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INTRODUCTION AND MOTIVATION
1. p-ADIC GROUPS

1.1. The p-adic numbers. A rational number z € Q* may be uniquely written as x = 3 p" with a,
b and n nonzero integers such that p { ab. We define ord,(z) = n, |z|, =p~", 0], = 0. ||, defines an
absolute value on Q, satisfying the stronger ultrametric triangle equality |z + y|, < max(|z|p, |ylp)-
We define Q,, to be the completion Q with respect to this metric and we use the same notation |- |,
for the extension of | - |, to Qp; (Qp, |- |p) is a complete valued field. Put Z, = {x € Q, | |z|, < 1},
it is a local discrete valuation ring with maximal ideal pZ,. The collection (p"Z,), -, of compact
open subgroups forms a fundamental system of neighbourhoods of 0. B

1.2. p-adic reductive groups. There is a general theory p-adic reductive groups and their points
over some extension F'/Q,, but for simplicity we will stick to G = GL,,(Q,). We give G the subspace
topology from the inclusion G C M, (Q,) = (@;‘2. With respect to this topology the maps g — g;;
and g +— det(g)~! are continuous and G is a topological group.

Remark. Let H be any topological group.

(i) Left and right translations H — H are homeomorphisms
(ii) Any open subgroup of H is also closed (the complement is a union of cosets, hence open)
(iii) Any closed subgroup of finite index of H is open (the complement is a finite union of cosets,
hence closed).
(iv) If H is also compact then any open subgroup has finite index (the cosets form a disjoint
open cover).

In G, K = GL,(Z,) is a maximal compact open subgroup. We define K(r) = 1 + p"M,,(Z,) for
r > 1, these are compact open subgroups of G that forms a fundamental system of neighbourhoods
of 1 (hence G is totally disconnected). The quotient K/K(r) is GL,(Z/p"Z).

Next we define the some special subgroups of G. Let ny,...,n, > 1 be integers such that > n; = n.
Let P, ... .n, be the subgroup of block upper-triangular matrices in G with blocks along the diagonal
of size n; X ny,...,np X nyp. Py, . 5. has two distinguished subgroups: M,,, .. ,,, consisting of the
block diagonal matrices (again with diagonal blocks of ny X ny,...,n, x n,), and Ny, . ., which
consists of those matrices in P,, . ,, with the identity matrix (of the appropriate size) in each
diagonal block. N, . ., is called the unipotent radical of P, . ,,.; the P, .. (for varying
ni,...,n,) are called the standard parabolic subgroups of G and the M, . ,, are the standard
Levi subgroups. Ny, .. p, is normal in P, ., and we have P, = My, . n. X Np,  n . We
will often write P = M N to mean that P is a standard parabolic subgroup with standard Levi
subgroup M and unipotent radical V.

Remark.

(i) The subgroup Pi, 1 of upper-triangular matrices is called the Borel subgroup and will
be denoted B. Its standard Levi is the maximal torus of diagonal matrices and will be
denote T', and its unipotent radical is the subgroup of unipotent matrices of G and will be
denoted U.

(ii) A parabolic subgroup is any conjugate of a standard parabolic subgroup.

(iii) In fact, any subgroup containing B is a standard parabolic.
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(iv) For any standard parabolic P, we will denote its transpose (i.e. the corresponding subgroup

of block-lower triangular matrices) by P. Similarly we denote the transpose of N by N.

There are several useful decompositions of GG in terms of various of the above subgroups that are
useful. We start with:

Proposition 1 (Iwasawa decomposition). G = BK. Hence G = PK for any standard parabolic
P, and P\G is compact.

Proof (sketch). We will use integral column operations to reduce any matrix to lower triangular
form. The column permutation matrices are integral, so without loss of generality the (1, 1)-entry
has the smallest valuation in the first row. Using this, we may add suitable integral multiples of
the first column to the others to reduce to the case where the (1,7)-entry is 0 for 2 < i < n. An
induction on n finishes the proof. O

Before moving on to the next, we recall, in our setting, a theorem from the theory of principal ideal
domains. Before we state it, we define a Z-lattice in Q) to be a finitely generated Z,-submodule
of Q} that spans Qp (such a submodule is necessarily free of rank n over Z,,).

Theorem (Theorem on elementary divisors). Given a lattice A C Qp there exists a basis €}, ...,
e, of Zy and unique integers ay < --- < a,, such that p*tey, ..., p®re, is a basis for A.

Remark. The theorem is usually stated for A C Zj) but we may reduce to this case by scaling.

Using this, we may now prove

Proposition 2 (Cartan decomposition). G = [[ K-diag(p*,...,p% ) -K, where diag (p**,...,p*")
a1<-<an

1s the diagonal matriz with entries p®, ..., p® along the diagonal.

Proof. Given g € G, let A = gZy. If e1, ..., e, is the standard basis of Z then geq, ..., ge, is a
basis for A. By the theorem of elementary divisors there is a basis €], ..., e/, of Z, and integers

a; < -+ < ay, such that p*tef, ..., pre], is a basis for A. Thus, as bases for Zj resp. A, e, ..., e,

and e, ..., e}, are related by some k; € K and gey, ..., ge, and p®e], ..., p®~el are related by
some ky € K (say e} = kie;, p¥e; = kage;). Then g = ky ' diag (p™,...,p* ) k1. Uniqueness of the

a; imply the disjointness of the decomposition. O

Proposition 3 (“Big cell lemma”). Let P = MN be a standard parabolic subgroup of G. The
multiplication map P x N — G is injective and has open image (it is not a group homomorphism,).

Proof (sketch). We assume P = B, the general case is analogous, using blocks. B x U — G is
injective as BN U = 1, so it remains to show that the image is open. We claim that the image S
consists of those matrices g for which the upper left ¢ x ¢ minor det;(g) is nonzero for alli = 1,...,n.
This set is open as the map G — Qp, g + (det;(g)); is continuous and S is the preimage of the
open set Q" under this map. To show that the image is S, note that det;(bu) = det;(b) det;(u) # 0
for all i and b € B, u € U as b resp. u are lower resp. upper triangular. To see that the image
is all of S, pick g € S and write down the linear equations that the entries of some u € U would

have to satisfy in order for gu to be lower triangular. These turn out to be solvable exactly because
ges. O
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2. SMOOTH REPRESENTATIONS OF p-ADIC GROUPS

In this section, G is any Hausdorff topological group that has a fundamental system of neighbour-
hoods of 1 consisting of compact open subgroups, F is a field and G-representation is an E-vector
space 7 with a linear action of G. If U is a subgroup of G we let 7V = {z € 7 | uz = 2 Vu € U}
denote the invariants of U.

Lemma 4. The following are equivalent:

(i) The stabilizer of any x € 7 is open.
(ii) For any x € 7 there exists an open subgroup U of G such that x € Y.
(iii) m = UnY where the union is taken over all open subgroups of G.
(iv) The action map G X T — m is continuous with respect to the discrete topology.

Definition. A G-representation 7 is smooth if the equivalent conditions of the previous lemma
hold.

Example. Let G = Q. A character x : Q) — E* is smooth if and only if its kernel is open. We
have Q) = Z,' x p? where p”? is equipped with the discrete topology. To give a smooth character
we thus need (i) an element x(p) € £, and (ii) a character Z) /(1 + p"Z,) — E* for some r > 1.

Any smooth irreducible representation of Q) is a character (this follows from the commutativity
of QX).
P

Remark.

(i) Any subquotient of a smooth representation is smooth.

(ii) To form the category of smooth representations we take as morphisms G-linear maps
(smoothness is equivalent to continuity with respect to the discrete topology on the vector
spaces, so there is no topological condition required on the G-linear maps).

Definition. We say a smooth G-representation 7 is irreducible if it has no subrepresentations apart
from 0 and 7.

Induced representations. Let H < G be a closed subgroup (note that this implies that H\G is
Hausdorff) and let o be a smooth H-representation.

Definition. We define the smooth induction Ind$ o of o from H to G to be the vector space of
functions f : G — o such that f(hg) = h- f(g) for all h € H and g € G, and such that there is an
open subgroup U < @ such that f(gu) = f(g) for all uw € U and g € G. We let G act on Ind% & by
(9- f)(x) = f(xg); the last condition in the definition ensures that this is a smooth representation

of G.

Example. If 0 = 1y then Indg 15 is the space of uniformly locally constant functions f : H\G —
E.

In general, if f € Ind$ o we define the support of f as supp(f) = {g € G | f(g) # 0}; it is a union
of right cosets of H. By the smoothness condition in the definition of Indfl o, f is locally constant
and hence supp(f) is open and closed, which implies that the image of supp(f) in H\G is also open
and closed.
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Definition. We define the compact induction ind$; o of o from H to G to be the subspace of Ind% o
of functions f such that the image of supp(f) in H\G is compact. This is a G-subrepresentation
of Indg o since the action of G translates the support of functions.

Remark.

(i) If H\G is compact, then Ind% ¢ = ind o.
(i) Ind%(—) and ind%(—) are left exact functors.

Proposition (Frobenius Reciprocity).

(i) Homg(m,Ind% o) = Hompy (7|g,0).
ii) If U is an open subgroup, then Homg ind% o,m) = Homy (o, 7|y) and ind%(—) is ezact.
U U

Proof (sketch). (i) Given ¢ : m — Ind% o define % : 7|y — o by @ +— @(x)(1). Conversely, given
Y : 7|y — o define ¢ : m — Ind$ o by sending z € 7 to the function (g — ¥(gz)) € Ind% . One
checks that these are well-defined and give the adjunction in (i).

(i) U\G is discrete since U is open, so the support of an element in ind% o is finite in U\G. To
give an element f of indg o we need a finite number of distinct cosets Ug; and elements y; € o;
the function is given by f(ug;) = uy; on the Ug; and zero outside them (using this description, one
checks that ind{(—) is exact). Write [g, y] for the function with support Ug~' sending g~* to y.
Then 7.[g,y] = [vg,] for all g € G and [gu,y] = [g, uy] for all u € U. Now given ¢ : ind¥ o — 7
define $ : ¢ — 7|y by sending y € o to ¢([1,y]), and conversely, given ¥ : o — 7|y define
P indg o — m by [g,y] — g - ¥(y) and extending linearly. One checks that these are well-defined
and give the adjunction in (ii). O

Remark. Alternatively, one may prove (i) by noting that ind$ o is isomorphic E[G] ® B[] 0, the
isomorphism being given by ¢ ® y — [g,y]. The adjunction in (ii) is then just the standard
extension /restriction of scalars-adjunction and the exactness follows from the fact that F[G] is free
over E[U] (generated as a left module by a set of representatives of U\G).

Proposition 5.

(i) Assume that the projection map © : G — H\G has a continuous section s and that H\G
is compact. Then Ind$ (=) is exact.
(ii) If G = GL,(Qy) and P is a standard parabolic, then Ind%(—) is exact.

Proof. (i) Compactness of H\G ensures that “locally constant” is equivalent to “uniformly locally
constant”. Define a map Ind% o — C*(H\G,0) by f — (Hg — f(s(Hg))) and a map the other
way by
pr@=(9="h-s(Hg) = h-p(Hg))

The first map is well-defined as f is locally constant. To check that the second map is well-
defined, write h - p(Hg) = g - s(m(g))~! - ¢(7(g)) and note this is locally constant as g - s(w(g))~!
is continuous in g, ¢ is smooth and ¢ is locally constant. One then checks that these maps are
inverses to one another and define a natural isomorphism of functors Ind% (—) 2 C®(H\G, —) (the
spaces C*°(H\G, o) have a left action of G coming from the right action on H\G). Exactness of
Ind% (—) now follows from exactness of C*(H\G, —) (left exactness is straightforward; to prove
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that it preserves surjections ¢ — 7 choose any vector space section 7 — ¢ and use that this is
continuous with respect to the discrete topology).

(ii) Write P = M N. We want to deduce (ii) from (i) so we need to construct a continuous section
s : P\G — G. By the “big cell” lemma the image of N < P\G is open, hence the image 2 of the
compact open subgroup N(Z,) = N N K is open and closed, so we can define a continuous section
on (). By translation we may define a continuous section on g for any g € G; these sets form an
open cover of P\G. Since P\G is compact we can take a finite subcover {Q2g;},.,.,.. Now chop

these up into 2" disjoint open and closed subsets ((N;c; 2g:) N (N;eze(Qg:)¢) (for I € {1,...,r})
on which a continuous section exists, and then glue to get a continuous section on all of P\G. O

3. SMOOTH REPRESENTATIONS IN CHARACTERISTIC p

We now to back to the case G = GL,,(Q,) and furthermore assume, from now, that the characteristic
of E is p.

Definition. A profinite group is a compact Hausdorff topological group with a fundamental sys-
tem of neighbourhoods of 1 consisting of normal subgroups. A profinite group is called pro-p if
furthermore the index of each of these normal subgroups is a power of p.

Any closed subgroup or quotient of a profinite (resp. pro-p) group is profinite (resp. pro-p).
Example. Z, is a pro-p group. K = GL,,(Z,) is profinite.
Lemma 6. K(1) is a pro-p group.

Proof. The K(r) form a fundamental system of neighbourhoods of 1 so it suffices to show that
(K(1) : K(r)) is a power of p for all » > 2. By multiplicativity of indices this reduces to showing

that (K(r) : K(r + 1)) is a power of p for r > 1. But as groups, K(r)/K(r + 1) is isomorphic
to M, (F,) via the map sending 1 + p"A € K(r)/K(r + 1) to the reduction of A modulo p, and
therefore (K (r) : K(r+1)) = [ O

Similarly, the subgroup I(1) C K consisting of matrices that are unipotent modulo p is pro-p,
as I(1)/K(1) = U(F,), where U(F,) C GL,(F,) is the subgroup of unipotent matrices, which
has order p™(»~1)/2 (we remark that I(1) is a Sylow pro-p subgroup of K, i.e. a maximal pro-p
subgroup).

Lemma 7 (“p-group lemma”). Any smooth representation T # 0 in characteristic p of a pro-p
group H has invariant vectors, i.e. TH # 0.

Proof. Without loss of generality we may assume E = F, (forget the E-action). Pick any nonzero
x € 7. Since 7 is smooth and H is profinite there exists an open normal subgroup U of H such that
x € 7V. Then H/U is a finite p-group acting on 7Y # 0, so we may reduce to the case where H is
finite.

Then, the Fp-span of Hx = {ha | h € H} is finite dimensional (as Hz is finite), hence this span
is finite as a set, so without loss of generality 7 is a finite set, of p-power order. Decompose T
into H-orbits; by the orbit-stabilizer theorem all orbits have size a power of p and there is at least
one orbit of size 1, namely {0}, so looking modulo p there must be at least p orbits of size 1. In
particular, 77 #£ 0. O
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Remark. The coinvariants of 7 as in the lemma may be 0. Because of this, duals do not work well
in characteristic p.

Corollary. A pro-p group H has a unique irreducible representation, which is the trivial represen-
tation.

For us, the following corollaries are important:

Corollary. If 7 is a smooth representation of G, then 751 D 71(1) oL (.

We note that this fails in characteristic 0, even if n = 1.

Corollary. Any smooth irreducible representation of K factors through K/K(1) = GL,(F,), so
there is a natural bijection between smooth irreducible representations of K and GL,(F)).

Proof. Let V be a smooth irreducible representation of K. By above, VE() =£ 0 and since K (1) is
normal in K, VK1) C V is K-stable, so we must have VK1) =V since V is irreducible, i.e. K (1)
acts trivially on V. O

From now on we will assume that FE is algebraically closed.

Definition. A smooth irreducible representation of K (or equivalently, a smooth irreducible rep-
resentation of GL, (F,)) is called a weight.

Corollary. Any smooth representation m of G contains a weight, i.e. there is a weight V' such that
V is a subrepresentation of 7|k

Proof. Pick anonzero z € 75, Then the E-span of Kz is a finite dimensional K-subrepresentation
of 7|k (Kz is finite since K (1) acts trivially on z and K/K (1) is finite), and therefore contains an
irreducible subrepresentation. O

Example. (n = 1) Any smooth character x : Q5 — E* is trivial on K(1) = 1+ pZ,. To define
x we need an element x(p) € E* and a character X|Z; : ) — B (a weight for GL;). There are
p — 1 weights, all one-dimensional.

Next we determine the weights of GLo:

Proposition 8. The weights of GLa2(F,) are F(a,b) = Sym®* E2 @ det®, where 0 <a—b<p—1
and 0 < b < p— 1, E? is the standard representation GLa(F,) — GL(E) on column vectors and
det is the determinant representation.

Before proving the proposition, we make a few remarks. First, we note that we may take b to be
arbitrary if we take into account that F(a4p—1,b+p—1) 2 F(a,b). Second, the action on Sym® E2
is by g(vi---vq) = (gu1)--- (gvq). More concretely, Sym? E? =~ E[X, Y](a), the space of homoge-

% d—i
neous polynomials of degree d in X and Y. The isomorphism takes the basis ( (1) ) ( (1) ) to

the basis X*Y%~* and the action of a matrix ( 3 ? ) € GL3(F,) takes a degree d homogeneous

polynomial f(X,Y) to f(aX +~Y,5X + dY). We now prove the proposition:
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Proof. Step 1: Prove that the F'(a,b) are irreducible.
We may twist and with loss of generality assume that b = 0. First we prove that (Sym® E?)Y(Fr) =

E - X®. The inclusion D is clear. Let f € (Sym® E?)V(r). We have, for all u € Fp,

("4 )s) xr = s +v) = ey,

Consider g(Y) = f(X,Y) — f(X,0) € E(X)[Y]. The degree (in Y) of g is < a < p. By the above
equation we have

g(_uX) = f(X7 _UX) - f(X7O) =0
for all u € IFp, so g has p > deg(g) distinct roots, hence g = 0. Thus f(X,Y) = f(X,0) for all X, Y,
so f is a monomial in X, hence in F - X“.

Next, we want to show that X generates Sym® E2. For u € F,, we have
a

( - )X“:(X+uY)a:Z< ; )m’xa—iyi.

=0

Sym® E? has a basis ( C; )X“_iYi for 0 < 4 < a. Consider the set ( i )X“ for0 <u <

1

a. It follows from the equation above that the determinant for passing from (l.l XY to

< ! )X % is a Vandermonde determinant and hence nonzero, so ( i

>X“,O§u§a
u 1

1
forms a basis for Sym® E?, and hence X® generates it.

Finally, we may finish the proof of Step 1. Let V # 0 be a subrepresentation of Sym® E2?. By
the p-group lemma VUEr») =£ 0, so it must be E - X% Since this subspace generates Sym® E2,
V = Sym® E? and Sym® E? is irreducible.

Step 2: The F(a,b) are distinct.
Since T'(F,) normalises U(F,) it acts on F(a,b)VFr) = E. X3=b We compute this action:

( T , >Xab — X (ay)® = 2oy X0,

i.e. T(F,) acts by the character x,; sending diag(z,y) to z%y°. If F(a,b) = F(a’,b’), then first we
must have a —b = a’ — V' by looking at the dimensions. Second, we must also have x4 = Xa/, by
above, so a =a’, b=V mod p— 1. By our constraints on b this forces b = b/, and hence a = a’
as desired.

Step 3: These are all irreducible representations of GLo(IF,).

By modular representation theory of finite groups, the number of irreducible representations is
equal to the number of conjugacy classes of prime-to-p order. We may use Jordan normal form and
the fact that matrices are conjugate over F, if and only if they are conjugate over F, to find the
conjugacy classes (the latter follows e.g. from the rational canonical form; one may also use this
directly). We get the following four types of conjugacy classes:

(i) Central elements ( v . ), relF;.
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(ii) Diagonal non-central elements < v y ), r#y, v,y €Fy.

«

(iii) Elements that may be diagonalised over [ a ), a € Fpe\Fp.

iv) Non-diagonalisable elements v 1 rzeFX.
(iv) g = ) s

The first three have order prime to p, the fourth does not. There are p — 1 conjugacy classes in
(i), (p—1)(p—2)/2 in (ii) and p(p — 1)/2 in (iii). Summing up, we get in total p(p — 1) conjugacy
classes of order prime to p, which is equal to the number of pairs (a,b) in the parametrisation of
the F'(a,b). This finishes the proof of the proposition. O

There is an alternative way to prove the Step 3 without resorting to general results in modular
representation theory. Assume that V is any irreducible representation of GLy(F,). Then we
get a nonzero T'(F,)-representation VUFE) - As T(F,) is commutative of order prime to p, this
representation splits as a direct sum of characters. Let y be one of these characters, we have
x = VU(E) as T(F,)-representations and hence x < V as B(F,,)-representations (where we extend
x to a character of B(F,) by letting U(F,) act trivially). Frobenius reciprocity now gives us a

nonzero map
G(Fp)
Ind B(FZ )X = %
which has to surject since V' is irreducible. Thus, to show that V' is one of the F(a,b) it suffices to
classify the quotients of the representations Indggg’g X, as x ranges over the characters of T'(F)).
D
First we need a lemma:

Lemma 9. F(a,b)pr, ) = Xap as T(Fp)-representations, and the T (Fp)-linear map
F(a,0)7®) < F(a,b) > F(a,b)p,)

is an isomorphism.

Proof. Without loss of generality b = 0, so F(a,b) = F(a,0) = Sym® E2. As we saw in the previous

proof we have
]- a a __ - a 1T va—iy1t
<u 1>X _X_.El<i>UX Y

and they have the same span as X®~ 'Y, ..., Y, moreover they get mapped to 0 in the coinvariants.
For 1 < i < a we have

1 amivei _ ya—ivi _ N~ (=0 ), kyaciokyith
<u1>X Yi—xemyr=3 (0 JutxeTthy
k=1
which shows that the kernel of F(a,b) - F(a, b)U(F,,) is spanned by X¢~'Y, ..., Y% and hence
that as a T'(F,)-representation we have

F(a,0) = F(a,0)Y ") & Ker (F(a, b) = F(a, b)U(]Fp)) :

This gives both statements of the lemma. O



THE MOD p REPRESENTATION THEORY OF p-ADIC GROUPS 10

We can now describe the irreducible subquotients of the Indgg‘; ; x and hence finish the alternative

proof of Step 3:

Lemma 10. Let a,b € Z with 0 < a—b < p— 1. Then the irreducible quotients of Indgg{;; Xa,b

are F(a,b), and also F(a+p—1,b) if a =b. The irreducible subrepresentations are F(b+p—1,a),
and also F(b,a) if a =b. In any case, the irreducible constituents are F(a,b) and F(b+p—1,a).

Proof (sketch). By Frobenius reciprocity Indﬁ%% Xap — F(a', ) if and only if x4 < F(a’, )V ) =

Xa/,pr and similarly F(a',b’) — Indggzg Xa,p if and only if F'(a’,0")y(w,) = Xa,p, Which is seen to
be equivalent to Xy = F(a’, b/)ﬁ(]Fp) £ Xb,o by conjugating with < (1) (1) > Hence we know that
there do exist subrepresentations and quotients as in the statement of the lemma. To see that these

are the only ones, note that
dim F(a,b) +dim F(b+p—1,a)=(a—b+1)+(b+p—a)=p+1

and

G(F,)

dim d55) o = (G(F,) : B(F,)) = #P'(F,) = p + 1. O

Weights of principal series (n = 2). Let x : T — E* be a smooth character (remember that
X|7(z,) factors through T'(F,)). Consider x as a B-representation (via B — T'). Then y defines a

so-called principal series representation Ind% X-

Proposition 11. The weights ofInd%X are all V' such that Vi ) = X|r(z,) as a T(F,)-representation

(Lemmalg therefore implies that Ind%x has one or two weights). Each V occurs with multiplicity
one.

Proof. Let V be a weight. By the Iwasawa decomposition (Proposition the restriction map

Ind%x — Ind%m ¢ X 1s an isomorphism of K-representations. Thus

Homg (V, Ind% x) = Homg (V, IndgﬂK X)

which by Frobenius reciprocity is Homp, (V, x), and
Homg ¢ (V, x) = Homg s (V. x) = Homre,) Vi, ), X)

which is one-dimensional or 0 depending on whether VU([FP) = X|r(z,) or not, which is what we
wanted. O

Remark. Usually a principal series representation has a unique weight V' occurring with multi-
plicity one. In this case, the G-subrepresentation generated by V is irreducible (because any G-
subrepresentation of this contains a weight). Later we will see that in fact V' generates the whole
principal series representation.
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4. HECKE ALGEBRAS — GENERALITIES

Let 7 be a smooth irreducible representation of G. We know that there is a weight V' < 7|g;
Frobenius reciprocity gives us a G-linear map ind?( V — m. We would therefore wish to understand
the representations indf( V.

Definition. The Hecke algebra of the weight V is He(V) = Endg(ind% V).

Remark. More generally, one could study such Hecke algebras for indg W with W a finite dimen-
sional smooth representation of any arbitrary open compact subgroup H of G.

Proposition 12. Hg (V) is isomorphic to the algebra of functions ¢ : G — Endg (V) such that
supp(p) is compact and p(ki1gks) = k1 0 ©(g) o ko for all k1,ke € K, g € G. The product on this
algebra is convolution
(pr1x@2)(9) = D 1lgr epa(v)
YEK\G
where we use the notation “y € K\G” to mean that the v runs through a set of coset representatives
of K\G, and that the sum is independent of this choice.

Proof. As vector spaces
He(V) = Endg(ind$ V) = Homg (V,ind% V) € Map(V, Map(G, V)) = Map(G, Map(V, V))

where we write Map(R, S) for the set of functions from one set R to another set S. It is natu-
rally a vector space when S is a vector space. To see that the image of Homg (V, indf( V) inside
Map(G, Map(V, V)) is as claimed, take (v — f,) € Homg (V,ind% V), then its image is defined by
o(g)(v) = fu(g). The K-linearity of (v — f,) means that f,(gk) = frv(¢) and by the definition
of the (compact) induction f,(kg) = k- f,(g). This translates into ¢(kigke)(v) = f,(k1gks) =
k1« fraw(9) = k1(e(g)(kav)) which is the desired identity, and furthermore the compact support
condition on ¢ translates into the (uniformly) compact support condition on the f, (using linearity
in v of f, and the finite dimensionality of V).
Next we check the product. Take 1,2 corresponding to 9,45 € Ha(V) and to 1,1 €
Hom g (V,ind% V); we have v;(z) = ¢/([1,2]) by definition. Then

Ua([L2])(2) = va(2)(2) = p2(72) (2)
and hence by K-equivariance

Py([1,2]) = Z 2 p2(h2) ()] = Z Y2 1, p2(72) ()]
12 €K\G 72 €K\G

which implies that

Viwn(La) =vi | D e Lee(r)@)] ] =

Y2 €K\G

= > %t > it (erm) o ea(n)(@)]
Y2 EK\G v1EK\G
which is equal to

S et ern) o va(r2) (@)

Y2 €K\G v1€K\G
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We need to make a change of variables in order to be able to interchange the sums. Put v = 1
and interchange ~y for 1, then we get

Yoo > e eet)@l= > > b1 ) e wa(2)(@)]
Y2 EK\G veK\G YeEK\G v2€K\G

which is equal to

Yoo Y e Dewa)@) | = D b (e xre)()(@)]

veK\G Y2 €K\G yEK\G
as desired. O

Let 7 be a smooth G-representation. Then Hg (V) acts on the right on Hom g (V, 7|k ) = Homg (ind% V, 7).
This action is given explicitly by

(fro)@) = > v 'fle((@)
YEK\G

for f € Homg (V,7|k) and ¢ in the explicit description of Hg (V). To see this, let ¢’ and
correspond to ¢ as in the above proof and let f € Homg(ind?( V, ) correspond to f. Then, by the
above proof

Fw@)=F > v LeM@]] = > v fletn)@):

YERK\G YEK\G

Example. Let V be the trivial representation, then Hg(V) = C.(K\G/K, E), the algebra of
bi-K-invariant functions on G' with compact support, under convolution. Let 1x,x denote the
characteristic function of the double coset KgK. Then, for a smooth G-representation 7 it acts on
75 = Homg (V,7) in the usual way; if

KgK =[] Kg:

i

Lrgr(z Z!]z

then for z € ¥

5. HECKE ALGEBRAS FOR GLs

r<s

Recall the Cartan decomposition G = [[ K ( p ° ) K (Proposition .

Theorem 13. Fix a weight V.

(i) For any pair of integers r < s there is a unique Hecke operator T, s € Ha(V) such that
supp(7;s) = K - diag(p”,p®) - K and the endomorphism

T K ' . )] € Endp(V)

is a linear projection. The T, s form a basis of Ha(V).
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(ii) Ha(V) is isomorphic to E[Tl,TQ,T{l] with Tp1 going to Th and T11 going to Ty. In

particular Ha (V) is commutative.

Proof. (i) Suppose that ¢ € Hg(V) is such that A = ¢ ( p ° ) # 0. Whenever k1, ks € K are

such that
p" p"
k ) = . )k
1( »’ ) ( p* > ?

we must have k; 0 A = Ao ky. It is easy to check that conversely, such an A determines a Hecke
operator supported on K -diag(p”, p®)-K (just define ¢ to be ki o Aok, for elements k1 -diag(p”, p®)-ks
and 0 everywhere else, the condition on A then assures that this is well defined). For

jal p"
k = k
1< p‘“) ( p‘*)z
r r -1
kleKrW(p )K<p ) .
P P

T
If r = s this is just K, and as < P o ) is central we have

(7))

for all k € K, hence ko A = Aok for all Kk € K. By the irreducibility of V' and Schur’s Lemma,
A is a scalar. Since A is a nonzero projection, A must be the identity. For r < s, the intersection

above is
( Z;( 2 )
S—1T X *
Z, 7,

Write k; = < psa"'y ? ) then ko = ( © 5 ) As the action of k € K on V only depends
the reduction k € G(F,), the condition k1

to hold, we need

0 A= A o ko may be written as

a f a 0
(8 3)oamse(3 1)
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The first two implies the following factorization of A

v—A4 vy

]

VU(FP) i VU(]FT—')

and the third implies that A is T'(F,)-linear. We know that Vow,) = VU Ep) as T(F,)-representations

and that these are one-dimensional. Thus the space of Hecke operators supported on K -diag(p”, p®)-
K is one-dimensional and we may take T, ; to be the one corresponding to the projection

P= (V> Vyg, VI o V).
This finishes the proof of (i).

(i) We first claim that T; ; Ty s = Trpi 545 = Ty sT;,; for all 4,7, s. In particular this implies that Tp o
is the identity and that 75 = T1,; is invertible, with 73 = T;.,.. To prove the claim, first note that

pt 0 - pt 0
K<0 pi>K_K<0 pi)

(Tr,sTi,i)(g) = Z Tr,s(g'Yil)rfi,i(rY) = Tr,s (g (

which implies that

YEK\G
r+i 0
1 ifr—sandgéK(p .>K
0 ps-&-z
_ r+1 0 417 O
k1 Pko ifr<sandg=k p ke K p | K
0 ps+7, 0 szrz

0 otherwise
which is equal to T,y s+i(g) as desired. A similar calculation shows that T4, ¢1; = Ty T} ;, which
proves the claim. Note also that this implies that T5 is central.
Next, we claim that T,. /71 = Ty 541 + D ;50 @il visy1-i for some a; € E (note that implicitly
r+i<s+1—i iei<(s+1-r)/2). To show this we may first multiply by 7, " and hence
without loss of generality assume that r = 0. If s = 0 as well we already know the result from
above, so we may assume s > 0. By looking at the convolution formula, we see that

1 0 10
-
Supp(TO,sTl) = K< 0 ps )K< 0 p >K
and hence that ‘
! 0
supp(To,s11) € H K( % peti—i )K

0<i<(s+1)/2

by looking at determinants in the Cartan decomposition. Thus we have an equation

To,sTl = Z aiTi,sHﬂ'
0<i<(s+1)/2
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and it remains to show that ag = 1. We have

1 0 1 0 _
To,sTh ( 0 ptl ) = Z To,s (( 0 pot )’Y 1) Ti(y) =

1
0

wCop )= LI (o ) ox (o)
p 0<u<p—1 p p

so the sum becomes
-1
0 1 u 1 u
s+1)<0p> >T1<Op>+

Z TO,S <(
0<u<p—1

(3,00 (% ) a5 )

Since Ty s is supported inside Ms(Z,), we need the arguments for T ¢ in the equation above to lie
in Ms(Z,) for those terms not to vanish. But

1 0 1w\ (1 —up!
0 ps+1 0 D - 0 ps
1 0 o 1\' [ 0 p!
0 ps+1 —p 0 - ps+1 0

so only term corresponding to u = 0 survives, so we get

1 0 1 0 1 0
T015(0 pg>T1<O p)—POP—P—TO,s+1(O ps—&-l)

so ag = 1 as desired. Finally, combining these two results we have, for all r < s,

Ty Ty =TT =Trs+ > T
1Si<(s—1)/2

The double coset K ( 2 ) K has a right coset decomposition

O =
i

for some a € E (this follows by induction on s — ). Thus for all » < s fixed there is a unipotent
(hence invertible) matrix expressing (TffT*QiTQT”)OSiS(S_T)/Q in terms of (T744,5—i)o<i<(s—r)/2-
Therefore, the set (77 "14),<s forms another basis of Hg (V). This gives us the desired algebra
structure (as Ty is central). O

Corollary 13'. Let V be a weight, m a smooth representation of G and f : V — 7|k a K-linear

-1 -1
injection. Then fxTy = ( g g ) o f. (Note that ( g 2 ) acts on T.)
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Proof. Let x € V. Then

(fxTo)(x Z g f(Ta(g)r) =
gEK\G
_(p 0\ (P 0 _(p 0\
as To < ‘g 2 ) is the identity. O

Proposition 14. Suppose that x : T — E* is a smooth character and f : V — Ind%x s a
K-linear injection. Then f is an eigenvector for Ha(V) and

—1
reri=x(g o) f

-1
peti=x (b)) s

Proof. We know from Prop051t10nthat dim Homg (V, IndB X) = 1 so f has to be an eigenvector.
For Ty, the formula for the eigenvalue follows from Corollary - upon noting that the center of G
acts as x on Ind§x (this follows directly from the definition of inductions).

For T1, since we already know that f is an eigenvector it suffices to compute the eigenvalue by
evaluating f « T} and f suitably. First, we claim that f(x)(1) # 0 if 0 # = € VU(F), To prove
this, note that f : V — Ind%x = Indng x corresponds to the T'(F,)-linear map 6 : Vﬁ(]Fp) =
X|r(z,) given by 0(kv) = f(v)(k) for k € K, v € V. Thus f(x)(1) = 6(x) # 0 since ¢ is an
isomorphism. Therefore the T;-eigenvalue will be the ratio between (f *7T7)(x)(1) and f(x)(1). We
have

(f*T)() = > v ' f(Ti(y)()

YEK\G

hence

(f*T)@)(1) = Y AT )6,

yeK\G

Ti(y) = 0 unless v € K( >K, so we can use the coset decomposition K( (1) 2 )K =
K

(42 )) o 5
So(m(o ) ((o 500 ) or(m (S 6) (5 5))

u€lF,

) to write the above as
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. 1 u 10 1 wu 0 1 1 0 0 1 .
erte<0 p>_(0 p)(O 1)and(_p 0>_<0 p)(—l 0),remember1ng

that T < (1) 2 ) = P and that z € VU(F») we get

s (5 m N er(e (5 ) (0 0)

u€F,
-1

(using P(x) = z because z € VUFr)). Now ( é _;;ﬂ

1 —up?! . up~! 0 1 put 0 -1
0 p! U —pt owt 0 1 1 0

where the last two matrices are in K. We get

) has Iwasawa decomposition

N TN

@ ((o 30 ))- ) w 91>f(w)[<1 pu_1><0 o )1

0 U 0 1 1 0

(the first option if u = 0, the second if v # 0) and we have (with 6 corresponding to f via Frobenius
reciprocity as in Proposition :

wl(2 ) (8- (( )

explicit description of the weights to see this), i.e. corresponding to a = b in our parametrisation of
weights. Thus if dim V > 1 we are done. If dim V =1 then V = det’ = X|7(z,) and we get

(3 e (507 2o (2 )

u#0

(35 )-((5 ()

so using this and simplifying we get

(80) swmen(x(7 1) ew),

As p=0in E we get the desired equality

Now note that + < _01 ) z = 0in VU(]FP) unless dim V' = 1, in which case it is x (use the

and

@0 =x
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6. COMPARISON BETWEEN COMPACT AND PARABOLIC INDUCTION

Let V be a weight, x a character of 7" assume that we have a K-linear embedding f : V — Ind% X-

By Frobenius reciprocity we have a nonzero G-linear map f : indf( V — Ind% X. Proposition

implies that f is a Hecke eigenvector and we know the eigenvalues. Let y’ is the character of Hg (V)
1

1 —1
defined by x/(T1) = x ( 0 2 > and x'(Tz) = x < g 2 ) . Then f factors as (think of x' as

a quotient of Hea(V))
indg V ®@uev) X — Ind% X-

Theorem 15. This map is an isomorphism if dim V > 1.

We will prove a stronger, universal version of this statement. Since VU(IF,,) = X|T(Zp) we get a
T-linear surjection indg(zp) Vﬁ(le) — X, and the converse is also true, so ind;(zp) Vﬁ(]Fp) is universal

for characters y such that Vﬁ(Fp) = X|rz,)- f then factors as
ind§ V - Ind$(indf ) Vire,)) — Ind$

where F" is obtained from the canonical map Vg ) — indg(zp) Voe,) (sending y to [1,y]) by the
following series of equalities:

. T . T
Homr(z,)(V(r,), drz,) Vir,)) = Hompg,) 5k (V. indre,) Vie,)) =

= Hom e (V, Ind o (ind7 s, ) Vi, 1)) = Homg (ind V, Tnd$(ind 7, ) Ve, )

noting that, as before Ind%m K(indg(zp) VU(]F,,)) = Ind%(indg(zp) VU(]FP)) as K-representations. Our

theorem is then:

~1
Theorem 16. Let F' be as above. Then F is also Hg(V)-linear, where Ty acts as < é 2 >

p

-1
0 ) on indg(zp) Vo, (these matrices are in T so act on indg(zp) VoE,))-

and T acts as (

The induced map
(ind% V)[T7'] = Td§(ind7 ) Ve, )

is injective, and is an isomorphism if dim V > 1.

Here, (ind% V)[T7 '] 2 ind§ V @44y He (V) [T7 '] is the localisation of the g (V)-module ind§ V

at Tl.

This theorem implies Theorem [15]in the following way. Let dim V' > 1. Apply (—) O (V)ITr Y X'
to the isomorphism in Theorem

to get an isomorphism

e G T

ind% V ®@yqn) X — Indz(ind7z, ) VU(FP)) g6 (V)T Y.
We wish to show that Ind%(indg(zp) VU(FP))®HG(V)[T1*1]X/ = Ind% X- Note that we have a surjection
BT, T3]

He(VIT') = BT T3] 25 B = s s
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1 1 0 1 P 0 G el
where A\] " = x » and Ay = x . By exactness of IndZ (Proposition [5) we deduce

0 0 p
G T / o 1, Ve,
Indg(indr(z,) Vo,) Snowr X = Wi | G0 m =35

and we know from before that the quotient in the right-hand side is .
Let us now prove the surjectivity in Theorem the injectivity will be proven later.

Proof. First we prove that F is Hg(V)-linear, proceeding as in Proposition Fix a nonzero
z € VUE)  We have

Homg (ind V, Ind§(ind7; ) Vie,))) = Hompz,) (Vi ), ind7 ) Ve )

o~

= Endr (ind7(z,) Vi)
(where the first isomorphism was explained above) and thus Homg (ind% V, Ind%(ind?(zp) Vo p)))

is a free EndT(indg(ZP) VU(FP))—module of rank 1. The same calculation as in Proposition
transposed to our setting, shows that

wwﬂwwm<10

0 rww,

For@m = (4 ) FE.

As F(z)(1) = [1, T] generates indg(zp) Vi, as a T-representation (since Vo, 1s one-dimensional;

in general, for any set (s;) of o as a U-representation, the [1, s;] generate ind{} o as a G-representation)

0 0
Let us now get down to proving surjectivity. It suffices to show that fo = F(z) (z as above)
generates the target under the G- and Hg(V)-actions. fy is a function G — indg(zp) Vow,):

sending an element tuk € G (t € T, u € U, k € K) to [t,kx]. We want to work out when kz # 0 in
VU(IF,,)‘ The Bruhat decomposition says that

10\ " 0\!
WehavethatFoT1:< p> FandFoT2:<p p) F.

GLa(F,) = B(E) UB(E,) ( |

1

0 ) B(F,).
s 0 1

Multiplying by ( 10 > on the left we get

GLaF,) = (o ) BE) UBE,)BE,).

1 ..
1 0 > z is in the kernel

of V— Vﬁ(Fp) if dim V' > 1. Thus k needs to map to the second summand, which we may simplify

to F(FP)U(FP). Thus k lies in
Ly Ly 1 Z, _
Z, 17, 0 1

Elements in the first summand on the right-hand side kills x because
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(2 )G )6 T) e (o 7)
1 a

1 7z, _
0 1 ) Moreover, for any a € Zj, fo 01 =

[1,Z], so we have equality. The same technique that was used in Proposition [5| to construct the
section we deduce

and hence the support of fj lies in B(

{f € maG(indf s, ) Virge,) | supp(f) € BU | = €2 (Qy,indf (g, ) Virge,)

)

(the inverse of this map is extension by 0, this works because of the compact support condition).
This is compatible with the Hq(V)-action. Since supp(g - f) = supp(f) - g%, the subspace of
Ind%(indg(zp) VU(]FP)) above is B-stable. Transfer of structure to C°(Q,, indg(zp) Vﬁ(]Fp)) gives us
a B-representation, with the following actions:

((o 1)r)@=r@+w.
(5 3)7)@=ro.

Fla) = {[1,33] if a € Z,,

We have

0 otherwise.

Now acting by Hea(V) [T} 1} gives all functions supported and constant on Z,. The T-action scales,
so we get any function supported and constant on some p"Z,, for any n € Z. Finally the U-action
translates, and so we get functions supported and constant on some a + p"Z,, a € Q,, n € Z.
These functions span C?C(Qwindg(zp) VU(FP)). Translating this back to Ind%(indg(zp) Vow,)) we

know have all functions supported on BU. Translating by G, we have any function supported
on BUg, for any g € G. As these sets cover GG, we now argue as in Proposition [5| to get all of
Ind%(indg(zp) Vi (r,)), which finishes the proof that fo = F'(x) generates Ind%(indg(zp) Vow,)) and
hence that F' is surjective. O

Remark. If dim V =1, then F is not surjective.

. . G . G
Corollary 16’. If V is a weight of IndZ x such that dim V' > 1, then V' generates Indg x as a
G-representation. In particular, if x = x1 ® x2 with X1|Z; =+ XQ‘Z;; , then Ind%x 1s irreducible.

Here, if X1, x2 are characters of Q,;, we let x = x1 ® X2 be defined by x < g 2 ) = x1(z)x2(y).

We will use this notation without further comment in the future.
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I~

ind?{ 14

y

ind?( V @uevy X

Proof. We have a commutative diagram

Ind% X

The map ind% V@usvyX' — Ind%x is an isomorphism, so the horizontal map indg;{ V — Ind%x is
surjective. As V C ind?( V' generates ind?( Vv,V C Ind%x generates Ind% x. If furthermore V is the

G

% X is irreducible (as any subrepresentation

unique weight (necessarily of multiplicity one), then Ind
has to contain a weight).

By Proposition V is a weight of Ind%x if and only if Vﬁ(Fp) = X|T(Zp) = Xaq,p for unique
0<a—-b<p—1,0<b<p-—1,and
v F(a,b) ifa#0,
| F(b,b), Fb+p—1,b) ifa=b,
where in the second case F'(b+ p — 1,b) generates Ind%x and F(b,b) = det’ is one-dimensional.

Thus, in the first case we see that Ind%x is irreducible, and the condition a # b is equivalent to

Xtlzx 7 Xalzx- U

7. STEINBERG REPRESENTATION FOR GLo
The principal series Ind%(lg) =C>®(B\G, E) = C*(P}(Q,), E) has a one-dimensional trivial sub-
representation 15 consisting of the constant functions.
Definition. The quotient of Ind%(lg) by 1¢ is called the Steinberg representation and will be
denoted by St.
If x : Q) — E* is a smooth character we may tensor the exact sequence
0—1g — Ind%(lg) —St—0

by x o det to get an exact sequence

0 — yodet — Ind%(x odet) = St ®(x o det) — 0.
Theorem 17. St is irreducible.
Proof. St'™ is one-dimensional (exercise: use the description of Ind%(lg) as C*>°(P1(Q,), E) and
show that any function which is I(1)-invariant in the Steinberg quotient is actually I(1)-invariant
in C*(P'(Q,), E)). This shows that St must have a unique weight, since each weight gives a

positive-dimensional contribution to the I(1)-invariants. St is therefore irreducible, proving the
theorem. (]

Remark.
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(i) Let St denote the weight F(p — 1,0) (“Steinberg weight”); it is a weight of Ind%(lg) and
is disjoint from 1¢, hence a weight of St and therefore the unique weight of St.
(ii) The Hecke eigenvalues of St in St (and 1x C 1) are the same as in Ind%(lg), namely

Tl,TQ — 1

Similarly, for St ®(x o det), we get Ty +— x(p)~1, To — x(p)~2.
(iii) The sequence 0 — 1 — Ind%(lg) — St — 0 is nonsplit.

8. “CHANGE OF WEIGHT” FOR GLsy

We wish to show that the remaining principal series representations are irreducible. To this, we
will study G-linear maps ind% V — ind% V" for (distinct) weights V,V".

Let He(V, V') = Homg (ind% V, ind$ V'), it is a (Ha(V'), He(V))-bimodule, with the extra struc-
ture of composition maps (or three weights V', V', V")

HG(V/, V”) X HG(V, V/) — HG(V, V").
We have the following generalisation of Proposition
Proposition 18.

(i) Ha(V, V') is isomorphic to the space of functions ¢ : G — Hompg(V,V’) such that ¢
has compact support and p(ki1gks) = k1 0 p(g) o ko for any ki,ks € K, g € G, with the
composition maps given by convolution as in Proposition [13

(ii) Ha(V, V') #£0 if and only if Vow,) = Vé(F ) as T(F,)-representations.

(iii) IfV 2V’ and Vﬁ(]FP) =] Vﬁ/(F,,)’ there is a Hecke operator ¢ : G — Hompg(V, V') supported

‘a
on K < % ]?S > K if and only if r < s, and it is unique up to scalar.

Proof. This is proved in exactly the same way as Proposition For parts (ii) and (iii) we trace the
explicit computation of the Hecke operators in Proposition 12| (changing one V for V') and note that

p" 0 . p" 0

0 pr )KweneedaK-hnearmapgo( 0 ) V-
pr 0
0 p°
r < s we needed a T'(Fp)-linear map Vg ) — (V")UE) (denoted by A in the proof of Proposition

to find a Hecke operator supported on K (

V', which is zero unless V' = V' and to find a Hecke operator supported on K ( ) K for

S s~ : . o .
, which is zero unless VU(FP) = Vﬁ(]Fp)’ in which case it is unique to scalar. O
From this proposition we conclude that Hg(V, V') gives us something new only in the case V =
F(b,b), V! = F(b+p—1,b) (or vice versa), and that there are nonzero G-linear maps

-
ind% v = ind% v’
ot

such that supp(¢®) = K ( (1) g ) K; they are furthermore unique up to scalar. Identify Heg (V)

and Hqg (V') by identifying the T; from Theorem [13| (we will see later that this identification is in
fact natural) and write H¢ for this algebra.
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Proposition 19.

(i) ¢* are Hg-linear.
(i) ¢~ ot =¢Top™ =TZ — T up to a nonzero scalar.

Proof. (i) and the first equality in (ii) will be formal consequences later of the Satake isomorphism.
The second equality in (ii) is obtained by explicit calculation (again, see later for the generalisation
to GLy,). O

Remark. Analogues of the ¢* were used by Kisin in his paper “The Fontaine-Mazur conjecture for
GLy”.

Corollary 19'. If X' : Hg — E is an algebra homomorphism with x'(T? — Ty) # 0, then
ind% V @xe X' =2 ind$ V @, X'

Proof. p* induce G-linear maps between the these two representations, and their compositions
cither way are T2 — Ty, which acts invertibly (by the nonzero scalar x'(T2 —T5)) on ind% V ®4,, X’
and ind$ V' @, X', s0 o+ induce isomorphisms. O

Proposition 20. If x = x1 ® x2 : T — E* is a smooth character and x1 # X2, then Ind%x is
irreducible.

Proof. If x1|r(z,) # X2|r(z,) then this is Corollary Thus we may assume x1|r(z,) = X2lr(z,); it
follows that x1(p) # x2(p). Suppose the character x1|r(z,) = X2|r(z,) is given by Z; — F) — E*

where the latter map is © — P for some b € Z. Then Ind%x has weights V' = F(b,b) and
V' =F(b+p—1,b) with Hecke eigenvalues

T = x2(p) ™" To e xa(p) ' xa(p) ™"
Suppose that o C Ind% X is a nonzero G-subrepresentation. ¢ has to contains one of the two weights

above. If it contains V'’ then o = Ind%x by Corollary Suppose that a priori we only know that
o contains V. We have

X(TF = T2) = x2(p) > = xa(p) ""x2(p) ™" #0
as x1(p) # x2(p). Therefore by Corollary
ind% V @ne X' 2 ind% V' @pe X/
and the former has a nonzero G-linear map to o as V is a weight of o, hence we get a nonzero

G-linear map ind% V' @4, X' — o and so a K-linear embedding V' < o, so V' is a weight of o,
and hence o = Ind%x as above. We conclude that Ind%x is irreducible. O

9. ADMISSIBLE REPRESENTATIONS

In this section we will let G be any Hausdorff topological group that has a fundamental system of
open neighbourhoods of 1 consisting of pro-p subgroups, unless stated otherwise.

Definition. A smooth G-representation 7 is admissible if dim 7V is finite for any open subgroup
UCQG.

Remark.
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(i) Any subrepresentation of an admissible representation is admissible (clear from the defi-
nition).

(ii) In fact, for certain groups (e.g. GL,(Q,)) quotients of admissible representations are ad-
missible.

Lemma 21. 7 is admissible if and only if there is an open pro-p subgroup U of G such that dim 7Y

is finite.

Proof. If 7 is admissible then by definition di,m 7Y is finite for any open subgroup U. Conversely,
let U be as in the statement of the lemma and let U’ be any other open subgroup of G, we wish to
show that 7V is finite-dimensional. As 7Y C 7Y™V we may assume that U’ C U. We have

7TU/ = HOHIU/(IU/, 71') = HomU(indg, lU/ y 71')

with ind{, 1 finite-dimensional as the index (U : U’) is finite. To finish we show, by induction on
dim o, that Homy (o, ) is finite-dimensional for any finite-dimensional smooth representation o of
U. If o is one-dimensional, then ¢ = 1y (by Lemma E[) and this reduces to the hypothesis of the
lemma. For the induction step, by Lemma we have 1y C o, and so applying Homy (—, 7) to

0—-1ly—20—0/1y —0
we get an exact sequence
0 — Homy (0/1y, ) — Homy (o, 1) — Homy (1y, 7)

and hence Homy (o, 7) is finite-dimensional as Homy (o/1y, 7) and Homy (17, ) are finite-dimensional.
U

Remark. This is false if the characteristic of £ is # p (G = Q, gives some easy examples).

Lemma 22. If m # 0 is an admissible G-representation, then m contains an irreducible subrepre-
sentation.

Proof. Fix an open pro-p subgroup U of G. Then, for any nonzero G-subrepresentation 7 C =
we have 0 # 7V C 7Y, As 7V is finite-dimensional we may pick 7 such that 7¥ has minimal
(nonzero) dimension. Then the G-subrepresentation 7’ generated by 7U is irreducible, as any
nonzero subrepresentation ¢ C 7' must have oV C 7YV = 7U but also dim ¢V > dim 7Y, so

o DoV =7V and hence o = 7. O

Lemma 23. Here we take G = GL,,(Q,). Suppose that w is any smooth G-representation. Then
7 is admissible if and only if ™ has finitely many weights (counted with multiplicity).

Proof. Assume 7 is admissible. For any weight V' its multiplicity in 7 is the dimension of Hom g (V, 7) =
Hom g (V, 7% (M) which is finite-dimensional as 7%(1) is. As there are only finitely many weights, 7
only has finitely many weights counting with multiplicity.

For the converse, by Lemma it is enough to show that 7% is finite-dimensional. We have
7TK(1) = HomK(l)(lK(l)a 7T) = HomK(indg(l) ]-K(l)u 7T)

with indf(l) 1k (1) finite-dimensional. As in Lemma Hompg (o, ) is finite-dimensional for any

finite-dimensional K-representation ¢ by induction on the number of irreducible subquotients in

o where the base case Homg (V,7) finite-dimensional for irreducible V' is the hypothesis of the
lemma. g
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Remark. By this lemma and what we have proven earlier, all principal series representations are
admissible, as well as x o det and St @(x o det) for any smooth character x : Q; — E*.

Lemma 24. Take G = GL,(Q,).

(i) (Schur’s Lemma) If 7 is an irreducible admissible representation, then Endg(n) = E.
(ii) Any irreducible admissible representation m of G has a central character xr : Q) — E*.

Proof. (i) Let ¢ € Endg(n). Then 75() £ 0 is finite-dimensional and ¢(7% (1)) C 751 50 ¢ has
an eigenvector 0 # v € 75 with eigenvalue A € E say, so Ker(¢ — A -id;) # 0. But it is also a
G-subrepresentation of 7, and hence must be 7 itself as 7 is irreducible, so ¢ = A - id.

(ii) If z € Z(G), then z € Autg(m) (thinking of z as an automorphism of the underlying vector
space; since z is central it intertwines the G-action). Moreover this map Z(G) — Autg(w) is a
group homomorphism. But Autg(m) = E* by (i) and Z(G) = Q,, so we obtain a character
Q, — E*. O
Remark. This result is not know if we merely assume 7 to be smooth and irreducible. Neither is it
known if any smooth irreducible © with a central character is admissible, except for n = 1, 2.

10. CLASSIFICATION OF IRREDUCIBLE ADMISSIBLE GL2(Q),)-REPRESENTATIONS

In this section we are back to be the case G = GL3(Q,). Let 7 be an irreducible admissible
representation of G and let V be a weight of 7, then Homg (V, 7) is nonzero and finite-dimensional
(i.e. the multiplicity of V in 7 is finite, by admissibility of ) and moreover a module for the
commutative algebra Hg (V). Hence we may find 0 # f € Hompg (V,7) which is a simultaneous
eigenvector for all elements of H¢g(V), i.e. there is an algebra homomorphism x’ : Hg(V) — E
such that

fro=x')f
for all ¢ € Ha(V). So we get a G-linear map surjection ind% V ®pe(v) X — 7. Recall that for
principal series representations we found that x/(77) # 0.

Definition. An irreducible admissible G-representation 7 is called supersingular if, for any weight
V', the following two equivalent conditions hold:

(i) Ty is nilpotent on Homg (V,7) (i.e. the only eigenvalue is 0).
(ii) Homg (V,7)[T; ] = 0.
Theorem 25 (Barthel-Livné). The irreducible admissible G-representations w fall into the following

4 disjoint categories:

(1) Irreducible principal series Ind%()(l ® X2), X1 7 X2-

(ii) One-dimensional representations x o det, x : Q, — E* smooth character.
(iii) St®(x odet), x : Q5 — E* smooth character.
(iv) Supersingular representations.

Remark.

(i) Barthel and Livné proved this under the (a priori) weaker assumption that 7 is smooth
irreducible and has a central character.
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(ii) Any supersingular representation is by definition a quotient of ind?( V ®peevy X with
X'(T1) = 0. Breuil showed that all these representations are irreducible (and hence super-
singular). This gives a classification of supersingular representations of GL2(Q,). A nice
proof can be found in Emerton’s paper “On a class of coherent rings, with applications
to the smooth representation theory of GL2(Q,) in characteristic p”. Work of Breuil and
Paskunas shows that, for GLa(F') with F' a proper finite extension of Qy, these compact
inductions typically (always?) have infinitely many non-isomorphic irreducible admissible
quotients.

Proof. We know that the four cases are disjoint and that all representations in them are irreducible
(in the cases (i)—(iii) we proved this, for (iv) this is in the definition). Moreover we have also proved
that the Hecke eigenvalues and the weights determine the characters x; and y2 in (i) and x in (ii)
and (iii). Let 7 be any irreducible admissible representation of G. We need to show that 7 is in one
of the four categories above, so assume that 7 is not supersingular and let V' be a weight of = and
X' : Ha(V) — E an algebra homomorphism with y/(71) # 0 such that ind$ V Ouevy X — . If
dim V' > 1, then ind% V @uewy) X' = Ind%x by Theorem where x is determined by

X‘T(Zp) = VU(]Fp)a

1
(o y) =vazo

p 0\
o
and hence 7 is in one of (i)-(iii). If dim V = 1 and x/(T? — Ty) # 0, then by Corollary

ind%’; V @ugvy X' = ind%’; V' @3 (vy X' where V' is the unique weight such that dim V' > 1 and

! ~ 1 . . . .
VU(FP) = Vo, This then brings us into the previous case.

Now assume dim V = 1 and x/(T? —T») = 0. By replacing 7 with 7® (nodet) where (nodet) ! |x =
V and n(p) = x/(T1), we may assume that V = 1x and x'(T1) = x'(T2) = 1. We claim that
ind% 1 ®35(vy X has finite length and that (indf( I @ugvy X')* = (Ind% 145)%; if this holds
then we are done. We will need the following two facts:

(i) (ind% 1x)[TY] is a free He (V[T ]-module.
(ii) (ind$ St)[T7 Y] is a free He(V)[T; }]-module.

The second fact follows from Theorem [I6] The first follows from comparison of Theorem [I6] for 15
and St.

Next, let us write Hg for He(1x) = He(St) (identified as in Section . By Proposition |19 there
are Hg- and G-linear maps

w- __
ind% 15 = ind% St
ot
such that ¢~ o T = ¢ 0 p™ =Ty — T} (scale so the second equality holds on the nose). Let
ind% 1 ind% St

(T, - )imdS1x’ (- )indS St
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Then we have induced maps
e et e
T—=0-—T-—0
(by abuse of notation) between the quotients that are both G-linear and Heg/(T) — 1) = E[TS]-

linear, and ¢~ o ot = ¢t 0~ = Th — 1. By the facts above, o and 7 are free E[T5']-modules
(as He T/ (Ty — VHe[TT Y] = He/(Ty — 1)) and hence Ty — 1 acts injectively on ¢ and 7, so
- " -
25 0 25 7 25 o may be viewed as a chain of submodules
(T, —-1)rC (T, —1)c C7Co.
Now G =
T lndK St . G &o G
= — 2 ind; St® "~ Ind%(15

(T =17 (T4 —1,T, —1)ind% St KOG X 5(15)
where the last isomorphism comes from Theorem Hence both 7/(T5 — 1)7 and its subrepresen-
tation (Tp — 1)o/(Ty — 1)7 & o /7 are of finite length and

, ind¢ 1
(Hld?( 1x QHe(V) X’) = ( K K ) o~

(Ty —1,Ty — 1) ind% 1

o) o) o)

which is what we wanted. O

Definition. An irreducible admissible representation is supercuspidal if it is not a subquotient of
a principal series representation.

Corollary.

(i) 7 is supersingular if and only if it is supercuspidal.
(ii) An irreducible admissible representation © “has constant Hecke eigenvalues”.
(iii) All principal series representations have finite length (which is 1 or 2, this is not really a
corollary but was proved earlier).

11. WEIGHTS FOR GL,

Let us state some results from the modular representation theory of GL,, (F,):

Theorem. The irreducible (smooth) representations of GL,(F,) (over E) are parametrised by
equivalence classes of n-tuples v € (v1,...,vn) € Z™ such that 0 < v; — vy < p— 1 for all
1<i<n-—1, wherev and v' are equivalent if vy —vy = -+ = v, —v), € (p—1)Z. The total number
of equivalence classes is p"~1(p — 1). We write F(v) for the representation corresponding to v.

We will now give an explicit description of F(v). We may regard v as a character T(E) — E*
defined by
diag(t1,...,tn) € T(E) — t7* - trm.
Let
W(v) ={f € Oar,(r | f(tug) =v(t)f(9) VteT(E), ucU(E),g€e GL,(E)}

where we let Ogr,,(g) denoted the ring of regular functions of GL,(E), i.e. the functions f :
GL,(E) — E such f(g) is a polynomial in the matrix entries g;; of g and det(g)~!. We let GL,,(E)
act on W(v) via the right regular representation (g - f)(x) = f(xzg). This is a finite-dimensional
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representation of GL,(E) (one can see that W (v) is in fact the space of global sections of a line
bundle on the projective variety B(E)\ GL,,(E)).

It turns out that W (v)V(®) is one-dimensional (roughly, f € W (v)V () then f(1) determines f on

the big cell, which is Zariski dense in B(E)\ GL,(F)). F(v) is then the GL,(E)-, or as it turns

out, the GL,, (F,)-subrepresentation generated by W (1)V(#).

Example.

(i) n=1: f(x) =2 up to scalar.

(i) f( “ Z ) =a" " det( CCL Z ) spans W (v)V(F), The elements

&
a b 7 l/171/27i a b "
fi<c d)ab det(c d>

for 0 <i <1y — vy span W(v) = F(v).
Remark.

(i) dim F(v) is not known in all cases. For p > 0, there is an algorithm to compute the
dimension, based on a (proven) conjecture of Lusztig.
(ii) dim F(v) =1 if and only if »; = --- = v,,. Then F(v) = det”.

If V is a weight and P = M N is standard parabolic then VN F») and VN, are irreducible M (Fp)-

representations and the natural map VNFe) — VN(]F,,) is an isomorphism. In particular, VU (Fs) ig
an irreducible 1-dimensional representation (isomorphic to Vﬁ(ﬂ?p))' Explicitly, if P = P,,, ... n, then
M =T], GL,, so
F)NE) = Fug, .o vn,) @ @ F(Un—n i1y Un)-

There is another parametrisation of the weights. They are in bijection with pairs (6, M) where
0 : T(F,) — E* is a character and M is a standard Levi such that 6 extends to M (F,). Explicitly,
the parametrisation is given by V + (0y, My ) where 6y = VUE) and My is the largest standard
Levi M such that VV(F») are preserved by M(F,) (hence by P(F,)). Equivalently, V¥®r) is one-
dimensional.

Remark. Py (F,) = Stab(VU(F») C V) (since the stabiliser contains B(F,) it must be a standard
parabolic).

Example (n = 2).
F(avb) — (Xa,va) if a 7é b,
b
F(b,b) — (det,G) if a=0b.

Example (n = 3).
F(a,b,¢) — (Xap,e, T) if a>b>c¢,
F(b,b,¢) — (Xbb,e, Po1) if a=b>c¢,
F(a,b,b) — (Xapp, Pr2) if a>b=c,

b
F(b,b,b) — (det,G) if a=b=c.



THE MOD p REPRESENTATION THEORY OF p-ADIC GROUPS 29
12. MOD p SATAKE ISOMORPHISM

Let us start by recalling the Yoneda Lemma. Let C be a category and let A and B be objects of C.
Suppose that

Home (A, —) - Home (B, —)
is a natural transformation, i.e. a collection (¢c)ceopc) of maps such that for all morphisms
f : C — D in C, the diagram

Home (A, C) —2<> Home (B, C)

l fo- l o

Home (A, D) —22> Home (B, D)

commutes. Then the Yoneda Lemma says that there exists a unique ¢ : B — A such that
wo(f) = go f for all morphisms f and objects C. Explicitly, g = pa(ida).

Let P = M N be standard parabolic and V' a weight.

Lemma 26. There is a natural isomorphism of functors from smooth M -representations to E-
vector spaces

Homg (indf; V, Ind{(—)) 2 Homyy (ind}f ) Ve, )» —)
(cf. the proof of Proposition . We will denote the map by f — far.
Proof. We have
Homg (ind$ V,Ind$%(—)) = Homg (V, Ind%(—)|x) =
= Hompg (V, Indg(z,,)(—W(Z,,))) = Homp, (V. —|m(z,)) =
= Homs(z,) Ve, ) —m(z,)) = Homar (indif ) Ve, ) —)

where the first, third and fifth natural isomorphisms are Frobenius reciprocity, the second comes
from the Iwasawa decomposition and the fourth is the universal property of the coinvariants. [

Any ¢ € Hg(V) induces a natural endomorphism of the functor Home (ind%. V, Ind%(f)), hence of
HomM(ind%(ZP) VN(]pr —). The natural endomorphisms of HomM(ind%(Zp) VN(IF,,)’ —) are given
by End M(ind%(zp) VW(FP)) by the Yoneda Lemma, i.e. we get a unique endomorphism
S (¢) € Endyr (indjrez,) Vi, ) = Har (Viye, )
where the equality is the definition of the Hecke algebra H M(Vﬁ(mp))~ S () is characterised by
(fo@)nr = fur o SF (¢).
Sé‘;/[ is an algebra homomorphism. To prove that it preserves multiplication we note that, for all f,
frr o SE (p1owa) = (fopiowr)n =

= (fopi)m 0o SH (p2) = far 0 S (1) 0 S¥ (p2).

The uniqueness in the Yoneda Lemma then implies that S¥ (o1 0 p2) = S¥(¢1) 0 S¥(p2). A
similar argument shows that S is linear as well.
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Proposition 27. We have the following explicit formula for S :
SE(@)m) = Y pyop(nm)
REN(Zp)\N
for all m € M, where py is the projection V —» VF(FP) and we are viewing ¢ as function G —

Endg(V) and S¥ (¢) as function M — EndE(VN(FP))' The sum on the right-hand side is a sum of
linear maps V. — VN(]FP) and implicit in the statement is the assertion that the sum factors through
V- Vﬁ(]F,,) to a map VN(FP) — VN(FP)'

Proof. 1If o is a smooth M-representation, f : V — Ind%(a)h( and far @ Ve, = olue,) are
related by the equation
f)(@) = fu(pxv))

(cf. the proof of Proposition . By definition, (f*¢)n = far * SX (). To determine SY () take
“fa =1d”, so 0 = ind%(zp) VN(F,J) and via Frobenius reciprocity,

fu : Vs, — indir,) Vag,)

z— [1,2].

Forv eV,

(f *e)u(py(v)) = (f * ) (0)(1) =

= Y (g Hlelgm) @)= Y flel@v)g™).

geK\G geEK\G
By the Iwasawa decomposition we have

K\G = K\(KP) = (PN K)\P = P(Z,)\P.
Using Lemma [28| (iii) below with P = M x N and the subgroup P(Z,) = M(Z,)N(Z,) we get
S feeme = Y Y fe@mp)m i) =

gEK\G meM (Zp)\M RN (Z,)\N
> S mt flelim)v) (1)
meM(Zp)\M #ReN(Z,)\N

Now f(e(rm)v)(1) = fu(px(p(m)v)) = [1, px(p(m)v)] and hence
> S omT e flem)(1) = Y mh > (pxop(nm))y
mEM (Zp)\M ReN(Z,)\N meM (Zp)\M REN (Zp)\N

So under Frobenius reciprocity, S (¢) corresponds to the map Vi) — ind%(zp) Vi) lmz,)
given by

which is the element

mi— | pg)— Y (pyoe(m))
neN(Z,)\N
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of Har(Vig(r,)), which is what we wanted to prove. O

Next we state the lemma used in the proposition:
Lemma 28.

(i) Let T be a group, Y <«T a normal subgroup and T'o C T a subgroup. Moreover, let A be an
abelian group and ¢ : To\I' = A a function. Then

doovt= Y, > v

YETO\T Y ELoY\I' \ye(YNl'o)\Y

(ii) If in additionT = X x Y and 7 : T' — X is the associated projection, then

Yoovt = Y Y. lya)

’YEFQ\F IEﬂ(FQ)\X yE(YﬂFo)\Y

(iii) If moreover Ty = (To N X)(To NY), or equivalently m(Ty) =Ty N X, we get

oty = ). > Wly)

~ELO\I' z€(XNCH)\X \ye(YNTo)\Y

Proof. (i) Wehave I' = [[ToY+' and Y NTy\Y — T'o\I'zY (induced from the inclusion Y — I'yY")
and hence

r= J] I Tow

7' €LY \I' \ye(YNLo)\Y
which implies the formula.

(ii) 7 induces an isomorphism I'oY'\I' = 7(T5)\ X and hence we may substitute the outer sum to
a sum over 7(Tp)\ X.

(iii) Immediate from (ii). O
Remark.

(i) We could have defined Sé\f by the formula in Proposition and then proved all the
properties. However, the approach taken is more efficient.
(ii) When M =T, we will write Sg for SZ.
(iii) As a special case, take V' = 1g, P = B. Then Sg : Ha(1x) — Hr(1p(z,)) is given by

pr— [t— Z p(ut)
we€T(Z,\U

As an aside, let us consider the classical Satake transform over C. There we have the Hecke algebra
HE, of compactly supported functions ¢ : G — C such that p(kigks) = ¢(g) for all ki, ks € K
and g € G, and Hg the Hecke algebra of compactly supported functions v : T — C such that
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W(st) = Y(t) for s € T(Z,) and t € T. Then the classical Satake isomorphism S is the map
HE — HE

(at)da
U
where du is Haar measure on U, normalised so that fU(Zp) du =1, and § is the modulus character
of B, defined by

© —> (t — 6(t)*1/2/

diag(tr, -y tn) > 12|~ D |7 g L
The Weyl group W = S, acts on T' = Q, X --- x Q, by permutation of factors. Then the theorem
of Satake is:

Theorem (Satake, 1963). S is an injective algebra homomorphism with image HW (the W-
invariants of Hr ).

Remark.

(i) For a reference, see Cartier’s article “Representations of p-adic groups: a survey” in the
Corvallis volumes, or Gross’s article “On the Satake isomorphism”.
(i) HS = C[T/T(Z,)] = CIT{, ..., TF] and W = S, acts by permutation of the variables.

Now let us return to our case. Let P = B, and define
T~ = {diag(t1,...,tn) | ordy(t1) < --- <ordp(ty)}.
T~ is a submonoid of T" and we may therefore defined a subalgebra H;(Vﬁ(FP)) C /HT(Vﬁ(FP)) by

Hr (Vow,) = {1/’ € Hr(Vw,)) | supp(¢) € T7}~
Then we have:

Theorem 29. Sg = S& : Ha(V) — HT(VU(FP)) is an injective algebra homomorphism with image
Hr (Vi,))-

Proof. Let us, to ease notation, put Hg = Ha(V), Hr = Hr(Vge, ) and Hy = Hy (Vi) for
the duration of this proof.

Step 1: Find natural bases for H¢ and Hyp (cf. Theorem [13).

Put A=Z"and A_ ={\€Z" |\ <--- <A\, }. For A € A, let t) = diag(p™,...,p*) € T. The
Cartan decomposition then says that G = [[,., KtxK. Suppose that ¢ € H¢ has support Kty K

for some A € A_. As in Theorem [13[specifying ¢ is equivalent to specifying an operator ¢(ty) such
that

k1o p(ty) = @(ty) o ko
whenever kity = tyko. Then ki € tAKtxl N K, so ky is of the form (a;;) with a;; € Z, for i < j
and p*~*a;; € Z, for i > j, and conversely ks is of the form (b;;) with b;; € Z, for i > j and
pri—A bi; € Z, for i < j. X determines a standard parabolic P_y = P,,, ., where the n; are
defined by
)\1 :...:)\nl <)\n1+1 :"'<)\n—nr+1 ::/\n
Put Py, = P_,. Then we have
mn o (i) = (i) o mi
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for m € M\(F,) = M_x(F,), n € N_»(F,) and 7o € Ny(F,), hence ¢(¢) factors through to a map
VNaE,) — VN-2(Fp) By Section we know that there is a unique such map up to scalar, and
hence a unique such projection. We call the corresponding Hecke operator T, and the (Th)rea_ is
a basis for Hg.

For H the situation is somewhat simpler. Hr is the algebra of functions ¢ : T — End E(VU(FP)) =

E with compact support and such that ¢ (tot) = toe(t) for all ¢y € T(Z,) and t € T. We have an
isomorphism T'/T(Z,) = A given by

diag(t1,...,tn) — (ordy(t1),. .., ordy(tn))

and under this isomorphism T~ /T (Z,) corresponds to A_. Therefore there exists a unique 75 € Hr
whose support is tA\T(Z,) and such that 75(¢x) = 1. Then (7x)aea is our desired basis for Hr, and
(Ta)aea_ is a basis for H.

Step 2: S¢ is injective.
If, for some A € A_, p € A,
(ScTy)(t,) = pgro Ta(ut,) #0
a€U (Zp)\U

then there is a @ € U such that ut, € KtyK, or equivalently Ut# NKtyK #0.
Fact 1. This implies that p > \, where

LA e Z%l i = 22:1 N Vr <nand

Dimt i =i i

(note that > is a partial order on A).

Fact 2. Uty N Kt K = U(Zp)b\ forall e A_.

We deduce that
ScTy = Z auty,

HEA, p>X

(from Fact [I[) with ayx = 1 (from Fact [2). Now, suppose that Sg(¢) = 0 for ¢ # 0. Choose
Ao € A_, minimal with respect to <, such that Kt), K C supp(¢). Then by the above equation,
supp(Sa(p)) 2 T(Zy)ty,, a contradiction. Hence Sg is injective.

Step 3: Suppose that ¢ € Hg, p € A is such that Sg(p)(t,) # 0. Then p; — pip1 < 1 for all 4.
Suppose that there is a k such that pp — pr4+1 > 1. Fix such a k. Let
Uy, = {(aij) € GL,(Qp) | ais = 1, axt1., € Qp a;j = 0 otherwise}

and let UI be the kernel of the homomorphism 7 : U — Q, given by (aij) — a1,k We have
U =T xUg. Clearly n(UNK) = Z,. By Lemma ii)7

Sa(@)(ty) = Y. ppoelut)= > Y ppoe(uxt,)

G€T(Z)\U U, €UL(Zp)\Ur \weU (Z,)\U'
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Put u), = t;lﬁktu, by a change of variables we get that the above sum is

> Y ppoe(@t,ul)

17 _ 7/ =
ﬂ;ceilfik a' €U (Zp)\U
t Uk (Zp)ty

Next, note that p(gk) = ¢(g) o k = ¢(g) if k € K(1). Hence ), only matters modulo Uy N K(1).
7 maps Uy isomorphically onto Q, and identifies Uy (Z,,) with Z,, t;'Ut, with pt* =17, and
Uy N K(1) with pZ,. To simplify notation somewhat, put

) = > ppoe(@tu),
@ eU (Z)\U'

i.e. it is the inner sum in the formula above it. Identifying subgroups U}, of with their image under
m and using Lemma (ii), we get

Y w@= Y > (@ + o)

2€Qy /pHh TR+ Ly, ©2€Qp/PLp \a1€pL, /pHk~IH 1L,
We noted above that ¢(z1 + x2) = ¢(z2) for 21 € pZ, (2 U N K(1) ) and hence
Z Y1+ @2) = p T Y (g) = 0
w1 EPLy [pHE TR+,
as (i — prt1 > 1, so Sa(p)(t,) = 0 which completes Step 3.
Step 4: The image of S¢ is contained in H..

Since (Th)xea_ is a basis for H¢ it is enough to show that supp(Sg(Th)) € T~ for all A € A_.
Suppose that Sg(Tx)(t,) # 0 for some p € A — A_. Fix a k such that there is a p € A — A_ with
Sa(Th)(ty) # 0 and pg — pgq1 > 0. Put

supp(A) = {1 € A | Se(Tn)(t,) # 0}

This is a finite set since Sg(T») has compact support (and we assume that it is not contained in
A_). Consider the group homomorphism w : A — Z" defined by

W) = (ke — P15 ka1 — P42y - - -5 =1 — Hic)-

We claim that w is injective on supp(A). If p € supp(A) then p > A, in particular > u; = > A,
and this together with w(u) determines p, showing the injectivity.

Next we introduce the lexicographic (total) order <, on Z". Choose p € supp(A) such that w(u) is
maximal with respect to <,. In particular puy — pgr+1 = 1 (by Step 3) since we have assumed that
supp(\) € A_. We claim that Sg(T%)(t2,) # 0. This would contradict Step 3 and hence finish the
proof of Step 4. Since Sg is an algebra homomorphism we have Sg(T7) = Sg(Th) * Sc(Th). Using
the formula for * and evaluating at ¢, we get

> Sa(Th)(tw) o Sa(Ta)(taut, ),

ueA
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identifying A = T/T(Z,). If the p/-term is nonzero, then p', 2u — ' € supp(A) and hence
w(p'), w2p — p') <p w(p) by maximality of x. But then
w(2p) = w(2p — 1) +wp') <ewp) +wp) = w(2p)

so we must in fact have equality. By injectivity of w on supp(\) we may conclude that p' = p, so
the sum above collapses into (Sg(T))(t,))? which is nonzero, since Si(T)(t,) is a nonzero scalar.
This completes Step 4.

Step 5: Sg is surjective onto H.

It is enough to show that ¢, € Im(S¢) for all 4 € A_ as these form a basis for Hy. Fix p e A_.
We claim that the set > () = {\ € A_ | A > p} is finite. This follows from noting that for such A,
1 < A1 < - <\, < g and hence the claim follows. Next we claim that the matrix expressing
Sa(Ty) in terms of the 7y for A\, X' € > (p) is invertible. Note that this completes Step 5.

To show this, for all A € > (u)

Sa(T) = > axata
ASNEA-

with ayy = 1 for all A € Y (u) (see just above Step 3). So if we extend > arbitrarily to a total
order on } (), the matrix (axa)xxex () is triangular with diagonal entries = 1. O

For 1 <i<mn,let \; =(0,...,0,1,...,1) € A_ with n — i zeroes and ¢ ones. Put t; =t\, € T,
T;,=T\, and 7, =Ty, € HT(V?(]FP))-

Corollary. Hq (V) is commutative. It is an integral domain of finite type over E. Explicitly,
He(V) = E[Th, ..., Th1, T

n

(canonically; these are really the T; above and there are no relations) and Sq(T;) = ;.

Remark. The last part does not generalise to other groups.

Proof. Hg = Hp with a basis 7y, A € A_. It is easy to check that 7y * 7, = Ty, for A, u € A.
Thus the inclusion H; C Hrp is the inclusion E[A_] C E[A] and we see that H¢ is commutative.
Since A =Z>oA1 @ -+ B Z>oAn—1 B ZX,, as a monoid we get that H, = E[T4, ... Ty, TEY, s0
it is a finite type integral domain over E. It remains to show that Sg(T;) = 7; for all i. We know
that

Sa(Ty) = Z auty,

A<peEA_

with a) = 1. It is easy to check that if u > \; and p € A_ then in fact p = A; and hence S (T;) = 74
as desired. O

Exercise. Work out the Satake isomorphism more generally for products GL,,, (Q,) X - - xGLy,, (Q,).

_____ n, be a standard Levi of GL,, and let V be a weight of M(Z,) = M N K. The
Satake transform from the exercise above is an injective algebra homomorphism

Su s Hu (V) = He(V ooy ,))
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with image those ¥ € HT(V(ﬁm M)(Fp)) whose support lies in the subset T—™ C T of those
diag(ty,...,tn) € T such that (ord(¢1),...,ord(¢,)) € A_ ar, where A_ ps is defined by

AL < < Ay,
)\n1+1 S . S )\n1+n27
/\n—nr+1 << )\n

Proposition 30. We have a commutative diagram

M

S
Ha(V)—=Hu(Vye,))

Sa
S

Hr(Vor,))

Hence S is injective. Moreover, SY is a localisation at one element, i.e. there exists a T € Hea(V)
such that the induced map Ha (V)T — Hy (Vi(w,)) is an isomorphism.

Remark. U = (UN M) x N and hence (VW(F,,)) U(F,)"

(UNM)(F,) -

Proof. Ind%(—) = Ind%(Ind%[m o

(=)) so by Lemma [26| we have natural isomorphisms
Hom s (indy7(z,) Viye, ) Indig (=) 2 Homg (ind% V, Indg(—)) = Homy (ind7z,) Vi, ) —)-

Let us denote the isomorphism from the first to the third object by f — fasr, then, using the
notation in Lemma by definition we have (far)m,r = fr. Also by definition we have, for all
¢ € Ha(V) and f € Homeg(ind§ V, Ind% —),

(few)r = froSa(e).

Moreover (also by definition),
(fo)r = ((foo)mmr = (fur o SF (9))mr =

= (far) e © Su(SE () = fr o Su(SE ()

Hence the uniqueness in the Yoneda Lemma implies that Sg = Sy o S, i.e. we get the commu-
tativity of the diagram. To prove the second part, note that we have

Hr(Vie,)) = E[A],
Im(Se) = E[A_],
Im(Sy) = E[A— m).
Thus S} may be identified with the inclusion E[A_] < E[A_ ). Pick A € A such that
A==, <Ayl = = Anygny < - -

Then A_ py = A_ + ZX as monoids (since ZXA C A_ p; and for any X € A_ py and X' +mA € A_
for m > 0) and hence

EA ], = B[A_y]
which is what we wanted to prove. O
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Remark. We could also have proven the first part of the proposition by using the explicit formulae.

Two weights. Let V and V' be weights and let P = M N be a standard parabolic. Lemma
implies that
Homg (ind V,Ind§ —) = Homus (indjy(z ) Vi, ), —)
and similarly for V'. Any ¢ € Ha(V, V') = Homg(ind$ V,ind$ V') induces a natural transforma-
tion
Homg (ind V', Ind% —) — Homg(ind% V, Ind% —).
By the Yoneda Lemma there is a unique S¥(¢) € HomM(ind%(ZP) VN(FP)’ind%(Z,,) Vﬁ(n_:)) =
HM(VW(IFPVV%(IF )). We get the same explicit formula for S (¢) as in Proposition By
uniqueness S¥ : He(V,V') — /HM(VN(]FP)’ V#(F )) is E-linear and whenever ¢ € Hqg(V, V') and
¢ € Ha(V', V") then
S& (¢ o9) = 85 (¢) 0 SF (#).
Proposition 31.
(i) S is injective.
(ii) Ha(V. V') # 0 if and only if Vg | = Vé(Fp) as T'(F,)-representations.
(ili) If Vog,) = Vﬁ(FP), then we can identify Ha(V) = Ha(V') via Sg, and for all ¢ €
Ha(V, V') and o' € Ha(V', V), pog' = ¢ op.

Remark. We saw an instance of the last part of (iii) in Proposition

Proof. (i) The same argument as in Step 1 of Theorem 29| shows that for A € A_,
1 if VNA(JF;.) = V&A(mp)a

dim {p € Ha (V. V") | supp(p) € KirK} = .
0 otherwise.

Also, if supp(p) = KA K, supp(Sc(¢)) € Uy<en T(Zp)t, (Fact [1) and

Sa(p)(t) = Y prowlits) =pgop(t)
aeU (Zp)\U
where ©(ty) is the composition
V= Vi, = (V)T v

where the middle isomorphism is M (Fp)-linear and hence unique up to scalar (determined by ¢; ¢
too is unique to up scalar). As N_y C U, Im(p(ty)) = (V/)N-2Fe) D (VU E) 50 So(p)(ty) # 0.
The same argument as in Theorem [29 shows that S¢g is injective. Since Sy o Sg[ = S¢ we deduce
that Sé\f is injective.

(i) By (i), Ha(V, V') # 0 implies that Hy (Vi ). VT’J(FP)) #0. If x,x' : T(Z,) - E* are weights
of T(Zy), then for any ¢ € Hr(x, x") we have, for t, € T(Z,) and t € T,

Y(tot) = x'(to)(t) = x(to)(t)

and hence x = X’ if ¢ # 0. Thus Vo, = Vé(FP). For the converse, if Vo, = Vé(Fp), pick A € A_

such that Ay < A2 < --- < A,. Then Ny = U and from the conditions for existence of Hecke
operators we see that there is a p € Hg(V, V') with support Kty K.
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(iii) Choose an isomorphism Vi ) = VE o . Then He (Vi ), Vi ) = He (Ve ) = He (VE

(Fp))

(Fp) U(Fp)
and hence
Sc(poy’) =Sa(p) o Saly') = Sa(¥') o Salp) = Sa(¢' 0 )
by the commutativity of e.g. HT(VU(F,,))‘ By injectivity of Sg, po ¢’ = ¢ 0. O

Remark. For V 2 V', Im(S¢) € Hy (Viw, ). Vi

in general.

(IFp))
13. COMPARISON OF COMPACT AND PARABOLIC INDUCTION FOR GL,,
Let P = MN be a standard parabolic subgroup of GL,, and V a weight. Recall Lemma [26} for a
smooth M-representation o, we have an isomorphism
Homg (ind V,Tnd$(0)) 2 Hom (ind3f (7, Vi, ) @)
which is natural in o and which we denote by f +— fus. By definition of S¥, (fop)a = faroS¥ (o)
for p € Ha(V).

Let o = indjyz ) (Vae,))s and let Fy @ ind% V = IndZ(ind37 s,y (Viyge,))) be such that (Fy)ar is
the identity. Then for all p € Ha(V),

(Fv o p)ar = id oSG (¢) = S (¢) oid = SF (9) o (Fyv)m
and hence Fyop = Ind%(Sg[ (p)) o, ie. Fy is Hg(V)-linear, where H (V) acts on the codomain

of Fy via Ind% S2F. This commutes with commutes with the G-action and hence we get an induced
G- and Har (Viy(y,))-linear map

ind% (V) @ (v) Har (Vige,)) = IndE(indazez,) Ve, ))-
Theorem 32. This map is

(i) injective and
(ii) surjective if V' is M -reqular.

Definition. V is M-reqular if My C M, where My is the unique largest standard Levi subgroup
L such that VU(F») C V is preserved by L(F,) (see Section .

Remark.

(i) This generalises Theorem In that case Hr (Vg )) = Ho (V)T
(i) When P = M = G any weight is G-regular and the theorem is trivial (the map is the

identity).
(iii) Let M = My,....n,. Then V = F(a) is M-regular if and only if a,, > an 41, Gnytn, >
Gy tngtls -« s Ann, > Qn_n,+1. For example when G = GLy, V = F(a,b) is T-regular if

and only if dim V' > 1.
(iv) The converse to part (ii) of the theorem is true; if the map is surjective then V' is M-regular
(Henniart, Vignéras).

Proof. (i) S is a localisation by Proposition [30]and H¢ (V) is an integral domain, so it is enough
to show that
Fy : ind% V — Ind§(ind}7z,) Vaye,))
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is injective. Suppose not. Pick a weight V' < (Ker(Fy))|x. By Frobenius reciprocity we get a
nonzero G-linear map

0 : ind§ V' —s Ker(Fy).

By the same argument that we used to show that Fy is Hg(V)-linear we get a commutative diagram

ind§ V"> ndS(ind3 ¢, ) Vige )

GT IndPSé/IGT

Gy Fvr & (ind
indf V —— Ind(indyy 7, ) Vﬁ(Fp))

By construction Fy 06 =0, so (Ind% S}6) o Fyyr = 0. Under Lemma [26| (Fy/) s is the identity on
ind%(zp) VX (,) hence
(Ind SY0) o Fyr)ar = SH0 =0

by naturality. Since S} is injective we must have § = 0, which is a contradiction. Hence FYy is
injective.

(ii) (sketch; similar to the case of GLy covered in Theorem

Pick z € VU(Fr) nonzero. Put fo = Fy([1,2]) € Ind%(ind%(zp) VN(FP))' One computes that
fo(mink) = [m, pyy (k)]

forme M, ne N and k € K.

Fact 3. py(vz) # 0 exactly when v € P(F,) - N(F,) if and only if V is M-regular.

This implies that the support of fo is P - N(Z,). We have an isomorphism

{f € maG(ina}z,) Vi )) [ supp(f) € P+ N | 5 €2 (N ind}fz, ) Vi )

by restriction to N. It maps fy to the function

. 1,z] ifneN(Zp,),
0 otherwise.

As in the proof of Theorem one then shows (using this isomorphism) that fy generates the
left-hand side of the above under the actions of P and H M(VN(]FP)) and that the left-hand side

generates Ind%(ind%(zp) V# as a G-representation, which finishes the proof of surjectivity. [

(Fp))

Corollary 32'. If V is M-regular and x : HM(VN(IFP)) — E is an algebra homomorphism then

there is an isomorphism
. .q ~ G M
1ndK |4 ®HG(V),X05GM E— Indﬁ(lndM(Zp) Vﬁ(FP) ®HM(VN([F,,>)7X E)

of G-representations (this generalises Theorem .

Proof. By the theorem we have a G- and H s (VW(FP))—lincar isomorphism

ind?((V) e (V) HM(VW(FP)) - Ind%(ind%(zp) VN(FP))
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and the actions commute. Now apply (—) @z, E to get a G-linear isomorphism

VN(FP))yX

e G M

lndK(V) ®HG(V),xosg E — Indﬁ(lndM(Zp) VN(]FP)) ®HM(VW([FP))»X FE
It remains to show that

G M o T AG (3 A M
Indﬁ(mdM(Zp) Vﬁ(]&)) ®H1VI(VW(]FP))1X E) = Indﬁ(lndM(ZP) VN(]F,,)) ®7{M(mep))7x E.
As HM(VN(IFP)) is noetherian the kernel of y is finitely generated and hence there is an exact
sequence
m X
for some positive integer m. Applying the right exact functor ind%(z ) VN(]F ) OHar (Ve y) (=) and
P P p

then the exact functor Ind%(—) gives the desired isomorphism. O

14. SUPERSINGULAR REPRESENTATIONS FOR GL,,

If 7 is an admissible G-representation and V is a weight then Homg (V, ) is finite-dimensional
and furthermore admits an action by the commutative algebra Heg (V). If Homg (V, 1) # 0 then it
contains a common eigenvector for the elements of Hg(V), i.e. it admits a character Hg(V) — E
as a submodule.

Definition. We define Evalg(V, ) to be the set of characters Hg (V) — E that occur as a sub-
module of Homg (V, 7) (note that this is a finite set).

In what follows we will often identify He (V) with He (Vi ) = Elr1, ..., To-1, 71 via S¢ (where
supp(r;) = T(Z,) diag(1,...,1,p,...,p), with n —i 1’s).
Lemma 33. Let w be an irreducible admissible G-representation and V' a weight. The following

are equivalent:

(i) For all x € Bvala(V, ), x(r) = - = x(7a_1) = 0.
(ii) For all x € Evalg(V,w) and for all standard Levi subgroups M # G, x does not factor
through S : Ha(V) — He (Vi,))-
(iti) Homg (V,7) @3 vy, 50 HM(VW(IFP)) = 0 for all standard Levi subgroups M # G.
Definition. An irreducible admissible representation is called supersingular if it satisfies the equiv-
alent conditions (i)—(iii) for all weights V.

Proof. Let us show that (i) is equivalent to (ii). The proof that (ii) is equivalent to (iii) will be
skipped and we will not need it.
Let M = M,, ... n,.. Recall that Sé\;/[ He(V) — HM(VN(IF,,)) is a localisation at one element. Let
us identify these two algebras with their images inside HT(VU(IFP))? we get
- - M
Hr(Voe,)) € Hr™ (Vor,) € He(Vig,)):
In Proposition [30| we saw that H;(Vg(Fp))[TA_l} = H;’M(Vﬁ(FP)), for any X that satisfies
A==y <A1 = = At < Anggmgt1 =00

Let us take A = (0,...,0,1,...,1,...,r —1,...,r — 1) with each ¢ € {0,...,r — 1} occurring n;;1
times. Thus 7x = Tu,4..4n, Tngt-tn, =+ Tn,- Hence a character x : Ha(V) = Hy(Vyg,)) = E



THE MOD p REPRESENTATION THEORY OF p-ADIC GROUPS 41

factors through S if and only if x(7)) # 0, i.e. if and only if X(7pn,+4.4n,) # 0 for 1 <i <r (note
that the case ¢ = 1 is automatic). This gives the equivalence of (i) and (ii). O

15. GENERALISED STEINBERG REPRESENTATIONS

We wish to understand the irreducible subquotients of Ind% 1. Let P be a standard parabolic
subgroup. Define

G
- G
Laorndgly

(note that Ind% 15 C Ind% 15 when P C Q). As special cases, we have Sp; = 1¢ and Spp, the
Steinberg representation.

Spp

Theorem 34 (Grosse-Klonne + €).

(i) Spp has a unique weight and is hence admissible.
(ii) Spp is irreducible.

Proof. (i) is not easy to prove (one needs to determine (Spp)/™).

(ii) Let x : Har(1ar(z,)) — E denote the Hecke eigenvalues of 15;. Then we get a nonzero M-linear
map

ind]\]\g(zp) 1M(Zp) ®HM(1M(Z,,))>X E =1y

Apply Ind%(—) to get a G-linear map:
Ind%(ind}y 7, ) Lar(z,) DHrr (Larzyy)ox B) = Ind% (1)

The left-hand side is isomorphic to ind% Ve @346V x0 s FE for any M-regular weight Vp such that
Ve~ = 157 by Theorem (32| This gives us a surjection ind% Vp — Spp and hence Vp occurs
N(Fp) K P

in Spp and generates it. By (1) this implies irreducibility of Spp. It therefore remains to construct
such a Vp. Explicitly, take

Vp :F((’I"—l)(p—1),...,(7"—1)(])—1)7(7“—2)(]?—1)7...)
where each (r —i)(p — 1) occurs n; times (M = My, ....n,). This is M-regular and (Vp)x @ ) is
F(r—Dp-1,...,r0 =1D(p—-1)@---®@ F(0,...,0) = 1,.
This finishes the proof (it follows from (i) that the Vp constructed above is unique; this is also easy
to see from the construction). d

Corollary 34'.

(i) The Spp are pairwise non-isomorphic.
(ii) The irreducible subquotients of Ind% 15 are the Spg for Q 2 P.
(iii) For the unique x € Evalg(Vp,Spp), x(1:) =1 for 1 <i <n.
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Proof. (i) Their weights are non-isomorphic.

(ii) This follows by an induction on the maximal number of elements r in a chain of parabolics
G=P 2P 22 P, = P, the case of r = 0 being trivial. See the exercises.

(iii) Vp lifts to Ind% 1% and hence embeds into Ind% 15. By Lemma using (Vp)ﬁ(m) =1m(z,)
and hence equal to 17z, as a T'(Z,)-representation, we have

HOIHK(VP, Ind% IE) = HOHIT(Z,,) (1T(Zp)7 1T)~

By definition the action of Hg (V') on the left hand side agrees via S¢ with the action of Hr (17 (z,))
on the right-hand side, and since each 7; acts as 1 on the left-hand side the result follows. O

Remark. Let m = Spp ®(n o det), for  : Q) — E* a smooth character. Its unique weight is
Vp @ (nodet)|x and its Hecke eigenvalues are given by x(7;) = n(p) ~*.

16. CHANGE OF WEIGHT FOR GL,,

Recall from Section that weights are parametrised by n-tuples a = (aq,...,a,) with 0 < a; —
ai+1 < p—1, with a and @’ giving the same representation if and only if p — 1 | a; — a;y1 for all .

Proposition 35. Let V = F(a). Suppose that there is a k such that ar, — ax+1 = 0 (equivalent to
V' not being T-reqular). Then:
(i) There ezists a unique weight V' = F(a') such that Vi ) = ‘%(Fp) and aj — aj,, = 0 if

and only if a; — a;+1 =0 and i # k.
+

©
(i) There are G-linear maps ind$% V = ind% V' such that (setting o = 1)
.
Sa(etop™)=Sale oot =72} — Tnek—1Tn—k+1.
(iii) Write Hg for Ha(V) = Hg(V') (identified via the Satake transform). Then for any
character x : Hg — E such that x(Tn—1)? # X(Tn—k—1)X(Tn—k+1),

nd% V @y E = indS V' @4 o E.

Remark. This generalises Proposition [T9]

Proof. (i) Recall from Section |11} that Vi ) = F(a1) ® -+ @ F(an). Hence Vi ) = Vé(F ) for
P

V' = F(d’) if and only if a; = @] mod p — 1 for all i. Hence we are forced to have

’ ’ A; — Qi1 le#k,
ai—ai+1= o
p—1 if i = k.

Conversely, this determines a’ uniquely modulo (p — 1)Z (embedded diagonally into Z™) and hence
we get a unique weight V' = F(a’).

(ii) By the proof of Proposition i) there are ™ and ¢~ such that supp(p®) = Kt\K, where
A=(0,...,0,1,...,1) € A_ (with k 0’s) (the condition is that Vi, &) = V]([A(Fp); Py = P i and

we have that both are isomorphic to F(ay,...a)®@F (agt1,---,an,) ). The proof that Sg(ptop™) =

T2 . — Tn—k—1Tn—k+1 (Up to non-zero scalar) requires work!
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(iii) By the proof of Proposition 31[iii) ¢t : ind% V — ind% V' is He-linear and similarly for ¢~
Hence we get induced G-linear maps
. G ﬂ G v/
indg V ®ugy £ 2 indg V' Qug y E.
o
The composite is x(7y_1)2 =X (Tn_k—1)X(Tn_k+1) which is a non-zero scalar and hence ind%. V@4
E=indZ V' @y, E. O

17. IRREDUCIBILITY OF PARABOLIC INDUCTIONS

Lemma 36. Let M = M,, .n, be a standard Levi subgroup. The irreducible admissible M -
representations are given by o = ®§=1 o; where the o; are irreducible admissible representations of
GL,,,(Qp). The weights of o are given by @._, V; where V; runs through the weights of o;. We
have a bijection

Evaly (V,0) = [ [ Evalcr, q,) (Vi o)

i=1
X — (Xi)s
where
X(Ta) = X1(T>\1.,...,>\n1 )XQ(T,\MH,...,,\HH,Q) s
for xe A_ .
Proof. Skipped. O

Theorem 37. Let P = MN = P, .. . be a standard parabolic. Suppose that o; is an irreducible
admissible representation of GL,,,(Q,) such that for each i either

(a) oy is supersingular and n; > 1 or
(b) 0i = Spp, ®@(n; o det) for some standard parabolic P; C GLy,(Qp) and n; : Q) — E*.

Suppose moreover that n; # mi+1 if o; and o441 are of type (b). Then Ind%(crl ® - ®o,) is
irreducible.

Remark.

(i) Note that any irreducible GL;(Q),)-representation is supersingular. Hence the condition
n; > 1 guarantees that (a) and (b) are disjoint (look at x(7;)).

(ii) As a special case, we get that when n; = 1 for all 4, Ind%(nl ® -+ ®np) is irreducible if
and only if n; # 7,41 for all i.

Proof. For admissibility, it is enough to show that each weight occurs with finite multiplicity. We
have
Homg (V, Ind%a) = HomM(Fp)(Vﬁ(Fp), o)

which is finite dimensional since o is admissible.

For irreducibility, suppose that 7 is a non-zero subrepresentation of Ind%o and let V' be a weight
of m. The strategy will be two divide into two cases:
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Case 1. If V is M-regular, we show that V generates Ind%o as a G-representation and we are
done.

Case 2. If not, we change the weight to show that m contains a weight V' that is closer to being

M-regular; iterate to reduce to Case 1.

Pick an Hq(V)-eigenvector
f: ind%V — 7 C Ind%cr
with eigenvalues x. By Lemma [26]
Homg (ind%. V, Ind% o) = HomM(ind%(Zp) VX, o)

as Hecke modules via the Satake transform S¥ : Hg(V) — HM(VN(JFP)) which is a localisation at
one element, which we may choose to be

™™\ = Tng4-n,.Tng+4n, " Tn,-

Since 7 acts invertibly on the right-hand side it acts invertibly on the left-hand side, so x(7) # 0,
and hence x extends (uniquely) to a character xps on H M(VW(FP))-

Case 1: V is M-regular.

Consider fjs (notation as in Lemma . farisan H M(VN(FP))—eigenvector with eigenvalues xas,
and hence induces

< M

indyr(z,) Vaw,) ©Hu (Vi) xw £ 0
Apply Ind%(f):

IndS(far ®x 5, id)
£ Ind% o

G 1M
Indﬁ(lndM(Zp) VN(]F,,) ®’HM(VN(]FP))’XM E
FV®XidT
e
indg V OHe(V)x E

where the horizontal arrow is a surjection by exactness of Ind%(—) and the vertical arrow is the
isomorphism of Corollary here Fy is defined by (Fy )y = id under Lemma Thus a copy
of V' generates Ind%a as a G-representation. We need to show that this is the same copy of V' as
we started with, i.e. we need to show the above composition is equal to f ®, id. To do this, it is
enough to show that the following diagram commutes:

nd$ fu

Ind$(ind3f ) Ve, ) Ind% o

Fy T /
ind% v

But we have (Ind% fa o Fyv)v = faro (Fv)m = fu, which implies Ind% far o Fy = f as desired.
This gives us that the copy of V' we started with generates Ind% o, and hence that m = Ind% 0.

Case 2: V is not M-regular.
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We have V = F(aq,...,a,) for some integers a; with 0 < a; —a;11 < p—1 for all i. Since V is not
M-regular there is an 4 such that, writing k = ny + -+ + ny, ap = ag+1. Fix such an ¢ and hence
the corresponding k. By Proposition [35(iii), provided that

X(Tn—k)? = X(Tn k4 )X (T k1) # 0

we may change weight to the V’ described in the proposition, which is closer to being M-regular.
We want to show that this holds; as ¢ will be arbitrary with the property ax = ax41 this will imply
that we can apply Proposition [35[iii) as many times as we need and hence reduce to Case 1.

Recall that x = Xar|ps(v). We know that xas(7,—x) # 0 because 7, is a unit in H (V5 N, ))

By Lemma
Vive,) =@V
j=1

where
ij = F(an1+~-+n]‘_1+1a SR an1+~-+n_7')
and y s corresponds to the collection (Xj)§:1 with x; € HomGLnj z,)(Vj,05). We have

XM (Tn k+1) Xz ..... 01 H X; ..... 1 :Xi(TO ..... O,I)XM(Tnfk)
and (remember that 74 is invertible)

i T
XM (Tn—k—1) = Xi+1( 70,1,. H X] MXM(TH—]C)
j=i+2 Xi+1(T1,...,1)

Hence
X(Tnfkr)Z - X(Tnfkfl)X(Tnfk+1) = XM(Tnfk)2 - XM(Tnfkfl)X]\/I(Tnfk+1) =
Xerl(TO 1,..., 1))

Xi+1(71,...1)
so since xa(Tn—x) # 0 we see that this is zero if and only if

= xm (Tn—)? (1 —xi(70,...,0,1)

Xit1(T1,...,1)
If o; is of type (a) (as in the statement of the theorem) then x;(70..0,1) = 0 (by definition) and
hence the above does not hold, which is what we want. Similarly, if 02+1 is of type (a) we have
Xi+1(70,1,....1) = 0 and we get what we want. Thus we need to deal with the case when o; and ;11
are of type (b), so put ; = Spp, @(n; odet) and 041 = Spp,, | ®(7i+10det) for standard parabolics
P; resp. Piyy of GLy,,(Qy) resp. GL,,,, (Q,) and smooth characters 7;, 1,41 of Q). Then

Xi(70,...01) =1.

Xi(70....01) = ni(p)
and
Xit1(T01,..1) i1 (p)~ (it =)
Xit1(Ti,.1)  miy1(p) i

= Nit1(p)-

Therefore
Xi+1(70,1,...1)  Ni+1(p)

X'(To ..... 0,1 =
‘ Xi+1(7'1,“.,1) Ui(p)
which is not equal to 1 if and only 7;11(p) # 7:(p). By assumption we have that n; # 7;11.
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Claim: 13|75 = nitalzx-

Note that this implies that 7; # n;41 if and only if 7;(p) # ni+1(p), which is what we want, and
hence would finish the proof of the theorem. To prove this, first recall that Spp has a unique
weight Vp, and that (Vp, )E(Fp) = lg,r,) (here we are using U; resp. T; to denote the upper-
triangular unipotent matrices resp. the diagonal matrices of GL,,(Q;)), hence Spp, ®(n; o det) has
a unique weight Vp, ® (1; o det) and (Vp, ® (n; o det))a(ﬂ?p) = 1; o det |r(z,). Hence we must have
Vi = Vp, ® (n; o det) and

(Vi)z,v,) = mi © det |1,

Since Vi = F(an, 4 4n; 1415+« - s Gny+-4n; ) We also have
Viow,) = Flan+dn_y+1) ® - @ Fan, 4...n;)
and hence (ny + -+ +n; = k)
Nilgx = Flan,4oin,41) =+ = Flan, 4.4n,) = Flag).

By the same argument replacing ¢ with ¢ + 1, we have that 771'“‘2; = F(ag4+1). Since ar = ag41,
this proves our claim, and finishes the proof of the theorem. O

18. CLASSIFYING IRREDUCIBLE ADMISSIBLE (G-REPRESENTATIONS

We want to show that any irreducible admissible G-representations is as in Theorem [37] We
have seen this for n = 1 or 2. Let 7w be an irreducible admissible representation. Pick a weight
V =F(ay,...,a,) of m and Hecke eigenvalues x € Evalg(V, ) and write Hg = Ha (V). Then

ind% V @y, E — 7.
By Corollary
ind% V @ B~ IndE(indyy e Va®,) @Haoxn E)

where P = MN = P,, ...

that V is M-regular and x factors through SY : Hg — Has. This is of course only interesting
if P# G. If P # G and the above happens, there is a smooth M-representation ¢ such that
Ind%a — 7. If ¢ is irreducible and admissible, we know that ¢ = 01 ® - -+ ® ¢, and by induction
each o; is as in Theorem [37}

T

is a standard parabolic subgroup and H,; = HM(VW(F,))), provided

Problem 1. If Ind%a —» 7, show that there is an irreducible admissible ¢’ such that Ind% o' — .

Problem 2. Show that the irreducible constituents of Ind%(ol ® -+ ® 0,.), with each o; as in
Theorem [37] are again as in Theorem [37]

V is M-regular if an,4...4n; # Qn,4-.gn;+1 for all . The easiest way to satisfy this is to take
r = 2, then, for P = P, ,_;, we want a; # a;y+1. The condition that x factors through Sé/[ then
becomes x(7,—;) # 0. There may not be such an i. If a; = a;41, we may try to change weight. By
Proposition we need a; = a;4+1 and

(T2 = Ta—ic1Tn—it1) # 0.

Recall that when we change weight, x does not change. When do both methods fail?
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Case 1. x(75,—;) = 0 for all i and all (V, x) of w. If this happens, 7 is supersingular by definition
and we are done. If not, pick (V,x) such that x(7,—;) # 0 for some i.

Case 2. Whenever we have x(7,,—;) # 0, we also have a; = a; 41 and x(72_; = Ty—i—1Tn—i+1) = 0
(and there is such an i). Arguing inductively, we see that x(7,—;) # 0 for all ¢ and hence
ay = -+ = a,. Denote the common value of the a; by « and put x(7,—;) = (,—;. Then
we have V = det® and from the relation (2, = (,—;—1(n—i+1 for all i (with (o = 1) we
deduce by induction that (; = Cf for all j. If we replace m by m ® (n o det), where 7 is
the character defined by n(z) = = for » € Z,\ and 7(p) = (1, we may without loss of
generality assume that « =0 and {; =1, i.e. V =1 and x(r;) = 1 for all 7.

We are then faced with:

Problem 3. Suppose that 1x < 7|x with eigenvalues x(7;) = 1 for all i. Show that 7 is as in
Theorem

Remark. It is not too hard to see that in fact 7 then has to be 14.

Let us first sketch the solution of Problem [2] For simplicity, let us take r = 2, the proof in the
general case is similar but notationally more complicated. By transitivity of parabolic induction
we have

Ind%(ol ®0y) = Indlcj—u(ﬁ R RTRT QR T))
where P; = M N; resp. P, = M3 N, are standard parabolic subgroups of GL,,, (Q,) resp. GL,, (Q,)

and Pjo denotes the standard parabolic subgroup of GL,,(Q,) with Levi subgroup M; x M, and

%1]-4711 (Qp)(Tl R ® Tk) and o9 = Ind}%L"z (@p)(,]_{ R-® Té) as in Theorem

Thus, Ind%(al ® o09) is itself as in Theorem [37] (and hence irreducible and equal to 7) unless
T = Spg, ®(n o det) and 7{ = Spg, @(n o det) for some character 7. Note that this means that
neither 7,1 nor 74 are of the form Sp ®(n o det), since ¢y and o are as in Theorem [37] Let us, in
order to further simplify notation, assume that n = 1. Then (for appropriate mj,ms)

L7"1 (Qp

1

we have written o1 = Ind

G
Indg; "15. — Spg, = 7

GLm, (Qp) _
Ind§2 2 g, > Spg, = T

S0 Ind%(al ® 02) is a quotient of

Liny (

1

Ling (

2

G G Qp) G Qp)
Indﬁ12(7'1®"'®7'k71 ®Ind§ 1@1®Ind§ 1§2®7—é®"'®7—é)

which is the same as

G GL'"L m (Q )
Indﬁ12 (M® - ®Tho1 ® Indélz 1+ma (Qp 1512 ® Té R ® Té)

where Q12 is the parabolic associated to @)1 and @2 in the same way that we got Pjo from P; and

P,. We know by Corollary that the irreducible subquotients of ndShmatma (@) g

0 o,, are of the
12

form Spp for parabolics R O ()12 so 7 is a subquotient of some
Ind%z(ﬁ R QT 1 XSPRATE R -+ @ T))

(by exactness of parabolic induction). But these are now of the form in Theorem hence irre-
ducible, since neither 7,1 nor 74 are generalised Steinberg representations. Hence 7 22 Ind%12 (m®
<@ Tp—1 ® Spr ®TH ® -+ - ® 1) which is what we wanted to show.
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Ordinary parts. Let P = M N be a standard parabolic. If 7 is a smooth G-representation then the
N-coinvariants 7 is a smooth M-representation (the “Jacquet module”). The association 7 — w5
is a (right exact) functor. We will write it as (—)x-

Lemma 38. Let m be a smooth G-representation and o a smooth M -representation. Then there is
a natural isomorphism
Homg (, Ind% o) = Hom (7, 0).

Proof. By Frobenius reciprocity we have a natural isomorphism Homg (7, Ind% o) = Homp(w, o).
The universal property of coinvariants gives a natural isomorphism Homp(w, o) = Hom (75, 0)
and the composition is our desired natural isomorphism. O

Remark. Since (—) is a left adjoint, we see that it is right exact.

For smooth complex representations one has:

(i) If 7 is admissible then 75 is admissible (in fact Emerton proved that this remains true in
characteristic p).
(ii) There is a natural isomorphism Home(Ind$ o, 7) 2 Hom (o, my) (due to Bernstein).

Note the Ind$ rather than Ind% in Property (ii). Property (ii) implies that (—)z is left exact for
complex representations. However, in characteristic p (—)5 is not left exact (and hence Property
(ii) must fail). Emerton defined a functor Ordp from smooth G-representations to smooth M-
representations in characteristic p which is left exact.

Fact 4. If 7 is admissible then Ordp 7 is admissible.

~

Fact 5. If m and o are admissible then we have a natural isomorphism Homg(Ind%o', T =
Hom (o, Ordp ).

Fact 6. If o has a central character then Homg (Indg o,m) — Homy (o, Ordp 7).

Fact 7. If o is admissible then Ordp(Ind%cr) =o.

Definition. Let P = M N = P, ., be a standard parabolic subgroup as above. We will let Z,
denote the center of M (isomorphic to (Q,)"). We define

Mt ={meM|mN(Z,)m™" C N(Z,)}.

The monoid M+ acts on 77V(%») by the following action (which we call the Hecke action):

NEN(Zyp)/mN(Zp)m—1
for m € M+ and z € 7N (%),
Then Ordp m = Map,,+ (M, WN(ZP))ZM,fim-te = Mapys+nz,, (Zu, WN(ZP))ZM,fZ—m-tE, where Map,+
(resp. Mapy;+ny,,) denotes M*-equivariant (resp. M™ N Zy-equivariant) functions and the sub-
script Zps-finite means those functions whose Z)/-orbit spans a finite-dimensional vector space. By
evaluation at 1, Ordp m embeds into 7V (%),

Now we are in a position to solve Problem [1] Recall that we have a surjection (see the paragraph
above Problem

Ind%(ind%(zp) VW(FP) OHar,xm E) .
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The representation ind%(zp) VW(IF,)) @22 £ might not be admissible, but it has a central char-
acter. By Fact [6] above we get

0 # Homg (IndZ(ind}7 7 ) Virge, ) @ xar B)s ™) = Homay (indir ) Viege, ) @#arxn B> Ordp )

and hence Ordpm # 0. Ordpw is admissible by Fact [4] (since 7 is admissible) and therefore
contains an irreducible subrepresentation o by Lemma [22] By Frobenius reciprocity, the non-zero
map o0 — Ordp 7 gives a non-zero map Ind%a — 7 (necessarily surjective since 7 irreducible),
which is what we wanted since o is admissible.

It remains to deal with Problem Recall that we wish to show that if 1x < m|x with Hecke
eigenvalues x such that x(7;) = 1 for all 4, 7 is of the form in Theorem We will show that either
7 = lg (in which case we are done) or Ordp 7w # 0 for some standard parabolic P # G. In the
latter case we get a surjection Ind%a —» 7 coming from an irreducible admissible subrepresentation
o < Ordp 7 as above, and we are done by the solution to Problem 2]

Remark.

(i) See notes at http://www.math.toronto.edu/ herzig/ihp.pdf, pages 24-25 for the case
n=2.
(ii) There is another proof due to Abe, mentioned in the notes above when n = 2.

We will not say more about the proof. All in all, modulo some details, we have established:
Theorem 39. Any irreducible admissible representation of G is of the form given in Theorem[37

Corollary 39'. Let w be an irreducible admissible G-representation.

(i) 7 has constant Hecke eigenvalues in the sense that all weights V' of m and all Hecke eigen-
values Evalg(V, ) the n-tuple (x(71),-..,Xx(7n)) is the same (in fact there exists a more
canonical and precise version of this statement).

(ii) Uniqueness: if IHd%(O’l ®- Qo) X Ind%(a’1 ®---®0l,) and both are as in Theorem

then P = P’ (hence r =r') and 0; = o} for all .

Proof. (i) By Theorem [39| we can take 7 & Ind% 0,0 =01 ® - ®0,, as in Theorem Let V be
weight of m. We have a H¢(V)-equivariant isomorphism Homg (V, Ind% o) HomM(Zp)(VN(]FP), o)
where Hg (V) acts on the right-hand side via S¥ : Hg(V) — /HM(VW(]FP))' Now each o; has
constant eigenvalues (it is supersingular or generalised Steinberg), hence o has constant eigenvalues
by Lemma so from the isomorphism Homg (V Ind% o) = HomM(Zp)(Vﬁ(]Fp), o) we deduce that

™= Ind%o has constant eigenvalues as desired.

(i) Let m = Ind% 0,0 =01Q--®0, be as in Theorem First let us compute the constant Hecke
eigenvalues of 7 using Lemma [36; In the i-th block, we have

0 if o; of type (a) and j # 0, n;,
X(Tj+ﬂi+1+"'+’m~) = 7£ 0 if o; of type (a) and J=0,ny,
X(Tnz‘+1+~~+nr)77i(p)71 7é 0 ifo;of type (b)


http://www.math.toronto.edu/~herzig/ihp.pdf
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Thus the zeroes determine the supersingular blocks of P. For 1 < k < n, suppose the k*" diagonal
entry does not belong to a supersingular block. We wish to determine n;. We have
X(Tnfk)
X(Tn—k+1)
by above. Also, 771-|Z§ = F(ay) for all weights V' = F(ay,...,ay) of m (see the end of Theorem

ni(p) =

37). Hence the weights and the Hecke eigenvalues determine all characters 7;, so as 7; # 7,41 this

~

determines all generalised Steinberg blocks and hence we get P. Thus if Ind%(ol ®- Qo) =

Ind%(a{ ®---®o,,) as in the statement of (ii), we have proven that P = P’. Thus, we can apply
Ordp to both sides. By Fact [7}

1R Qo = Ordp(Ind%(al ®--®op)) X OI'dp(Il’ld%(O'/l ®- Qo)) =0,® Q0.
and so we deduce from this that o; & o} by Lemma g

Corollary. Let P = MN be a standard parabolic subgroup and o an irreducible admissible M -
representation. Then Ind%a has finite length, all irreducible subquotients occur with multiplicity
one and they all have the same Hecke eigenvalues.

Proof. Write 0 = 01 ® -+ ® 0. By Theorem @ each o; is as in Theorem @ so in fact this was
Problem [2] of the proof of Theorem [39] O

Remark. The constant Hecke eigenvalues in this Corollary factor through #s: it is enough to show
this for a subrepresentation, in which case it is clear.

Definition. Let 7 be an irreducible admissible G-representation. 7 is said to be supercuspidal if

7 does not occur in Ind%a for any P # G parabolic and o irreducible admissible representation of
M.

Corollary. Let w be an irreducible admissible G-representation.

(i) 7 is supercuspidal if and only if it is supersingular.

(ii) (“Supercuspidal support”) There exists a unique standard parabolic subgroup P = M N and
unique o; irreducible, admissible and supercuspidal (up to isomorphism) such that w occurs
in Ind%(al Q- Q0.

Proof. (i) Assume that 7 is supersingular. If 7 occurs in Ind% o, with o irreducible and admissible,
then the Hecke eigenvalues factor through #,; by the remark above. Hence we must have M = G
and so 7 is supercuspidal.

For the converse, assume that 7 is supercuspidal. By Theorem |39 7 = Ind%(o’l ® - Qo) as
in Theorem 37} Since 7 is supercuspidal, P = G so m = oy and so 7 is either supersingular or
Spg ®(n o det) for some parabolic @ and character 7. But the latter occurs in Ind%(n odet) and is
therefore not supercuspidal, so 7 is supersingular.

(ii) Consider Ind%(al ® -+ ® o) with o; supersingular/supercuspidal for all i. Grouping together
adjacent characters among o; which are the same we may rewrite (by transitivity of parabolic
induction) Ind%(al ® - ® o) as Imd%(a’1 ® --- ® o,,) where each o] is either supersingular or

GL,/(Qp) .
Ind§ i (ni odet), and if o} and o7, , are both of the second type, then 7; # n;11. By exactness

of parabolic induction, Corollary and Theorem the irreducible constituents of these are of the
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form Ind%(a’{@- --®ol,) with o} = o/ if o} supersingular and ¢ = Spp ®(n;odet). By Theorem
these irreducible constituents, for all P and o;, exhaust the irreducible admissible representations
of G, and by Corollary ii) each irreducible admissible representation of G occurs only in one
Ind%(al ® -+ ® 0,) (note that the decomposition as in Theorem determines P and the o;
uniquely). O
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