LINEAR ALGEBRAIC GROUPS (MAT 1110, WINTER 2017) HOMEWORK 4, DUE MARCH 29, 2017

FLORIAN HERZIG

Problem 1. Suppose that G is a connected linear algebraic group.

- (i) Show that G has a unique Borel iff G is solvable.
- (ii) Show that G has a unique maximal torus iff G is nilpotent.
- (iii) Show that maximal tori of G are trivial iff G is unipotent.
- (iv) Show that if every element of G is semisimple, then G is a torus.

Problem 2. Suppose the characteristic of k is not 2 and that $n \ge 1$. For any $d \ge 1$ let J_d denote the $d \times d$ antidiagonal matrix over k given by

 $J_d = \begin{pmatrix} \bar{a} & 1 \\ 1 & \bar{b} \end{pmatrix}$ and define the orthogonal group $G := \mathrm{SO}_{2n} = \{g \in I\}$

 SL_{2n} : ${}^{t}g \cdot J_{2n} \cdot g = J_{2n}$. You may assume that it is a connected closed subgroup of SL_{2n} .

- (i) Let $T = D_{2n} \cap G$. Show that T is a maximal torus of G and that it has dimension n. (Hint: show that $Z_G(T) = T$.)
- (ii) Let $B = B_{2n} \cap G$. Show that B is a Borel subgroup of G. Also compute dim B. (Hint: first show that B is a semidirect product of the groups $\left\{ \begin{pmatrix} b \\ J_n \cdot {}^t b^{-1} \cdot J_n \end{pmatrix} : b \in B_n \right\}$ and $\left\{ \begin{pmatrix} 1 & J_n \cdot x \\ & 1 \end{pmatrix} \right\}$: $x + {}^t x = 0$ and deduce it is connected. Suppose $B \leq B'$, where B' is a Borel. Show that B' has to stabilise a line of \mathbb{P}^{2n} (with its natural G-action). But e.g. since T only stabilises the lines $\langle e_i \rangle$ $(1 \leq i \leq 2n)$ spanned by the standard basis vectors deduce that B'stabilises $\langle e_1 \rangle$ and hence also the hyperplane $\langle e_1 \rangle^{\perp}$, which contains $\langle e_1 \rangle$. Now use induction to see that $B' \subset B_{2n}$.)
- (iii) Deduce that G is reductive and that G is semisimple when n > 1. What group is G isomorphic to when n = 1?

Remark 1. A similar argument applies to SO_{2n+1} and Sp_{2n} $(n \ge 1)$.

Problem 3. Suppose $G = SL_n$. Show that $D_n \cap G$ is a maximal torus of G and that $B_n \cap G$ is a Borel of G. Deduce that G is semisimple.

Problem 4. Solve the following exercises from Springer's book: 6.2.11(4), 6.3.7(4).