS10, §4.1]
(together with [ST01, §4]).

The following proposition is not new (see e.g. [Eme11, Rk. 3.3.20], see also
[Hau13]), however, due to its importance in this paper, we provide a quick proof.

Proposition B.2. Let χ1, χ2 : Q×p → O×E ⊆ E× be unitary continuous characters

such that χ1χ
−1
2 /∈ {ε, ε−1} and view χ2ε

−1 ⊗ χ1 and χ1ε
−1 ⊗ χ2 as characters of

( ∗ 0
∗ ∗ ) as in Proposition B.1.

(i) If χ1 6= χ2, we have (in the category of unitary continuous representations of
GL2(Qp))

dimE Ext1
GL2(Qp)

((
Ind

GL2(Qp)

( ∗ 0
∗ ∗ )

χ2ε
−1 ⊗ χ1

)C0

,
(

Ind
GL2(Qp)

( ∗ 0
∗ ∗ )

χ1ε
−1 ⊗ χ2

)C0
)

= 1.

Moreover, this unique non-split extension has a central character.
(ii) We have (in the category of unitary continuous representations of GL2(Qp))

dimE Ext1
GL2(Qp)

((
Ind

GL2(Qp)

( ∗ 0
∗ ∗ )

χ1ε
−1 ⊗ χ2

)C0

,
(

Ind
GL2(Qp)

( ∗ 0
∗ ∗ )

χ1ε
−1 ⊗ χ2

)C0
)
≤ 5.

Proof. The assumption χ1χ
−1
2 /∈ {ε, ε−1} makes the two continuous GL2(Qp)-

representations in (i) topologically irreducible (use e.g. Proposition B.1) and the
assumption χ1 6= χ2 makes them distinct (Theorem 3.1.1(iii)). The assertion on
the central character is then automatic. To prove (i) and (ii), we apply the exact
sequence

0→ Ext1
M(U,OrdP (V ))→ Ext1

G(IndGP− U, V )→ HomM(U,R1 OrdP (V ))→
Ext2

M(U,OrdP (V ))

of [Eme10b, (3.7.5)] to A = OE/$n
E, G = GL2(Qp), P = ( ∗ ∗0 ∗ ), M = ( ∗ 0

0 ∗ ),
U = χ2ε

−1 ⊗ χ1 mod $n
E and V = IndGP− χ1ε

−1 ⊗ χ2 mod $n
E, where ex-

tensions are in the abelian category of locally admissible smooth representa-
tions over OE/$n

E of the relevant group (see [Eme10a, Def.2.2.17], the Ext1 are
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the same as in the category of admissible smooth representations). We have
OrdP (V ) = χ1ε

−1 ⊗ χ2 by [Eme10b, Cor. 4.2.10]. This implies in particular
that Ext1

M(U,OrdP (V )) is an OE/$n
E-module of finite type (as follows for in-

stance from a dévissage and [Eme10b, Lem. 4.3.10] together with [Eme10b, Rem.
4.3.11]). Since R1 OrdP (V ) = U by [Eme10b, Cor. 4.2.10] together with the com-
ment after [Eme10b, Conj. 3.7.2], the OE/$n

E-module HomM(U,R1 OrdP (V ))
is free of rank 1. When χ1 6= χ2, let N ∈ Z≥0 be the maximal integer such
that χ1 = χ2 mod $N

E , the same argument as in [Eme10b, Lem. 4.3.10] shows
that ExtiM(U,OrdP (V )), i = 1, 2 is an OE/$N

E -module. In particular the image
Im(Ext1) of Ext1

G(IndGP− U, V ) in HomM(U,R1 OrdP (V )) ∼= OE/$n
E for n > N

contains $N
E (OE/$n

E) ∼= OE/$n−N
E . Passing to the projective limit over n on

the short exact sequences

0 −→ Ext1
M(U,OrdP (V )) −→ Ext1

G(IndGP− U, V ) −→ Im(Ext1) −→ 0

(which still yields a short exact sequence since, Ext1
M(U,OrdP (V )) being a finite

set for all n, the Mittag-Leffler conditions are satisfied) and tensoring by E easily
gives (i). (ii) is proved in the same way using that dimE Ext1

M(χ1ε
−1⊗χ2, χ1ε

−1⊗
χ2) = 4 (in the category of admissible unitary continuous representations of M
over E) and dimE HomM(χ1ε

−1 ⊗ χ2, χ2ε
−1 ⊗ χ1) ≤ 1.

Remark B.3. Pushing further the proof of Proposition B.2(ii) (using again
[Eme10b]), one gets that the dimension is in fact 4 (at least when p > 2).
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