LINEAR ALGEBRAIC GROUPS (MAT 1110, WINTER 2017) HOMEWORK 2, DUE MARCH 1, 2017

FLORIAN HERZIG

Problem 1. Recall from class that a sequence of algebraic groups

$$1 \to K \xrightarrow{\phi} G \xrightarrow{\psi} H \to 1$$

is exact if

- (a) it is exact as sequence of abstract groups and
- (b) $0 \to \text{Lie } K \xrightarrow{d\phi} \text{Lie } G \xrightarrow{d\psi} \text{Lie } H \to 0$ is an exact sequence of Lie algebras (i.e., of vector spaces).
 - (i) Show that ϕ is a closed immersion iff ϕ is injective and $d\phi$ is injective.
 - (ii) Suppose that G is connected. Show that ψ is separable iff ψ is surjective and $d\psi$ is surjective.
 - (iii) Suppose that G is connected. Deduce that $1 \to K \xrightarrow{\phi} G \xrightarrow{\psi} H \to 1$ is exact iff (a) and (b') hold, where (b') ϕ is a closed immersion and ψ is separable.
 - (iv) If the characteristic of k is 0, show that (a) implies (b). (Hint: reduce to the case when G is connected.)

Problem 2. Solve the following exercises from Springer's book: 3.2.10(2,3,4), 3.4.10(2), 4.4.11(3), 4.4.15(6)

Update: Please note the following in Springer, 3.2.10(2): for showing that ϕ injective implies ϕ^* surjective, please assume that the characteristic of k is 0. (If it characteristic of k is p > 0, consider the p-th power map $\mathbb{G}_m \to \mathbb{G}_m$.)

Update: Please note the following typo in Springer, 3.4.10(2): on the left-hand side it should say $(x, y) \cdot (x', y')$! (This construction comes from the ring of Witt vectors, there's even a way to extend it to an "algebraic ring"...)