LINEAR ALGEBRAIC GROUPS (MAT 1110, WINTER 2017) HOMEWORK 5, DUE APRIL 12, 2017

FLORIAN HERZIG

Problem 1. Suppose that $(X, \Phi, X^{\vee}, \Phi^{\vee})$ is a root datum. Define a homomorphism $p: X \to X^{\vee}$ by $p(x) = \sum_{\alpha \in \Phi} \langle x, \alpha^{\vee} \rangle \alpha^{\vee}$. Show that

- (i) $\langle x, p(x) \rangle \geq 0$ for all $x \in X$ and $\langle \beta, p(\beta) \rangle > 0$ for all $\beta \in \Phi$.
- (ii) $\langle s_{\beta}x, p(s_{\beta}x) \rangle = \langle x, p(x) \rangle$ for all $x \in X$, $\beta \in \Phi$.
- (iii) $\langle \beta, p(\beta) \rangle \beta^{\vee} = 2p(\beta)$, hence $\beta^{\vee} = \frac{2p(\beta)}{\langle \beta, p(\beta) \rangle}$, for all $\beta \in \Phi$. (Hint: when you expand the left-hand side, try to spot a term that can be expressed using $s_{\beta^{\vee}}$.)
- (iv) Deduce that p induces an \mathbb{Q} -linear isomorphism $\mathbb{Q}\Phi \to \mathbb{Q}\Phi^{\vee}$ (obtained by restriction from $X \otimes \mathbb{Q} \to X^{\vee} \otimes \mathbb{Q}$). (Hint: use that the root datum is symmetric in X and X^{\vee} .)

Problem 2. Suppose that G is a connected reductive group with maximal torus T, roots Φ , and coroots Φ^{\vee} (with respect to T). Show that the following are equivalent.

- (i) G is semisimple.
- (ii) $\mathbb{Q}\Phi = X^*(T) \otimes \mathbb{Q}$.
- (iii) $\mathbb{Q}\Phi^{\vee} = X_*(T) \otimes \mathbb{Q}$.
- (iv) $G = \langle U_{\alpha} : \alpha \in \Phi \rangle$.
- (v) $G = \mathcal{D}G$.

(A few hints: You should be able to show (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (iv) \Rightarrow (i). Try to express the radical of G in terms of the roots. Keep in mind the previous problem. Show that im(α^{\vee}) $\subset \langle U_{\alpha}, U_{-\alpha} \rangle$ by reducing to a calculation in SL_2 . Show $U_{\alpha} \subset \mathcal{D}G$.)

Deduce that for G connected reductive we have $G = \mathcal{D}G \cdot RG$.

Problem 3. (Here's another way to characterise coroots, using the Weyl group.) Suppose that G is a connected reductive group with maximal torus T, roots Φ , and Weyl group W (with respect to T). For any $\alpha \in \Phi$ show that there exist precisely two elements $w \in W$ such that $w\mu - \mu \in \mathbb{Z}\alpha$ for all $\mu \in X^*(T)$, namely 1 and s_{α} . (Hint: show that $w(\alpha) = \pm \alpha$. Using s_{α} , assume WLOG that $w(\alpha) = \alpha$. Show that $w\mu = \mu - \langle \mu, \alpha' \rangle \alpha$ for some $\alpha' \dots$)

Problem 4. Suppose the characteristic of k is not 2 and that $n \geq 2$. For any $d \geq 1$ let J_d denote the $d \times d$ antidiagonal matrix over k given by

$$J_d = \begin{pmatrix} & & 1 \\ 1 & & \end{pmatrix}$$
 and define the orthogonal group $G := \mathrm{SO}_{2n} = \{g \in$

 $\operatorname{SL}_{2n}: {}^tg \cdot J_{2n} \cdot g = J_{2n}$. Recall that $T = D_{2n} \cap G$ is a maximal torus. You may assume anything you established for this group (or anything that you were asked to prove) last time. You may also assume that the Lie algebra equals $\{X \in M_{2n}(k): {}^tX \cdot J_{2n} + J_{2n} \cdot X = 0\}$ as sub-Lie algebra of Lie $\operatorname{GL}_{2n} = M_{2n}(k)$. (This may be proved like for the symplectic group in my online notes.)

- (i) Determine the roots of G with respect to T.
- (ii) Determine the coroot α^{\vee} for each root α . (It may be easiest to use the previous problem to find s_{α} and hence α^{\vee} . Alternatively, just work out one of the groups G_{α} and coroots α^{\vee} by hand and then use the Weyl group to get the rest...)