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Introduction.

Algebraic group: a group that is also an algebraic variety such that the group operations are
maps of varieties.

Ezample. G = GL,(k), k =k

Goal: to understand the structure of reductive/semisimple affine algebraic groups over algebraically
closed fields k (not necessarily of characteristic 0). Roughly, they are classified by their Dynkin
diagrams, which are associated graphs.

Within G are maximal, connected, solvable subgroups, called the Borel subgroups.
Ezample. In G = GL,(k), a Borel subgroup B is given by the upper triangular matrices.

A fundamental fact is that the Borels are conjugate in G, and much of the structure of G is grounded
in those of the B. (Thus, it is important to study solvable algebraic groups). B decomposes as

B=TxU
where T'= G7}, is a maximal torus and U is unipotent.

Ezample. With G = GL,,(k), we can take T' consisting of all diagonal matrices with U the upper
triangular matrices with 1’s along the diagonal.

G acts on its Lie algebra g = T1G. This action restricts to a semisimple action of T" on g. From the
nontrivial eigenspaces, we get characters T — k* called the roots. The roots give a root system,
which allows us to define the Dynkin diagrams.

Ezample. G = GL, (k). g = M, (k) and the action of G on g is by conjugation. The roots are given
by
1

diag(zy,...,xn) — TiT;

for 1 <i#j<n.

Main References:

e Springer’s Linear Algebraic Groups, second edition

e Polo’s course notes at www.math. jussieu.fr/~polo/M2
e Borel’s Linear Algebraic Groups


www.math.jussieu.fr/~polo/M2

0. Algebraic geometry (review).

We suppose k = k. Possible additional references for this section: Milne’s notes on Algebraic
Geometry, Mumford’s Red Book.
0.1 Zariski topology on £".

If I C k[xy,...,xy) is an ideal, then V(1) := {x € k™| f(z) = 0 Vf € I}. Closed subsets are defined
to be the V(I). We have

ﬂ V(Ia) = V(Z Ia)
VIDUV(J)=V(INJ)

Note: this topology is not Ts (i.e., Hausdorff). For example, when n = 1 this is the finite comple-
ment topology.

0.2 Nullstellensatz.
Theorem 1 (Nullstellensatz).
(i) ,
{radical ideals I in k[z1,..., 2]} ? {closed subsets in k"}
are inverse bijections, where I(X) = {f € klx1,...,z,) | f(z) =0 Vz € X}
(ii) I,V are inclusion-reversing
(iii) If I < X, then I prime <= X irreducible.

It follows that the maximal ideals of k[z1,...,z,] are of the form

m, =I({a})=(z1 —ai,...,zn —an), a€k.



0.3 Some topology.

X is a topological space.

X is irreducible if X = C Uy, for closed sets C1, Cy implies that C; = X for some 3.
<= any two non-empty open sets intersect

<= any non-empty open set is dense

Facts.
e X irreducible = X connected.
e If Y C X, then Y irreducible <= Y irreducible.

X is noetherian if any chain of closed subsets C7 D Cy D --- stabilises. If X is noetherian, any
irreducible subset is contained in a maximal irreducible subset (which is automatically closed), an
irreducible component. X is the union of its finitely many irreducible components:

X=X1U---UX,

Fact. The Zariski topology on k™ is noetherian and compact (a consequence of Nullstellensatz).

0.4 Functions on closed subsets of k"

X C k™ is a closed subset.

X={ack"|{a} Cc X < m, D I(X)} <+ { maximal ideals in k[z1,...,2,)/I(X)}

Define the coordinate ring of X to be k[X] := k[z1,...,z,]/I(X). The coordinate ring is a re-
duced, finitely-generated k-algebra and can be regarded as the restriction of polynomial functions
on k™ to X.

e X irreducible <= k[X] integral domain
e The closed subsets of X are in bijection with the radical ideals of k[X].

Definition 2. For a non-empty open U C X, define
Ox(U):={f:U—k|VxeU, JxzeV CUYV open, and Ip,q € k[x1,..., z,]

such that f(y) = ply) Yy eV}

q(y)
Ox is a sheaf of k-valued functions on X:
e for all U, Ox(U) is a k-subalgebra of {set-theoretic functions U — k}
e UCV,then fe Ox(V) = flv € Ox(U);
o if U=|JU.,, f:U — k function, then f|y, € Ox(Ua) Ya = f€ Ox(U).

Fuacts.

* Ox(X) = k[X]
o If f € Ox(X), D(f):={x € X | f(x) # 0} is open and these sets form a basis for the topology.

Ox(D(f)) = k[X]y-



Definitions 3. A ringed space is a pair (X, Fx) of a topological space X and a sheaf of k-valued
functions on X. A morphism (X, Fx) — (Y, Fy) of ringed spaces is a continuous map ¢ : X —'Y
such that

YV CY open Vf € Fy(V), fope Fx(o (V)

An affine variety (over k) is a pair (X,Ox) for a closed subset X C k™ for some n (with Ox as
above). Affine n-space is defined as A™ := (k™, Ogn).

Theorem 4. X — k[X]|, ¢ — ¢* gives an equivalence of categories
{ affine varieties over k }°? — {reduced finitely-generated k-algebras}

If ¢ : X — Y is a morphism of varieties, then ¢* : k[Y]| — k[X] here is f + I[(Y) — foo + [(X).
The inverse functor is given by mapping A to m-Spec(A), the spectrum of maximal ideals of A,
along with the appropriate topology and sheaf.

0.5 Products.

Proposition 5. A, B finitely-generated k-algebras. If A, B are reduced (resp. integral domains),
then so is A ®y B.

From the above theorem and proposition, we get that if X, Y are affine varieties, then m-Spec(k[X|®j
k[Y]) is a product of X and Y in the category of affine varieties.

Remark 6. X xY is the usual product as a set, but not as topological spaces (the topology is finer).

Definition 7. A prevariety is a ringed space (X, Fx) such that X = Uy U --- U U, with the U;
open and the (U;, Fly,) isomorphic to affine varieties. X is compact and noetherian. (This is too
general of a construction. Gluing two copies of Al along A* — {0} (a pathological space) gives an
example of a prevariety.)

Products in the category of prevarieties exist: if X = J;",, Y = U;T”:l Vj (U;, V; affine open), then
X XY = U:L’]m U; x V;, where each U; x Vj is the product above. As before, this gives the usual
products of sets but not topological spaces.

Definition 8. A prevariety is a variety if the diagonal Ax C X x X is a closed subset. (This is
like being Ty!)

e Affine varieties are varieties; X, Y varieties =—> X X Y variety.

e If is Y a variety, then the graph of a morphism X — Y is closed in X x Y.
o If Y is a variety, f,g: X — Y, then f = g if f, g agree on a dense subset.
e If X | Y are irreducible, then so is X x Y.



0.6 Subvarieties.

Let X be a variety and Y C X a locally closed subset (i.e., Y is the intersection of a closed and
an open set, or, equivalently, Y is open in Y'). There is a unique sheaf Oy on Y such that (Y, Oy)
is a prevariety and the inclusion (Y, Oy) — (X, Ox) is a morphism such that

for all morphisms f: Z — X such that f(Z) CY, f factors through the inclusion ¥ — X.
Concretely,
Oy(V)={f:V = k|VzeV,3U C X,z € U open, and 3f € Ox(U) such that f|lyny = JZ\Um/}-

Remarks 9. Y, X as above.

o IfY C X is open, then Oy = Oxly.

o Y is a variety (Ay = Ax N (Y xY))

o If X is affine and Y is closed, then'Y is affine with k[Y] = k[X]/I(Y)

o If X is affine and Y = D(f) is basic open, thenY is affine with k[Y] = k[X]f. (Note that general
open subsets of affine varieties need not be affine (e.g., A2 — {0} C A?).)

It’s easy to see from the above definitions that if X, Y are varieties and Z C X, W C Y are locally
closed, then Z x W C X x Y is locally closed and the subvariety structure on Z x W inside the
product X x Y agrees with the product structure on the product of subvarieties Z, W.

Theorem 10. Let ¢ : X — Y be a morphism of affine varieties.

(i) @* : k[Y] — k[X] surjective <= ¢ is a closed immersion (i.e., an isomorphism onto a closed
subvariety)

(i) ¢* : k[Y] — Kk[X] is injective < ¢(X) =Y (i.e., ¢ is dominant)

0.7 Projective varieties.

P" = W as a set. The Zariski topology on P" is given by defining, for all homogeneous ideals
I, V(I) to be a closed set. For U C P™ open,

Opn(U):={f:U—k|VYxeU 3IF,G € k[zg,...,x,], homogeneous of the same degree

F
such that f(y) = M, for all y in a neighbourhood of z.}

G(y)
Let Uy ={(zo:---:2p) € P"|2; # 0} = P" = V((x;)), which is open. A™ — U; given by
x> (xp i Lixg i xy)

gives an isomorphism of ringed spaces, which implies that P" is a prevariety; in fact, it is an irre-
ducible variety.

Definitions 11. A projective variety is a closed subvariety of P™. A quasi-projective variety
is a locally closed subvariety of P™.

Facts.
e The natural map A"*! — {0} — P" is a morphism
e Opn(P") =k



0.8 Dimension.

X here is an irreducible variety. The function field of X is k(X) := lim  Ox(U), the germs
U#2 open
of regular functions.

Facts.

e For U C X open, k(U) = k(X).

e For U C X irreducible affine, k(U) is the fraction field of k[U].
e k(X) is a finitely-generated field extension of k.

Definition 12. The dimension of X is dim X := tr.deg, k(X).

Theorem 13. If X is affine, then dim X = Krull dimension of k[X] (which is the mazimum length
of chains of Cy C -+ C Cy, of irreducible closed subsets).

Facts.

e dim A" =n =dimP"

o If Y C X is closed and irreducible, then dimY < dim X
e dim(X xY)=dimX +dimY

For general varieties X, define dim X := max{dimY | Y is an irreducible component}.

0.9 Constructible sets.

A subset A C X of a topological space is constructible if it is the union of finitely many locally
closed subsets. Constructible sets are stable under finite unions and intersection, taking comple-
ments, and taking inverse images under continuous maps.

Theorem 14 (Chevalley). Let ¢ : X — Y be a morphism of varieties.
(i) ¢(X) contains a nonempty open subset of its closure.

(ii) ¢(X) is constructible.

0.10 Other examples.

e A finite dimensional k-vector space is an affine variety: fix a basis to get a bijection V = k",
giving V' the corresponding structure (which is actually independent of the basis chosen). Intrin-
sically, we can define the topology and functions using polynomials in linear forms of V', that is,
from Sym(V*) = @,~, Sym"(V*): k[V] := Sym(V™*).

e Similarly, PV = V;;{O}. As above, use a linear isomorphism V' = k"*! to get the structure of a

projective space; or, intrinsically, use homogeneous elements of Sym (V™).




1. Algebraic groups: beginnings.

1.1 Preliminaries.

We will only consider the category of affine algebraic groups, a.k.a. linear algebraic groups. In
future, by “algebraic group” we will mean “affine algebraic group”. There are three descriptions of
the category:

(1)
Objects: affine varieties G' over k with morphisms p : G x G — G (multiplication), i : G — G
(inversion), and € : A? — G (i.e., a distinguished point e € G) such that the group axioms hold,
i.e., that the following diagrams commute.

(id,3) (4,id)

pxid exid

GxGxaX% axa Gx AV G G A0 @ ¢ axaet g
idxl{ P \y/ l P J
GxG—" _q G A0 ¢ G AD

Maps: morphisms of varieties compatible with the above structure maps.

(2)

Objects: commutative Hopf k-algebras, which are reduced, commutative, finitely-generated k-
algebras A with morphisms A : A - A ® A (co-multiplication), i : A — A (co-inverse, also called
antipode), and € : A — k (co-unit) such that the co-group azioms hold, i.e., that the following

diagrams commute:

A A0 ALY As 4 A0kd®® Ao A Y ks A ALY g 4 1Dy
wl N ]

Maps: k-algebra morphisms compatible with the above structure maps.

(3)

Objects: functors

(reduced finitely-generated (commutative) k—algebras) — (groups)



that are representable as set-valued functors;
Maps: natural transformations.

Here are the relationships:
(1) < (2): G+~ A =K[G] gives an equivalence of categories. Note that k|G x G| = k[G] ® k[G].
(2)<(3): A+ Homyg(A, —) gives an equivalence of categories by Yoneda’s lemma.

Ezamples.

e G=Al=@G,

In (1): p: (z,y) — = +y (sum of projections), i:z+ —x, €:%x—0

In(2): A=k[T], AT)=T@1+1T, i(T)=-T, &T)=0

In (3): the functor Hom,s (k[7], —) sends an algebra R to its additive group (R, +).

eG=A'-{0} =G, =GL;
. w: (x,y) — xy (product of projections), i:xz 27!, e:x>1

(1)
In (2): A=k[T,T7Y, AT)=T&T, i(T)=T""1 €T)=1
(3)

e G=GL,
L, (k) C M, (k) = k"* with the usual operations is the basic open set given by det # 0
= k[Tij, det(Tij) 'li<ijon,  ATy) = X4 Tir © Tk

In (3): the functor R — GL,(R)

e (G =V finite-dimensional k-vector space
Given by the functor R — (V ® R, +)

o G = GL(V), for a finite-dimensional k-vector space V'
Given by the functor R — GL(V ®j R)
Examples of morphisms.

e For \ € kX, x — Az is an automorphism of G,

Exercise. Show that Aut(G,) = k*. Note that End(G,) can be larger, as we have the Frobenius
x +— xP when char k =p > 0.

e For n € Z, x — x™ gives an automorphism of G,,.
e g — det g gives a morphism GL,, — G,,.

Note that if G, H are algebraic groups, then so is G x H (in the obvious way).

1.2 Subgroups.

A locally closed subgroup H < G is a locally closed subvariety that is also a subgroup. H has a
unique structure as an algebraic group such that the inclusion H — G is a morphism (it is given

10



by restricting the multiplication and inversion maps of G).

Ezxamples. Closed subgroups of GL,:

e G =SL,, (det =1)

e G = D,, diagonal matrices (T;; =0 Vi#j )

e G = B, upper-triangular matrices (T;; =0 Vi > j )

e G = U,, unipotent matrices (upper-triangular with 1’s along the diagonal)

e G =0, or Sp,, for a particular J € GL,, with J* = 4.J, these are the matrices g with ¢g*Jg = J
e G =50,=0,NnSL,

Exercise. D,, = G}',. Multiplication (d,n) — dn gives an isomorphism D,, x U,, — B,, as varieties.
(Actually, B,, is a semidirect product of the two, with U,, < B,,.)

Remark 15. G,, G, and GL,, are irreducible (latter is dense in A”Q). SL,, is irreducible, as it
is defined by the irreducible polynomial det — 1. In fact, SOy, Sp,, are also irreducible.

Lemma 16.
(a) If H < G is an (abstract) subgroup, then H is a (closed) subgroup.
(b) If H < G is a locally closed subgroup, then H is closed.

(¢) If ¢ : G — H is a morphism of algebraic groups, then ker ¢, im ¢ are closed subgroups.

Proof.
(a). A/Iuliipli(ﬁtion by ¢ is an isomorphism of varieties G — gH = ¢ argi Hg = Hg

G:
— H-H C H. Inversion is an isomorphism of varieties G — G: (H)™! = H-1 = H.

(b). H C H is open and H C G is closed, so without loss of generality suppose that H C G is
open. Since the complement of H is a union of cosets of H, which are open since H is, it follows
that H is closed.

(c). ker¢ is clearly a closed subgroup. im¢ = ¢(G) contains a nonempty open subset U C ¢(Q)
by Chevalley; hence, ¢(G) = Ujeq(q) hU is open in ¢(G) and so ¢(G) is closed by (b). O

Lemma 17. The connected component GV of the identity e € G is irreducible. The irreducible and
connected components of G° coincide and they are the cosets of G°. G is an open normal subgroup
(and thus has finite index).

Proof. Let X be an irreducible component containing e (which must be closed). Then X - X! =
(X x X~1) is irreducible and contains X; hence, X = X - X ! is a subgroup as it is closed under
inverse and multiplication. So G =[] 9XEG/X gX gives a decomposition of G into its irreducible
components. Since G has a finite number of irreducible components, it follows that (G : X) < oo
and X is open. Hence, the cosets ¢gX are the connected components: X = G°. Moreover, GV is
normal since gG%g~! is another connected component containing e. O

Corollary 18. G connected <= G irreducible

Exercise. ¢: G — H = ¢(G°) = ¢(G)°

11



1.3 Commutators.

Proposition 19. If H, K are closed, connected subgroups of G, then
[H,K] = ([h,k] = hkh 'k~  |h € H,k € K)

is closed and connected. (Actually, we just need one of H, K to be connected. Moreover, without
any of the connected hypotheses, Borel shows that [H, K] is closed.)

Lemma 20. Let {X,}aer be a collection of irreducible varieties and {¢q : Xo — G} a collection
of morphisms into G such that e € Yy := ¢o(Xa) for all . Then the subgroup H of G generated
by the Y, is connected and closed. Furthermore, Jay,...,an € I, €1,...,6, € {£1} such that
H=Y5 Y

Proof of Lemma. Without loss of generality suppose that ¢! =io0 ¢, : X4 — G is also among the
maps for all «. Forn > 1 and a € I", write Y, :=Y,, ---Y,, C G. Y, is irreducible, and so Y, is
as well. Choose n,a such that dim Y, is maximal. Then for all m,b € I"™,

?aC?a'?bCYa'}/b:?(a,b)

(second inclusion as in Lemma (a)) which by maximality implies that ¥ = ¥{,3) and Y3, C Y.
In particular, this gives that

Yo YoCVY4aq=Y, and Y

—1 J—
cY,

a

Y, is a subgroup. By Chevalley, there is a nonempty U C Y, open in Y,.
Claim: Yo =U-U (= Y,=Y, Yo=Y, = done.)
geY, = gU'NU#0 = ¢geU-U
O

Proof of Proposition. For k € K, consider the morphisms ¢y : H — G, h — [h,k]. Note that
or(e) = e. O

Corollary 21. If {H,} are connected closed subgroups, then so is the subgroup generated by them.

Corollary 22. If G is connected, then its derived subgroup DG := [G,G] is closed and connected.

Definitions 23. Inductively define D"G = D(D"1G) = [D"1G, D" 1G] with D°G = G.
GODDGDODGD -

is the derived series of G, with each group a normal subgroup in the previous (even in G). G is

solvable if D"G = 1 for some n > 0. Now, inductively define C"G := [G,C" G| with C°G = G.
GDCGDOC*GD -+

is the descending central series of G, with each group normal in the previous (even in G). G is
nilpotent if C"G =1 for somen > 0.

12



Recall the following facts of group theory:

e nilpotent = solvable

e (& solvable (resp. nilpotent) = subgroups, quotients of G are solvable (resp. nilpotent)
o If N <G, then N and G/N solvable = @ solvable.

Ezamples.
e B, is solvable. (9B, =U,)
e U, is nilpotent.

1.4 (G-spaces.

A G-space is a variety X with an action of G on X (as a set) such that G x X — X is a morphism
of varieties. For each x € X we have a morphism f, : G — X be given by g — gz, and for each
g € G we have an isomorphism ¢, : X — X given by z — gz. Stabg(z) = f;1({z}) is a closed
subgroup.

Ezamples.

e G acts on itself by g * x = gz or zg~! or grg~!. (Note that in the case of the last action,
Stab(z) = Zg(x) is closed and so the center Zg = (¢ Za(x) is closed.)

e GL(V)xV =V, (g9,2) — g(x)

o GL(V) x PV — PV (exercise)

1

Proposition 24.
(a) Orbits are locally closed (so each orbit is a subvariety and is itself a G-space).
(b) There exists a closed orbit.

Proof.
(a). Let Gz be an orbit, which is the image of f;. By Chevalley, there is an nonempty U C Gz
open in Gz. Then Gz = J ¢ gU is open in Guz.

(b). Since X is noetherian, we can choose an orbit Gz such that Gz is minimal (with respect to
inclusion). We will show that Gz is closed. Suppose otherwise. Then Gz — Gz is nonempty, closed

in Gz by (a), and G-stable (by the usual argument); let ¥ be an element in the difference. But
then Gy C Gz. Contradiction. Hence, Gz is closed. O

Lemma 25. If G is irreducible, then G preserves all irreducible components of X.

Exercise.

Suppose 0 : G x X — X gives an affine G-space. Then G acts linearly on k[X] by

(gf)(.%) = f(gilx)a i‘e‘v g’f:t;—l(f)

13



Definitions 26. Suppose a group G acts linearly on a vector space W. Say the action is locally
finite if W is the union of finite-dimensional G-stable subspaces. If G is an algebraic group, say the
action is locally algebraic if it is locally finite and, for any finite-dimensional G-stable subspace
V', the action 6 : G x V =V is a morphism.

Proposition 27. The action of G on k[X] is locally algebraic. Moreover, for all finite-dimensional
G-stable V' C k[X], then 8*(V) C k[G]® V.

Proof. t,-1 factors as

t s Xos0xxSx

g9

z— (g x)
% 0* (evgfl,id)
tr1: k[X] — E[G] ® k[X] ——— k[X]

9
Fix f € k[X] and write 0*(f) = Y1, hi ® fi, so
g1 =15(0) = Y le™)

Hence, the G-orbit of f is contained in ) ;" ; kf;, implying local finiteness.

Let V' C Ek[X] be finite-dimensional and G-stable, and pick basis (e;)}"_ ;. Extend the e; to a basis
{e;}i U{el }a of k[X]. Write

}:mﬂ®%+§:ma®e
— g-ei:Zhij ej—l—Zh 716 eV
J
— Rl (g7 =0 Vg,ia

= hl,=0 Vi«

Hence, 0*(V) C k[G] ® V. Moreover, we see that G x V' — V' is a morphism, as it is given by
(9> Aiei) = > Ajhij(g™
i i
It follows that the action of G on k[X] is locally algebraic. O

Theorem 28 (Analogue of Cayley’s Theorem). Any algebraic group is isomorphic to a closed
subgroup of some GLy,.

Proof. G acts on itself by right translation, so (¢ f)(v) = f(vg). By Proposition 27| we know that
this gives a locally algebraic action on k[G]. Let f1,..., f, be generators of k[G]|. Without loss of
generality, the f; are linearly independent and V' = )" | kf; is G-stable. Write

g-fi= Zhﬂ (gt = Zh

14



where hj; € k[G] and hl; : g — hji(g~1). Tt follows that ¢ : G — GL(V) given by g (hi;(9)) is a
morphism of algebraic groups. It remains to show that ¢ is a closed immersion.

We have h;j € im ¢* for all %, 7, as they are the image of projections. Moreover,
filg) = (g fi)(e Zh file) = fi €Y khl; Cim¢*
J

Since the f; generate k[G], it follows that ¢* is surjective; that is, ¢ is a closed immersion. O

1.5 Jordan Decomposition.

Let V be a finite-dimensional k-vector space. a € GL(V') is semisimple if it is diagonalisable, and
is unipotent if 1 is its only eigenvalue. If o, 8 commute then

« and [ semisimple (resp. unipotent) = «af semisimple (resp. unipotent)
Proposition 29. a € GL(V)
(i) 3" o, (semisimple), o, (unipotent) € GL(V') such that o = ason, = aas.
(i) Ips(z), pu(x) € k[X] such that as = ps(a), oy = pu(a).

(iii) If W C V is an a-stable subspace, then

(alw)s = aslw,  (alyyw)s = aslyyw

(alw)u = aulw, (alyyw)u = aulvw

(iv) If f : Vi — Vi linear with o € GL(V;) fori = 1,2, then
foar=mof = {

(v) If iy € GL(V;) fori=1,2, then

(a1 ®ag)s = (a1)s @ (a2)s
(al & a?)u = (al)u ® (a2)u

Proof sketch.
(i) — existence:
A Jordan block for an eigenvalue A\ decomposes as

A1 A 1 A1
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The left factor is semisimple and the right is unipotent, and so they both commute.
(i) — uniqueness:

If @ = asa, = alal,, then af
identity.

1 1

oy = a;'al is both unipotent and semisimple, and thus is the

(ii): This follows from the Chinese Remainder Theorem.
(iii): Use (ii) 4+ uniqueness.

(iv): Since f : Vi — im f < V4, it suffices to consider the cases where f is injective or surjective,
in which we can invoke (iii).

(v): Exercise. O

Definition 30. An (algebraic) G-representation is a linear G-action on a finite-dimension
k-vector space such that G x V. — V is a morphism of varieties, which is equivalent to G — GL(V)
being a morphism of algebraic groups. Note that if G — GL(V) is given by g — (hi;j(g)), then
G xV =V is given by (g,>_; Ni€i) = > i Aihji(g)e;.

Lemma 31. Suppose p : G — GL(V) is an algebraic representation. Then there is a unique G-
linear map 1 :V — V ® k[G] such that (1 ® evy) on = p(g) for all g € G. Moreover, 1 is injective
andnoh = (1®h)on for all h € G, i.e. as map of G-representations n:V — Vi ® k[G], where
Vo is V' with the trivial G-action and G acts on k[G] by right translation.

Proof. Suppose n(e;) = 3_, €; @ fj; for some f;; € k[G]. Then (1® evy)on = p(g) for all g implies
that f;; = h;; in the notation above, so 7 is unique, and conversely it shows that 7 exists. Moreover,
7 is injective since p(g) is injective.

To see that noh = (1® h) on holds, it suffices to check it after evaluating it at any v € V' and then
applying 1 ® ev, on both sides. We get equality, since p(g)p(h)(v) = p(gh)(v). O

Proposition 32. Suppose that for all algebraic G-representations V', there is a ay € GL(V) such
that

(i) o, = idg,, where ko is the one-dimensional trivial representation.
(i) avew = ayv @ ay
(iii) If f: V — W is a map of G-representations, then ayy o f = foay.
Then 3 g € G such that ay = gy for all V.

Proof. From (iii), if W < V is a G-stable subspace, then ay |y = aw. If V is a local algebraic
G-representation, then 3! ay such that ay|w = ayp for all finite-dimensional G-stable W C V.
Note that (ii), (iii) still hold for locally algebraic representations. Also note that from (iii) it follows
that ayew = av ® aw. Define a = ayg) € GL(k[G]), where G acts on k[G] by (gf)(\) = f(Ag).

Claim. « is a ring automorphism.

m: k[G] ® k[G] — E[G] is a map of locally algebraic G-representations: fi(-g)f2(-g) = (fif2)(-g).
Thus, by (ii) and (iii), «c om = mo (a ® «), and so a(f1f2) = a(fi)a(f2).
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Therefore, the composition k[G] < k[G] =% k is a ring homomorphism and is equal to ev, for
some unique g.

Claim. o(f) = gf Vf, i.e, a= gyq-
By above a(f)(e) = f(g). Also, if £(A)(f) := f(A~L+), then £(\) : k[G] — k[G] is G-linear by (iii):
aol\) =LV oa = a(f)A)=f(A"g) = alf) =gf

Now if V' is a G-rep, n: V — V) ® k[G] is G-linear, by Lemma and so

Qy,ek[G) © 11 = 10 ay

Since
Avpek(@] = vy ® agg) = 1dy, @ gra) = Ivosk(d]
and
GVoek[G) O =T °gv

and the fact that 7 is injective, it follows that ay = gy. (g is unique, as G — GL(k[G]) is injective.
Exercise!) O

Theorem 33. Let G be an algebraic group.
(i) Vg€ G T gs, g4 € G such that for all representations p : G — GL(V)

p(gs) = p(g)s and  p(gu) = p(9)u

and g = gsgu = Gugs-

(ii) Forallp:G— H
d(gs) = ¢(g9)s  and  ¢(gu) = d(9)u

Proof.
(i). Fix g € G. For all G-representations V, let ay = (gv)s. If f : V — W is G-linear, then
fogy = gw o f implies that f o ay = aw o f by Proposition Also, ay, =ids =id, and

avew = (gvew)s = (9v @ gw)s = av @ aw

(the last equality following from Proposition . By Proposition there is a unique g; € G
such that ay = (gs)y for all V, ie., p(gs) = p(g)s. Similarly for g,. From a closed immersion
G — GL(V), from Theorem we see that ¢ = gsgu = gugs.

(ii). Given ¢ : G — H, let p: H — GL(V) be a closed immersion. Then

p(@(g«)) = p(6(9))« = p(d(g))

where the first equality is by (i) for G (as ¢ o p makes V into a G-representation) and the second
equality is by (i) for H. O

Exercise. What is the Jordan decomposition in G,7 How about in a finite group?
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Remark 34. F' : (G-representations) — (k-vector spaces) denotes the forgetful functor, then
Proposition [33 says that
G = Aut®(F)

where the left side is the group of natural isomorphisms F' — F respecting .
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2. Diagonalisable and elementary
unipotent groups.

2.1 Unipotent and semisimple subsets.
Definitions 35.

Gs:={9€Glg=gs}
Gu:={9€G|g=gu}

Note that Gs N G, = {e} and G, is a closed subset of G (embedding G into a GL,,, G, is the
closed subset consisting of g such that (g—1)" = 0. Gs, however, need not be closed (as in the case

G =DBs)).
Corollary 36. If gh = hg and g,h € G, then gh,g~ " € G, where x = s,u.

Proposition 37. If G is commutative, then Gg, G, are closed subgroups and p: Gs X Gy — G is
an isomorphism of algebraic groups.

Remark 38. This will be generalised to connected nilpotent groups in Proposition [131]

Proof. Gy, G, are subgroups by Corollary |36| and G,, is closed by a remark above. Without loss of
generality, G C GL(V) is a closed subgroup for some V. As G is commutative, V = € AGaskx VA
(a direct sum of eigenspaces for Gs) and G preserves each V). Hence, we can choose a basis for
each V) such that the G-action is upper-triangular (commuting matrices are simultaneously upper-
triangular-isable), and so G C B,, and G5 = GN D,,. Then G — B,, followed by projecting to
the diagonal D,, gives a morphism G' — Gy, g + gs; hence, g — (gs,95'g) gives a morphism
G — G4 X Gy, one inverse to p. O

Definition 39. G is unipotent if G = G,,.

Ezample. U, is unipotent, and so is G, (as G, = Us).

Proposition 40. If G is unipotent and ¢ : G — GL,, then there is a v € GL, such that
im (ypy~1) C U,.

Proof. We prove this by induction on n. Suppose that this true for m < n, let V be an n-dimensional
vector space, and ¢ : G — GL(V). Suppose that there is a G-invariant subspace 0 C W; C V.
Let Wy is complementary to Wi, so that V = W7 @ Wa, and let ¢; : G — GL(V;) be the induced
morphisms for i = 1,2, so that ¢ = ¢1 @ ¢2. Since n > dim Wi, dim W, there are 1,72 € GL(V)
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such that im (v;¢;7; 1) consists of unipotent elements for i = 1,2. If ¥ = ~; @ 7o, then it follows
that im (y¢y~!) consists of unipotent elements as well.

Now, suppose that there does not exists such a Wi, so that V is irreducible. For g € G

tr(¢(g)) =n = VheG tr((¢(g) —1)o(h)) = tr(¢(gh)) —tr(¢(h)) =n—n=0
— Va € End(V) tr((¢(g) —1)x) =0, by Burnside’s theorem

— ¢(g)—1=0
= o(g) =1
— im¢p=1
(Recall that Burnside’s Theorem says that G spans End(V') as a vector space.) O

Remark 41. Here’s a sketch proof of Burnside’s theorem, which works for any abstract subgroup
G of GL(V) even: let A be the k-span of G insider End(V). This is a k-subalgebra of End(V')
acting irreducibly on V.

We’ll prove more generally that any (possibly non-commutative) k-algebra A with dimy A < n?
cannot have an irreducible module of k-dimension n. By replacing A by A/rad(A), where rad(A)
is the Jacobson radical of A, we may assume WLOG that A is semisimple. Then A = [[;_, My, (k)
by the Artin-Wedderburn theorem (since k is algebraically closed!). Now the irreducible modules of
this ring are precisely the modules k™ with A acting naturally via the i-th projection. Hence any
irreducible module has dimension n; < v/dim; A < n.

Corollary 42. Any irreducible representation of a unipotent group is trivial.
Corollary 43. Any unipotent G is nilpotent.

Proof. U, is nilpotent. O

Remark 44. The converse is not true; any torus is nilpotent (the definition of a torus to come
immediately). More generally we will see that any connected nilpotent group is a product of a torus
and a connected unipotent group.

2.2 Diagonalisable groups and tori.

Definitions 45. G is diagonalisable if G is isomorphic to a closed subgroup of D, = G}', (n > 0).
G is a torus if G =2 D,, (n > 0). The character group of G is

X*(G) := Hom(G, Gy,) (morphisms of algebraic groups)
It is an abelian group under multiplication ((x1x2)(9) = x1(9)x2(g)) and is a subgroup of k[G]*.
Recall the following result:
Proposition 46 (Dedekind). Suppose X*(G) is a linearly independent subset of k[G].

The proof shows in fact that characters are linearly independent for any (abstract) group.
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Proof. Suppose that > ; Aixi = 0 in k[G], \; € k. Without loss of generality, n > 2 is minimal
among all possible nontrivial linear combinations (so that A; # 0 Vi). Then

Coh {o = ¥ dxilg)xi(h)
0 =2 Aixi(g)xn(h)

n—1

= Vh, 0= N[(h) — xn(h)]x:
=1

By the minimality of n, we must have that the coefficients are are all 0; that is, Vi,h x;(h) =
Xn(h) = Xxi = xn. We still arrive at a contradiction. O

Proposition 47. The following are equivalent:

(i) G is diagonalisable.

(ii

)

) X*(G) is a basis of k[G] and X*(Q) is finitely-generated.
(iii) G is commutative and G = Gj.

)

(iv) Any G-representation is a direct sum of 1-dimensional representations.

Proof.
(i) = (ii): Fix an embedding G < D,. k[D,] = k[T, ..., T;F'] — as seen from restricting
T;j,det(T;;) "t € k[GL,] — has a basis of monomials Ty - - - T, a; € Z, each of which is in X*(G):

an

diag(z1,...,zp) — a7 -y

Hence, X*(D,) = Z" (by Proposition . The closed immersion G — D,, gives a surjection
kD" — k[G], inducing a map X*(D,) — X*(G), x — xlg. im (X*(D,) — X*(G)) spans k[G]
and is contained in X*(G), which is linearly independent. Hence, X*(G) is a basis of k[G] and we

have the surjection
7" = X*(D,) » X*(G)

implying the finite-generation.
(ii) = (iii): Say x1,...,Xxn are generators of X*(G). Define a morphism ¢ : G — GL,, by g —
diag(x1(9), - xn(9))-

geEkerg = xi(g)=1Vi
= x(g)=1Vxe X" (G)

= flg)=0VfeM={g=> Ax € k[X] Z)‘X}
X

= M. C M,

= M, =M,

= g=c¢

So ¢ is injective, which implies that G is commutative and G = Gj.
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(iii) = (iv): Let ¢ : G — GL, be a representation. im ¢ is a commuting set of diagonalisable
elements, which means we can simultaneously diagonalise them.

(iv) = (i): Pick ¢ : G < GL, (Theorem [28). By (iii), without loss of generality, suppose that
im¢ C D,,. Hence, ¢ : G — D,. O

Corollary 48. Subgroups and images under morphisms of diagonalisable groups are diagonalisable.

Proof. (iii). [

Observations:
e chark =p = X*(G) has no p-torsion.
o k[G] = k[ X*(G)] as algebras (k[X*(G)] being a group algebra).
e For x € X*(Q),
AG) =x@x, i00)=x" =1

Indeed,

= (x®x)(g1,92)
)

A(x)(g1,92) = x(9192) = x(91)x(g2)
i) =xg™H)=x(9) ' =x

Theorem 49. Let p = char k.

*

<diagonalisable algebraic groups> X <ﬁnitely—generated abelian groups (with no p-torsion if p > O)>

G— X*(G)
H+—— X*(H)
is a (contravariant) equivalence of categories.

Proof. 1t is well-defined by the above. We will define an inverse functor F. Given X 2 Z¥ @7 | Z/n;Z
from the category on the right, we have that its group algebra k[X] is finitely-generated and reduced:

kIX] 2 K[Z)°" © Q) k[Z/niZ) = k[T @ Q) k[T]/(T™ - 1)
i=1 =1
Moreover, k[X] is a Hopf algebra, which is easily checked, defining

. -1
Avegrre; ey, tiegrre,—1=e€,, €:ez—1

where X has been written multiplicatively and k[X] = @, x k€. Define F by F(X) = m-Spec(k[X]).
Above, we saw that FX*(G)) = G as algebraic groups.
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X*(F(X)) = Hom(F(X), Gm)
= Hompoptalg ([T, T, k[X])
= {\ € k[X]*(corresponding to the images of T') | A(A) = A ® A}

For an element above, write A = > _x Aze, (almost all of the A, € k of course being zero). Then

A(N) = Z Aeez ®ey) and A®@ A= Z Az (€p @ e;)

z,x’

Hence,

Ao — Aey x=1a'
0, x#a

So, Ay # 0 for an unique x € X, and
M=\ = =1 = A=¢cX

Thus we have X*(F (X)) & X as abelian groups. The two functors are inverse on maps as well, as
is easily checked. O

Corollary 50.

(i) The diagonalisable groups are the groups G, x H, where H is a finite group of order prime
to p.

(ii) For a diagonalisable group G,

G is a torus <= G is connected <= X*(G) is free abelian

Proof. Define i, := ker(G,,, = G,,), which is diagonalisable. If (n, p) = 1, then k[u,] = k[T]/(T™—
1) (T —11is separable) and X*(puy,) = Z/nZ. Since X*(G,) = Z and X*(GxH) = X*(G)eX*(H),
the result follows from Theorem 49 O

Corollary 51. Aut(D,) = GL,(Z)

Fact/Ezercise. If G is diagonalisable, then
G x X*(G) = Gm, (9:x) = x(9)

is a “perfect bilinear pairing”, i.e., it induces isomorphisms X*(G) = Hom(G,G,,) and G =
Homz(X*(G), Gy,) (as abelian groups). Moreover, it induces inverse bijections

{ closed subgroups of G} «— { subgroups Y of X*(G) such that X*(G)/Y has no p-torsion}
Hv+—— H*

Yty
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Fact. Say
1-G -Gy —G3—1

is exact if the sequence is set-theoretically exact and the induced sequence of lie algebras
0 — LieG; — LieGy — LieG3 — 0

is exact. (See Definition[92]) Suppose the G; are diagonalisable, so that Lie G; = Homgz (X*(G;), k).
Then the sequence of the G; is exact if and only if

0— X*(G3) - X*(G2) —» X*(G1) —» 0

Remark 52.
1—>Mp—>Gm£>Gm—>1

1s set-theoretically exact, but
0= X*(Gp) 2 X*(Gn) = X*(1p) = 0
is not if char k = p (in which case X*(pp) =0).
Definition. The group of cocharacters of G are
X«(G) := Hom(G,, G)
If G is abelian, then X.(G) is an abelian group.
Proposition 53. If T is a torus, then X.(T), X*(T) are free abelian and
X*T) x Xu(T) = Hom(Gp, Gip) 2 Z, (x,A) = xoA
18 a perfect pairing.
Proof.

X«(T) = Hom(Gy,, T) = Hom(X™*(T), Z).

The isomorphism follows from Theorem Since X*(T') is finitely-generated free abelian by
Corollary [50, we have that X, (T) 2 Hom(X*(T'),Z) is free abelian as well. Moreover, since

Hom(X,Z) x X = Z, (a,z)— a(z)
is a perfect pairing for any finitely-generated free abelian X, it follows from the isomorphism above

that the pairing in question is also perfect. O

Proposition 54 (Rigidity of diagonalisable groups). Let G, H be diagonalisable groups and V a
connected affine variety. If ¢ : G x V. — H 1is a morphism of varieties such that ¢, : G — H,
g — ¢(g,v) is a morphism of algebraic groups for all v € V', then ¢, is independent of v.
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Proof. Under ¢* : k[H] — k[G] ® k[V], for x € X*(H), write

P*(x) = Z X' ® frx

X' €X*(G)

Then
fox )X € XH(G) = VX,v fyy(v) €{0,1}

2
= VY I = T
= VX/ V:V(fxx’)uv(l_fxx’)
= Yy fxx is constant, since V' is connected

= V¢, is independent of v
[
Corollary 55. Suppose that H C G is a closed diagonalisable subgroup. Then Ng(H)? = Zg(H)®
and Ng(H)/Z¢(H) is finite. (Ng(H),Zq(H) are easily seen to be closed subgroups.)
Proof. Applying the above proposition to the morphism
H x Ng(H)* = H, (h,n)— nhn™*
we get that nhn~—! = h for all h,n. Hence
Ne(H)" € Zg(H) C Ng(H)

and the corollary immediately follows. O

2.3 Elementary unipotent groups.

Define A(G) := Hom(G, G,), which is an abelian group under addition of maps; actually, it is an
R-module, where R = End(G,). Note that A(G])) = R". R = End(G,) can be identified with

{\x | X € k}, chark=p=0

{f € k[Ga] :k[x]\f(x—i—y) :f(x)+f(y) in k[x,y]} = {{Z)\le’z ’)\z c k}7 chark=p >0

Accordingly,
k, =0
R = { p

noncommutative polynomial ring over k, p >0

Proposition 56. G is an algebraic group. The following are equivalent:
(i) G is isomorphic to a closed subgroup of GI' (n > 0).

(ii) A(G) is a finitely-generated R-module and generates k|G| as a k-algebra.
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(iii) G is commutative and G = Gy, (and GP =1 ifp > 0).

Definition 57. If one of the above conditions holds, then G is elementary unipotent. Note that
(iii) rules out Z/p"Z as elementary unipotent when n > 1.

Theorem 58.
( elementary unipotent groups ) A, ( finitely-generated R-modules )

is an equivalence of categories.

Proof. For the inverse functor, see Springer 14.3.6. 0

Corollary 59.
(i) The elementary unipotent groups are GI' if p =0, and GI' x (Z/pZ)* if p >0
(ii) For an elementary unipotent group G,

G is isomorphic to a G|, <= G is connected <= A(G) is free

Theorem 60. Suppose G is a connected algebraic group of dimension 1, then G = G, or Gyy,.

Proof.

Claim: G is commutative.

Fix v € G and consider ¢ : G — G given by ¢ — ¢gyg~'. Then ¢(G) is irreducible and closed,
which implies that ¢(G) = {7} or ¢(G) = G. Now, either ¢(G) = {v} for all v € G, in which case
G is commutative and the claim is true, or ¢(G) = G for at least one . Suppose the second case
holds with a particular v and fix an embedding G < GL,,. Consider the morphism v : G — A"+!
which takes g to the coefficients of the characteristic polynomial of g, det(T -id — g). v is constant
on the conjugacy class ¢(G), implying that 1 is constant. Hence, every g € G, e included, has the
same characteristic polynomial: (7" — 1)™. Thus

G=G, = Gisnilpotent — G2 [G,G] = [G,G] =1 = G is commutative

Now, by Proposition
G=2Gsx Gy = G=Gs;or G=G,

as dimension is additive. In the former case, G = G, by Corollary In the latter, if we can
prove that G is elementary unipotent, then G = G, by Corollary (9% we must show that GP = 1
when p > 0 by Proposition Suppose that GP # 1, so that GP = G. Then G = GP = GP=....
But (¢ —1)" =0 in GL,, and so for p" > n,

O:(g—l)przgpr—l — P =1 = {e}:GpT:G

which is a contradiction. O
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3. Lie algebras.

If X is a variety and « € X, then the local ring at x is

{(/,U)| f € Ox(U)}

~

Ox,g = lim Ox(U) = germs of functions at z =

U open
Uz

where (f,U) ~ (f’,U’) if there is an open neighbourhood V-C U NU’ of = for which f|y = f|y.
There is a well-defined ring morphism ev,, : Ox, — k given by evaluating at x: [(f,U)]] — f(x).
Ox . is a local ring (hence the name) with unique maximal ideal

m, =: kerev, = {[(f,U)]. | f(z) = 0}
for if f ¢ m,, then f~! is defined near x, implying that f € O% -
Fact. If X is affine and = corresponds to the maximal ideal m C k[X] (via Nullstellensatz), then
Ox ¢ = k[X|m. By choosing an affine chart in X at x, we see in general that Ox , is noetherian.
3.1 Tangent Spaces.
Analogous to the case of manifolds, the tangent space to a variety X at a point x is
Ty X :=Dery(Ox g, k) ={0: Oxy — k|6 is k-linear, §(fg) = f(x)d(9) + g(z)o(f)}

(so k is viewed as a Ox z-module via ev,.) T, X is a k-vector space.

Lemma 61. Let A be a k-algebra, e : A — k a k-algebra morphism, and m = kere. Then
Dery (A, k) = (m/m?)*, 6+ 0|y

0, T =
AMz), z€m
Checking this is an exercise. O

Proof. An inverse map is given by sending A to a derivation defined by x +— {

Hence, T, X & (m,/m2)* is finite-dimensional.

Examples.

o If X = A", then T,, X has basis
0

Oz,

0

7-:;,7
. Oxp,

xT
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e For a finite-dimensional k-vector space V, T,(V) = V.

Definition 62. X is smooth at x if dim T, X = dim X. Moreover, X is smooth if it is smooth
at every point. From the above example, we see that A™ is smooth.

If¢p: X =Y we get ¢" : Oy,4,) = Ox and hence
d(]5 X — Tq&(m)K d—do d)*

Remark 63. If U C X is an open neighbourhood of x, then d(U — X) : T,U = T, X. More
generally, if X CY is a locally closed subvariety, then T, X embeds into T, Y .

Theorem 64.
dim7T,X > dim X

with equality holding for all x in some open dense subset.

Note that if X is affine and x corresponds to m C k[X], then the natural map k[X] — k[X|m = Ox
induces an isomorphism

T, X = Dery(k[X], k), (k being viewed as a k[X]-modules via ev,)

which is isomorphic to (m/m?)* by Lemma So, we can work without localising. O

Remark 65. If G is an algebraic group, then G is smooth by Theorem [64] since
d(ly : x = gz) : T,G 5 Ty, G

The same holds for homogeneous G-spaces (i.e., G-spaces for which the G-action is transitive).

3.2 Lie algebras.

Definition 66. A Lie algebra is a k-vector space L together with a bilinear map [,]: L x L — L
such that

(i) [#,2] =0 Vo e L (= [z,y] = ~[y,z])

(i) [, [y, 2] + [y, [z, 2]] + [2, [, 9] = 0 Va,y,2 € L

Examples.

e If A is an associative k-algebra (maybe non-unital), then [a,b] := ab — ba gives A the structure
of a Lie algebra.

e Take A = End(V) and as above define [a, 5] = a0 8 — foa.

e For L an arbitrary k-vector space, define [,] = 0. When [,] = 0 a Lie algebra is said to be abelian.

We will construct a functor

Lie

( algebraic groups ) — ( Lie algebras )
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As a vector space, LieG = T.G. dim Lie G = dim G by above remarks.

The following is another way to think about T.G. Recall that we can identify G with the functor
R — Hom,, (k[G], R) := G(R)

(where k[G] is a reduced finite-dimensional commutative Hopf k-algebra). The Hopf (i.e., co-group)
structure on R induces a group structure on G(R), even when R is not reduced..

Lemma 67.

Lie G = ker (G(k[e] /(%) — G(k))
as abelian groups.

Proof. Write the algebra morphism 6 : k[G] — k[e]/(€?) as given by f +— eve(f) + d(f) - € for some
§ : k[G] — k. ¢ is a derivation. O

Examples.
e For G = GL,,, G(R) = GL,(R), and we have

Lie G = ker <GLn(k;[e}/(62) — GLn(k)> ={I+ Ae| A € My(k)} 5 My (k)

Explicitly, the isomorphism Lie GL,, = M, (k) is given by 6 — (9(T};)).
e Intrinsically, for a finite-dimensional k-vector space V: Since GL(V) is an open subset of End(V'),
we have

Lie GL(V) 5 T;(End V) 5 End V

Definition 68. A left-invariant vector field on G is an element D € Dery(k[G], k[G]) such that

the

kG — 2 k[G]

AJ JA
k[G] ® k[G] 222 k[G] ® k[G]
commutes.

For a fixed D, for g € G, define 0, := evy0 D € T,G.

Evaluating Ao D at (g1, g2) gives dg,4,
Evaluating (id ® D) o A at (g1, g2) gives &, o £y = dlg, (g,)

Hence D € Dery(k[G], k[G]) being left-invariant is equivalent to dg, g, = dlg, (dg,) for all g1, g2 € G.
Define
D¢ = vector space of left-invariant vector fields on G.

Theorem 69.
Da — LieG, D~ 6§, =eveoD

s a linear isomorphism.
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Proof. We shall prove that 6 — (id ® ) o A is an inverse morphism. Fix § € LieG, set D =
(id,d) o A : k[G] — k[G], and check that (id, ) is a k-derivation k[G] ® k[G] — k[G], where k[G] is
viewed as a k[G] ® k[G]-module via id ® ev,. First, we shall check that D € Dg:

D(fh) = (id @ 6)(A(fh))
= ([d®d)(A(f) - AR))
= (i[d® eve)(Af) - (id ® 6)(Ah) + (id @ eve) (AR) - (id ® §)(Af)
= f-D(h) + h- D(f).

Next, we show that D is left-invariant:

(idoD)oA=(ild®(id®d)oA)) oA

id® (id®d))o(id® A)o A

(id® (id®d))o (A®id) o A (“co-associativity”)
=Ao(id®d)oA (easily checked)

=AoD.

—~

Lastly, we show that the maps are inverse:

0 (d®i)®@Areveo(id®d)oA=0do(eve ®id) o A =0
D—eveoD— (id®eve)o(id® D)o D= (id®eve)o Ao D = D.

O]

Since Homy (k[G], k[G]) is an associative algebra, there is a natural candidate for a Lie bracket on
D¢ € Homy (k[G), k[G)): [D1, D3] = Dy o Dy — Dy o Di. We must check that [Dg, Dg| C Dg. Let
D1,Dy € Dg. Since

[D1, Do](fh) = D1(D2(fh)) — D2(D1(fh))
= D1(f - D2(h) + h - Do(f)) — Do(f - D1(h) + h - Di(f))
= Di(f - D2(h)) + D1(h - D2(f)) — D2(f - D1(h)) — Da(h - D1(f))

= (fDl(D2<h)) + D2(h)D1(f)) + (th(Dz(f)) + Dz(f)D1(h))
- (sz<Dl<h>> n D1(h)D2(f)> - (th(Dl(f)) n Dl(f)DQ(h)>

= 1 (Da(D0) - DD ) + (DDA ~ DDA )
= f-[D1, Do) (h) + h - [D1, D2](f)
we have that [Dy, Do) is a derivation. Moreover,

(id® [D1,Ds]) o A = (id® (D10 D3))o A — (id® (Dy o Dy)) o A
=(id® D1)o(id® D)o A — (id® D3)o (id® D1) o A
=(id® D1)oAoDy— (id® Dy)o Ao Dy
=AoDioDy—AoDyoD,
= Ao [Dy, Ds]
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and so [Dy, Dy is left-invariant. Accordingly, [Dq, D] C D¢, and thus by the above theorem Lie G
becomes a Lie algebra.

Remark 70. If p > 0, then D¢ is also stable under D — DP (composition with itself p-times).
Proposition 71. If 61,02 € Lie G, then [01,92] : k|G| — k is given by

[01,02] = ((01,82) — (d2,01)) © A
Proof. Let D; = (id ® 6;) o A for i = 1,2. Then

[61,02] = eve o [Dy, D3]
=eveoDjoDy —eve,oDyo Dy
=0 0(ld®d)oA—dro(id®d)oA
= (01 ®02)0 A — (62®81)0 A
= ((61 ® 62) — (62 ® 1)) 0 A

O

Corollary 72. If ¢ : G — H is a morphism of algebraic groups, then d¢ : LieG — Lie H is a
morphism of Lie algebras (i.e., brackets are preserved).

Proof.
d([01,d2]) = [01,02] o

= (01 ® 02 — (52 ® 1) o Ao g, (by the above Prop.)

(51@52—(52@51) (qb ®(Z) )OA

= (6109, 520¢) —(0209",010¢%) 0 A

= (d¢(d1), dp(02)) 0 A — (dg(d2),dp(01)) o A

= [d¢(d1), dp(02)]-

]

Corollary 73. If G is commutative, then so too is LieG (i.e., [-,-] =0).

Ezxample. We have that ¢ : Lie GL,, = M, (k) is given by ¢ : § — (§(T};)). Since

[01,02)(T35) = (51752)(ATij) - (52751)(ATM‘)

—Zdl zl 62 Tl] 252 1l 51 le
=1
= (6(61)6(62))i — (¢(52)¢(51))ij

Hence,
¢([01,02]) = ¢(01)P(d2) — p(02)p(61)

and so in identifying Lie GL,, with M, (k), we can also identify the Lie bracket with the usual one
on M, (k): [A, B] = AB — BA. Similarly, the Lie bracket on Lie GL(V) = End(V') can be identified
with the commutator. O
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Remark 74. If ¢ : G — H is a closed immersion, then ¢* is surjective, and so d¢ : Lie G — Lie H
is injective. Hence, if G — GLy,, then the above example determines [-,-] on LieG.

Examples.

e LieSL,, = trace 0 matrices in M, (k)

e Lie B,, = upper-triangular matrices in M, (k)

e LieU,, = upper-triangular matrices in M, (k) with 1’s along diagonal
e Lie D,, = diagonal matrices in M, (k)

Exercise. If G is diagonal, show that Lie G = Homz(X*(G), k).

3.3 Adjoint representation.
G acts on itself by conjugation: for x € G,
ce:G—=G, g+ xgr!

is a morphism. Ad(z) := dc, : LieG — Lie G is a Lie algebra endomorphism such that

Ad(e) =id, Ad(zy) = Ad(z) o Ad(y)
Hence, we have a morphism of groups

Ad: G — GL(Lie G)
Proposition 75. Ad is an algebraic representation of G.
Proof. We must show that
0:G x LieG — LieG, (x,0)+— Ad(z)(0) =dcz(0) =doc],

is a morphism of varieties. It is enough to show that Ao is a morphism for all A € (Lie G)*. Given
such a A, since (Lie G)* = m/m? we must have \(d) = §(f) for some f € m. Accordingly, for any
f € m we must show that

(x,0) = d(ci.f)

is a morphism. Recall from the proof of Proposition 27 that ¢} f = >°, hi(x) fi for some f;, h; € k[G],
which implies that

(,8) = 8(chf) =Y hi(z)d(f:)
is a morphism as = +— h;(z) and 0 — 0(f;) are morphisms. O.

Exercises.
e Show that ad := d(Ad) : LieG — End(Lie G) is

51 —> (52 —> [51,52])

This is hard, but is easiest to manage in reducing to the case of GL,, using an embedding G — GL,,.
e Show that d(det : GL,, — GL;) : M,,(k) — k is the trace map.
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3.4 Some derivatives.
If X1, X9 are varieties with points 1 € X7 and z9 € X5, then the morphisms

1

/ KH(ml,r)

X1><X2 X1><X2

X
1
R 4}—)(%‘%2)
X

2

induce inverse isomorphisms T, X1 ®T1,, X0 & T(xhxz) (X1 X% X2). In particular, for algebraic groups
(1, G2 we have inverse isomorphisms

Lie G1 @ Lie Gy < Lie (Gl X Gz)

Proposition 76.

(i) d(u: G x G — G) = (LieG & Lie G 22

Lie G)
(i) d(i: G — G) = (LieG 225 Lie @)

Proof.
(). It is enough to show that du is the identity on each factor. Since idg can be factored as

GSGxG5HG
where i : x — (e,z) or x — (x,e), we are done.
(id,i)

(ii). Since z — e can be factored G —= G' x G & G. From (i) we have that 0 : Lie G — Lie G

can factored as o
LieG 4, Lie G @ Lie G 5 Lie G

Remark 77. The open immersion G° < G induces an isomorphism Lie G = Lie G.

Proposition 78 (Derivative of a linear map). If V.W be vector spaces and f : V. — W a linear
map (hence a morphism), then, for all v € V, we have the commutative diagram

Tu(f)
TV ——=Ty W

BJ lz

V—f>W

Proof. Exercise. O
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Proposition 79. Suppose that o : G — GL(V') is a representation and v € V. Define o, : G — V
by g — o(g)v. Then
doy(X) = do(X)(v)

m T,V =2V, for all X € LieG.

Proof. Factor o, as
G SoLvyxv LHv

g = (o(9),v)
(A,w) — Aw

d¢ = (do,0) : LieG — EndV @ V. By Proposition under the identification V = T,V , we have
that the derivative at (e,v) of the first component of ¢, which sends A — Awv, is the same map.
The result follows. O

Proposition 80. Suppose that p; : G — GL(V;) are algebraic representations for i = 1,2. Then
the derivative of p1 @ p2 : G — GL(V} ® Va) is
d(p1 ® p2)X = dp1 (X) ®id +id ® dps(X)
(i.e., X(v1 @ v2) = (Xv1) @ vg +v1 ® (Xv2).) Similarly for Vi ® --- ® V,,, Sym"V, A"V.
Proof. We have the commutative diagram

p1 ® po : G —— GL(V1) x GL(V3) —— GL(V; @ V3)

open open
End(V1) x End(Va) ——s End(Vi @ Va)
where ¢ : (A, B) — A® B. (Note that ¢ being a morphism implies that p; ® pe is.) Computing
d¢ component-wise at (1,1), we get that dp|gnq(v;) is the derivative of the linear map End(Vy) —
End(V; ® V) given by A+ A ® 1, which is the same map; likewise for dd|gnq(v;). Hence,
dp(A,B)=A®1+1® B

and we are done. O

Exercise. If p: G — GL(V) is an algebraic representation, then so is p : G — GL(V*), given by
pV(g9) = p(g~H)*. (Here, V* is the dual vector space.) Moreover, dp"(X) = —dp(X)*.

Proposition 81 (Adjoint representation for GL(V)). For g € GL(V), A € LieGL(V) = End(V),
Ad(g)A = gAg™

Proof. This follows from Proposition 78| by considering the linear map f : End(V') — End(V) given
by A+ gAg~! and noting that GL(V) is open in End(V). O

Exercise. Deduce that, for GL(V), ad(A)(B) = AB — BA.
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3.5 Separable morphisms.

Let ¢ : X — Y be a dominant morphism of irreducible varieties (i.e., ¢(X) = Y). From the induced
maps Oy (V) — Ox(¢~1(V)) — note that ¢~1(V) # @, as ¢ is dominant — given by f + fog, we get
a morphism of fields ¢* : k&(Y) — k(X). That is, k(X) is a finitely-generated field extension of k(Y").

Remark 82. This field extension has transcendence degree dim X —dim Y, and hence is algebraic
if and only if dim X =dimY.

Definition 83. A dominant ¢ is separable if ¢* : k(Y') — k(X) is a separable field extension.

Recall.

e An algebraic field extension E/F being separable means that every o € E has a minimal poly-
nomial without repeated roots.

e A finitely-generated field extension E/F is separable if it is of the form

E

finite separable

F(xi,...,xp)

zi,...,%n algebraically independent

F

Facts.

o If E'/E and E/F are separable then E'/F is separable.

e If char k = 0, all extensions are separable; in characteristic 0 being dominant is equivalent to
being separable. (As an example, if char k = p > 0, then F(t!/?)/F(t) is never separable.)

e The composition of separable morphisms is separable.

Ezxample. If p > 0, then G, 2 G, is not separable.

Theorem 84. Let ¢ : X — Y be a morphism between irreducible varieties. The following are
equivalent:

(i) ¢ is separable.
ii) There is a dense open set U C X such that dpy : T, X — Ty\Y s surjective for all x € U.
é(x)

(iii) There is an x € X such that X is smooth at x, Y is smooth at ¢(x), and dp, is surjective.

Corollary 85. If X, Y are irreducible, smooth varieties, then ¢ : X =Y
is separable <= d¢, is surjective for all x <= d¢, is surjective for one x

Remark 86. The corollary applies in particular if X,Y are connected algebraic groups or homo-
geneous spaces.
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3.6 Fibres of morphisms.

Theorem 87. Let ¢ : X — Y be a dominant morphism between irreducible varieties and let
r:=dimX —dimY > 0.

(i) For ally € ¢(X), dimop~1(y) > r.

(ii) There is a nonempty open subset V. C Y such that for all irreducible closed Z C'Y and for
all irreducible components Z' C ¢~ (Z) with Z' N ¢~ (V) # @, dim Z' = dim Z + r (which
implies that dim ¢~ (y) =r forally € V). If r =0, |¢~1(y)| = [k(X) : k(Y)]s for ally € V.

Theorem 88. If ¢ : X — Y is a dominant morphism between irreducible varieties, then there is a

nonempty open V- C 'Y such that ¢~*(V) A V' is universally open, i.e., for all varieties Z

o V) x 2 2% v 7

15 an open map.
Corollary 89. If ¢ : X = Y 1is a G-equivariant morphism of homogeneous G-spaces,
(i) For all varieties Z, ¢ x idy : X x Z =Y x Z is an open map.

(ii) For all closed, irreducible Z C'Y and for all irreducible components Z' C ¢~1(Z), dim Z' =
dim Z + r. (In particular, all fibres are equidimensional of dimension r.)

(iii) ¢ is an isomorphism if and only if ¢ is bijective and d¢, is an isomorphism for one (or,
equivalently, all) x.

(In this statement it’s easy to reduce to the irreducible case.)

Corollary 90. For all G-spaces, dim Stabg(z) + dim(Gz) = dim G.

Proof. Apply the above to G — Gz. O

Corollary 91. Let ¢ : G — H be a surjective morphism of algebraic groups.

(i) ¢ is open
(ii) dim G = dim H + dimker ¢
(iii)
¢ is an isomorphism <= ¢ and d¢ are bijective <= ¢ is bijective and separable

Proof. They are homogeneous GG-spaces by left-translation, H via ¢. O
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Definition 92. A sequence of algebraic groups

1—>K£>G£>H—>1

is exact if
(i) it is exact as sequence of abstract groups and
(ii)
0 Lie K % LieG 2% Lie H — 0

is an exact sequence of Lie algebras (i.e., of vector spaces).

Exercise.

(a) Show that ¢ is a closed immersion if and only if ¢ is injective and d¢ injective.

(b) Suppose that G is connected. Show that v is separable if and only if ¢ is surjective and di
surjective.

(c) Suppose that G is connected. Deduce that the sequence is exact if and only if (i) as above and
(ii") ¢ is a closed immersion and ) is separable.

(d) If the characteristic of k is 0, show that (i) implies (ii). (Hint: reduce to the case when G is
connected.)

Theorem 93 (Weak form of Zariski’s Main Theorem). If ¢ : X — Y is a morphism between
irreducible varieties such that Y is smooth, and ¢ is birational (i.e., k(Y) = k(X)) and bijective,
then ¢ is an isomorphism.

3.7 Semisimple automorphisms.

Our goal is to show that semisimple conjugacy classes are closed, and to deduce some related
results. The following definition is introduced purely for this purpose.

Definition 94. An automorphism o : G — G is semisimple if there is a G — GL, and a
semisimple element s € GL,, such that o(g) = sgs~ ' for all g € G.

1

Ezxample. If s € G, then the inner automorphism g +— sgs™" is semisimple.

Example. Here’s an example that is not inner. Consider G = G, = D, < GL,. Then any
“permutation automorphism” GJ}, — G} is semisimple, at least provided the characteristic is 0 or
p>n.

Definitions 95. Given a semisimple automorphism of G, define

Gy :={9 € G|o(g) = g}, which is a closed subgroup
o :={X € g:=LieG|do(X) = X}

Let 7 : G = G, g+ o(9)g~'. Then G, = 77 %(e) and dr = do — id by Proposition which
implies that ker dr = g,. Since Gy — G 5 G is constant, we have

dr(LieG,) =0 = LieG, C g,
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Lemma 96.

LieG, = go <= G 5 7(G) is separable <= dr : LieG — T.(7(G)) is surjective

1

Proof. 7 is a G-map of homogeneous spaces, acting by = * g = o(x)gx~" on the codomain. 7(G) is

smooth and is, by Proposition locally closed. Hence, by Theorem

T is separable <= dr is surjective
< dimg, = dimkerdr = dim G — dim7(G) = dim G, = dim Lie G,
<~ g, = LieG,

Proposition 97. 7(G) is closed and Lie G, = g,

Proof. Without loss of generality G C GL,, is a closed subgroup and o(g) = sgs~! for some
semisimple s € GL,,. Without loss of generality, s is diagonal with

s=a1lm, X - Xaply,
with the a; distinct and n = my + --- + m,,. Then, extending 7,0 to GL,,, we have
(GLn)g = GLml X e X GLmn and (g[n)o = ]\471711 X o0 X an

So, Lie (GL,,)» = (gl,,)s. Hence
gl, — T (7(GLy))

-

8 T.(r(C))

So, if X € T.(7(G)), thereis Y € gl,, such that X = dr(Y) = (do—1)Y. But, since do : A s sAs™?
acts semisimply on gl,, and preserves g, we can write gl,, = g@& V, with V' a do-stable complement.
Without loss of generality, Y € g, so dr is surjective and Lie G, = g,-.

Consider S := {z € GL, | (i), (ii), (iii) } where

(i) zGx~! = G, which implies that Ad(x) preserves g

(i) m(x) =0, where m(T") = [[,(T — a;) is the minimal polynomial of s on k"
(iii) Ad(z) has the same characteristic polynomial on g as Ad(s)

Note that s € S,S is closed (check), and if x € S then (ii) implies that x is semisimple. G acts on
S by conjugation. Define G, g, as G, g, were defined. Then

go = {X € g[ Ad(2)X = X}

and

dim g, = multiplicity of eigenvalue 1 in Ad(x) on g (&) dim g,

and
dim G, = dim G,
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by what we proved above. The stabilisers of the G-action on S (conjugation) all G,z € S, and
have the same dimension. This implies that the orbits of G on S all have the same dimension,
which further gives that all orbits are closed (Proposition. in S and hence in G. We have

orbit of s = {gsg™' | g € G} = {go(g7V)s| g € G}

1

and that the map from the orbit to 7(G) given by z — sz~ is an isomorphism. O

Corollary 98. If s € G, then clg(s), the conjugacy class of s, is closed and

G — clg(s), g~ gsg*1

1 separable.

Remark 99. The conjugacy class of (1 1> in By is not closed!

01

Proposition 100. If a torus D is a closed subgroup of a connected G, then Lie Zg(D) = 34(D),
where

Zq(D) ={g € G |dgd™' = g Yd € D} is the centraliser of D in G, and
30(D) = {X € g| Ad(d)(X) = X ¥d € D}
Note: Zg(D) = \yep Ga and 34(D) = (\yep 94 (Ga,84 as above) since, for d € G and Lie Gg = gq
by above.

Proof. Use induction on dim G. When G =1 this is trivial.

Case 1: If 34(D) = g, then gg = g for all d € D so G4 = G for all d € D, implying that Z¢(D) = G.
Case 2: Otherwise, there exists d € D such that g4 C g. Hence, G4 C G. Also have D C GY, as D
is connected. Note that Zqo (D) = Z¢(D) N GY has finite index in Z¢(D) N Gq = Z¢(D) and so
their Lie algebras coincide. By induction,

Lie Zg(D) = Lie ZGg(D) = 5LieG3(D) = 394(D) = 3¢(D) N ga = 34(D)
O

Proposition 101. If G is connected, nilpotent, then Gs C Zq (which implies that G is a subgroup).

Proof. Pick s € G4 and set 0 : g+ sgs~ ' and 7: g+ o(g9)g~! = [s,g]. Since G is nilpotent, there
is an n > 0 such that 7"(g) = [s,[s,...,[s,g]---]] = e for al g € G and so
™=e = dr" =0
=—> dr = do — 1 is nilpotent, but is also semisimple by above, since do is semisimple
— dr=0
— 7(G) = {e} as G & 7(G) is separable
— sgs '=g forallge G
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4. Quotients.

4.1 Existence and uniqueness as a variety.

Given a closed subgroup H C GG, we want to give the coset space G/H the structure of a variety
such that 7 : G — G/H, g — gH is a morphism satisfying a natural universal property.

Proposition 102. There is a G-representation V and a subspace W C V' such that
H={geG|gW CcW} and h=LieH={Xeg|XWcCW}
(We only need the characterisation of b when char k > 0.)

Proof. Let I = Ig(H), so that 0 — I — k[G] — k[H] — 0. Since k[G] is noetherian, I is finitely-
generated; say, I = (fi,...,fn). Let VDO > kf; be a finite-dimensional G-stable subspace of k[G]
(with G acting by right translation). This gives a G-representation p : G — GL(V). Let W =V NI.
If g€ H, then p(9)l CI = p(g)W C W. Conversely,

p(GW CW = p(g)(fi) €I Vi
= p(g) C I, as p(g) is a ring morphism k[G] — k[G]
— g€ H (easy exercise. Note that p(g)I = Ig(Hg™"))

Moreover, if X € b, then dp(X)W C W from the above. For the converse dp(X)W C W — X € b,
we first need a lemma.

Lemma 103. dp(X)f = Dx(f) VX eg,feV
Proof. We know (Proposition that dp(X)f = dos(X), identifying V' with T}V, where
o : G—=V, g p(9)f

That is, for all f¥ € V*
(dp(X)f, £7) = (dos(X), f¥)
Extend any fV to k[G]* arbitrarily. We need to show that

(doy(X), f¥) = (Dx(f), ")

or, equivalently,
X(03(fY)) = (doy(X), f) = (Dx(f), f) = (LX)AL, f¥) = (f', X)Af.
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We have

of(f) = f"oop g (p(g)f, [1) = (f(-9), ) = ((id,evg) A, f7) = (f7,evg) Af

and so

oj(f) = (", id)Af = X(oj(f")) = (f*, X)Af

Now,

dp(X)W c W = Dx
— Dx

fi)yel Vi
INcI (as Dy is a derivation)

(
(
— X([)=0 easy exercise

which implies that X factors through k[H]:

It is easy to see that X is a derivation, which means that X € b.
Corollary 104. We can even demand dim W = 1 in Proposition[103 above.

Proof. Let d = dim W, V' = A%V, and W’ = AW, which has dimension 1 and is contained in V.
We have actions

gvr A= ANvg) =gur A+ A gug
X A Avg) = (Xvp A~ Avg) + (01 AXva A Avg) + -+ (01 A A Xyg)

We need to show that

gW' c W' — gWcWw
XWcW — XWcWwW

which is just a lemma in linear algebra (see Springer). O

Corollary 105. There is a quasiprojective homogeneous space X for G and x € X such that
(i) Stabg(z) =H

(ii) Ifo, : G — X, g — gx, then
0 — Lie H — LieG 22 7.X 0

15 exact.
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Note that (ii) follows from (i) if char k = 0 (use Corollaries [85] and [89} )
Proof. Take a line W C V as in the corollary above. Let z = [W] € PV and let X = Gz C PV.
X is a subvariety and is a quasiprojective homogeneous space. Then (i) is clear. O

FEzercise. The natural map ¢ : V — {0} — PV induces an isomorphism
Vie=2T,V/e =2 T, (PV)

for all z € PV and v € ¢~ !(x). (Hint:
i N (9 3%

is constant. Use an affine chart in PV to prove that d¢ is surjective.)

Claim. ker(doy) = b (then (i) follows by dimension considerations.)
Fix v € ¢~ 1(x).

o0, : G IO Gr iy« (7 - (o)) PO, gy SP@ul by

X (dp(X),0) (dp(X),0)—=dp(X)v - de:dp(X)v—[dp(X)v

dodo, : g End(V) @ V v L v/e.

We have
[dop(X)v] =0 <= XWCW < Xeb

O]

Definition 106. If H C G is a closed subgroup (not necessarily normal). A quotient of G by H
is a variety G/H together with a morphism w: G — G/H such that

(i) 7 is constant on H-cosets, i.e., w(g) = w(gh) for all g € G,h € H, and

(ii) if G — X is a morphism that is constant on H-cosets, then there exists a unique morphism
G/H — X such that

G——G/H

|~

X

commutes. Hence, if a quotient exists, it is unique up to unique isomorphism.
Theorem 107. A quotient of G by H exists; it is quasiprojective. Moreover,
(i) m: G — G/H 1is surjective whose fibers are the H-cosets.

(ii) G/H is a homogeneous G-space under

GxG/H = G/H, (g,7(7)) m(g7)

Proof. Let G/H = {cosets gH} as a set with natural surjection 7 : G — G/H and give it the
quotient topology (so that G/H is the quotient in the category of topological spaces). 7 is open.
For U C G/H let O g(U) :={f:U = k| fom e Og(x~!(U))}. Easy check: Og/p is a sheaf of
k-valued functions on G/H and so (G/H,Og/y) is a ringed space.
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If ¢ : G — X is a morphism constant on H-cosets, then we get

G—">G/H
¢ -

=l
K

X

in the category of ringed spaces .

By the second corollary to Proposition there is a quasiprojective homogeneous space X of
G and x € X such that

(i) Stabg(x) =H
(ii) If o, : G — X, g — gz, then

0 — Lie H — LieG 2= 7.X 0

is exact.

Since 0, is constant on H-cosets, we get a map ¢ : G/H — X of ringed spaces (from the above
universal property). 1 is necessarily given by gH +— gz and is bijective. If we show that 1 is an
isomorphism of ringed spaces and that (G/H,Og/p) is a variety, then the theorem follows.

1) is a homeomorphism:
We need only show that 1 is open. If U C G/H is open then

Y(U) = ¢(r(z=(U))) = ¢(x = (U))

is open, as ¢ is an open map (by Corollary .

1) gives an isomorphism of sheaves:
We must show that for V' C X open

Ox(V) = Ogyu(®~1(V))
is an isomorphism of rings. Clearly it is injective. To get surjectivity we need that for all f: V — k
fop: ¢ (V) =k regular = f regular

Since
G —">G/H

| A

X

and 1) is a homeomorphism, we need only focus on (X, ¢). A lemma:

Lemma 108. Let X,Y be irreducible varieties and f : X — Y a map of sets. If f is a morphism,
then the graph I'y C X XY s closed. The converse is true if X is smooth if Iy is irreducible, and
'y — X s separable.
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Proof.
(=:) If f is a morphism, then I'y = 6~ (Ay) is closed, where
0: X xY =Y XY, (z,y) = (f(2),y)

(«<:) We have

—

fe—— X xY

3

X

with T ;e X x Y the closed immersion.
n bijective =& dimT; = dim X and 1 = [k(Ty) : k(X)], = [k(T;) : k(X)]

as n is separable. Hence 7 is birational and bijective with X smooth, meaning that 7 is an isomor-
phism by Theorem [03] and

-1
f:Xn—>Ff—>Y

is a morphism. O

Now, for simplicity, assume that G is connected, which implies that X, V, ¢~ (V) are irreducible.
(For the general case, see Springer.) Suppose that f o ¢ is regular. It follows from the lemma that
Loy C # 1 (V) x Al is closed, surjecting onto I'y via ¢ x id. By Corollary , 0 G — X is
“universally open” and so

VxA' Ty = (¢ xid)(¢ (V) x At —Top)
is open: Ty is closed. (The point is that I'f.4 is a union of fibers of ¢ x id.)

Also, Tfop =2 ¢ 1(V) is irreducible, implying that I'f is irreducible, and

pr
and
d¢ surjective = d(pry) surjective == I'y — V separable and V' smooth.
By Lemma f is a morphism. O

Corollary 109. (i) dim(G/H) =dimG — dim H

(i)
0— Lie H — LieG 45 T.(G/H) — 0

18 exact.

44



Proof.
(i): G/H is a homogeneous with stabilisers equal to H.

(ii): Implied by Corollary O

Lemma 110. Let Hy C Gy, Ho C G4 be closed subgroups. The natural map
(Gl X Gg)/(Hl X HQ) — Gl/Hl X GQ/HQ
s an isomorphism.

Proof. This is a bijective map of homogeneous (G; X G5 spaces, which is bijective on tangent spaces
by the above. The rest follows from Corollary O

4.2 Quotient algebraic groups.

Proposition 111. Suppose that N < G is a closed normal subgroup. Then G/N is an algebraic
group that is affine (and 7w : G — G/N is a morphism of algebraic groups).

Proof. Inversion G/N — G/N is a morphism, along with multiplication G/N x G/N — G/N by
Lemma which gives that G/N is an algebraic group.

By Corollary there exists a G-representation p : G — GL(V) and a line L C V such that
N = Stabg(L) and Lie N = Stabg(L). For x € X*(N) = Hom(N, G,,), let V}, be the x-eigenspace
of V. (Note that L C V, for some x.) Let V' = > yex+ () Vx = D, Vy (by linear independence of
characters). As N < G, G permutes the V,.. Define

W = {f € End(V) | f(Vy) C Vi ¥y} C End(V).

Let 0 : G — GL(W) by
a(9)f = plg)fr(g)~"

which is an algebraic representation.

Claim. o induces a closed immersion G/N — GL(W).
It is enough to show that ker o = N and ker(do) = Lie N.

g€kero <« plg)f = fp(g)
<= p(g) acts as a scalar on each Vj,

= p(9)L =L as L CV, for some x
== g€eN

The converse is trivial: kero = N.

By Proposition ¢f:G—=W, g o(g)f has derivative

dop:g— W, X do(X)f.

45



Check that do(X)f = dp(X)f — fdp(X). We have

do(X)=0 <= dp(X)f = fdp(X) foral feW
<= dp(X) acts as a scalar on each Vj,
= X € LieN (as above).

Corollary 112. Suppose ¢ : G — H is a morphism of algebraic groups with ¢(N) =1, N I G
closed. Then we have a unique factorisation in the category of algebraic groups,

G——G/N
I

N

H

In particular, we get that G/ ker ¢ — im ¢ is bijective and is an isomorphism when in characteristic
0.

(Note that in characteristic p, G, 5 G,y is bijective and not an isomorphism.)

Remark 113.
l1-N—-G—-G/N—1

is exact by Corollary [109

Exercise. If N C H C G are closed subgroups with N < G, then the natural map H/N — G/N is
a closed immersion (so we can think of H/N as a closed subgroup of G/N) and we have a canonical
isomorphism (G/N)/(H/N) = G/H of homogeneous G-spaces.

Exercise. Assume that char k¥ = 0. Suppose N, H C G are closed subgroups such that H nor-
malises N. Show that HN is a closed subgroup of G and that we have a canonical isomorphism
HN/N = H/(H N N) of algebraic groups. Find a counterexample when char k > 0.

Exercise. Suppose H is a closed subgroup of an algebraic group G. Show that if both H and G/H
are connected, then G is connected. (Use, for example, Exercise 5.5.9(1) in Springer.) Variant:
Show that if ¢ : G — H is a homomorphism such that ker ¢ and im ¢ are connected, then G is
connected. (Hint: show that ¢(GY) = im¢.)

Exercise. Assume that char £k = 0. Suppose ¢ : G — H is a surjective morphism of algebraic

groups. If Hy C Hy C H are closed subgroups, show that the map ¢ induces a canonical isomor-
phism ¢~!(Hs)/¢~'(Hy) = Hy/H;. Find a counterexample when char k& > 0.

Ezample. The group PGLo:
Let Z={(",) |z € Gy}. GL2/Z is affine and the composition

SL2 — GL2 — GLQ/Z
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is surjective, inducing the inclusion of Hopf algebras

k[GLy)? = k[GLy/Z] — k[SLs).

T.

Check that the image is generated by the elements (;g;j , 1 <i,57 < 4. (See Springer Exercise

2.1.5(3).)

47



5. Parabolic and Borel subgroups.

5.1 Complete varieties.

Recall: A variety X is complete if for all varieties Z, X x Z P2, 7 is a closed map. In the
category of locally compact Hausdorff topological spaces, the analogous property is equivalent to
compactness.

Proposition 114. Let X be complete.
(i) Y C X closed = Y complete.
(ii) Y complete =— X XY complete

(iii) ¢ : X =Y morphisms — ¢(X) CY is closed and complete, which implies that if X C Z
is a subvariety, then X is closed in Z

(iv) X drreducible — Ox(X) =k
(v) X affine = X finite

Proof. An exercise (or one can look in Springer). O

Theorem 115. X projective —> X complete

Note: The converse is not true.

Lemma 116. Let X,Y be homogeneous G-spaces with ¢ : X — Y a bijective G-map. Then X is
complete <= Y is complete.

Note that such a map is an isomorphism if the characteristic of k is 0.

Proof. For all varieties Z, then projection X x Z — Z can be factored as
¢pxid proy
XXZ—YXZ—"Z

¢ x id is bijective and open (by Corollary and is thus a homeomorphism: Y being complete
implies that in X. Applying the same reasoning to ¢! : Y — X gives the converse. O

Definition 117. A closed subgroup P C G is parabolic if G/P is complete.
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Remark 118. For a closed subgroup P C G, G/P is quasi-projective by Theorem and so
G/P projective <= G/P complete <= P parabolic.

The implication of G/ P being complete implying that G/ P being projective follows from Proposition
(71i) applying to the embedding of G/P into some projective space.

Proposition 119. If Q C P and P C G are parabolic, then Q C G is parabolic.

Proof. For all varieties Z we need to show that G/Q x Z P2, 7 is closed. Fix a closed subset
C C G/QxZ. Letting 7 : G — G/ P denote the natural projection, set D = (7xidz) 1 (C) C GxZ,
which is closed. For all ¢ € @, note that (¢,2) € D = (gq,2) € D. It is enough to show that
pry(D) C Z is closed.

Let
0:PxGxZ—GxZ, (pg,z)+— (9p,2)

Then #~1(D) is closed for all ¢ € Q
(*) (p.g.2) €071(D) = (pq.g,2) € 97(D)
Let «: P x G x Z — P/Q x G X Z be the natural map.

PxGxZ—5P/QxGxZ

Prag

GxZ

By Corollary , « is open. By passing to complements, (*) implies that a(6~1(D)) is closed. P/Q
being complete implies that

pro3(0~ (D)) = {(9p™",2) | (9,2) € D,p € P}

is closed. Now,

GXZLG/PXZ

pro
pro

GxZ
Similarly 3 is open, and so B(prys(6~1(D))) is closed. G/P being complete implies

pry(B(prog(07(D)))) = pra(proz (6~ (D))) = pry(D) = pry(C)

is closed. ]

5.2 Borel subgroups.

Theorem 120 (Borel’s fixed point theorem). Let G be a connected, solvable algebraic group and
X a (nonempty) complete G-space. Then X has a fized point.
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Proof. We show this by inducting on the dimension of G. When dimG =0 = G = {e} the
theorem trivially holds. Now, let dimG > 0 and suppose that the theorem holds for dimensions
less than dimG. Let N = [G,G] < G, which is a connected normal subgroup by Proposition
and is a proper subgroup as G is solvable. Since N is connected and solvable, by induction

XN ={reX|nt=xVnecN}+#

Since X C X is closed (both topologically and under the action of G, as N is normal), by
Propositionm XN is complete; so, without loss of generality suppose that N acts trivially on X.
Pick a closed orbit Gz C X, which exists by Proposition [24] and is complete. Since G/Stabg(z) —
Gz is a bijective map of homogeneous G-spaces, G/Stabg(x) is complete by Proposition m

N C Stabg(x) = Stabg(z) is normal
= (/Stabg(x) is affine and complete (and connected)
— (/Stabg(x) is a point, by Proposition [114
— reXC¢

O]

Proposition 121 (Lie-Kolchin). Suppose that G is connected and solvable. If ¢ : G — GL,,, then
there exists v € GL,, such that v(im ¢)y~* C B,,.

Proof. Induct on n. When n = 1, then theorem trivially holds. Let n > 1 and suppose that it holds
for all m < n. Write GL,, = GL(V) for an n-dimensional vector space V. G acts on PV via ¢.
By Borel’s fixed point theorem, there exists v; € V such that G stabilises the line V; := kvy C V,
implying that G acts on V/V;. By induction there exists a flag

0=Vi/ViCWV/ViC - CV/Vi
stabilised by G; hence G stabilises the flag
0CViC---CV,=V

O]

Remark 122. Both of the above results need G connected. It’s easy to find counterexamples with
G finite otherwise.

Definition 123. A Borel subgroup of G is a mazimal connected solvable closed subgroup B of G.

Remarks 124.
o Any G has a Borel subgroup since if By C Bsy is irreducible =—> dim By < dim Bs.
e B, C GL,, is a Borel by Lie-Kolchin.

Theorem 125.
(i) A closed subgroup P C G is parabolic <= P contains a Borel subgroup.

(ii) Any two Borel subgroups are conjugate.
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In particular, a Borel subgroup is precisely a minimal — or, equivalently, a connected, solvable —
parabolic.

Remark 126. We will soon see that any parabolic subgroup is connected (Theorem .

Proof. For simplicity, assume that G is connected.
(i) (=): Suppose that B is a Borel and P is parabolic. B acts on G/P. By the Borel fixed point
theorem, there is a coset gP such that Bg C gP = ¢ 'Bg C P. g~ 'Bg is Borel.

(i) («<): Let B be a Borel. We first show that B is parabolic, inducting on dim G. Pick a closed
immersion G — GL(V). G acts on PV. Let Gz be a closed — hence complete — orbit. Since
G/Stabg(z) — Gz is a bijective map of homogeneous spaces, P := Stabg(x) is parabolic. By
above, B C gPg~!, for some g € G. Without loss of generality, B C P. If P # G, then B is
Borel in P. Since P C G is parabolic and B C P is parabolic by induction, it follows that B C G
is parabolic, by Proposition [I119] Suppose P = G. G stabilises some line V; C V, which gives a
morphism G — GL(V/V}). By induction on dim V', we either obtain a proper parabolic subgroup,
in which case we are done by the above, or G stabilises some flag 0 C V3 C ---V,, =V, giving that

G — B, — (issolvable =— G = B is parabolic

Now, suppose that P is a closed subgroup containing a Borel B. Then G/B — G/P. Since G/B
is complete, by Proposition we get that G/P is complete = P is parabolic.

(ii). Let Bj, Ba be Borel subgroups, which are parabolic by (i). By (i), there is ¢ € G such that
gB1g~! ¢ By = dim B; < dim By. Similarly,

dim By < dimB; = dimB; =dim By, = ¢B1g ' = B»

Corollary 127. Let ¢ : G — G’ be a surjective morphism of algebraic groups.
(i) If B C G is Borel, then ¢(B) C G’ is Borel.
(ii) If P C G is parabolic, then ¢(P) C G’ is parabolic.

Proof. Tt is enough to prove (i). Since B — ¢(B), ¢(B) is connected and solvable. Since G/B is
complete and G/B — G'/¢(B) it follows that G'/¢(B) is complete and ¢(B) is parabolic. Now,
¢(B) is connected, solvable, and contains a Borel: ¢(B) is Borel by the maximality in the definition
of a Borel subgroup. O

Corollary 128. If G is connected and B C G a Borel, then Zg C Zp C Zg.
Remark 129. We will soon see that Zg = Z¢ (see Prop. .
Proof.

Zg connected, solvable — Zg C gBg™!, for some g € G
— 22=9"'20gcCB
- ng C Zp
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Now, fix b € Zp and define the morphism ¢ : G/B — G of varieties by gB + gbg~!. ¢(G/B) is
complete and closed — hence affine — and irreducible, hence a point:

#(G/B) ={b} = VYgeG,gbg™' =b — be 25 — ZpC Zg

O]

Proposition 130. Let G be a connected group and B C G a Borel. If B is nilpotent, then G is
solvable; that is, B nilpotent — B = (.

Proof. If B =1, then G = G/B is complete, connected, and affine, hence G/B =1, so G = B.
If B # 1: B being nilpotent means that

B2CB2---2C"B=1
for some n > 0 (where C'B = [B,C* ! B] is connected and closed). Let N = C" !B, so that
1=[B,N] = N C Zp C Zg (above corollary) = N <G

Hence we have the morphism B/N < G/N of algebraic groups, which is a closed immersion by the
exercise after Theorems Also, B/N is a Borel of G/N, by the corollary above, and B/N is
nilpotent.

Inducting on dim G, we get that G/N is solvable, which implies that G is solvable. O

5.3 Structure of solvable groups.

Proposition 131. Let G be connected and nilpotent. Then G4, G, are (connected) closed normal

1t. . . . . .
subgroups and Gs x G, —— G is an isomorphism of algebraic groups. Moreover, Gy is a central

torus.

Remark 132. This generalises Proposition from the commutative case (at least when G is
connected).

Proof. Without loss of generality, G C GL(V) is a closed subgroup. By Proposition Gs C Zg.
The eigenspaces of elements G5 coincide; let V' = D,.5._,1x Vi be a simultaneous eigenspace de-
composition. Since Gy is central, G preserves each V). By Lie-Kolchin (Proposition , we can
choose a basis for each V) such that the G-action is upper-triangular. Therefore, G C B,, and
Gs = GnD, G, = GnNU, are closed subgroups, GG, being normal. We can now show that
Gs x Gy = G as in the proof of Proposition Moreover, G is a torus, being connected and
commutative. ]

Proposition 133. Let G be connected and solvable.
(i) [G,G] is a connected, normal closed subgroup and is unipotent.

(ii) Gy is a connected, normal closed subgroup and G/G,, is a torus.
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Proof.

Lie-Kolchin — G < B,
= [G,G] < [By, B,] C U,
= |G, G] unipotent

We already know that it is connected, closed, and normal.

(il). Gy, = GNU, is a closed subgroup. G, D [G,G] implies that G, < G and that G/G,, is
commutative. For [g] € G/Gy, [9] = [gs] = [g]s: all elements of G/G,, are semisimple. Since G/G,
is furthermore connected, it follows that G/G,, is a torus. It now remains to show that G, is
connected.

1— G./|G,G] —» G/|G,G] - G/G, — 1
is exact (by the exercise on exact sequences). By Proposition
G/[G,G] = (G/IG,G))s x (G/]G, G))u

Hence (G/[G,G])y, = Gu/|G, G], which is connected by the above. Since [G,G] is also connected,
it follows from Springer 5.5.9(1) (exercise) that G, is connected. O

Lemma 134. Let G be connected and solvable with G, # 1. Then there exists a closed subgroup
N C Zqg, such that N = G, and N 4 G.

Proof. Since G, is unipotent, it is nilpotent. Let n > 0 be such that
G,2CG, 2 ---2C"G, = 1.

The C'G,, are connected closed subgroups and are normal as GG, is normal. Let N = C"1G,. Then
1=[Gy,N] = N C Zg,,

in particular N is commutative. If char k = p > 0, let N — U,,, for some m, and let » be minimal
such that p” > m so that N?" = 1. Then (perhaps for a different r > 0),

NDONPD...DNP =1.

r—1

The N?' are connected, closed, and normal in G. Replace N by NP . Then WLOG N is a
connected elementary unipotent group and hence is isomorphic to G}, for some r, by Corollary

G act on N by conjugation, with G,, acting trivially. This induces an action G/G, x N — N (use
Lemma [I10). G/G, acts on k[N] in a locally algebraic manner, preserving the non-zero subspace
Hom(N, G,) = A(N). Since G/G, is a torus, there is a nonzero f € Hom(N, G,) that is a simul-
taneous eigenvector. So, (ker f)° C N has dimension r — 1 and is still normal in G. Induct on r. [

Definitions 135. A maximal torus of G is a closed subgroup that is a torus and is a mazximal such
subgroup with respect to inclusion; they exist by dimension considerations. A temporary definition:
a torus T of a connected solvable group is Maximal (versus maximal) if dimT = dim(G/G,,).
(Recall that G/G, is a torus.) It is easy to see that Mazimal = mazimal. We shall soon see
that the converse is true as well, after a corollary to the following theorem (so that we can then
dispense with the capital M):
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Theorem 136. Let G be connected and solvable.
(i) Any semisimple element lies in a Mazimal torus. (In particular, Mazimal tori exist.)
(ii) Zq(s) is connected for all semisimple s.

(iii) Any two Mazimal tori are conjugate in G.

mult.

(iv) If T is a Mazimal torus, then G = Gy, x T (i.e., G, I G and Gy, x T — G is an
isomorphism of varieties).

Proof.
(iv): Let T' be Maximal and consider ¢ : T'— G/G,,. Since ker¢ =T NG, = 1 (Jordan decompo-
sition), we have that

dim¢(T) = dim7T — dimker ¢ = dim7T =dim G/G, = ¢(T) = G/G,, :

¢ is surjective and so G = T'G,. Thus multiplication T'x G,, — G is a bijective map of homogeneous
T x Gy-spaces. To see that it is an isomorphism, (if p > 0) we need an isomorphism — just an
injection by dimension considerations — on Lie algebras, which is equivalent to LieT N Lie G,, = 0,
as is to be shown.

Now, pick a closed immersion G — GL(V). Picking a basis for V' such that G,, C U,, gives that

0 * x*
LieG, C LieU,, = ok
0

consists of nilpotent elements. Picking a basis for V' such that T' C D,, gives that
LieT C Lie D,, = diag(x,...,x)
consist of semisimple elements. Thus, LieT' N Lie G, = 0.

(i)~ (ii):

If G, =1, then G is a torus and there is nothing to show. Suppose that dim G, > 0.

Case 1. dim G, = 1:
G, is connected, unipotent and so G, = G, by Theorem [60] Let ¢ : G, — G, be an isomorphism.
G acts on G, by conjugation with G, acting trivially. We have

Aut G, = Aut G, = G, (exercise).

Hence
go(x)g~" = ¢lalg)x)
for all g € G,z € G, for some character a : G/Gy — Gyy,.

a=1.G, C Z¢a.

G, G| C Gy, (Proposition [133) = [G,[G,G]] =1, so G is nilpotent
= G = G, x Gs (Proposition [131))
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and so G is commutative and G5 is the unique maximal torus. (i)—(iii) are immediate.

a # 1: Given s € G, let Z = Z5(s).

G/G,, commutative = clg(s) maps to [s] € G/G,
= clg(s) C sGy
= dimclg(s) <1
= dimZ =dimG —dimclg(s) > dimG — 1

a(s) # 1: For all x # 0
sp(x)s™ = p(a(s)r) # ¢()
which implies that Z N G, = 1, further giving dim Z = dim G — 1 and

Zy,=1 = Z"is a torus - which is Maximal — by Proposition m (it is connected, solvable and Z° = 1)
— G=2G,, by(iv)

If z € Z, then z = zgu for some zy € ZY and v € G,,. But
u:zalzGZﬂGuzl — z=29¢c 2"

Therefore, Z = Z°, giving (iii), and s € Z, giving (i).

a(s)=1:For all x # 0

and so Gy, C Z. By the Jordan decomposition, since s commutes with G, sG,, N G5 = {s}, which
means that
ca(s) ={s} = s€Zs = Z=0G.

(ii) follows.

Note that since o # 1 there is g = gsgy, such that a(gs) = a(g) # 1 and so Z(gs) is a Maximal
torus by the previous case. Hence, since Z¢(s) = G, we have s € Z5(gs): (i) follows.

Now it remains to prove (iii) in the general case in which o # 1. Let s be such that 7,7" be
Maximal tori. With the identification T = G/G,, (see (iv)), let s € T be such that a(s) # 1. Then
Za(s) is Maximal (by the above) and

T C 2¢(s) = T = 2¢(s) by dimension considerations.

Likewise, with the identification 7" = G /G, pick s’ € T’ with [s] = [¢'] in G/G,, so that T =
Za(s'). s = su for some u = G,,. The conjugacy class of s (resp. s') — which has dimension 1 by
the above — is contained in sG, = s’G,, which is irreducible of dimension 1:

clg(s) = sG,, = §'G,, = clg(s)

since the conjugacy classes are closed (Corollary . Therefore, s’ is conjugate to s and thus T, 7"
are conjugate.
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Case 2. dim G, > 1: Induct on the dimension of G.
Lemma implies that there exists a closed, normal subgroup N C Zg, isomorphic to G,. Set
G =G/N and G, = G,/N, so G/G, = G/G,. Let 7 : G — G be the natural surjection.

(i): If s € G, define 5 = 7(s) € G := 7(Gs). By induction, there is a Maximal torus T in G

containing 5. Let H = 7~ 1(T'), which is connected since N and T are connected (exercise, see home-
work 3). Also, H, = N (consider the map H — T with kernel N) has dimension 1. Case 1 implies
that there is a torus 7' > s in H (Maximal in H) of dimension dim H/H,, = dimT = dim G/Gy;
hence, T' is Maximal in G, containing s.

(iii): Let T,7" be Maximal tori. Then 7(T') = 7(1”) are Maximal tori in G and by induction
are conjugate: there is g € G such that

©(T) =7(gT'g™") = T,9T'g ' € v (n(T)) =: H.

As above H, is 1-dimensional and so T, g7"¢g~" — being Maximal tori in H — are conjugate in H
and hence in G.

(ii): Again, for s € G, set 5 = m(s). Z5(s) is connected by induction. H := 7~ (Z5(3)) is

connected since N and Zz(5) are connected (exercise, see homework 3). Since 7(Z¢(s)) C Z5(5),
we have Zg(s) = 2y (s). If H # G, Zy(s) is connected by induction and we are done. If H = G,

then Z(5) = G. Hence,
cdg(3) = {8} = clg(s) c 7 1(3) =sN

and so the conjugacy class of s (recall that it is closed!) has dimension at most 1. We can now
proceed as in Case 1 to conclude. (Sketch: fix an isomorphism ¢ : N — G,. Thereis a § € G,
such that s¢(z)s™! = ¢(Bz) for all z € G,. If B # 1 we deduce ZNN =1, so dim Z = dim G — 1
and G = Z°N. We deduce Z = Z° as above. If 8 = 1, then N < Z, so sN NG5 = {s}, which
implies clg(s) = {s} and hence Z = G.) O

Remark 137. (i), (i7i) above carry over to all connected G, as we shall see soon. However, (i1)
can fail in general. (For example, take G = PGLy in characteristic # 2 and s = [diag(1,—1)].)

Ezample. D, is a maximal torus of B, and B,, 2 U, x D,,.

Ezample. If G is connected nilpotent it is clear by Proposition that G, is the unique maximal
torus and the unique Maximal torus.

Lemma 138. If ¢ : H — G is an injective homomorphism, then dim H < dim G.

Proof. Since dimker ¢ = 0, dim H = dim ¢(H) < dim G. O

Proposition 139. Let G be connected and solvable with H C G a closed diagonalisable subgroup.
(i) H is contained in a Mazimal torus.
(ii) Zq(H) is connected.

(ili) Zg(H) = Ng(H)
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Proof. We shall induct on dim G.

If H C Zg: Let T be a Maximal torus. For h € H, for some g € G,
heglTg! = h=g'hgeT = HCT
Also, Zq(H) = Nq(H) = G.

IftH ¢ Zg:let s€ H— Zg. Then H C Z := Z¢(s) # G and so Z is connected by induction. Also
by induction, s € T' for some Maximal torus T'; hence T' C Z. We have injective morphisms

T 7/Z, — G/G, = dimT < dim(Z/Z,) < dim(G/G,)

But T is maximal, and so all of the dimensions must coincide: T is a Maximal torus of Z. By
induction H C gTg~! for some g € Z, implying (i). Also, Zg(H) = Zz(H) is connected by
induction, giving (ii). For (iii), if n € Ng(H),h € H, then

n,hle HN|G,G]C HNGy, =1 = ne€ Zg(H) = Ng(H) C Zg(H)

Corollary 140. Let G be connected and solvable, and let T C G be a torus. Then
T is maximal <= 7T is Maximal

Proof. If T is Maximal and T" C T for some torus 7", then T — T' — G/G, are injective
morphisms, giving
dim(G/Gy) = dimT < dim 7" < dim(G/G,,)

Hence, T =T’ and T is maximal. If T is not Maximal, then T" C T” for some Maximal 7" by the
above proposition, so 7' is not maximal. O

5.4 Cartan subgroups.
Remark 141. From now on, G denotes a connected algebraic group.
Theorem 142. Any two maximal tori in G are conjugate.

Proof. Let T,T' be maximal. Since both are connected and solvable they are each contained in
Borels: T C B, T ¢ B'. There is a g € G such that gBg~! = B’. ¢Tg~! and T" are two maximal
tori in B and so, by Proposition for some b € B, bgTg~'b~! =T, O

Corollary 143. A maximal torus in a Borel subgroup of G is a maximal torus in G.

Proof. Let B be a Borel subgroup. By the previous proof, any maximal torus of G is conjugate to
a maximal torus of B... O
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Definition 144. A Cartan subgroup of G is Zg(T)°, for a mazimal torus T. All Cartan
subgroups are conjugate. (We will see in Proposition[150 that Z¢(T) is connected.)

Examples.

o. G=GL,, T=D,, Z2¢(T)=T = D,

e. If (G is nilpotent, then the unique maximal torus G is central, so G is the unique Cartan sub-
group.

Proposition 145. Let T C G be a maximal torus. C := Zg(T)° is nilpotent and T is its (unique)
maximal torus.

Proof. T C C and so T is a maximal torus of C. Moreover, T' C Z~. Now T lies in a Borel
subgroup B of C' and T' C Zp, so by Theorem we have B = T x B,, so B is nilpotent. By
Proposition C = B, so C'is nilpotent. Finally T is the unique maximal torus of C' by Propo-
sition 1311 O

Lemma 146. Let S C G be a torus. There exists s € S such that Z5(S) = Z(s).

Proof. Let G — GL,, be a closed immersion. Since S is a collection of commuting, diagonalisable
elements, without loss of generality, S < D,,. It is enough to show that Zqr,, (S) = ZaL,(s), for
some s € S. Let x; € X*(D,,) be given by diag(z1,...,z,) — x;. It is easy to show that

ZG(S) = {(l'w) S GLn ‘ Vi,j Tij = 0if Xi‘S 7& Xj’S'}-

The set
(N {s€SIxils) #x;(s)}
i?j
Xils#x;ls
is nonempty and open, and thus is dense; any s from the set will do. O

Lemma 147. For a closed, connected subgroup H C G, let X = U cHz ' c G.
zeG

(i) X contains a nonempty open subset of X.

(ii) H parabolic = X closed

Y = {(z,y) |z gz € H={(z,y) |y € zHz '} cG x G

is a closed subset. Note that
pro(Y)={y € |y € xHz™! for some 2} = X

By Chevalley, X contains a nonempty open subset of X.
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(ii): Let P be parabolic.

xid

GxG——G/HxG

/
pro J(pr2

G
Note that 7 x id is open (Corollary and that

(x,y) €Y <= VheH (zh,y) €Y.
By the usual argument, (7 x id)(Y") is closed. Since G/P is complete,
pray((m x id)(Y)) = pra(Y) = X
is closed.
(iii): We have an isomorphism
Y 5 GxH, (z,y)— (z,z7 yx)

and so Y is irreducible (as H,G are connected). Consider the diagram
Gey X q

pr;(z) = {(z,zhe™) |h € H} = H = all fibers of pr; have dimension dim H
— dimY =dimG + dim H (Theorem [37).

Moreover,
pryt(y) = {(z,y) |y € sHa '} = {z |y € 2Hz™}

Pick y € G lying in finitely many conjugates of H: :L‘lH.rl_l, oyxpHr,t. Then
n
pry' (y) = | 2:Na(H)
i=1

which is a finite union of H cosets by hypothesis ((Ng(H) : H) < 0o0). This implies that

dimpry ' (y) = dim H = pry:Y — pry(Y) is a dominant map with minimal fibre dimension < dim H
= dimY —dimpry(Y) < dim H
= dimpry(Y) > dimY —dim H = dim G
= pry(Y) =G

Theorem 148.
(i) Bvery g € G is contained in a Borel subgroup.

(ii) Every s € G, is contained in a mazimal torus.
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Proof.
(i): Pick a maximal torus 7' C G. Let C = Z5(T)" be the associated Cartan subgroup. Because C
is connected and nilpotent (Proposition [145)), there is a Borel B D C.

T = Cs (Proposition [145) = N¢g(C) = Ng(T) (“D” is obvious)
= (Ng(C):C) = (Na(T): Z2¢(T)°) < 0o (Corollary [55)

By Lemmathere is t € T such that Z5(t)° = Z5(T)? = C. t is contained in a unique conjugate,

i.e.,

1

teaCex™ ' — 20z~ '=0C

by the following.

texCzx™! = a2 'tz € C, which is a semisimple element
— sz ltreC,=TcC Z4(C)
— O C Zgla ) =27 'Z25(t)°z = 27102
— (O =2 'Cz (compare dimensions)

Hence, we can apply Lemma m (iii) with H = C to get

G= UxC’:E*l C U:EBafl = LJ:L‘B:E_1

with the last equality following from Lemma (ii) (this time with H = B). Hence, G = |JzBz ™1,
giving (i) of the theorem.

(ii):
se€Gs = se€ B, forsome Borel B by (i)
= seT, forsome maximal torus 7' of B by Theorem [136| (i).

(A maximal torus in B is a maximal torus in G by Theorem [142])

Corollary 149. If B C G is a Borel then Zg = Z¢.

Proof. The inclusion Zg C Z¢ follows Corollary [I28] For the reverse inclusion, if z € Z¢, we have
z € gBg~! for some g by the above Theorem, and so z = g~ 'zg € B. O

Proposition 150. Let S C G be a torus.
(i) Zg(S) is connected.

(ii) If B C G is a Borel containing S, then Zz(S) N B is a Borel in Z(S), and all Borels of
Zc(S) arise this way.

Proof.
(i): Let g € 2Z2¢(S) and B a Borel containing g. Define

X ={zB|gecazBz '} CcG/B
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which is nonempty by Theorem [I48] Consider the diagram
G/BEGS @

in which 7 is the natural surjection and « :  — x~1gz. We have X = n(a~(B)). Since 7~ (B) is
a union of fibres of 7 and is closed, and 7 is open, we have that X is closed. X is thus complete,
being a closed subset of the complete G/B.

Sactson X C G/B,asforall se S

1

tBx 139 = szBxlslayg (since g = s~ 1gs).

By the Borel Fixed Point Theorem ((120)), S as some fixed point B € X, so
SztB=zB = SxCzB = S CazBx '

Hence, since g also lies in zBx~!, we have
9 € Z,Byp1 (S) - ZG(S)O
where Z,5,-1(5) is connected by Proposition Thus, Z¢(S) C Z6(S)°: equality.
(ii): Let B be a Borel containing S and set Z = Z¢(S). ZNB = Zp(S) is connected by Proposition
and is also solvable. Therefore, ZN B is a Borel of Z if and only if it is parabolic, i.e., if Z/ZNB

is complete. By the bijective map
Z/(ZNB)— ZB/B

of homogeneous Z-spaces, we see that suffices to show that
ZB/B C G/Bis closed <= Y :=ZB C G is closed (by the definition of the quotient topology)

Z being irreducible implies that

mult

Y =im (Z x B — @) is irreducible = Y irreducible.
Let 7 : B — B/B, be the natural surjection and define
$:Y xS — B/By, (y,s)— n(y ‘sy).

(To make sure that this definition makes sense, i.e., that y~!sy € B, first check it when y € Y =
ZB.) For fixed y,

¢y S = B/Bu, s~ (y,s)=m(y 'sy)
is a homomorphism. Therefore, by rigidity (Theorem , forally €Y, ¢ = ¢: forall s e S

1

Ty~ sy) = m(s).

If T © S is a maximal torus, by the conjugacy of maximal tori in B, we have
wy tSyuTl =T
for some u € B,. But then, by the above,

-1

m(uytuyu™) = w(y " lsy) = w(s) forallse S
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while «|r : T'— B/B, is injective (an isomorphism even) (Jordan decomposition). Therefore,

l=s = yulecz25(8) =72 = ycZB=Y

uyilsyu
and thus Y is closed: Z N B C Z is Borel. Moreover, any other Borel of Z is
2(ZNB)z7 =2Zn(z2Bz7Y),

2zBz~! containing S. O

Corollary 151.
(i) The Cartan subgroups are the Zg(T), for maximal tori T .

(ii) If a Borel B contains a mazximal torus T', then it contains Zq(T).

Proof.
(i) follows immediately from the above. For (ii), we have that Z5(T') is a Borel of Z4(T"). But
Z¢(T) is nilpotent (Proposition [145) and so Z(T) N B = Z4(T). O

5.5 Conjugacy of parabolic and Borel subgroups.

Theorem 152.
(i) If B C G is Borel, then Ng(B) = B.
(ii) If P C G is parabolic, then Ng(P) = P and P is connected.

Proof.

(i): Induct on the dimension of G. If G is solvable, then B = G and we are done; suppose otherwise.
Let H = Ng(B) and « € H. We want to show that € B. Pick a maximal torus 7" C B. Then
xT2~! C B is another maximal torus, and so T, T2~ are B-conjugate. Without loss of generality
— changing = modulo B if necessary — suppose that 7' = 2Tz ~!. Consider

¢:T =T, t [z,t] = (xte 1)L
Check that ¢ is a homomorphism. (Use that T is commutative.)

Case 1. im¢ # T*
Let S = (ker ¢)?, which is a torus and is nontrivial since im¢ # T. z lies in Z = Zg(S) and
normalises Z N B (which is a Borel of Z by Proposition . If Z+#G,thenz e ZNB C B by
induction. Otherwise, if Z = G, then S C Z¢ and B/S C G/S is a Borel by Corollary hence,

[x] normalises B/S = [z] € B/S by induction — =z € B.

Case 2. im¢ =T
If im¢ =T, then

T C [,T) C [H, H].

62



By Corollary there is a G-representation V' and a line kv C V such that H = Stabg(kv). Say
hv = x(h)v for some character x : H — Gy,,. x(T) = {e} since T' C [H, H] and x(By) = {e} by
Jordan decomposition. Thus, as B = T'B,, (Theorem [136)), B fixes v. By the universal property of

quotients, we have a morphism
G/B—V, gBw~ gv.

However, the image of the morphism must be a point, as V' is affine, while G/B is complete and
connected; hence, G fixes v and H = G, i.e., B < G. Therefore, G/B is affine, complete, and
connected, and we must have G = B. (In particular, z € B.)

(ii): By Theorem P D B for some Borel B of G. Suppose n € Ng(P). Then nBn~!, B are
both contained in — and are Borels of — P?. Therefore, there must be g € P° such that

an_l = ng_l — g_ln S NG(B) =B by (1) — n c gB C PO.

Hence,
PC Ng(P)c P°CP.

O]

Proposition 153. Fiz a Borel B. Any parabolic subgroup is conjugate to a unique parabolic
containing B.

Remark 154. For a fixed B, the parabolics containing B are called standard parabolic sub-
groups.

Ezxample. If G = GL,, and B = B,,, then the standard parabolic subgroups are the subgroups, for
integers n; > 1 with n = ZZ” n;, consisting of matrices

Ap, % * *
An, * *
*

An,,

where A, € GL,,.

Proof of proposition.
Let P be a parabolic. P contains some Borel gBg~!, so B C g~ 'Pg. This takes care of existence.
For uniqueness, let P,Q D B be two conjugate parabolics; say, P = gQg .

1

gBg~!,BC Q Borels = ¢ '!Bg=qBq ! for some q € Q
— gq € Ng(B)=1B
— g€Bg'cQ
O

Proposition 155. If T is a mazimal torus and B is a Borel containing T', then we have a bijection

Ng(T)/Z(T) = {Borels containing T}

[n] = nBn~!
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Exercise. If G = GL,,, B = By, and T = D,,, we have that Z5(T) = T, Ng(T') = permutation
matrices, and that Ng(T)/Z(T) = S,. When n = 2, the two Borels containing T are (; :)

and <* O).
* %

Proof of proposition.
If B’ D T is a Borel, then

B' = gBg~! for some g = ¢ 'Tg,T C B are maximal tori
— ¢ 'Tg=0bTb"! for some b e B
= n:=gbe Ng(T)

— B ' =gBg ' =nBn.

Remark 156. Given a Borel B C G, we have a bijection

G/B = {Borels of G}

9B+~ gBg™!

The projective variety G/ B is called the flag variety of G (independent of B up to isomorphism).
Example. When G = GL,, B = B,

G/B = {flags0C Vi C Vo C---CV,, =k"}

% %
0 *

gB%g(og 01| ¢---¢< :k">
0 0 *
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6. Reductive groups.

6.1 Semisimple and reductive groups.

Definitions 157. The radical RG of G is the unique maximal connected, closed, solvable, normal

subgroup of G. Concretely,
0
RG:< N B)

B Borel

(Recall that any two Borels are conjugate.) The unipotent radical of G is the unique mazimal
connected, closed, unipotent, normal subgroup of G:

0
R.G = (RG), = ( N Bu>
B Borel

G is semisimple if RG =1 and is reductive if R,G = 1.

Remarks 158.

o (G semisimple —> G reductive

e G/RG is semisimple and G/R,G is reductive. (Ezercise!)

e If G is connected and solvable, then G = RG and G/R,G = G/G,, is a torus. Hence a connected,
solvable G is reductive <= G s a torus.

Ezample.
e GL,, is reductive. Indeed,

* ok

R(CL,) C (; :) n (* 0) — D, — Ru(GL,) =1

Similarly, SL,, is reductive.
e GL, is not semisimple, as {diag(z,z,...,x) |z € k*} 9 GL,. SL, is semisimple by Proposition
159 (iii) below.

Proposition 159. G is connected, reductive.
(i) RG = Z2, a central torus.
(i) RGNDG is finite.

(iii) DG is semisimple.

Remark 160. In fact, RG - DG = G, so G = DG when G is semisimple. Hence, by (ii) above,

mult.

RG x DG —= G is surjective with finite kernel.
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Proof.
(i). 1 = R,G = (RG), = RG is a torus, by Proposition [133] Hence, by rigidity (Corollary
Ng(RG)? = Z5(RG)°. Moreover, since RG < G

G = Ng(RG)’ = 2¢(RG)" — G = 25(RG) — RG C 2

The reverse inclusion is clear.
(ii). S := RG is a torus. Embed G < GL(V). V decomposes as V = B, c x(s) Vx-

S is central = G stabilises each V,, — G — H GL(Vy)
X

It follows that DG — ], SL(Vy) and RG acts by scalars on each V). Since the scalars in SLj, are
given by the n-th roots of unity, the result follows.
(iii).

DG 4G = R(DG) C RG

= R(DG) C RG NDG, which is finite
— R(DG) =1

Definition 161. For a maximal torus T C G,
0
I(T) := < N B>
B Borel
BDOT

which is a connected, closed, solvable subgroup with mazimal torus T: I(T) = I(T), x T (see

Proof.
“C”: For all Borels BO T

0
I(T)CB = I(T)yCB, = I(T)yC ()| By = I(T)uC < N Bu>
BDOT
as I(T), is connected.

0
“D7: <ﬂ BT Bu> C I(T') and consists of unipotent elements. O

Remark 162.

0
I(T) > (ﬂB) = RG = I(T), D R,G
B
In fact, the converse is true and equality holds.
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Theorem 163 (Chevalley). I(T), = R,G. Hence,
G reductive <= I(T), =1 <= I(T)=T
Corollary 164. Let G be connected, reductive.

(i) S C G subtorus = Z¢(9S) connected, reductive.
(ii) T maximal torus = Zq(T)=T.
(iii) Zq is the intersection of all mazimal tori. (In particular, Zg C T for all mazimal tori T'.)

Proof of corollary.
(i): Z¢(9) is connected by Proposition Let T' D S be a maximal torus, so that T' C Zg(S5) =:
Z. Again by Proposition [150]

{ Borels of Z containing T' } = {Z N B| B D T Borel of G}

— Iy(T) = < N (ZﬂB))O c ()&
BOT
— I,(T)=T

—> 7 is reductive, by the theorem

(ii): Zq(T) is reductive by (i) and solvable (as it is a Cartan subgroup, which is nilpotent by
Proposition [145)). Hence, Z5(T') is a torus: T' = Z¢(T'), by maximality, since T' C Z¢(T).

(iii): 7 maximal = T = Zg(T') D Z¢. For the converse, let H = (.« I, which is a closed,
normal subgroup of G (normal because all maximal tori are conjugate). Since H is commutative
and H = Hg, H is diagonalisable, and by Corollary

G=NgH)" =2¢(H)" = G=2Z26(H) = HC Zg

We will now build up several results in order to prove Theorem following D. Luna’s proof from
1999 [1

Proposition 165. Suppose V' is a Gy,-representation. Gy, acts on PV. Ifv € V — {0}, write [v]
for its image in PV. Then either, G, - [v] = [v], i.e., v is a Gy,-eigenvector, or Gy, - [v] contains
two distinct G, -fixed points.

Precise version of the proposition: Write V = @ V., where
n€Z=X*(Gm)

Vi={veV|t-v=t"v Yte G, , ie, “vhas weight n”}
Forv eV, writev =3 v, with v, € V. Then
[or]; [vs] € Gy, - [0]

where r = min{n | v, # 0} and s = max{n | v, # 0}. Clearly, [v.],[vs] are Gy,-fixed. In fact, if
G, - [v] # [v], then
G - [v] = (G - [0]) U {[or]} U {[os]}

!See for example P. Polo’s M2 course notes (§21 in Séance 5/12/06) at www.math. jussieu.fr/~polo/M2
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Proof. Pick a basis eg, e1,...,e, of V such that e¢; € V,,,,. Without loss of generality mg < m; <
<o < my,. Write v = ). \ej, Aj € k. The orbit map f : G, — PV is given by mapping ¢ to

t-[o]=(@"Xg ct™ At N) = (0 0 Ay e TN e T 202 0)
where u = min{i | A; # 0} and v = max{i | A; # 0}, so that m, = r and m, = s.
Define f : P! — PV by
(To:Th )= (0 0T "N oo s T T ™ N e i T " Ay 2022 0)

Check that this a morphism and that f lg,, = f. (In fact, f is the unique extension of f, since PV
is separated and Gy, is dense.) We have

and

f(01):(0)\u00):[v7"] andf(l())::[fus]
(In fact, we actually have f(P!) = G,, - [v], using the fact that P! is complete). O

Informally, above, we have
[or] = lim 2 - [v] € (PV)

[vs] = lim ¢ - [v] € (PV)G’”

t—o0

Lemma 166. Let M be a free abelian group, and M, ..., M, C M subgroups such that each M /M,
is torsion-free. Then
M#£MU---UM,

Proof. Since M /M,; is torsion-free, it is free abelian, and
0— M, - M — M/M; — 0

splits, giving that M; is a (proper) direct summand of M. Thus, M; ® C C M ® C; hence

M®C¢0Mi®0
=1

as the former is irreducible and the latter are proper closed subsets. O

Lemma 167. Let T be a torus and V and algebraic representation of T', so that T acts on PV.
Then, there is a cocharacter X : Gy, — T such that (PV)T = (PV)MGm),

Proof. Let x1,...,xr € X*(T) be distinct such that V = @;_, V;, and V,, # 0 for all i. Then
W] € (PV)T <= wveV,, forsomei
So it is enough to show that there is a cocharacter A such that

ViZj xiod#XxjoA &= (xi—xj)oA#0
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Recall from Proposition [33] we have that
X*T) x Xu(T) = X (Gp) 2Z, (x,\)— xoA
is a perfect pairing.
Let M = X, (T), which is free abelian, and for all ¢ # j
Mij = {A € Xu(T) | (i = x5 A) = 0} # M (as xi # x;)

For n > 0, if nA € M;j, then A € M;;, and so M/M;; is torsion-free. By the above lemma,
M # U, ,; Mij, so there is a A € M such that

Vizgj 07 (Xi — X5 A) = (i —xj) oA

O

Theorem 168 (Konstant-Rosenlicht). Suppose that G is unipotent and X is an affine G-space.
Then all orbits are closed.

Proof. Let Y C X be an orbit.Without loss of generality, we replace X by Y (which is affine). Since
Y is locally closed and dense, it is open. Let Z = X — Y, which is closed. G acts (locally-algebraic)
on k[X], preserving Ix(Z) C k[X]. Ix(Z) # 0, as Z # X. By Theorem [40] since G is unipotent, it
has a nonzero fixed point, say, f in Ix(Z). f is G-invariant and hence is constant on Y. But then

Y is dense = fis constant (#0) = k[X]|=1Ix(Z) = Z=90 = Y = X is closed

O

Now, we want to prove Theorem [163] Fix a Borel B C G and set X = G/B, a homogeneous
G-space. Note that

XT ={yB|Tgc gB <= T C gBg '} + {Borel subgroups containing 7'}

Furthermore, by Proposition XT in bijection with Ng(T)/Z¢(T) and hence is finite. Thus
Ng(T)/Z6(T) acts simply transitively on X7. For p € X7, define

X(p)={r € X |p€ Tz}

Proposition 169 (Luna). For p € XT, X(p) is open (in X ), affine, and I(T)-stable.

Proof. By Corollarythere exists a G-representation V and a line L C V such that B = Stabg (L)
and Lie B = Stabg(L). This gives a map of G-spaces

i:X=G/B—PV, g gL.

i and di are injective (Corollary [L05)); hence, i is a closed immersion (Corollary [105). Without loss
of generality, X C PV is a closed G-stable subvariety — and, replacing V' by the G-stable (G - L),
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we may also suppose that X is not contained in any PV’ C PV for any subspace V' C V.

By Lemma there is a cocharacter \ : G, — T such that X7 = XGm_ considering X and PV
as Gy,-spaces via . For p € X7, write p = [vp] for some v, € Vi), m(p) € Z (weight). Pick
po € X7 such that mg := m(0) is minimal. Set eg = vp, and extend eg to a basis eg, e, ..., ey, of
V such that \(t)e; = t"e;. Without loss of generality, m; < --- < my,. Let €f,..., e} € V* denote
the dual basis.

Claim 1. mg < mq:
Suppose that mg > my. There is [v] € X such that ej(v) # 0 (otherwise X C P(kere}) C PV).
Then, by Proposition [I65]

[vm, ] = Lim A(t)[v] € (PV)6mnX =XT

(with the inclusion following from the fact that X is complete). This contradicts the minimality of
mg, so we must have mg < my.

Suppose that mg = mq. Define
Z ={z € k| there is some point of the form (1:z:---)in X}
If(1:z:---) € X, then by Proposition as mo = myq,

(1:z:) =lmAt)(1:z:---)e XT.

t—0

Since X7 is finite, so too is Z. Writing Z = {z1,..., 2.}, we have

X C P(kereg) U | Pker(e] — ziep))-
=1

Since X is irreducible, it is contained in one of these subspaces, which is a contradiction.
Therefore, mg < mj.

Claim 2. X(\,po) := {z € X|ej(z) # 0} is open in X, affine, and T-stable. Also, X (X, po) = X (po),
and it is I(T)-stable:

X (A, po) = X N (e # 0) is open in X and affine (as (ef; # 0) is open and affine in PV'). It is
T-stable, as ef; is an eigenvector for 1" (as eg is an eigenvector for T').

If x € X(\,po), as my < m; for all i # 0 (Claim 1),

lim A(t)z = [eo] = po-

Hence, pg € Gy, - C T, so € X (pg). Let z € X(pg) and suppose that efj(x) = 0. Then
po€Tx C X —X(X\po)

with X — X (A, pg) T-stable and closed. This is a contradiction and so we must have x € X (A, pg).
Hence, X (A, po) = X(po).
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To show that the set is I(7T')-stable, we need to show that from the of G on P(V*) (which arises
from the action on V*), we have

eg ={LeV*|{le) =0}

First, let us address a third claim.

Claim 3. (i) Each G-orbit in P(V*) intersects the open subset P(V*) — P(eg) and (ii) G - [e}] is
closed in P(V*): (i): Pick v € V* — {0}. If G/ C eg, then for all g € G

0= (g¢,c0) = (¢, g™ eo).
But Geg spans V (otherwise, X = Gey C P(V’) C PV, which is a contradiction) and so
V)y=0 = (=0

which is another contradiction. Hence, G[¢] Z P(eg).

(ii): e} has weight —m; under the Gy,-action and
—Mpy <o < —mp < —Mmy.

Hence by Proposition m if z € P(V*) — P(eg) then [ef] € Gy, - 2. So, for all z € P(V*), by (i),
[eg] € Gz = Glej] C Gu.

If Gz is a closed orbit (which exists), we deduce that it is equal to G[ef].

0

Let us return to Claim 2, that X (\,pg) is I(T)-stable. Recall that I(T) = ( ﬂ B’) . Define
BIOT
P = Stabg([ej]). Since G/P — Glej] is bijective map of G-spaces and the latter space is complete
(Claim 3), it follows that P is parabolic. Hence, there is a parabolic B’ of G contained in P.
Moreover, since e is a T-eigenvector, T C P. There is a maximal torus of B’ conjugate to T in P,
so without loss of generality suppose that ' C B’ C P. It follows that I(T) (C B’) stabilises [ef]
and hence also stabilises the set

X (A po) = {z € X |eg(x) # 0},

completing Claim 2.

Now, Ng(T) acts transitively on X7 by above. If p € X7, then p = npg for some n € Ng(T);
hence X (p) = nX(po) is open, affine, and stable under nI(T)n~! = I(T) (equality following from
the fact that n permutes the Borels containing 7T'). O

Corollary 170. dim X < 1+ dim(X — X (po))

Proof. Either X = X (po) or otherwise. If equality holds, then X is complete, affine, and connected,
and is thus a point. In this case, dim X = 0 and the inequality is true. Suppose that X # X (pg)(=
X (A, po)). Pick y € X — X (X, po). Then ej(y) =0, and e (y) # 0 for some i > 0. Let

U={zreX|e(z)#0} CX,
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which is nonempty and open. Define the morphism

f:U— Al x|—>60(x)

f~1(0) € X — X(\, po). By Corollary
dim(X — X(\,po)) = dimU —dim f(U) > dimU — 1 =dim X — 1

Proposition 171 (Luna). I(T), acts trivially on X = G/B.

Proof. J := I(T),. If x € X, then Tz contains a T-fixed point by the Borel Fixed Point Theorem:;
hence

x= x(.

zeXT

Fix x € X. J being connected, solvable implies that Jx contains a .J-fixed point y. By the above,
we see that y € X (p) for some p € X7, If

Jen (X = X(p) # 2,
with X — X (p) closed and J-stable by Proposition then
yeJrc X — X(p)

which is a contradiction. Hence, Jx C X (p), X(p) being affine by Proposition and J being
unipotent implies that Jz C X (p) is closed by Kostant-Rosenlicht (168]). But
yeX(p)NJz=Jr (Jrisclosed) = Jz=Jy=y, asyisJ-fixed
= z =y is J-fixed
— J acts trivially on X.

Proof of Theorem [163,
Let J = I(T), again. We want to show that J = R,G and we already know that J D R,G. For

the reverse inclusion, we have that for all g € G,

J(gB) = gB (Theorem [171)) — Jg C gB

— JCgBg!

— J C(gBg ')y, asJ is unipotent

0
= JC (ﬂ(ng_l)u> = R,G, as J is connected
g
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6.2 Overview of the rest.

Plan for the rest of the course: Given connected, reductive G (and a maximal torus T') we
want to show the following:

e g=LieT ® @, cp Ja, under the adjoint action of T', where & C X*(T') is finite.

e There is a natural bijection ® = ®", where ®" C X, (T is such that (X*(T), ®, X,.(T), ®") is a
root datum (to be defined shortly).

e For all @ € @, there is a unique closed subgroup U, C G, normalised by T, such that Lie U, = gq.
e G=(TUU,co Ua)-

From now on G denotes a connected, reductive algebraic group. Fix a maximal torus 7', so that
= P a
AeX*(T)
for the adjoint T-action. We write X*(7T") additively, so

go={X €g|Ad(t)X = X for all t € T} = 35(T) P Lie 26(T) E Lie T = t

Define ® = ®(G,T) := {a € X*(T) — {0} | go # 0}, which is finite. The o € ® are the roots of G
(with respect to T'). Hence,
1=to D0

Definition 172. The Weyl group of (G, T) is
164
W = W(G,T) := Na(T)/Z6(T) & N (T)/T
which is finite by Corollary [55. W acts faithfully on T by conjugation , and hence acts on X*(T')
and X.(T):
weW o (w=H)*: X*(T) — X*(T)
wy : Xy (T) — Xu(T)

Explicitly,

wp = p(b~ ' ()W), for pe X*(T)

wh = wA()w™t,  for A € X, (T)

where w € Ng(T) lifts w.

Remarks 173.

e The natural perfect pairing X*(T) x X,(T) — Z is W-invariant: {(wp, wX) = (u, \).

o W preserves & C X*(T') because Ng(T') permutes the eigenspaces go. (Check that Ad(w)gs =
Guwa-)

Example. G = GL,, T = D,,.

g = M, (k) and T acts by conjugation.



where in the summands on the right % appears in the (7, j)-th entry. On the (i,j)-th summand,
diag(z1,...,x,) € T acts as multiplication by Jizl‘;l Letting ¢; € X*(T') denote diag(x1,...,z,) —
x;, we get that ® = {e; —¢; | i # j}. Also, W = Ng(T)/T = S, acts by permuting the ;.

Lemma 174. If ¢ : H — H' is a surjective morphism of algebraic groups and T C H is a mazimal
torus, then ¢(T) C H' is a mazimal torus.

Proof. Pick a Borel B D T, so that B = B, x T and ¢(B) = ¢(By)o(T). ¢(B) is a Borel of
H' by Corollary ¢(T) is a torus, as it is connected, commutative, and consists of semisimple
elements. ¢(B,) C ¢(B), is unipotent (Jordan decomposition). Finally,

o(T) — ¢(B)/p(B)y bijective (Jordan decomposition) = dim ¢(7T") = dim ¢(B)/ dim(B),
= ¢(T') C ¢(B) maximal torus
= ¢(T) C H' maximal torus

O
Lemma 175. If S C T be a subtorus, then
Za(8) 2T <= S C (kera)? for some o € ®
Proof. We always have Z5(S) D T. Note that
Lic Z6(5) ™ 34(S) = {X € g| Ad(s)(X) = X forall s € S} =t® €D ga
acd
Oc‘s:l
“27 <= LieZg(S) 2 t, by dimension considerations
= to P g2t
acd
als=1
<= S C kera, for some o € ¢
O

For a € ®, define T, := (ker a)?, which is a torus of dimension dim 7T — 1, as ima = G,,. Define
Go = Z5(T,), which is connected, reductive by Corollary . Note that

T. c 2%, "2 R(G.)

Let 7 denote the natural surjection Go — Go/R(Gs). By Lemma[174] (T is a maximal torus of
Go/R(Go).
To C R(Go) => T/Ty —» n(T) = dimn(T) <1
If dim7(7") = 0, then
TCR(Gy) CZ2g, = GoCZ2¢(T)=T

which is a contradiction by Lemma [I75] Hence, dim7(T) = 1.
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Definitions 176.

the rank of G =rk G :=dimT, where T is a maximal torus
the semisimple rank of G = ss-tk G := rk(G/RG)

Hence, ss-tk G, = 1. Note that since all maximal tori are conjugate, rank is well-defined, and that
ss-tk G <tk G by Lemma [I74

Example. G = GL,, @ = ¢; — ¢;1.1. We have

Ta = {diag(xl, s 7$n) ‘ Tq = :BiJrl}

and
Ga = Di—l X GL2 X Dn—i—l-

GQ/RGQ = PGL2 and DGa = SLQ

6.3 Reductive groups of rank 1.

Proposition 177. Suppose that G is not solvable and vk G = 1. Pick a mazimal torus T and a
Borel B containing T'. Let U = B,,.

(i) #W =2, dimG/B=1, and G=BUUnB, wheren € Ng(T)—T.
(ii) dimG =3 and G = DG is semisimple.

)
(iii) ® ={a,—a} for some a #0, and dim g, = 1.

(iv) ¥ : U x B—=UnB, (u,b) — unb, is an isomorphism of varieties.
(v) G = SLsy or PGLy

Remark 178. In either case, G/B = PL. For example,
sta/ (* ) 3P, (¢ ) s
2 * " \e d '

W — Aut(X*(T)) = Aut(Z) = {£1} = #W <2
If W =1, then B is the only Borel containing 7', and so by Theorem [163

Proof of proposition.

(i):

B=I(T)=T = B nilpotent I8 & solvable

which contradicts our hypothesis; hence, #W = 2.

Set X := G/B. dimX > 0 since B # (. By Proposition we have #XT = #W = 2. By

Corollary [T70]
dim X < 1+ dim(X — X (po))

Since X — X (po) is T-stable and closed (Proposition [169)), it can contain at most one T-fixed point
(as #XT =2,py € X(pg)). By Proposition m T acts trivially and so X — X (pp) is finite:

dim X < 1.
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Now,
#W =2 = B,nBn ! are the two Borels containing T
— X7 = {z,nz}, where z := B € G/B

We want to show that X = {x}UUnx, which will imply that G = BUUnB. Note that x is U-fixed,
so {z} and Unx are disjoint (as = # nx). Also, Unz is T-stable, as

TUnx =UTnx =UnTz = Unx,
and Unz # {nx}, as otherwise
{nz} =Unz = Bne = {2z} =n"'Bnz = n 'Bn C Stabg(x) = B = contradiction

Hence, Unxz = X, by dimension considerations, so Unz C X is open, X — Unxz is finite (as
dim X = 1), and X — Unx is T-stable. T' is connected and so

U—-UnzC X' ={z,nz} = X —Unx={x}
(ii):
1 =dimUnx
=dimU — dim(U NnUn~'), as Unz is a U-orbit
=dimU, as U NnUn~! = Staby (nz) is finite by Theorem [163
Hence,

dimB =dimT +dimU =1+1=2
dim G = dim B 4+ dim(G/B) =2+1=3

DG is semisimple by Proposition and is not solvable (as G is not). tk DG < tk G = 1. If
rk DG = 0, then a Borel of DG is unipotent, which by Proposition [I30]implies that DG is solvable:
contradiction. (Or, 77 = {1} is a maximal torus and T = Zpg(T1) = DG: contradiction.) Hence,
rk DG =1, so dim DG = 3 by the above: DG = G.

(ili): g = t® P, cp Ja- Since dimg = 3 and dimt = 1, we have #® = 2. Moreover, ® is W-stable
and [n] € W acts by —1 on X*(T'), and so ® = {«a, a} for some a: dimgy, = 1. From B=U xT
we have Lie B = t® LieU and LieU = g, or g_q,, as LieU is a T-stable subspace of g of dimension
1. Without loss of generality, LieU — g,. Likewise,

nBn ' =nUn ' xT = Lie (an_l) =t Lie (nUn_l)

Since Lie (nUn~!) = Ad(n)(LieU) and [n] € W acts as —1 on X*(T), Lie (nUn"!) = g_.

(iv). This is a surjective map of homogeneous U x B spaces.
unb=n = we€UNnBn ' =UNnUn"', which is finite by Theorem
= UnnUn'= 1,
(as T, being connected, acts trivially by conjugation = UNnUn"'c Zg(T)=T)

= 1) is injective, hence bijective
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(u,b) + unbn=!
d¢ bijective <= d( UxB—UnBn™! > injective
< d(U x (nBn™") lt., UnBn™') injective
<= 0=LieUNLie(nBn ) =g, N (t®g_q)

(v). See Springer 7.2.4. O

6.4 Reductive groups of semisimple rank 1.
Lemma 179. If ¢ : H — K is a morphism of algebraic groups, then
d(Ad(h) - X) = Ad(g(h)) - dp X

Proof. Exercise. (Easy!) O

Proposition 180. Suppose that ss-tk G = 1. Set G = G/RG and T = image of T in G (T being
a mazimal torus). Note that X*(T) C X*(T) as T - T.

(i) There is a € X*(T') such that g =t® go B g—o, and dim gy, = 1.

(ii) DG = SLy or PGLy
(iii) #W =2, so there are precisely two Borels containing T, and, if B is one, then

LieB=t®gi, and LieB, = gi,

(iv) If T denotes the unique mazimal torus of DG contained in T, then oV € X.(Th) C X.(T)
such that (o, ) = 2. Moreover, letting W = {1, so}, we have
Sapt = p— (u,a"Ya for all p € X*(7T)
Sad = A — (a, \)a¥ for all A € X.(T)

Proof.

(i): G is semisimple of rank 1.
We have
0 — Lie RG — LieG — LieG — 0

From Lemma restricting actions, we have that the morphisms 7 — T and Lie G — Lie G are
compatible with the action of T'on Lie G and T on Lie G. T acts trivially on Lie RG (as RG C T)).
Thus,

=G, T)={a,—a} C X*(T)C X*(T)

and dimgy, = 1.
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(ii): DG is semisimple by Proposition If Ty C DG is a maximal torus with image T4 in G,
then
dim 7Ty = dim T +dim(7Ty NRG) <1

the inequality being due to the fact that 73 N RG C DG N RG is finite by Proposition If
dim T} = 0, then the Borel of DG is unipotent, implying that DG is solvable, which gives that G
is solvable, a contradiction. Hence, rk DG = 1. By Proposition DG = SLy or PGLs.

(iii): First a lemma.

Lemma 181. Suppose that m : G — G’ with ker m connected and solvable. Then w(T') is a maximal

torus of G' and we have a bijection

™
{Borels of G containing T} = { Borels of G’ containing (T }

71'_1
Moreover, G' is reductive.

Proof of lemma. In the proposed bijection, = is well-defined by Corollary For the inverse, note
that G/7~1(B') — G'/B’ is bijective, which gives that 7—1(B’) is parabolic as well as connected
and solvable (ker 7 and B’ are connected and solvable).

7 1(RG") is a connected, solvable, normal subgroup of the torus RG. RG' = n(7~1(RG")) is then
a torus and so G’ is reductive. O

By the Lemma, #W = #W (G, T) 09 Pick a Borel B O T, so that B D T is a Borel.
1-RG—B—B—1

being exact implies that
0 — Lie RG — Lie B — Lie B — 0

is also exact. T again acts trivially on Lie RG.
LieB =LieT ® g+o = LieB =t® giq.
Also,
LieB=t® LieB, — LieB, = g+a

(iv) Ty exists, as DG <4 G (exercise). It is unique, as Ty = (T N DG)°. (Another exercise:
T1 = TNDG. Use that DG is reductive.) Let y be a generator of X, (1)) = Z. We have the
containment

LieDG C g =t go P g—a

with T} acting in the former and T" on the latter. DG being reductive implies — by Proposition

(DG, Ty) = {+a|r, }.
DG = SLQ:

T1 = {<.Z' gj_1> ’CCE kx} C SL2
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By the adjoint action (conjugation), 77 acts on

| 1 0 0 1 00
Ll€SL2:M2(k)traceO :k<0 _1>®k<0 0>@k<1 0>

Its roots are
Moreover, we can take

(or its inverse), which gives

DG = PGLQ = GLQ/Gm
T is equal to the image of Dy in PGLs. By the adjoint action, 7T} acts on

LiePGngMg(k)/k:kK(l] _01>] @ng é)] @kK? 8)]
o K“ $2>] ooy, —a [(f"’l mﬂ o (w123 Y) " = a7l

Moreover, we can take

Its roots are

(or its inverse), which gives

<Oé, y> ==+l
Therefore, in any case,
2y
v
Q= e X.(Ty
(o) <

N

and it is the unique cocharacter such that (o, ") =

It \ € X, (T),
SaA—=A:Gp = T, x> [n,Az)] = n\(z)n \z) 7!,

where n € Ng(T) is such that [n] = s4. SoA — A has image in (TN DG)° = T3; hence
Sl — A € X, (T}) = Zy.
Say saA — A = 0(\)y. We have

O(N)(a,y) = (@, Sa A — A) = (a, SaA) — (a, A)
= <3a(a)’ /\> - <04, /\>'
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At this point we see that so(a) = —a. (Otherwise, sq(a) = o, which implies § = 0, i.e. that s,

acts trivially on X, (T'), which is a contradiction.) So we can continue:

=(—a,A) — (a, \)
= —2(a, \)
Therefore, ()
—2{a, A
W=y
and
2(a, A)

Sad=A+0N)y =\ —
If p € X*(T), then for all A € X, (T)

<301M7 )‘> = <M7 504)‘> = <,LL, )‘> - <av )‘> <:u’ av> = </‘ - <:u’ av>a’ )‘>

and so
Saft = p— (u,a")a.

Lemma 182.
(i) Let S C T be a subtorus such that dim S = dimT — 1. Then
ker(res : X*(T) — X*(5)) = Zu
for some p € X*(T).
(ii) If v € X*(T), m € Z — {0}, then (kerv)? = (kermv)°.
(i) If v1,va € X*(T') — {0}, then
(ker17)? = (ker1p)? <= mu; = nwy
for some m,n € Z — {0}.
Proof.
(i): res is surjective (exercise, cf. the proof of Proposition and
XHT)=Z", X*(S)=z"

(ii):
“‘v(t)=1 = v(it)"=1.
“37: t € (kermv)? = v(t)" =1, so v((kermv)?) is connected and finite, hence trivial.

(iii):

“<": Clear from (ii).

“=7: Define S = (ker1y)? = (kervy)? C T, as in (i). Clearly, res(v1) = res(vn) = 0, so v; € Zy.

The result follows.
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6.5 Root data.

Definitions 183. A root datum is a quadruple (X, ®, XV, ®V), where
(i) X, X"V are free abelian groups of finite rank with a perfect bilinear pairing (-,-) : X x XV — Z
(ii) ® C X and ® C XV are finite subsets with a bijection ® — ®V, a — aV

(the pairing and the bijection also being part of the root datum) satisfying the following axioms:
(1) {a,a¥) =2 for alla € ®
(2) 54(®) =@ and s,v (®Y) = DY for alla € ®

where the “reflections” are given by

Sa: X > X Sov i XV = XV
v x— (r,a)a: y=y—{a,y)a’
A root datum is reduced if QaN P = {+a} for all a € P.

Remark 184. Note that the azioms imply that so(a) = —a, so ® = —®, and s2 = 1 (so s,

is a group isomorphism). Similarly, sov(a¥) = —aV, so @V = —®V, and s2, = 1. Also 0 ¢ ®

and 0 & ®V, and (sa(i1), Sav(N)) = {(u, \). (It is less obvious from the axioms, but also true, that
(—a)¥ = —a" and hence that s_o = 4. For more on root data, see SGA3, Exposé XXI.)

Recall that g = t® P cq 9a, Ta = (kera)?, Go = Z¢(Th).
Theorem 185.
(i) For all a € ®, G, is connected, reductive of semisimple rank 1.

o LieGy=tD g P g—a
e dimg4, =1
e QunN® ={+a}

(ii) Let sq be the unique nontrivial element of W (Gq,T) C W(G,T'). Then there exists a unique
a¥ € X (T) such that im " C DG, and {a, ") = 2. Moreover,

Sapt = pt — (u, ¥V, for all p e X*(T),
Sad = A — {a, \)a", forall A € X, (T).

(iii) Let @V ={a" |a € ®}. Then (X*(T),®, X.(T),®") is a reduced root datum.
(iv) W(G,T) = (sa | @ € D).

Proof.
(i). We saw above that G, is connected, reductive of semisimple rank 1.

Lie Go = Lie Z6(Ta) B 3y(Ta) = te P o5

Bed
Blr,=1
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By Proposition [I80]
LieGy =t® ga D g—a

with dim g1, = 1. Hence, for all 5 € ®,

Blr, =1 <= pe{*a}
— (kera)’ C (ker3)°
< (kera)? = (ker 8)° (dimension considerations)

<— € Qa (Lemma|l82)

(ii): Follows from Proposition [180]
(ii):

a > «V is bijective ( <= injective):
If oV = Y, then

sasp(r) = (z — (2, 8")B) — ((z — (z,67)8),a")a
=z — (z,a")(a+B) + (z,a") (B, 8)a
=z — (z,a”)(a+p) +2(z,a )
=z +(z,a’)(a~p)

Therefore, if (a« — 8, a") = 0, then for some n
(8a88)" =1 = Va, z=_(s433)"(x) =2+ n(z,a")(a—p)
= Vz, 0=n(r,a")(a—-7)
= 0=a-p
= o = B
5P = ®:

The action of s, € W on X*(T') (and X.(T")) agrees with the action of s, (and s,v) in the definition
of a root datum by (ii). Also, as noted above, W = N¢(T')/T preserves ®.

Sov®Y = dV:
For w=[n| € W, (n € Ng(T)), B € ®

wp(+) = ﬁ(n_l()n) = ker(wf) = n(kerﬁ)n_1 = Typ = nTgn_l,Gwﬁ = nGﬁn_l

im (w(8Y)) =im (nBYn"') C nDGsn~" = DGy
and
(wB,w(B’)) = (8,8") =2
by (ii), we have that (w3)" = w(BY). (iii) follows.
(iv): Induct on dim G. Let w = [n] € W, n € Ng(T'). As in the proof of Theorem consider the

homomorphism
¢:T =T, tw—[t,n] =ntn 1t7L
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imo¢ #T:
S := (ker ¢)° # 1 is a torus and n € Z5(S). (Note that Z5(S) is connected, reductive by Corollary
Its roots are {a € @ | a|g = 1} and W(Z2¢(S),T) C W(G,T).) If Z5(S) # G, we are done by

induction.

If Z¢(S) = G, then S C Zg. Define G = G/S, which is reductive by Lemma and T =T/,
which is a maximal torus of G. By induction, the (iv) holds for G.

®(G,T)=®(G,T)C X*(T) C X*(T).
It is an easy check that we have
N&(T)/T = W(G,T) S W(G,T) = No(T)/T

restricting to o
W (Ga,T) = W(Ga, 5o Sa-

Therefore, (iv) follows for G.

imop="1T:
¢ being surjective is equivalent to

¢*: XH(T) = XX(T), pre (w 't =1)p

is injective. Hence, w — 1 : V — V is injective, thus bijective, where V = X*(T) ®z R. Fix a € ®.
Let z € V — {0} be such that a = (w — 1)z. Pick a W-invariant inner product (,) : V. xV — R
(averaging a general inner product over W). Then

(2,2) = (w2, 03) = (2 + 0,2+ ) = (2,2) + 2(z,0) + (0,0) = 2(z,0) = —(ara).
Also, sqx = 2 + ca (where ¢ = —(z,a") € Z) and, as s2 = 1,

(x,a) + c(a,a) = (sqz,a) = (z,5q4(a)) = —(z,0) = 2(x,a) = —c(o, @)
— c=1
= S =T+ a=wx

= (sqw)z = .

Therefore, redefining ¢ with s,w instead of w, we have that im¢ # T, and we are done by the
previous case. ]

Remarks 186.

e Let 'V be the subspace generated by ® in X @ R (for X in a root datum). Then ® is a root system
in V. (See §14.7 in Borel’s Linear Algebraic Groups; references are there.) If V.= X @ R (which,
in fact, is equivalent to G being semisimple), then (X, ®) uniquely determines (X, ®, XV, ®Y).

e The root datum of Theorem does not depend (up to isomorphism) on the choice of T, as any
two mazimal tort are conjugate.

Facts:
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1. Isomorphism Theorem: Two connected reductive groups are isomorphic <= their root data
are isomorphic.

2. Existence Theorem: Given a reduced root datum, there exists a reductive group that has the
root datum.

(See Springer §9, §10.)
Theorem 187.

(i) For all a« € ® there is a unique connected closed T-stable unipotent subgroup U, C G such
that LieUy = go. There exists an isomorphism uq : Gg 35U, (unique up to scalar) such that

tug ()t = ug(a(t)z) for all z € Gy, t € T.

(il) G =(T, Uy (o € D)) (i.e., G is the smallest subgroup containing T and all of the Uy)
(iii) Zg = Npeq ker

Proof.

(i): Let B, denote the Borel subgroup of G, containing T with Lie B, = t @ g, (Proposition
180 Theorem [185|) Then U, := (Ba), satisfies all assumptions by Proposition Also,
dimU, = dimg, = 1 and U, = G, by Theorem Let uq : G4 — U, denote any isomorphism;
any other differs by a scalar as Aut Gy = Gyp. So tug (7)™ = ua(x(t)x) for some x(t) € k*. Via

By o
Uq, identify Uq LI Uas with G X, G,. Since the derivative of the former is g Ad@)=alt), o,

we see that the derivative of the latter is k ﬂ k. However, by Theorem we must have
a(t) = x(t) — and thus a = .

It remain to show that U, is unique. If U/ is another connected, closed, T-stable, and unipotent
with LieU!, = g,, by the same argument as above we get an isomorphism u/, : G, — U/, such that
tul,(z)t~! = ul (a(t)x). Hence, U! C G, (as a(Ty) = 1).

T normalises U, = TU, is closed, connected, and solvable (exercise)

«

= TU,
= TU! C B,, asLieU., =g,
= Uy = (TU)u C (Ba)u = Ua

= U/, = U, (dimension)

is contained in a Borel containing T’

(ii): By Corollary (T, Uy (a € ®@)) is connected, closed. Its Lie algebra contains t and all of the
da, hence coincides with g. Thus

dim(T, Uy (o € )) = dimg = dimG = (T, Uy (2 € ®)) =G

(iii): Z¢ C T by Corollary By (i), t € T commutes with U, <= «a(t) = 1, which implies that
Za C (), ker a. The reverse inclusion follows by (ii). O
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Appendix. An example: the
symplectic group

Set G = Spy,, = {g € GLo, | ¢'Jg = J}, where J = (f}n ]g).
Fact. G is connected. (See, for example, Springer 2.2.9(1) or Borel 23.3@
Define

T = G N Dy, = {diag(x1,...,z) | diag(xi,...,xo,) - diag(zpi1, ... Ton, T1, ..., xy) = I}

= {diag(z1, .. .,xn,xfl, ]

el
Clearly Z5(T') = T, implying that 7" is a maximal torus and rk G = n. Write ¢;, 1 < i < n, for the

morphisms
T — G, diag(zy,...,z; ") — 24,

which form a basis of X*(T).

Lemma 188. Ifp: G — GL(V) is a faithful (or just injective) G-representation that is semisimple,
then G is reductive.

Proof.

U := R,G is a connected, unipotent, normal subgroup of G. Write V = @;_, V; with V; irreducible
(V is semisimple). VU # 0, as U is unipotent (Proposition, and V.U C V;, is G-stable, as U < G-
ViU = V;. Hence, U acts trivially on V, and is thus trivial, since p is injective. O

We will show that the natural faithful representation G < GLs, is irreducible and hence G is
reductive. Let V' = k?" denote the underlying vector space with standard basis (e;)?". We have
V= @1221 ke; and, for all t € T,

{ei(t)ei, i<n
tei::

€in(t)tes, i>n

Any G-subrepresentation of V is a direct sum of T-eigenspaces; hence, it is enough to show that

N¢g(T) acts transitively on the ke;, which is equivalent to it acting transitively on {+e€1,...,te,} C
X*(T).
2For another elementary proof, see my post here: http://mathoverflow.net/questions/98881/

connectedness-of-the-linear-algebraic-group-so-n.
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A calculation shows that the elements

g’i = diag(l’i—l) (—01 (1))7-[71—27 (—01 é)uln—i—l)a (1 < Z < n)

lie in G, where diag(Aj, As, ... ) denotes a matrix with square blocks Aj, Ag, ... along the diagonal
in the given order. As well

_ (diag(I,—1,0) Eon
ne —FEun diag([nfl,()) ’

lies in G, where E,,, € M, (k) has a 1 in the (n, n)-entry and 0’s elsewhere. Note that the g; € Ng(T)
for all i and g; : € — €41, for 1 <i < n, and g, : €, — —e€, (With g; - ¢; = ¢; for i # j). Hence,
N¢g(T') does act transitively on {£e;}, so V is irreducible and G is reductive.

Lie Algebra:
If ¢ : GLg,, — GLoy,, g — ¢'Jg, then dipy : Moy (k) — Moy, (k), X — X'J + JX (as in the proofs of

Propositions |79 and . Hence,
gC{X € My(X)| X' J+JX}=¢.
Checking that (& B) € ¢’ if and only if B = B,C" = C, and D = — A", we see that

n+1

dimg’:n2+2( 5

> =n(2n +1)

Claim: dim G > n(2n + 1)
Define

2n
2

¢:GLa, — AZ), g ((9"T9)ij)i<;-
We have ¢ 1((Jij)i<j) = G, (because g'Jg is antisymmetric). (This is still okay when p = 2.) So,

(Qn)2 = dim GLsy, &1 dim ¢(GLagy,) + minimal fibre dimension < (22n> +dim G

and )
dim G > (2n)? — < 2n> =n(2n+1).
Hence,
dimg<n(2n+1) <dimG =dimg = dimg=n(2n+1)
and so
dimG =n(2n+1), and g={X € My, (k)| X'J+JX =0}.
Roots:

Write Ej; for the (2n) x (2n) matrix with a 1 in the (4, j)-entry and 0’s elsewhere. By the above,

g=1to (@k(EOJ _,gﬂ)) ® (@k(g&jg’fﬁ)> P <@k(Ei,~3Ej,. 8))

7] 1<J i<
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(with E;; + Ej; in the latter factors replaced with Ej; if ¢ = j and p = 2). Correspondingly,
O={ei—¢liFAjtU{atei<jtU{-(a+¢)|i<i}

(A check: #® =n(n—1)+ (";rl) + (";rl) =2n? = dimg — dim t.)

Coroots:
Let €7, ..., €, denote the dual basis, so

€ (z) = diag(1,...,z,...,x %, ..., 1) = diag(li_1,z, 1,2, In_;).
We have

Geime; = GN (Dop + kEij + kEji + kEnyintj + kEnyjnti)
and so G’ei,ej is contained in
GN{I2p+(a—1)Es+bEjj+cEji+(d—1)Ejj+(a'—1) Epsinti+b Engi gt j+¢ Entjntit(d —1) Epy jntj }
where a, b, c,d,a’,V/,c,d" are such that ad —bc =1 =d'd — V. Tt follows that
(ei—€) =€ — €.

Similarly, (¢; +¢;)" = ¢ + €5 and (—¢; —¢;)" = —€f — €.

0
G is semisimple: RG = Z2, = (ﬂq) ker a> =1.

A Borel subgroup of G: We can explicitly compute a Borel subgroup, for example as explained for
the even orthogonal group in Homework 4 (2017). (For this it would be more convenient to choose
an antidiagonal form J when we define G!)
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