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Abstract

Let p be a prime number, K a finite unramified extension of Qp and F
a finite extension of Fp. Using perfectoid spaces we associate to any finite-
dimensional continuous representation ρ of Gal(K/K) over F an étale (ϕ,O×K)-
module D⊗A(ρ) over a completed localization A of FJOKK. We conjecture that
one can also associate an étale (ϕ,O×K)-module DA(π) to any smooth rep-
resentation π of GL2(K) occurring in some Hecke eigenspace of the mod p
cohomology of a Shimura curve, and that moreover DA(π) is isomorphic (up
to twist) to D⊗A(ρ), where ρ is the underlying 2-dimensional representation of
Gal(K/K). Using previous work of the same authors, we prove this conjecture
when ρ is semi-simple and sufficiently generic.
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1 Introduction

Let p be a prime number. The main motivation of this work is the investigation
of the (hoped for) mod p Langlands correspondence for GL2(K), where K is a fi-
nite unramified extension of Qp. The case K = Qp is now well known ([Bre03],
[Col10a], [Eme]), whereas the case K 6= Qp is still resisting after more than 10 years
([BP12]). An important aspect of the GL2(Qp)-case is the construction by Colmez
in loc. cit. of an exact functor from the category of admissible finite length mod p
representations of GL2(Qp) to the category of finite-dimensional continuous mod p
representations of Gal(Qp/Qp). The construction of this functor uses, as an interme-
diate step, Fontaine’s category of (ϕ,Γ)-modules. In a previous article ([BHH+]), we
constructed an exact functor Dét

A from a “good” subcategory of admissible mod p rep-
resentations of GL2(K) to a category of étale multivariable (ϕ,O×K)-modules. These
multivariable (ϕ,O×K)-modules are A-modules with additional structures, where A is
a ring obtained as a completed localization of the Iwasawa algebra of OK . In this work
we propose a construction of a functor D⊗A from the category of continuous mod p
representations of Gal(K/K) to the category of étale multivariable (ϕ,O×K)-modules.
This construction is based on the equivalence, also due to Fontaine ([Fon90]), be-
tween mod p representations of Gal(K/K) and Lubin–Tate étale (ϕ,O×K)-modules.
One of the main obstructions to pass from Lubin–Tate (ϕ,O×K)-modules to multi-
variable (ϕ,O×K)-modules over A lies in the comparison between the O×K-action on A
and the O×K-action on (some tensor power of) the structural ring of the Lubin–Tate
group. To solve this problem, we need to work at a perfectoid level and use the “Abel–
Jacobi map” considered by Fargues in [Far20]. We then prove, under some conditions,
that the two functors Dét

A and D⊗A satisfy a local-global compatibility property in the
completed cohomology of a tower of Shimura curves.

We now describe in more detail the content of this article.

Let F be a totally real number field and let XU be the smooth projective Shimura
curve over F associated to a quaternion algebra D of center F (which splits at one
infinite place) and to a compact open subgroup U of (D⊗F A∞F )×. For v a place of F
above p which splits D and F a finite extension of Fp (“sufficiently large”, as usual),
consider the admissible smooth representation of GL2(Fv) over F

π
def= lim−→

Uv

HomGal(F/F )

(
r,H1

ét(XUvUv ×F F ,F)
)
, (1)

where U v is a fixed compact open subgroup of (D⊗F A∞,vF )×, r : Gal(F/F )→ GL2(F)
is an absolutely irreducible continuous Galois representation such that π 6= 0, and
where the inductive limit runs over compact open subgroups Uv of (D ⊗F Fv)× ∼=
GL2(Fv). In this introduction, we moreover assume for simplicity that v is the only
p-adic place of F and that we are in a “multiplicity 1” situation, which then roughly
means that U v is “as big as possible” (in general, one needs to take into account the
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action of certain operators, which requires mild assumptions on F , D and r, see (65)).

We know that the isomorphism class of π always determines the one of rv def=
r|Gal(F v/Fv), see [BD14], [Sch18]. We also expect that π is always of finite length,
which is known in several cases, see [HW22], [BHH+]. However, the representation π
is still not understood when Fv 6= Qp, in particular we have the key question:

Question 1.1. Assume Fv 6= Qp, does π only depend on rv?

Question 1.1, as routine as it may seem at first, has unfortunately proven to be
surprisingly difficult, and there is not one single instance of a π as in (1) for which we
know the answer. For instance the mod p étale cohomology of the Drinfeld tower in
dimension 1, which provides a smooth representation of GL2(Fv) only depending on
rv, cannot give rise to representations like π as soon as Fv 6= Qp, see [CDN23] (together
with [Sch15], [Wu21]). On the other hand, we know that, for Fv unramified and most
rv, the diagram (πI1 ↪→ πK1) (where K1

def= 1 + pM2(OFv) ⊆ I1
def= pro-p-Iwahori) only

depends on rv, and this is a really non-trivial fact, see [DL21]. We do not answer
Question 1.1 in this work, but we provide one further step towards the understanding
of the representation π, and certainly Question 1.1 was a motivation. More precisely,
we completely describe the multivariable étale (ϕ,O×Fv)-module DA(π) associated to
π in [BHH+, §3] when Fv is unramified and rv is semi-simple sufficiently generic, in
particular we prove that it only depends on rv, and we provide a precise conjecture on
whatDA(π) should be for all rv (and Fv unramified), crucially using perfectoid spaces.
As an intermediate result, we construct a new fully faithful functor from continuous
representations of Gal(F v/Fv) over F to a certain category of multivariable étale
(ϕq,O×Fv)-modules: this is the functor D(0)

A constructed in Corollary 2.6.7.

Let us first recall the definition of these modules. Let K be a finite unramified
extension of Qp of degree f ≥ 1, then we can write the Iwasawa algebra FJOKK as
FJYσ, σ : Fq ↪→ FK for Yσ def= ∑

λ∈F×q σ(λ)−1[λ] ∈ FJOKK, where q def= pf and [λ] ∈
OK is the multiplicative representative of λ (seen in FJOKK). We then define A to
be the completion of FJOKK[1/Yσ, σ : Fq ↪→ F] for the (Yσ)σ-adic topology (in a
suitable sense), see (16) for the precise definition. In fact A is isomorphic to the
Tate algebra F((Yσ))〈(Yσ′/Yσ)±1, σ′ 6= σ〉 for any choice of σ, see Lemma 2.6.1. It is
endowed with an F-linear Frobenius ϕ coming from the multiplication by p on OK
and with a commuting continuous action of O×K coming from its action on FJOKK
(by multiplication on OK). Then an étale (ϕ,O×K)-module over A is by definition a
finite free A-module endowed with a semi-linear Frobenius ϕ whose image generates
everything and a commuting continuous semi-linear action of O×K . Replacing ϕ on A
by ϕq def= ϕf , we define in the same way étale (ϕq,O×K)-modules over A. When f = 1,
the two definitions recover Fontaine’s classical (ϕ,Z×p )-modules (or (ϕ,Γ)-modules)
in characteristic p.

Now let π be an admissible smooth representation of GL2(OK) over F. We endow
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π∨
def= HomF(π,F) with the mI1-adic topology, where mI1 is the maximal ideal of

the Iwasawa algebra FJI1K. In particular we can see π∨ as an FJOKK-module via
FJOKK ∼= FJ

(
1 OK
0 1

)
K ⊆ FJI1K. We define

DA(π) def=
(
FJOKK[1/Yσ, σ :Fq ↪→ F]⊗FJOKK π

∨
)∧
,

where the completion is for the tensor product topology, see [BHH+, §3.1.1] or §3.1.
Even though DA(π) is an A-module endowed with a semi-linear action of O×K (coming
from the action of

(
O×K 0

0 1

)
on π∨), it is not clear if it has good properties in general (it

might not have a Frobenius ϕ, it might not be of finite type, etc.). But we know that
DA(π) is an étale (ϕ,O×K)-module of rank 2f for some of the π in (1) when K def= Fv
is unramified, see [BHH+, §1.3]1 together with Remark 2.6.2. In fact we conjecture
in this paper that DA(π) is always an étale (ϕ,O×K)-module over A (hence equal to
DA(π)ét) of rank 2f for all representations π in (1) (when Fv is unramified).

On the Galois side, for ρ : Gal(K/K)→ GLn(F) (n ≥ 1) a continuous representa-
tion and σ :Fq ↪→ F we can associate to ρ a Lubin–Tate (ϕq,O×K)-module. Recall that
it is an n-dimensional F((TK,σ))-vector space DK,σ(ρ) equipped with a semi-linear en-
domorphism ϕq whose image generates DK,σ(ρ) and a commuting continuous action
of O×K . Here ϕq is F-linear and satisfies ϕq(TK,σ) = T qK,σ, and the action of O×K on
F((TK,σ)) is given by the Lubin–Tate power series associated to the choice of logarithm∑
n≥0 p

−nT q
n

K,σ composed with σ :Fq ↪→ F on the coefficients. Recall we have

F((TK,σ))⊗F((T q−1
K,σ )) DK,σ(ρ)[F×q ] ∼→ DK,σ(ρ).

Assume now that ρ is a direct sum of absolutely irreducible representations and
define

DA,σ(ρ) def= A⊗F((T q−1
K,σ )) DK,σ(ρ)[F×q ], (2)

where the embedding F((T q−1
K,σ )) ↪→ A sends T q−1

K,σ to ϕ(Yσ)/Yσ ∈ A. We endow DA,σ(ρ)
with ϕq def= ϕf ⊗ ϕq. The embedding F((T q−1

K,σ )) ↪→ A does not commute with O×K , but
one easily checks that, when ρ is a direct sum of absolutely irreducible representations,
there exists a unique (in a certain sense) continuous semi-linear action of O×K on
DA,σ(ρ) which commutes with ϕq and makes DA,σ(ρ) an étale (ϕq,O×K)-module over
A of rank dimF ρ, see Lemma 2.2.2. Moreover there is a canonical isomorphism id⊗ϕ :
A⊗ϕ,ADA,σ◦ϕ(ρ) ∼−→ DA,σ(ρ) of étale (ϕq,O×K)-modules overA, where σ◦ϕ def= σ((−)p).
We then define:

D⊗A(ρ) def=
⊗

A,σ:Fq ↪→F
DA,σ(ρ) (3)

endowed with the “diagonal” action of O×K . Using the isomorphism id⊗ϕ, we can
define a canonical endomorphism ϕ : D⊗A(ρ) → D⊗A(ρ) which cyclically permutes

1Note that, with the notation of [BHH+, §3.1.2], DA(π) is equal to its étale quotient DA(π)ét in
our case, see [BHH+, Rem. 3.3.5.4(ii)].
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the factors DA,σ(ρ), is semi-linear with respect to ϕ on A and is such that ϕf =
ϕq ⊗ · · · ⊗ ϕq. It is then clear that D⊗A(ρ) is an étale (ϕ,O×K)-module over A of rank
(dimF ρ)f . The following theorem is our main result:

Theorem 1.2 (Corollary 3.1.4). Assume that rv is semi-simple and sufficiently gene-
ric (see (68)), and assume standard technical assumptions on the global setting (see
§3.1 for precise statements). Then there is an isomorphism of étale (ϕ,O×K)-modules
DA(π) ∼= D⊗A(rv(1)) over A, where rv(1) is the usual Tate twist of rv.

The proof of Theorem 1.2 is a long explicit computation of the dual étale (ϕ,O×K)-
module HomA(DA(π), A). Let us briefly indicate the various steps. We first describe
Homcont

F (DA(π),F), which is not so hard, see Proposition 3.2.3. We then prove that
there is a canonical injection

HomA(DA(π), A) ↪→ Homcont
F (DA(π),F)

induced by a nonzero continuous morphism µ : A → F uniquely determined (up
to scalar in F×) by the condition µ ◦ ψ ∈ F×µ, where ψ : A → A is a cer-
tain canonical left inverse of ϕ, see Lemma 3.2.1, Proposition 3.3.1 and (84). To
each Serre weight σ of r∨v we then associate in (102) a certain projective system
xσ = (xσ,k)k≥0, where xσ,k ∈ π[mkf+1

I1 ], and we prove via Proposition 3.2.3 that xσ lies
in Homcont

F (DA(π),F), see Lemma 3.4.10 and Proposition 3.5.1. Then the key calcula-
tion is to prove that xσ actually also lies in the submodule HomA(DA(π), A), and that
the 2f -tuple (xσ)σ∈W (r∨v ) even forms an A-basis of the free A-module HomA(DA(π), A),
see Theorem 3.7.1. For that we prove a crucial finiteness result (Proposition 3.6.1)
using the technical – but important – computations in [BHH+, §3.2] that we need to
strengthen, see §3.4. Once all this is done, it is easy to derive the explicit actions of
ϕ and O×K on HomA(DA(π), A), see Propositions 3.8.1 and 3.8.2. We can then at last
compare the two (ϕ,O×K)-modules DA(π) and D⊗A(rv(1)) and prove that they are iso-
morphic, see Theorem 3.9.1. The same proof works verbatim for quaternion algebras
D which are definite at all infinite places (and split at v) and the representations π
of GL2(K) = GL2(Fv) defined analogously to (1).

There is no doubt to us that there should exist a more conceptual proof of Theorem
1.2 which will hopefully avoid both the genericity assumptions on rv and the technical
computations. At present however, we do not know how to do this. But the first issue
is to find a more conceptual definition of DA,σ(ρ) and of D⊗A(ρ). Indeed, when ρ is
not semi-simple, the recipe (2) does not work in general because there might not
always exist a continuous semi-linear action of O×K on A ⊗F((T q−1

K,σ )) DK,σ(ρ)[F×q ] which
commutes with ϕf ⊗ ϕq (or such an action might not be unique) , see for instance
[Wana, §4]. Using perfectoid spaces we give below a functorial construction of an
étale (ϕq,O×K)-module DA,σ(ρ), and subsequently of an étale (ϕ,O×K)-module D⊗A(ρ),
which works for all ρ.
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The first step is to replace the ring A by its perfectoid version

A∞
def= F((Y 1/p∞

σ ))
〈
(Yσ′/Yσ)±1/p∞ , σ′ 6= σ

〉
(4)

which is a perfectoid Tate algebra over the perfectoid field F((Y 1/p∞
σ )) (for any σ).

Using the equivalence between finite étale A-algebras and finite étale A∞-algebras to-
gether with the equivalence between locally constant étale sheaves of finite-dimensional
Fq-vector spaces on Spec(R) and finite projective R-modules with an action of Frobe-
nius for perfect rings R over Fq, it is not hard to check that the extension of scalars
(−) 7→ (−) ⊗A A∞ induces an equivalence of categories between étale (ϕq,O×K)-
modules over A and étale (ϕq,O×K)-modules over A∞, and similarly with (ϕ,O×K)
instead of (ϕq,O×K), see Corollary 2.6.6. Hence we may as well look for a definition
of DA∞,σ(ρ) and D⊗A∞(ρ).

It is now convenient to fix an embedding σ0 : Fq ↪→ F and set σi def= σ0 ◦ ϕi for
i ∈ Z. The second step is to consider the two perfectoid spaces

ZLT
def= Spa

(
F((T 1/p∞

K,σ0 )),FJT 1/p∞
K,σ0 K

)
×Spa(F) · · · ×Spa(F) Spa

(
F((T 1/p∞

K,σ0 )),FJT 1/p∞
K,σ0 K

)
︸ ︷︷ ︸

f times

ZOK
def= Spa

(
FJY 1/p∞

σ0 , . . . , Y 1/p∞
σf−1

K,FJY 1/p∞
σ0 , . . . , Y 1/p∞

σf−1
K
)
\ V (Yσ0 , . . . , Yσf−1),

where ZLT is endowed with an obvious action of (K×)f oSf (p ∈ K× acting via ϕq
which is now bijective) and ZOK is endowed with an action of K× (p acting via ϕ).
It turns out that there is a morphism of perfectoid spaces (see the beginning of §2.4)

m : ZLT −→ ZOK

such that m ◦ ((a0, . . . , af−1), w) = (∏i ai) ◦ m for ai ∈ K× and w ∈ Sf , a crucial
fact that we learnt from [Far20]. Indeed, the sheaf on the perfectoid v-site over F
represented by ZLT sends a perfectoid F-algebra R to a subset of (B+(R)ϕq=p)f stable
under multiplication, where B+(R) is the (relative version of the) ring defined in
[FF18, §1.10] (a certain completion of W (R◦)[1/p], where R◦ ⊆ R is the subring of
power-bounded elements). Likewise, the sheaf represented by ZOK sends R to a subset
of B+(R)ϕq=pf stable under multiplication, see §2.3. The map m then is induced by
the product map (B+(R)ϕq=p)f → B+(R)ϕq=pf in the ring B+(R), which satisfies the
above relation with respect to the various group actions.

Note that Spa(A∞, A◦∞) is an affinoid open subspace of ZOK by (4). Let ∆ def=
{(a0, . . . , af−1) ∈ (K×)f , ∏ ai = 1} and ∆1

def= ∆ ∩ (O×K)f . The third step is to prove
that the morphism m induces a commutative diagram of perfectoid spaces over F:

ZLT oo ? _

m

��

m−1(Spa(A∞, A◦∞)) ∼=
m

��

(∆/∆1) oSf × Spa(A′∞, (A′∞)◦)

ss
ZOK

oo ? _ Spa(A∞, A◦∞)

,
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where the middle vertical morphism is a pro-étale ∆ oSf -torsor and where
Spa(A′∞, (A′∞)◦) is an explicit affinoid open subspace of ZLT preserved by the action
of ∆1 which is itself a pro-étale ∆1-torsor over Spa(A∞, A◦∞), see Proposition 2.4.4,
Corollary 2.4.5 and Lemma 2.4.7.

Now let ρ be any finite-dimensional continuous representation of Gal(K/K) over
F, then F((T 1/p∞

K,σ0 ))⊗F((TK,σ0 ))DK,σ0(ρ) is the space of global sections of aK×-equivariant
vector bundle Vρ on Spa(F((T 1/p∞

K,σ0 )),FJT 1/p∞
K,σ0 K). For i ∈ {0, . . . , f − 1} we define

V(i)
ρ

def= pr∗iVρ, where pri : ZLT → Spa(F((T 1/p∞
K,σ0 )),FJT 1/p∞

K,σ0 K) is the i-th projection.
Then V(i)

ρ is a (K×)f -equivariant vector bundle on ZLT, and thus V(i)
ρ |Spa(A′∞,(A′∞)◦)

is a ∆1-equivariant vector bundle on Spa(A′∞, (A′∞)◦). By the third step and us-
ing [SW20, Lemma 17.1.8], we deduce that Γ(Spa(A′∞, (A′∞)◦),V(i)

ρ )∆1 is an étale
(ϕq,O×K)-module over A∞ of rank dimF ρ, see Theorem 2.5.1 and §2.6. Hence by
the first step Γ(Spa(A′∞, (A′∞)◦),V(i)

ρ )∆1 is the extension of scalars of a unique étale
(ϕq,O×K)-module D(i)

A (ρ) over A of rank dimF ρ.

The following theorem sums up the main properties of the functor ρ 7→ D
(i)
A (ρ).

Theorem 1.3. Let i ∈ {0, . . . , f − 1}.

(i) There is a functorial A-linear isomorphism φi : A ⊗ϕ,A D(i)
A (ρ) ∼−→ D

(i+1)
A (ρ)

which commutes with (ϕq,O×K) and is such that φf−1 ◦ φf−2 ◦ · · · ◦ φ0 : A⊗ϕf ,A
D

(0)
A (ρ) ∼−→ D

(0)
A (ρ) is id⊗ϕq, see Corollary 2.6.7.

(ii) The functor ρ 7→ D
(i)
A (ρ) from finite-dimensional continuous representations of

Gal(K/K) over F to étale (ϕq,O×K)-modules over A is exact and fully faithful,
see Corollary 2.8.4.

(iii) There is d ∈ {0, · · · , f − 1} such that the surjection A � F((T )) induced by
the trace FJOKK � FJZpK ∼= FJT K gives a functorial isomorphism of (ϕq,Z×p )-
modules

F((T ))⊗A D(i)
A (ρ) ∼= Dσd−i(ρ),

where Dσd−i(ρ) is the usual (cyclotomic) (ϕq,Z×p )-module over F((T )) associated
to ρ using σd−i to embed Fq into F, see Proposition 2.8.1 and Remark 2.8.2.

(iv) If ρ is a direct sum of absolutely irreducible representations then there is an
isomorphism of (ϕq,O×K)-modules over A

D
(i)
A (ρ) ∼= DA,σf−i(ρ),

where DA,σf−i(ρ) is as in (2), see Theorem 2.9.4.

8



Because of Theorem 1.3(iv) it is natural to rename D(i)
A (ρ) as DA,σf−i(ρ) for any

ρ. Using Theorem 1.3(i) we can then associate to any ρ an étale (ϕ,O×K)-module
D⊗A(ρ) over A of rank (dimF ρ)f by exactly the same formula as in (3). Note that
by Theorem 1.3(iii) F((T ))⊗A D⊗A(ρ) can be identified with the (ϕ,Γ)-module of the
tensor induction from K to Qp of ρ.

We can now state our conjecture:

Conjecture 1.4 (Conjecture 3.1.2). For any π as in (1) (with Fv = K unramified)
there is an isomorphism of étale (ϕ,O×K)-modules DA(π) ∼= D⊗A(rv(1)) over A.

By Theorem 1.3(iv) we see that Theorem 1.2 proves special cases of Conjecture
1.4 (but recall that our somewhat technical proof of Theorem 1.2 does not use perfec-
toids). Note that Conjecture 1.4 implies (the analogue of) [BHH+, Conjecture 1.2.5]
for the representations π in (1). It is also reminiscent of the plectic structure of the
local Galois action at p on the `-adic cohomology (` 6= p) of certain Shimura varieties
recently proven in [LH], where the above map m also plays a key role.

We finish this introduction by going back to Question 1.1 assuming Conjecture
1.4. The image of the natural map π∨ → DA(π) ∼= D⊗A(rv(1)) is a compact FJOKK-
submodule DA(π)\ which generates D⊗A(rv(1)) over A and is preserved by O×K and
the operator ψ, with moreover ψ : DA(π)\ � DA(π)\ surjective. Assuming there is
an admissible smooth representation of GL2(K) naturally associated to rv, and that
this representation is π (as is the case when K = Qp), one could hope to “guess”
what DA(π)\ is inside D⊗A(rv(1)), as the latter is pretty explicit, at least when rv
is semi-simple and sufficiently generic. However, even in the simplest case where
K is quadratic (unramified) and rv is the direct sum of two characters, where we
know that π is semi-simple ([BHH+]), it seems impossible to find DA(π)\ “by hand”
(there exists a natural explicit generating compact FJOKK-submodule in D⊗A(rv(1))
which is preserved by O×K and ψ with ψ surjective, but we can prove that it cannot
be DA(π)\). Going back to perfectoids, one could hope to find instead a natural
FJY 1/p∞

σ0 , . . . , Y 1/p∞
σf−1

K-submodule DA∞(π)\ inside D⊗A∞(rv(1)) = A∞⊗AD⊗A(rv(1)) and
from there go to DA(π)\ in a similar way as what was done by Colmez when K = Qp

in [Col10b, §IV.2]. However, even though there is a natural candidate, namely the
FJY 1/p∞

σ0 , . . . , Y 1/p∞
σf−1

K-submodule

Γ
(
ZLT,V(0)

rv(1) ⊗OZLT
· · · ⊗OZLT

V(f−1)
rv(1)

)∆oSf

⊆ Γ
(
m−1(Spa(A∞, A◦∞)),V(0)

rv(1) ⊗OZLT
· · · ⊗OZLT

V(f−1)
rv(1)

)∆oSf ∼= D⊗A∞(rv(1)),

computations for f = 2 show no evidence for this submodule to be large enough (or
even nonzero when rv is irreducible).

We fix some general notation (most of which has already been introduced above,
but we remind the reader). We fix K a finite unramified extension of Qp of residue
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field Fq = Fpf , so OK = W (Fq) and K = OK [1/p]. We normalize the local reciprocity
map so that it sends p ∈ K× to (the image of) the geometric Frobenius x 7→ x−q. We
fix an algebraic closure K of K with ring of integers OK and maximal ideal mK . We
denote by F the coefficients, which is a finite extension of Fq that we always tacitly
assume to be “large enough”. We fix an embedding σ0 : Fq ↪→ F (which is sometimes
omitted from the notation when the context is clear) and we let σi def= σ0 ◦ ϕi for ϕ
the Frobenius on Fq (i.e. ϕ(x) = xp) and i ∈ Z.
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2 Étale (ϕ,O×K)-modules and Galois representations

In this section we functorially associate to any finite-dimensional continuous repre-
sentation of Gal(K/K) over F an étale (ϕq,O×K)-module DA,σ(ρ) of rank dimF ρ over
the ring A of [BHH+, §3.1.1] (depending on an embedding σ : Fq ↪→ F) and an étale
(ϕ,O×K)-module D⊗A(ρ) of rank (dimF ρ)f over A. We prove various properties of these
modules and we make them explicit when ρ is a direct sum of absolutely irreducible
representations.

If X is an adic space over F, we denote by hX the functor HomSpa(F,F)(−, X) from
the category of adic spaces over F to the category of sets. If R is an adic Huber ring,
i.e. a topological ring whose topology is I-adic for a finitely generated ideal I (see for
instance [SW20, §2.2]), we use the shorthand Spa(R) for the adic spectrum Spa(R,R).
We denote by PerfF the category of perfectoid spaces over F. For background on adic
spaces or perfectoid spaces we refer (mostly without comment) to [Hub96], [Sch12]
or [SW20].

Let A be a (commutative) ring and let ϕ be a ring endomorphism of A. We
define a ϕ-module over A as a finite free A-module D endowed with a ϕ-semi-linear
map ϕ : D → D. We say that a ϕ-module over A is étale if the A-linear map
idA⊗ϕ : A⊗ϕ,AD → D is an isomorphism. Assume moreover that A is a topological
ring and that there exists a continuous action of an abelian topological group Γ on
A via endomorphisms commuting with ϕ. We define a (ϕ,Γ)-module over A as a
ϕ-module D over A endowed with a continuous semi-linear action of Γ such that, for
a ∈ A, v ∈ D and γ ∈ Γ:

ϕ(γ(v)) = γ(ϕ(v)).
Moreover we say that a (ϕ,Γ)-module is étale if its underlying ϕ-module over A is so.

Let RepF Gal(Qp/K) denote the category of F-linear continuous representations
of the topological group Gal(Qp/K) on finite-dimensional F-vector spaces.

2.1 Review of Lubin–Tate and classical (ϕ,Γ)-modules

We review Lubin–Tate and classical (ϕ,Γ)-modules associated to an object of
RepF Gal(Qp/K).

Let OCp be the p-adic completion of OK and let Cp
def= OCp [1/p]. Set

O[Cp
def= lim

←−
x 7→xp

OCp/(p) ∼= lim
←−
x 7→xp

OK/(p) ∼= lim
←−
x 7→xq

OK/(p)

(which Fontaine used to denote by R in [Fon82, §2.1]). Note that there is an iso-
morphism of (multiplicative) monoids O[Cp

∼→ lim
←−
x 7→xp

OCp . This allows us to define a
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map v : O[Cp → Z ∪ {+∞} by v((xm)m≥1) def= val(x1), where xm ∈ Cp, xpm = xm−1
(for m > 1) and val is the usual p-adic valuation on Cp normalized by val(p) = 1.
Then v is a valuation on O[Cp and extends therefore to a valuation on C[

p
def= lim

←−
x 7→xp

Cp.

Then C[
p is an algebraically closed field of characteristic p which is complete with

respect to the valuation v. Moreover its ring of integers {x ∈ C[
p, v(x) ≥ 0} is O[Cp

and C[
p
∼= Frac(O[Cp). There is an action of Gal(Qp/Qp), hence of Gal(Qp/K), on C[

p

which preserves O[Cp .

We denote by GLT the unique (up to isomorphism) Lubin–Tate formal OK-module
over OK associated to the uniformizer p. Let TK be a formal variable of GLT. The
structure of OK-module on GLT is given by power series:

aLT(TK) ∈ aTK + T 2
KOKJTKK for a ∈ OK ,

and recall that pLT(TK) ∈ T qK + pOKJTKK. Let TpGLT
def= lim←−m≥1GLT[pm](OK) be the

Tate module of GLT, which is a free OK-module of rank 1. Let u be a generator of
the OK-module TpGLT. We can write u = (um)m≥1 with um ∈ GLT[pm](OK) ⊆ OCp
for m ≥ 1, where we embed GLT(OCp) into OCp using TK . For m ≥ 1 let um be the
image of um in OCp/(p) and u def= (um)m≥1 ∈ O[Cp . The map FqJTKK → O[Cp sending
TK to u is injective, and we use it to identify FqJTKK with a subring of O[Cp .

We denote by K∞ the abelian extension of K generated by all the elements um
and recall that we have the commutative diagram:

Gal(K/K) // // Gal(K/K)ab // // Gal(K∞/K) // // Gal(K( p
∞√

1)/K)

K× ∼= pZ ×O×K
?�

OO

// // O×K

o

OO

// // Z×p

o

OO

(5)

where the left vertical injection is the local reciprocity map, the bottom left horizontal
surjection is the projection sending p to 1, and the bottom right horizontal surjection
is the norm map.

We endow the topological ring F ⊗Fp Fq((TK)) with a continuous F-linear endo-
morphism ϕ and a continuous F ⊗Fp Fq-linear action of O×K commuting with ϕ and
satisfying the following conditions for λ ∈ F, f ∈ FqJTKK, and a ∈ O×K :{

ϕ(λ⊗ f) = λ⊗ fp,
a(λ⊗ f) = λ⊗ (f ◦ aLT), (6)

where we still denote by aLT(TK) ∈ FqJTKK the reduction mod p of aLT(TK) ∈
OKJTKK. Lubin–Tate Theory implies that FqJTKK ⊆ O[Cp is stable under the ac-
tion of Gal(Qp/K), and moreover that the action of Gal(Qp/K) on FqJTKK factors
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through Gal(K∞/K) and coincides with action of O×K in (6) via the local reciprocity
map.

Denote by Fq((TK))sep the separable closure of Fq((TK)) in C[
p. If ρ ∈

RepF Gal(Qp/K), define

DK(ρ) def=
(
Fq((TK))sep ⊗Fp ρ

)Gal(K/K∞)
.

Then DK(ρ) is an étale (ϕ,O×K)-modules over F ⊗Fp Fq((TK)) and it follows from
Fontaine’s theory of (ϕ,Γ)-modules ([Fon90]) thatDK is a (covariant) rank-preserving
⊗-equivalence of categories between RepF Gal(Qp/K) and the category of
étale (ϕ,O×K)-modules over F⊗Fp Fq((TK)). Note that the injectivity of idFq((TK))⊗ϕ
implies that the endomorphism ϕ of an étale (ϕ,O×K)-module over F ⊗Fp Fq((TK)) is
automatically injective.

The isomorphism

F⊗Fp Fq((TK)) ∼−→ F((TK,σ0))× F((TK,σ1))× · · · × F((TK,σf−1))
λ⊗ (∑n�−∞ cnT

n
K) 7−→

(∑
n�−∞ λσ0(cn)T nK,σ0 , . . . ,

∑
n�−∞ λσf−1(cn)T nK,σf−1

)
(7)

induces an analogous decomposition for any F⊗Fp Fq((TK))-module DK :

DK
∼−→ DK,σ0 × · · · ×DK,σf−1 .

If DK is an étale ϕ-module over F⊗Fp Fq((TK)), then ϕ induces a morphism (still de-
noted by) ϕ : DK,σi → DK,σi−1 such that ϕ(∑n�−∞ cnT

n
K,σi

v) = ∑
n�−∞ cnT

pn
K,σi−1

ϕ(v)
for cn ∈ F and v ∈ DK,σi . By a standard argument, the functor DK 7−→ DK,σ0 induces
an equivalence of categories (compatible with tensor products) between the category
of étale (ϕ,O×K)-modules over F ⊗Fp Fq((TK)) and the category of étale (ϕq,O×K)-
modules over F((TK,σ0)), where F((TK,σ0)) is endowed with a continuous F-linear endo-
morphism ϕq (= ϕf ) and a continuous F-linear action of O×K that commutes with ϕq
and satisfies the following conditions for f ∈ FJTK,σ0K and a ∈ O×K :{

ϕq(f(TK,σ0)) = f(T qK,σ0),
a(f(TK,σ0)) = f(aLT(TK,σ0)).

To be precise, in the last formula,

aLT(TK,σ0) def= σ0(aLT(TK)) ∈ σ0(a)TK,σ0 + T 2
K,σ0FJTK,σ0K,

where σ0(aLT(TK)) is the image of aLT(TK) ∈ FqJTKK via

FqJTKK ↪→ FJTK,σ0K,
∑

n�−∞
cnT

n
K 7→

∑
n�−∞

σ0(cn)T nK,σ0 .
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If one chooses the embedding σi for some i ∈ {1, . . . , f − 1} instead of σ0, one goes
from DK,σ0 to DK,σi by the isomorphism

Id⊗ϕf−i : FJTK,σiK⊗ϕf−i,FJTK,σ0K DK,σ0
∼−→ DK,σi .

We can also work with the infinite Galois extension K( p∞
√

1) instead of K∞ (see
(5)). Let T be a coordinate of the formal group Gm. We endow the topological ring
F⊗Fp Fq((T )) with a continuous F-linear endomorphism ϕ and a continuous F⊗Fp Fq-
linear action of Z×p commuting with ϕ and satisfying the following conditions for
λ ∈ F, f ∈ FqJT K, and a ∈ Z×p :{

ϕ(λ⊗ f) = λ⊗ fp,
a(λ⊗ f) = λ⊗ (f ◦ a). (8)

The choice of a generator of the Tate module of Gm and the choice of T induce an
embedding FqJT K ↪→ O[Cp whose image is stable under Gal(Qp/K) and on which the
action of Gal(Qp/K) factors through Gal(K( p∞

√
1)/K) with action given by (8) (via

local class field theory).

If ρ ∈ RepF Gal(Qp/K), define

D(ρ) def=
(
Fq((T ))sep ⊗Fp ρ

)Gal(K/K(p
∞√

1))
.

The functor D is, as before, a (covariant) rank-preserving ⊗-equivalence of categories
between the category RepF(Gal(Qp/K)) and the category of étale (ϕ,Z×p )-modules
over F⊗Fp Fq((T )).

Here a standard choice is to take T such that a(T ) ∈ aT+T 2FpJT K ⊆ aT+T 2FqJT K
is the reduction mod p of (1 + T )a − 1 ∈ ZpJT K. Using a decomposition analogous
to (7) and choosing the embedding σ0, we again have an equivalence (compatible
with tensor products) D 7−→ Dσ0 between the category of étale (ϕ,Z×p )-modules over
F⊗Fp Fq((T )) and the category of étale (ϕq,Z×p )-modules over F((T )), where F((T )) is
endowed with an F-linear endomorphism ϕq (= ϕf ) and a continuous F-linear action
of Z×p that commutes with ϕq and satisfies the following conditions for f ∈ FJT K and
a ∈ Z×p : {

ϕq(f(T )) = f(T q),
a(f(T )) = f(a(T )). (9)

We will mostly useDK,σ0(ρ) def=(DK(ρ))σ0 , an étale (ϕq,O×K)-module over F((TK,σ0)),
and Dσ0(ρ) def= (D(ρ))σ0 , an étale (ϕq,Z×p )-module over F((T )), in the sequel.

We now relate DK(ρ) and D(ρ), DK,σ0(ρ) and Dσ0(ρ). In order to do so, we have
to use the perfectoid versions of Fq((TK)), Fq((TK,σ0)), etc.
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We let FqJT p
−∞

K K be the completion of the perfection ⋃
n≥0 FqJT

p−n

K K of FqJTKK
with respect to the TK-adic topology and Fq((T p

−∞

K )) the fraction field of FqJT p
−∞

K K.
Concretely:

FqJT p
−∞

K K ∼=

∑
n≥0

cnT
dn
pn

K , cn ∈ Fq, dn ∈ Z≥0,
dn
pn
→ +∞ in Q when n→ +∞


and Fq((T p

−∞

K )) = FqJT p
−∞

K K[ 1
TK

]. We define in a similar way FqJT p
−∞K and Fq((T p

−∞)).

As O[Cp is perfect and complete for the TK-adic (resp. T -adic) topology, we have
morphisms of Fq-algebras

FqJT p
−∞

K K→ O[Cp , FqJT p
−∞

K→ O[Cp . (10)

The following well-known theorem follows from the work of Wintenberger ([Win83])
and the Ax–Sen–Tate Theorem, see for instance [CE14, Cor. 3.4]:

Theorem 2.1.1. The morphisms (10) induce isomorphisms of topological rings com-
patible with the action of O×K (via (5)):

FqJT p
−∞

K K ∼= O[Cp
Gal(K/K∞) and Fq((T p

−∞

K )) ∼= C[
p

Gal(K/K∞)

and isomorphisms of topological rings compatible with the action of Z×p (via (5)):

FqJT p
−∞

K ∼= O[Cp
Gal(K/K(p

∞√
1)) and Fq((T p

−∞)) ∼= C[
p

Gal(K/K(p
∞√

1))
.

In particular, FqJT p
−∞K ∼= FqJT p

−∞

K KGal(K∞/K(p
∞√

1)) ↪→ FqJT p
−∞

K K and Fq((T p
−∞)) ∼=

Fq((T p
−∞

K ))Gal(K∞/K(p
∞√

1)) ↪→ Fq((T p
−∞

K )).

By Theorem 2.1.1 we have in particular embeddings FqJT K ↪→ FqJT p
−∞K ↪→

FqJT p
−∞

K K. Applying F⊗σ0,Fq (−) to Theorem 2.1.1, we deduce embeddings F((T )) ↪→
F((T p−∞)) ↪→ F((T p

−∞

K,σ0 )) and FJT K ↪→ FJT p−∞K ↪→ FJT p
−∞

K,σ0 K.

Proposition 2.1.2. Let ρ ∈ RepF Gal(Qp/K). There is a canonical Fq((T p
−∞

K ))-linear
isomorphism which commutes with the actions of O×K and ϕ:

Fq((T p
−∞

K ))⊗Fq((T )) D(ρ) ∼−→ Fq((T p
−∞

K ))⊗Fq((TK)) DK(ρ) (11)

where O×K, ϕ act diagonally on each side, O×K acting on D(ρ) via the norm map O×K �
Z×p . Moreover there is a canonical F((T p

−∞

K,σ0 ))-linear isomorphism which commutes with
the actions of O×K and ϕq:

F((T p
−∞

K,σ0 ))⊗F((T )) Dσ0(ρ) ∼−→ F((T p
−∞

K,σ0 ))⊗F((TK,σ0 )) DK,σ0(ρ)

where O×K, ϕq act diagonally on each side, O×K acting on Dσ0(ρ) via the norm map
O×K � Z×p .
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Proof. From Wintenberger’s theory of the field of norms ([Win83]), recall that we
have topological isomorphisms

Gal(Fq((TK))sep/Fq((TK))) ∼= Gal(K/K∞), Gal(Fq((T ))sep/Fq((T ))) ∼= Gal(K/K( p
∞√

1)).

Since we have for any integer n ≥ 1:

H1
(

Gal(Fq((TK))sep/Fq((TK))),GLn(Fq((TK))sep)
)

= 1

as follows by taking inductive limit from [Ser68, Prop. X.1.3], we have a canonical
isomorphism

Fq((TK))sep ⊗Fq((TK)) DK(ρ) ∼−→ Fq((TK))sep ⊗Fp ρ (12)

that is compatible with the actions of ϕ and Gal(K/K) (Gal(K/K) acting on DK(ρ)
via Gal(K∞/K)), and likewise with Fq((T ))sep, Fq((T )) andD(ρ). Tensoring (12) by C[

p

over Fq((TK))sep, resp. its analogue over Fq((T ))sep, we obtain a canonical isomorphism

C[
p ⊗Fq((TK)) DK(ρ) ∼−→ C[

p ⊗Fp ρ
∼←− C[

p ⊗Fq((T )) D(ρ)

compatible with the actions of ϕ and Gal(K/K). Taking invariants under
Gal(K/K∞), which acts trivially on DK(ρ), D(ρ), and remembering C[

p

Gal(K/K∞) =
Fq((T p

−∞

K )) from Theorem 2.1.1 we obtain the desired isomorphism (11). The last
assertion follows from an analogous discussion (the details of which are left to the
reader).

Remark 2.1.3. Arguing as in the proofs of Theorem 2.6.4 and Corollary 2.6.6 be-
low, the functor DK,σ0 7→ F((T p

−∞

K,σ0 )) ⊗F((TK,σ0 )) DK,σ0 in fact still induces an equiv-
alence of categories from the category of étale (ϕq,O×K)-modules over F((TK,σ0)) to
the category of étale (ϕq,O×K)-modules over F((T p

−∞

K,σ0 )). Likewise with the functor
Dσ0 7→ F((T p−∞))⊗F((T )) Dσ0 and étale (ϕq,Z×p )-modules.

We finally recall a convenient explicit presentation of DK,σ0(ρ) for ρ absolutely
irreducible.

For simplicity, we now choose the formal variable TK such that aLT(TK) = aTK
when a ∈ [Fq] (so a(TK,σ0) = σ0(a)TK,σ0 for a ∈ [Fq]); for instance, this holds if TK
is such that the logarithm of the Lubin–Tate group GLT ([Lan90, ch.8 §6]) is the
series ∑n≥0 p

−nT q
n

K . Note that in that case F((TK,σ0))[F×q ] = F((T q−1
K,σ0)) and that the

commutativity of the action of a ∈ OK with [Fq] implies:

a(TK,σ0) ∈ σ0(a)TK,σ0 + T qK,σ0OKJT q−1
K,σ0K. (13)

We recall the following straightforward lemma.
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Lemma 2.1.4. Let ρ be a finite-dimensional continuous representation of Gal(K/K)
over F. Denote by DK,σ0(ρ)[F×q ] the F((T q−1

K,σ0))-vector subspace of DK,σ0(ρ) fixed by
[F×q ] ⊆ O×K. Then DK,σ0(ρ)[F×q ] is preserved by ϕq and the action of O×K, and we have
an F((TK,σ0))-linear isomorphism compatible with ϕq and O×K:

F((TK,σ0))⊗F((T q−1
K,σ0

)) DK,σ0(ρ)[F×q ] ∼−→ DK,σ0(ρ)

where the actions of ϕq and O×K on the left-hand side are the diagonal ones.

Proof. It is enough to prove that the morphism in the statement is an isomorphism,
everything else being trivial. It is enough to prove

H1
(
[F×q ],GLn(F((TK,σ0)))

)
= 1

for any integer n ≥ 1. But this is again the generalization of Hilbert 90 applied to the
Galois extension F((TK,σ0))/F((T q−1

K,σ0)) (which has Galois group [F×q ]), see for instance
[Ser68, Prop. X.1.3].

We now give explicitly DK,σ0(ρ)[F×q ] for an absolutely irreducible ρ.

For λ ∈ F× denote by unr(λ) the unramified character of Gal(K/K) sending the
Frobenius x 7→ xq to λ−1. For f ′ ≥ 1 denote by ωf ′ : IK → F×

pf ′
Serre’s fundamental

character of level f ′, where IK ⊆ Gal(K/K) is the inertia subgroup. We also denote
by ωf (instead of σ0 ◦ ωf ) the composition

IK
ωf−→ F×q

σ0
↪→ F× (14)

and again ωf its unique extension to Gal(K/K) such that ωf (p) = 1 (via local class
field theory). Recall that ωf : Gal(K/K) → F× is the composition by σ0 : Fq ↪→ F
of the mod p Lubin–Tate character of Gal(K/K). For d ∈ Z≥1, it goes back to Serre
that any absolutely irreducible d-dimensional representation of Gal(K/K) over F is
isomorphic to (indωhdf )⊗ unr(λ) for some λ ∈ F× and some positive integer h which
is not of the form m qd−1

qd′−1 for some m ∈ Z≥1 and some d′ ∈ {1, . . . , d − 1}, where
indωhdf is the induction from Gal(K/Kd) to Gal(K/K) of the mod p Lubin–Tate
character of Gal(K/Kd) (seen with values in F via any embedding Fqd ↪→ F lifting
σ0), where Kd is the unramified extension of K of degree d. Equivalently indωhdf is
the unique representation of Gal(K/K) over F with determinant ωhf ·unr(−1)d−1 such
that (indωhdf )|IK ∼= ωhdf ⊕ ω

qh
df ⊕ · · · ⊕ ω

qd−1h
df (for any choice of embedding Fqd ↪→ F).

Note that
(indωhdf )⊗ unr(λ) ∼= (indωh′df )⊗ unr(λ′)

if and only if h′ ≡ qih mod qd − 1 for some i ∈ {0, . . . , d− 1} and λd = λ′d.
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For a ∈ O×K , we set:

fLT
a

def= fLT
a (TK,σ0) def= σ0(a)TK,σ0

a(TK,σ0) ∈ 1 + TK,σ0FJTK,σ0K.

Note that fLT
a = 1 if a ∈ [F×q ] and that (13) implies

fLT
a ∈ 1 + T q−1

K,σ0FJT q−1
K,σ0K.

Lemma 2.1.5. Let ρ ∈ RepF Gal(Qp/K) and write ρ = (indωhdf )⊗ unr(λ) for some
d, h, λ as above. Then DK,σ0(ρ) ∼= F((TK,σ0)) ⊗F((T q−1

K,σ0
)) DK,σ0(ρ)[F×q ] (Lemma 2.1.4),

where DK,σ0(ρ)[F×q ] is explicitly described as follows:

DK,σ0(ρ)[F×q ] = ⊕d−1
i=0 F((T q−1

K,σ0))ei
ϕq(ei) = ei+1, i < d− 1

ϕq(ed−1) = λd

T
h(q−1)
K,σ0

e0

a(ei) =
(
fLT
a

)hqi(q−1)
qd−1 ei, a ∈ O×K .

(15)

Moreover a basis (e0, . . . , ed−1) = (e0, ϕq(e0), . . . , ϕd−1
q (e0)) as in (15) is uniquely de-

termined up to a scalar in F×. Finally, if h′ = qjh + m(qd − 1) for some j ∈
{0, . . . , d−1} and some m ∈ Z, then the unique basis (e′i)i = (e′0, ϕq(e′0), . . . , ϕd−1

q (e′0))
in (15) corresponding to h′ is given by e′0 = 1

T
m(q−1)
K,σ0

ej (up to a scalar in F×).

Proof. The first statement is [PS, Cor. 10.10]. We prove the uniqueness of the basis
(ei) in (15) (up to scalar). Let (f0, . . . , fd−1) be another basis of DK,σ0(ρ)[F×q ] satisfying
(15), it is enough to prove that f0 ∈ Fe0. Write f0 = ∑d−1

i=0 xiei for some xi ∈
F((T q−1

K,σ0)). Since ϕdq(f0) = λd

T
h(q−1)
K,σ0

f0 and ϕdq(ei) = λd

T
qih(q−1)
K,σ0

ei, we deduce that 1
T
h(q−1)
K,σ0

xi =

1
T
qih(q−1)
K,σ0

ϕdq(xi) for i ∈ {0, . . . , d − 1}, i.e. ϕdq(xi) = T
h(q−1)(qi−1)
K,σ0 xi. This easily implies

xi ∈ FTmiK,σ0 , where mi
def= h(q−1)(qi−1)

qd−1 ∈ Z≥0. If xi 6= 0, since (q − 1)|mi in Z, we
obtain h = mi

q−1
qd−1
qi−1 for some i ∈ {1, . . . , d− 1} which contradicts the assumption on

h. Hence xi = 0 for all i 6= 0 and thus f0 ∈ Fe0. The last statement is an easy check
that is left to the reader.

Remark 2.1.6. One can prove that the action of a ∈ O×K in (15) is the unique
semi-linear action on DK,σ0(ρ)[F×q ] which commutes with ϕq and is such that a(ei) ∈
ei + T q−1

K,σ0

∑d−1
j=0 FJT q−1

K,σ0Kej for all i. The argument is the same as in the proof of
Lemma 2.2.2 below.

As a special case of Lemma 2.1.5 we have:
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Lemma 2.1.7. Let χ : Gal(K/K) → F× be a continuous character and write χ =
ω
hχ
f unr(λχ) for hχ ∈ Z≥0 and λχ ∈ F×, then (for a ∈ O×K):

DK,σ0(χ)[F×q ] = F((T q−1
K,σ0))eχ

ϕq(eχ) = λχ

T
hχ(q−1)
K,σ0

eχ

a(eχ) = (fLT
a )hχeχ

If ρ is any finite-dimensional continuous representation of Gal(K/K) over F, write
DK,σ0(ρ)(χ) for DK,σ0(ρ)⊗F((TK,σ0 ))DK,σ0(χ) with tensor product structures. Then we
have DK,σ0(ρ⊗ χ) ∼= DK,σ0(ρ)(χ) as follows from the compatibility of DK,σ0(−) with
tensor products.

2.2 The (ϕq,O×K)-module over A of a semi-simple Galois rep-
resentation

To an arbitrary semi-simple ρ we associate by an elementary recipe an étale (ϕq,O×K)-
module DA,σ0(ρ) over A (depending on the fixed choice of the embedding σ0).

Let N0
def=
(

1 OK
0 1

)
⊆ GL2(OK) and mN0 the maximal ideal of FqJN0K. Recall that

FqJN0K = FqJY0, . . . , Yf−1K and mN0 = (Y0, . . . , Yf−1), where

Yi
def=

∑
λ∈F×q

λ−p
i

(
1 [λ]
0 1

)
∈ FqJN0K.

(Namely, as N0 is a uniform pro-p-group isomorphic to Zfp , it follows from [DdSMS99,
Thm. 7.23(i)] that FqJN0K is isomorphic to a power series ring in f variables over Fq.
This is a local ring. We easily check that the images of Y0, . . . , Yf−1 in mN0/m

2
N0 form

a basis of this Fq-vector space, so that FqJN0K = FqJY0, . . . , Yf−1K.)

As in [BHH+, §3.1.1] consider the multiplicative system

S
def= {(Y0 · · ·Yf−1)k, k ≥ 0} ⊆ FqJN0K

and Aq
def= ̂FqJN0KS the completion of the localization FqJN0KS with respect to the

ascending filtration (n ∈ Z):

Fn(FqJN0KS) def=
∑
k≥0

1
(Y0 · · ·Yf−1)km

kf−n
N0 =

⋃
k≥0

1
(Y0 · · ·Yf−1)km

kf−n
N0 (16)

where mm
N0

def= FqJN0K if m ≤ 0 (see [BHH+, §3.1.1]). We denote by FnAq (n ∈ Z)
the induced ascending filtration on Aq and endow Aq with the associated topology
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([LvO96, §I.3]). The ring Aq contains FqJN0K and the Fq-linear action ofO×K on FqJN0K
(induced by the multiplication on OK ∼= N0) canonically extends by continuity to Aq
(but not to FqJN0KS as it does not preserve S). We will write this action of O×K on
FqJN0K and Aq as a(x) for (a, x) ∈ O×K ×Aq. In fact using a− [a] ∈ pOK one has for
a ∈ O×K and i ∈ Z:

a(Yi) ∈ ap
i

Yi + mp
N0 ⊆ mN0

which implies

a(Yi) ∈ ap
i

Yi
(
1 + 1

Yi
mp
N0

)
⊆ ap

i

Yi(1 + F1−pAq) ⊆ A×q . (17)

We define ϕ as the Frobenius endomorphism of FqJN0K, i.e. by ϕ(f) = fp for f ∈
FqJN0K. It canonically extends by continuity to Aq and obviously commutes with the
action of O×K on FqJN0K, hence on Aq.

Let A be the complete filtered ring in [BHH+, §3.1.1]. Recall that A is defined
similarly to Aq replacing FqJN0K by FJN0K except that the Frobenius ϕ on FJN0K is
now F-linear. As in (7), we have an isomorphism F⊗FpAq

∼−→ A× A× · · · × A︸ ︷︷ ︸
f times

which

sends λ⊗∑n cnY
n0

0 · · ·Y
nf−1
f−1 ∈ F⊗Fp Aq to:(

λ
∑
n

σ0(cn)Y n0
σ0 · · ·Y

nf−1
σf−1

, λ
∑
n

σ1(cn)Y n0
σ1 · · ·Y

nf−1
σ0 , . . . , λ

∑
n

σf−1(cn)Y n0
σf−1
· · ·Y nf−1

σf−2

)

where we set for σ : Fq ↪→ F:

Yσ
def=

∑
λ∈F×q

σ(λ)−1
(

1 [λ]
0 1

)
∈ FJN0K ⊆ A. (18)

It induces an analogous decomposition for any F⊗Fp Aq-module DAq :

DAq
∼−→ DA,σ0 × · · · ×DA,σf−1 .

We extend F-linearly the Frobenius ϕ and the action of O×K from Aq to F ⊗Fp Aq.
Note that we have ϕ(Yσi) = Y p

σi−1
for i ∈ Z (see [BHH+, §3.1.1], where ϕ on A is

denoted by φ). We let ϕq def= ϕf on A. As in §2.1, the functor DAq 7→ DA,σ0 induces an
equivalence of categories between the category of étale (ϕ,O×K)-modules over F⊗FpAq
and the category of étale (ϕq,O×K)-modules over A.

The embedding of F-algebras

F((T q−1
K,σ0)) ↪→ A,

∑
n�−∞

cnT
n(q−1)
K,σ0 7−→

∑
n�−∞

cn

(
ϕ(Yσ0)
Yσ0

)n
(19)

20



trivially commutes with ϕq and [F×q ] (the latter acting trivially on both sides). When ρ
is a direct sum of absolutely irreducible finite-dimensional continuous representations
of Gal(K/K) over F, we define:

DA,σ0(ρ) def= A⊗F((T q−1
K,σ0

)) DK,σ0(ρ)[F×q ] (20)

where DK,σ0(ρ)[F×q ] is as in Lemma 2.1.4. It follows from its definition that DA,σ0(ρ)
is an étale ϕq-module over A if it is endowed with the endomorphism ϕq

def= ϕq ⊗ ϕq.

Remark 2.2.1. Definition (20) does not need the semi-simplicity of ρ, but we will
only use it in that case, see also Remark 2.9.5 below.

For a ∈ O×K , we set (see (17)):

fa,σ0
def= fa,σ0(Yσ0 , . . . , Yσf−1) def= σ0(a)Yσ0

a(Yσ0) ∈ 1 + F1−pA. (21)

Lemma 2.2.2. Let ρ be an absolutely irreducible continuous representation of
Gal(K/K) over F and (e0, . . . , ed−1) a basis of DK,σ0(ρ)[F×q ] as in Lemma 2.1.5. Then
we have: 

DA,σ0(ρ) = ⊕d−1
i=0 A(1⊗ ei)

ϕq(1⊗ ei) = 1⊗ ei+1, i < d− 1

ϕq(1⊗ ed−1) = λd
(

Yσ0

ϕ(Yσ0)

)h
(1⊗ e0).

Moreover there is a unique structure of (ϕq,O×K)-module over A on DA,σ0(ρ) such that

a(1⊗ ei) ∈ 1⊗ ei +
d−1∑
j=0

(F1−pA)(1⊗ ej) for all i and a ∈ O×K.

This action of O×K is explicitly given by (i ∈ {0, . . . , d− 1}, a ∈ O×K):

a(1⊗ ei) =
(

fa,σ0

ϕ(fa,σ0)

) hqi

1−qd (1⊗ ei) ∈ (1 + Fqi(1−p)A)(1⊗ ei) (22)

and does not depend (up to isomorphism) on the choice of the basis (ei)i of
DK,σ0(ρ)[F×q ].

Proof. The first part of the statement follows from the definition of DA,σ0(ρ) in (20).
Fix a ∈ O×K and write a(1 ⊗ e0) = ∑d−1

i=0 Ci(1 ⊗ ei) for some C0 ∈ 1 + F1−pA and
Ci ∈ F1−pA if i 6= 0. Assume Ci 6= 0 for some i 6= 0 and let mi ≥ p − 1 be the
maximal integer such that Ci ∈ F−miA \ F−(mi+1)A. Since a(1 ⊗ e0) and the 1 ⊗ ej
are fixed by [F×q ], the constants Cj are also fixed by [F×q ] in A for all j, and thus in
particular by [F×p ], from which it is an exercise to deduce that we must have (p−1)|mi.
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Since ϕdq(1⊗ ej) = λd
(

Yσ0
ϕ(Yσ0 )

)qjh
(1⊗ ej) for all j, the equality a(ϕdq(e0)) = ϕdq(a(e0))

yields for j ∈ {0, . . . , d− 1} (using σ0(a)q−1 = 1):

Cj =
(

fa,σ0

ϕ(fa,σ0)

)h( Yσ0

ϕ(Yσ0)

)(qj−1)h
ϕdq(Cj) (23)

which implies in particular −mi = (qi − 1)h(p − 1) − qdmi, i.e. (qi − 1)h(p − 1) =
(qd − 1)mi, i.e. h = qd−1

qi−1
mi
p−1 , which contradicts the assumption on h since mi

p−1 ∈ Z.

Hence we must have Ci = 0 if i 6= 0. When i = 0, (23) is just C0 =
(

fa,σ0
ϕ(fa,σ0 )

)h
ϕdq(C0).

The equation C0 =
(

fa,σ0
ϕ(fa,σ0 )

)h
ϕdq(C0) has a solution in 1 + F1−pA given by

C0 =
+∞∏
n=0

ϕndq

((
fa,σ0

ϕ(fa,σ0)

)h)
=

+∞∏
n=0

(
fa,σ0

ϕ(fa,σ0)

)qndh
=
(

fa,σ0

ϕ(fa,σ0)

)h(1+qd+q2d+··· )

=
(

fa,σ0

ϕ(fa,σ0)

) h

1−qd
,

where the second equality uses xqnd = x if x ∈ Fq. This solution is unique in 1 +
F1−pA(⊆ A×): the quotient of two solutions is an element of 1 + F1−pA fixed by ϕdq
and the map 1 − ϕdq induces an automorphism of F1−pA (with inverse ∑n≥0 ϕ

dn
q ) so

that only 1 is fixed by ϕdq in 1+F1−pA. Then (22) immediately follows, from which the
continuity of the action of O×K is clear (as it is continuous on A). If one changes the
basis (ei)i, or equivalently by (the last statement in) Lemma 2.1.5 changes the integer
h, the last statement easily follows from the last statement of Lemma 2.1.5.

Remark 2.2.3. The uniqueness of the action of O×K in the proof of Lemma 2.2.2
works just assuming a(1⊗ei) ∈ 1⊗ei+

∑d−1
j=0(F−1A)(1⊗ej) (and lands automatically

in 1⊗ ei +∑d−1
j=0(F1−pA)(1⊗ ej)).

Let us finally make twists explicit. Let χ : Gal(K/K) → F× be a continuous
character and write χ = ω

hχ
f unr(λχ) for hχ ∈ Z≥0 and λχ ∈ F×, then (using Lemma

2.1.7) the étale (ϕq,O×K)-module DA,σ0(χ) is explicitly given by (a ∈ O×K):

DA,σ0(χ) = A(1⊗ eχ)

ϕq(1⊗ eχ) = λχ

(
Yσ0

ϕ(Yσ0)

)hχ
(1⊗ eχ)

a(1⊗ eχ) =
(

fa,σ0

ϕ(fa,σ0)

) hχ
1−q

(1⊗ eχ).

(24)

One has an action of O×K on DA,σ0(ρ⊗χ) def= DA,σ0(ρ)⊗ADA,σ0(χ) by taking the tensor
product action. We leave to the reader the exercise to check that, when ρ⊗χ ∼= ρ′⊗χ′,
then DA,σ0(ρ⊗ χ) ∼= DA,σ0(ρ′ ⊗ χ′) as (ϕq,O×K)-modules over A.
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2.3 A reminder on p-divisible groups and K-vector spaces

We review some results on constructions of Fargues and Fontaine ([FF18]) related to
p-divisible groups (in a relative context, see for example [LB18, §5.1]) and we define
the important perfectoid spaces ZLT and ZOK over F.

Let R be a perfectoid F-algebra and $ a pseudo-uniformizer of R. As usual we
denote by R◦ the subring of power-bounded elements in R and by R◦◦ ⊆ R◦ the
subset of topologically nilpotent elements (i.e. those a ∈ R such that an converges
to 0 in R). We fix a power-multiplicative norm |·| on R defining the topology of R.
Such a norm exists and can be explicitly given by

|a| = inf{2m
n , (m,n) ∈ Z× Z>0, $

man ∈ R◦} ∈ R≥0 (25)

(so |a| ≤ 1 ⇔ a ∈ R◦). We endow the Witt vectors W (R◦) with the (p, [$])-adic
topology (where [·] is the multiplicative representative). Let B+(R) be the Fréchet K-
algebra defined as the completion ofW (R◦)[1/p] for the family of norms |·|ρ, 0 < ρ < 1
given by ∣∣∣∣∣ ∑

n>>−∞
[xn]pn

∣∣∣∣∣
ρ

def= sup
n∈Z

(|xn|ρn). (26)

It is endowed with a continuous K-semi-linear endomorphism defined by

ϕ

(∑
n

[xn]pn
)

def=
∑
n

[xpn]pn

and we define ϕq def= ϕf which is K-linear.

Let FJx1/p∞
0 , . . . , x

1/p∞
d−1 K be the completion of the perfection of F[x0, . . . , xd−1] for

the (x0, . . . , xd−1)-topology. If R is a perfectoid F-algebra and (r0, . . . , rd−1) ∈ (R◦◦)d,
let

F (r0, . . . , rd−1) def=
∑
n∈Z

d−1∑
i=0

[rp
−i−nf

i ]pi+nd ∈ B+(R)ϕq=pd

then we have:

Lemma 2.3.1. Let 1 ≤ d ≤ f . For each perfectoid F-algebra R, the following
functorial map is a bijection:

Homcont
F−alg(FJx1/p∞

0 , . . . , x
1/p∞
d−1 K, R) ∼= (R◦◦)d −→ B+(R)ϕq=pd

(r0, . . . , rd−1) 7−→ F (r0, . . . , rd−1).

Proof. This follows from [FS, Prop. II.2.5(iv)]. See also [FF18, Prop. 4.2.1] for the
case where R is an algebraically closed perfectoid field.
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Remark 2.3.2. If R is a Huber ring over F and R+ ⊆ R◦ is an open and integrally
closed subring ((R,R+) is then called a Huber pair), we have R◦◦ ⊆ R+ so that, by
[Hub94, Prop. 2.1(i)]

HomSpa(F)
(

Spa(R,R+), Spa(FJx1/p∞
0 , . . . , x

1/p∞
d−1 K)

)
∼= Homcont

F−alg(FJx1/p∞
0 , . . . , x

1/p∞
d−1 K, R).

Thus Lemma 2.3.1 and [SW20, Lemma 18.1.1] imply that the functor (R,R+) 7→
B+(R)ϕq=pd can be extended to a sheaf on the site PerfF of perfectoid spaces over F
endowed with either the pro-étale topology or the v-topology.

Remark 2.3.3. Let (R,R+) be a perfectoid Huber pair over F. If x ∈ Spa(R,R+),
then its residue field k(x) is a perfectoid field containing F (see for example [Sch12,
Cor. 6.7(ii)]). If z ∈ B+(R)ϕq=pd , we let zx be its image in B+(k(x))ϕq=pd . Then the
functorial bijection of Lemma 2.3.1 induces a functorial bijection:(

Spa(FJx1/p∞
0 , . . . , x

1/p∞
d−1 K)\V (x0, . . . , xd−1)

)
(R,R+)∼={z ∈ B+(R)ϕq=pd, zx 6= 0 ∀ x}.

The following remark will be used in §2.9.

Remark 2.3.4. There exists a norm |·|1 on B+(R) which induces on W (R◦)[1/p] the
norm ∣∣∣∣∣ ∑

n>>−∞
[xn]pn

∣∣∣∣∣
1

= sup{|xn|, n ∈ Z} ∈ [0, 1] ⊆ R≥0

and is such that |x|1 = limρ<1
ρ→1
|x|ρ (see [FF18, Prop. 1.10.5 & Prop. 1.6.16]). Equiva-

lently, there exists a valuation v0 : B+(R)→ [0,+∞] such that

∀ x =
∑

n>>−∞
[xn]pn ∈ W (R◦)[1/p], v0(x) = inf{v(xn), n ∈ Z},

where v is the valuation − log|·| on R. This description implies that if (x−n)n≥0 is a
sequence of elements of R◦◦ such that ∑n≤0[xn]pn ∈ B+(R) and such that there exists
0 ≤ c < 1 with |x−n| ≤ c for all n ≥ 0, then∣∣∣∣∣∣

∑
n≤0

[xn]pn
∣∣∣∣∣∣
1

≤ c.

Note that |·|1 : B+(R) → [0, 1] is not continuous since, for instance, |pn|1 = 1 for
n ∈ Z although pn → 0 in B+(R) when n → +∞ (in fact |·|1 induces the discrete
topology on K ⊆ B+(R)).

Now we review the interpretation of B+(−)ϕq=pd in terms of p-divisible groups in
the two extreme cases d = 1 and d = f .
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The case d = 1 Let GLT be the Lubin–Tate formal group of §2.1. As at the end
of loc. cit. we choose an isomorphism GLT ∼= Spf(OKJTKK) such that the logarithm
map logGLT

: Grig
LT → Grig

a,K (where Ga,K is the additive formal group over OK and
“rig” the rigid analytic generic fiber) is given by the series ∑n≥0 p

−nT q
n

K . Let G̃LT
def=

lim←−p(GLT ×Spf(OK) Spf(Fq)) ∼= Spf(FqJT 1/p∞
K K) be the universal cover of GLT ×Spf(OK)

Spf(Fq) (see for instance [SW13, §3.1]). The action of OK on GLT extends to an
action of K on G̃LT. Note that if R is a perfectoid F-algebra, we have G̃LT(R) ∼→
(GLT ×Spf(OK) Spf(Fq))(R) ∼= GLT(R) (see for example [SW13, Prop. 3.1.3(iii)]) so
that GLT(R) already has a structure of a K-vector space. We also have G̃LT(R◦) ∼→
G̃LT(R). By [FF18, Prop. 4.4.5] or [FS, Prop. II.2.2], for each perfectoid F-algebra R,
we have an isomorphism of K-vector spaces G̃LT(R◦) ∼−→ B+(R)ϕq=p given by

r ∈ R◦◦ ∼= G̃LT(R◦) 7−→ F (r) def=
∑
n∈Z

[rq−n ]pn ∈ B+(R)ϕq=p (27)

(this is the isomorphism of Lemma 2.3.1 when d = 1, where the variable x0 in loc. cit.
is denoted by TK). Note that on the left-hand side, the K-linear structure is given
by (for r ∈ R◦◦) ∀ n ∈ Z, pn(r) = rq

n
,

∀ a ∈ OK , a(r) = aLT(r),
(28)

where we view the coefficients of the power series aLT in F via OK � Fq
σ0
↪→ F. We

let
ZLT

def= ((G̃LT ×Spf(Fq) Spf(F))ad \ {0})f ,

where (G̃LT ×Spf(Fq) Spf(F))ad is the adic space associated to the formal scheme
G̃LT×Spf(Fq) Spf(F) and {0} is the closed analytic subspace image of the 0-section, i.e.
f -times the fiber product of (G̃LT×Spf(Fq) Spf(F))ad \ {0} over Spa(F) (still using σ0).
Using obvious notation, we have an isomorphism of adic spaces

ZLT ∼= Spa(FJT 1/p∞
K,0 , . . . , T

1/p∞
K,f−1K)\V (TK,0 · · ·TK,f−1) ∼=

f−1∏
i=0

Spa(F((T 1/p∞
K,i )),FJT 1/p∞

K,i K)

and there is an action of (K×)f on ZLT given by

∀ a = (a0, . . . , af−1) ∈ (K×)f , a(TK,i) = ai,LT(TK,i).

The case d = f Let Gf,f be the p-divisible group over Fp defined in [FF18, §4.3.2]
(with O = Zp) as the kernel of V f − 1 on the group scheme of Witt covectors CW
(we use without comment the notation of loc. cit., for instance V is the Verschiebung,
F is the Frobenius, see [FF18, §1.10.2] for CW , etc.). The base change of Gf,f to F is
endowed with an additional structure of functor in OK-modules. Namely if R is an
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F-algebra, then CW (R) is an OK = W (Fq)-module via σ0 : Fq ↪→ F and the action
of OK on CW (R) commutes with V f and F f (but not with V and F ).

As ker(V − 1) ⊆ ker(V f − 1), there is a natural injection of p-divisible groups
G1,1 ↪→ Gf,f which induces a morphism of p-divisible groups over F with OK-action

OK ⊗Zp G1,1,F −→ Gf,f,F. (29)

Lemma 2.3.5. The map (29) is an isomorphism of p-divisible groups over F with
OK-action.

Proof. In this proof we will use (contravariant) Dieudonné Theory D(−) for p-divisible
groups over Fp. Recall that it yields free Zp-modules, and that when the p-divisible
group is over F it yields free W (F)-modules. The map (29) corresponds to a nonzero
map of Dieudonné modules which is both OK-linear and W (F)-linear:

D(Gf,f,F) −→ D(OK ⊗Zp G1,1,F) ∼= HomZp−mod(OK ,D(G1,1,F))
∼= HomZp−mod(OK ,W (F))⊗W (F) D(G1,1,F) (30)

whereOK acts on the right-hand side via its natural action on HomZp−mod(OK ,W (F)).
Note that D(Gf,f,F) = W (F) ⊗Zp D(Gf,f ), where the Dieudonné module D(Gf,f ) has
a Zp-basis (e0, e1

def= V (e0), . . . , ef−1
def= V f−1(e0)) such that F (ei) = pei−1 for all

0 ≤ i ≤ f − 1 (see [FF18, §4.3.2], we write e0 : Gf,f ↪→ CW for the canonical
embedding e of loc. cit. and we use the convention that i = i + f). Moreover the
action of OK on Gf,f,F induces an action of OK on D(Gf,f,F) = W (F)⊗Zp D(Gf,f ) such
that a(1⊗ ei) = ϕ−i(a)⊗ ei for a ∈ OK , where ϕ is the absolute Frobenius on W (F)
and OK is seen in W (F) via σ0 : Fq ↪→ F. Using the OK- and W (F)-linearities, and
the commutativity with F , one checks that there is an isomorphismW (F) ∼= D(G1,1,F)
such that the map (30) is given by

f−1∑
i=0

λi ⊗ ei 7−→

a 7−→ f−1∑
i=0

λiϕ
−i(a)

 ∈ HomZp−mod(OK ,W (F))

(in particular, e0 maps to the inclusion OK ↪→ W (F)). To conclude the proof we need
to show that the elements a 7→ ϕ−i(a), i ∈ {0, . . . , f − 1}, generate the W (F)-module
HomZp−mod(OK ,W (F)). This can be checked after reduction mod p and we have to
prove that the elements a 7→ ap

i , i ∈ {0, . . . , f − 1}, generate the F-vector space
HomFp−vs(Fq,F), which is a consequence of the linear independence of characters.

By [FF18, Prop 4.4.5] (replacing Fp by F, the field F by a perfectoid F-algebra
R and where the variable xi of loc. cit. is reindexed xf−i here for i ∈ {1, . . . , f − 1},
x0 being unchanged) there exists a coordinate z (resp. coordinates x0, . . . , xf−1) on
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the formal group G1,1,F (resp. Gf,f,F) such that the following map is an isomorphism
of Qp-vector spaces (resp. K-vector spaces) for any perfectoid F-algebra R:

γ1 : G1,1,F(R) ∼−→ B+(R)ϕ=p

z
∼−→ ∑

n∈Z[zp−n ]pn(
resp. γf : Gf,f,F(R) ∼−→ B+(R)ϕq=pf

(x0, . . . , xf−1) ∼−→ ∑f−1
i=0

∑
n∈Z[xp

−i−nf

i ]pi+nf

) (31)

(we use G̃1,1,F(R) ∼→ G1,1,F(R) by [SW13, Prop. 3.1.3(iii)] for the structure of Qp-vector
space on G1,1,F(R), likewise with Gf,f,F(R)). Moreover these isomorphisms are given
by the composition of the isomorphisms in the following diagram (we only give γf
and refer to loc. cit. for the notation):

Gf,f,F(R) ∼−→ HomW (F)[F ](D(Gf,f,F), CW (R)) ∼←− HomW (F)[F ](D(Gf,f,F), BW (R))
∼−→ HomW (F)[F ](D(Gf,f,F),B+(R)) = B+(R)ϕq=pf , (32)

where the second isomorphism is a consequence of [FF18, Prop. 4.4.2] and the third
a consequence of [FF18, Prop. 4.2.1]. We deduce from (32) the commutativity of the
following diagram of Qp-vector spaces:

G1,1,F(R) B+(R)ϕ=p

Gf,f,F(R) B+(R)ϕq=pf

γ1

γf

and thus the commutativity of the following diagram of K-vector spaces:

OK ⊗Zp G1,1,F(R) OK ⊗Zp B+(R)ϕ=p

Gf,f,F(R) B+(R)ϕq=pf .

IdOK⊗γ1

∼=

γf

(33)

Let Ĝm,Fp be the multiplicative formal group over Fp and Ĝm,F its base change over F,
we have G1,1 ∼= Ĝm,Fp (see [FF18, Ex. 4.4.7]) and isomorphisms of p-divisible groups
over F with OK-action

HomZp−mod(OK ,Zp)⊗Zp Ĝm,F ∼= OK ⊗Zp G1,1,F
∼→ Gf,f,F (34)

using the isomorphism of OK-modules

OK
∼−→ HomZp−mod(OK ,Zp), a 7→ TrK/Qp(a·) (35)
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and Lemma 2.3.5. Here, theOK-action on the left-hand side of (34) is via the action of
OK on HomZp−mod(OK ,Zp) given by a(λ)=λ(a−) (a∈OK , λ∈HomZp−mod(OK ,Zp)).
Using

Homcont
F−alg(FJOKK, A) ∼= HomZp−mod(OK , A◦◦) ∼= HomZp−mod(OK ,Zp)⊗Zp A

◦◦

for any complete topological F-algebra A, we deduce from (34) an isomorphism of
formal modules over F with OK-action

Gf,f,F ∼= Spf(FJOKK), (36)

where OK acts (continuously) on FJOKK by multiplication on itself. It follows that
G̃f,f,F

def= lim←−p Gf,f,F is represented by the formal scheme Spf(FJKK), where FJKK is
the mOK -adic completion of F[K] ⊗F[OK ] FJOKK (mOK being the maximal ideal of
FJOKK). It also follows from the formula for γf in (31) that there exist elements
X0, . . . , Xf−1 ∈ FJOKK satisfying FJOKK = FJX0, . . . , Xf−1K such that we have iso-
morphisms Gf,f,F(R) ∼= Homcont

F−alg(FJOKK, R) ∼= B+(R)ϕq=pf for any perfectoid F-
algebra R, where the second isomorphism is given by (where Xi 7→ ri ∈ R◦◦)

(r0, . . . , rf−1) ∈ (R◦◦)f 7−→ F (r0, . . . , rf−1) def=
f−1∑
i=0

∑
n∈Z

[rp
−i−nf

i ]pi+nf ∈ B+(R)ϕq=pf .

(37)
We then easily check that, in the coordinates Xi, the action of K× on FJKK has the
following properties∀ 0 ≤ i ≤ f − 1, ∀ n ∈ Z, pn(Xi) = Xpn

i−n

∀ 0 ≤ i ≤ f − 1, ∀ a ∈ F×q , [a](Xi) = σ0(a)piXi

(38)

(with the usual convention that Xi+f = Xi). Finally, we let

ZOK
def= G̃ad

f,f,F \ {0},

where G̃ad
f,f,F is the adic space over F associated to the formal scheme G̃f,f,F. We have

an isomorphism

ZOK
∼= Spa(FJX1/p∞

0 , . . . , X
1/p∞
f−1 K) \ V (X0, . . . , Xf−1).

Note that the adic spaces ZLT and ZOK are both in PerfF.

We fix now C a perfectoid field containig F and v a continuous rank 1 valuation
on F . If x ∈ B(C), the Newton polygon of x, defined in [FF18, Déf. 1.5.2, Déf. 1.6.18,
Déf. 1.6.21] is a decreasing convex function from R → R ∪ {+∞}. From [FF18,
Ex. 1.6.22], it can be computed as the inverse Legendre transform of the function
λ 7→ vλ(x), λ ∈ [0,+∞[ (from which we remove the zero slope if it appears), where vλ
is the continuous extension to B(C) of the valuation vλ defined in [FF18, Déf. 1.4.1].

28



Lemma 2.3.6. Let (xn)n∈Z be a family of nonzero elements of OC such that, for any
λ ∈ ]0,+∞[, v(xn) + λn→ +∞ when n→ −∞ and v(xn)→ 0 when n→ +∞. Let
x

def=∑
n∈Z[xn]pn ∈ B+(C).

(i) Assume that x ∈ B+(C)ϕq=pf . Then the set of slopes of the Newton polygon of
x is of the form apZ for some a > 0 if and only if v(xn) = v(x0)p−n for all
n ∈ Z. In this case we can choose a = (p− 1)v(x0).

(ii) Assume that x ∈ B+(C)ϕq=p. Then the set of slopes of the Newton polygon of
x is (q − 1)v(x0)qZ.

Proof. We prove (i), (ii) being similar and simpler. For λ ∈ ]0,+∞[ we define fx(λ) def=
vλ(x). By [FF18, §1.5.1], the set of slopes of the Newton polygon of x is the set of
breakpoints of fx. For any compact interval [a, b] ⊆ ]0,+∞[, there exists an integer
N > 0 such that

∀λ ∈ [a, b], fx(λ) = vλ(x) = inf
n∈[−N,N ]∩Z

(v(xn) + nλ).

This shows that the function fx has only finitely many slopes in the interval [a, b] and
that these slopes are in the set [−N,N ] ∩ Z. Therefore the function fx has integral
slopes. Moreover, as the breakpoints of fx in [a, b] are coordinates of the intersection
points of finitely many lines, fx has finitely many breakpoints in [a, b]. The relation
ϕq(x) = pfx implies qvλ/q(x) = vλ(x) + fλ for all λ > 0. As a consequence, the set of
breakpoints of the function fx is stable under multiplication by q and q−1. Moreover,
if λ is a regular point of fx, so is qλ and f ′x(qλ) = f ′x(λ) − f . Let us fix λ0 > 0
some regular point of fx and let sdef=f ′x(λ0) ∈ Z. As f ′x(qλ0) = s− f , between λ0 and
qλ0, fx can have at most f + 1 different slopes and so at most f breakpoints. These
breakpoints are representatives of the quotient of the set of breakpoints of fx by qZ.
Therefore if the set of breakpoints of fx is of the form apZ, for some a > 0, then fx
has exactly f breakpoints in [λ0, qλ0] which are of the form λ1, pλ1, . . . , p

f−1λ1 and
the successive slopes in this interval are s, s− 1, . . . , s− (f − 1), s− f . This implies
that λ1 is the coordinate of the intersection point of the graphs of the functions
λ 7→ v(xs) + sλ and λ 7→ v(xs−1) + (s− 1)λ, that is λ1 = v(xs−1)− v(xs). Similarly,
we have pjλ1 = v(xs−j−1)− v(xs−j) for all 0 ≤ j ≤ f − 1. Thus we have the relation
v(xn−1) − v(xn) = p(v(xn) − v(xn+1)) for all n ∈ Z. As the sequence (v(xn))n∈Z is
not constant and has limit 0 as n → +∞, we easily deduce that v(xn) = v(x0)p−n
for all n ∈ Z. Moreover, as the computation shows, v(x0) − v(x1) is the coordinate
of a breakpoint up to some power of p, hence we can choose a = p(v(x0)− v(x1)) =
(p− 1)v(x0). A direct computation following the same lines shows, conversely, that if
v(xn) = p−nv(x0) for all n ∈ Z, then the set of breakpoints of fx is (p−1)v(x0)pZ.

Recall the series F (r) ∈ B+(R)ϕq=p from (27) and F (x0, . . . , xf−1) ∈ B+(R)ϕq=pf

from (37)
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Corollary 2.3.7.

(i) Let t0, . . . , tf−1 ∈ C such that v(t0), . . . , v(tf−1) > 0. The set of slopes of the
Newton polygon of F (t0, . . . , tf−1) is of the form apZ for some a > 0 if and only
if v(t0) = v(t1) = · · · = v(tf−1). In this case we can choose a = (p− 1)v(t0).

(ii) Let t ∈ C. The set of slopes of the Newton polygon of F (t) is (q − 1)v(t0)qZ.

Proof. This is a direct consequence of Lemma 2.3.6.

2.4 A “sum of divisors” map

We define and study certain open subspaces of the perfectoid spaces ZLT and ZOK of
§2.3, as well as a canonical map m : ZLT −→ ZOK preserving these subspaces.

For any perfectoid F-algebra R, the product in the ring B+(R) induces a functorial
map:

mR : (B+(R)ϕq=p)f −→ B+(R)ϕq=pf

(z1, . . . , zf ) 7−→ z1 · · · zf .
(39)

Using Remark 2.3.3, the fact that each B+(k) is a domain for k a perfectoid field
(see [FF18, Thm. 6.2.1 & Thm. 3.6.1]) and [SW20, Prop. 8.2.8(2)], the family of maps
(mR) induces a morphism of perfectoid spaces over F

m : ZLT −→ ZOK . (40)

The map mR being compatible with the actions of (K×)f (on the source) and K×

(on the target), we deduce that m is compatible with the actions of (K×)f and K×
on ZLT and ZOK , i.e. m ◦ (a0, . . . , af−1) = (∏i ai) ◦m. For 0 ≤ i ≤ f − 1 let ji be the
morphism K× → (K×)f sending a to the f -uple with 1 at all entries except at the
i-th entry where it is a, then for all a ∈ K× and 0 ≤ i ≤ f − 1, we have in particular

m ◦ ji(a) = a ◦m : ZLT → ZOK . (41)

Remark 2.4.1. The map m can be reinterpreted using the Abel–Jacobi map (cf.
[Far20]). Namely the sheaf on the pro-étale site of PerfF associated to the quotient
presheaf (B+(−)ϕq=p \ {0})/K× is isomorphic to the pro-étale sheaf Div1

F of degree
1 divisors on the relative Fargues–Fontaine curve over F and likewise (B+(−)ϕq=pf \
{0})/K× is isomorphic to the pro-étale sheaf DivfF of degree f divisors. The map m
induces a morphism of pro-étale sheaves (Div1

F)f → DivfF which is given by the sum
of divisors, cf. [Far20, §2.4].
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The group Sf acts on the left on (K×)f by permutation of coordinates:

∀ σ ∈ Sf , ∀ (ai)0≤i≤f−1 ∈ (K×)f , σ(ai) def= (aσ−1(i)).

The group Sf acts likewise on ZLT by permuting the factors (G̃LT ×Spf(OK) Spf(F) \
{0})ad so that the action of (K×)f on ZLT extends to an action of the semi-direct
product (K×)f o Sf . Let ∆ be the kernel of the multiplication (K×)f → K× and
∆1

def= ∆ ∩ (O×K)f . Then ∆ o Sf is a subgroup of (K×)f o Sf and the map m is
invariant under the action of ∆ oSf . By [Far20, Lemme 7.6]2, the map m induces
an isomorphism of pro-étale sheaves on PerfF

∆ oSf\ZLT
∼−→ ZOK . (42)

We let Zgen
OK be the open subspace of Spa(FJKK) defined by the relations

|X0| = · · · = |Xf−1| 6= 0

(it is open as it is the intersection over i ∈ {0, . . . , f − 1} of the rational open
subsets U(X0,...,Xf−1

Xi
) of Spa(FJKK)). Note that we have Zgen

OK ⊆ ZOK . We also define
Zgen

LT
def= m−1(Zgen

OK ), an open subspace of ZLT, so that Zgen
OK and Zgen

LT are both in PerfF.
We now give explicit descriptions of Zgen

OK and Zgen
LT .

We start with Zgen
OK . We denote by A∞ def= OZOK (Zgen

OK ) the ring of global sections
on Zgen

OK .

Lemma 2.4.2. The following statements hold.

(i) The ring A∞ is the perfectoid F-algebra

F((X1/p∞
0 ))

〈(
Xi

X0

)±1/p∞

, 1 ≤ i ≤ f − 1
〉
.

(ii) We have Zgen
OK = Spa(A∞, A◦∞), in particular Zgen

OK is affinoid perfectoid.

(iii) There exists a multiplicative norm |·| on A∞ such that |X0| = p−1 inducing the
topology of A∞.

(iv) Any quasi-compact open subset of ZOK whose points of rank 1 are exactly the
points of Zgen

OK of rank 1 is necessarily Zgen
OK itself.

2Note that [Far20, Lemme 7.6] extends scalars to Fq, however the proof works the same without
extending scalars as it is based on the proof of [Far20, Prop. 2.18] where one does not extend scalars.
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Proof. Define the adic spaces

T gen def= {|X0| = · · · = |Xf−1| 6= 0} ⊆ T
def= Spa(FJX0, . . . , Xf−1K).

It is enough to prove (i), (ii) and (iii) replacing everywhere Zgen
OK ⊆ Spa(FJKK) by

T gen ⊆ T (i.e. completed perfection will not change the arguments in the proof below).
Moreover, as the map T = Spa(FJX0, . . . , Xf−1K) → Spa(FJX1/p∞

0 , . . . , X
1/p∞
f−1 K) is a

homeomorphism, it is also enough to prove (iv) with T gen and T \ V (X0, . . . , Xf−1).

We first show the analogue (iii). Let S def= F((X0))
〈(

Xi
X0

)±1
, 1 ≤ i ≤ f − 1

〉
that

we endow with the X0-adic topology (it is a Tate algebra), then the norm in (iii) is
the unique multiplicative extension to S of the Gauss norm on the restricted power
series F((X0))

〈(
Xi
X0

)
, 1 ≤ i ≤ f − 1

〉
(which is well-known to be multiplicative). Note

that S◦ = FJX0K
〈(

Xi
X0

)±1
, 1 ≤ i ≤ f − 1

〉
is the unit ball for this norm.

Let us prove (the analogues of) (i) and (ii). Looking at continuous valuations, it
is clear that the morphism of adic spaces Spa(S, S◦) → T factors as Spa(S, S◦) →
T gen ⊆ T . In order to prove that the morphism of adic spaces Spa(S, S◦)→ T gen is an
isomorphism, it is enough to prove that it induces an isomorphism Spa(S, S◦)(W ) ∼→
T gen(W ) for any analytic adic space W over F, and it is enough to take W =
Spa(R,R+) for an arbitrary complete analytic Huber pair (R,R+) over F (the case
R Tate would be enough). Then this easily follows from the definitions of T and S.

Let us finally prove (the analogue of) (iv). First note that T \ V (X0, . . . , Xf−1)
is the analytic locus of the adic space T , the only non-analytic point of T be-
ing the unique (rank 0) valuation with kernel the maximal ideal of the local ring
FJX0, . . . , Xf−1K. Let U be a quasi-compact open subset of T \ V (X0, . . . , Xf−1)
whose points of rank 1 are the points of T gen of rank 1. For i ∈ {0, . . . , f − 1} con-
sider the open subset Ui of T defined by |Xj| ≤ |Xi| 6= 0 for all j, or equivalently (by
the same argument as for the proof of (i))

Ui = Spa
(
F((Xi))

〈
Xj

Xi

, j 6= i
〉
,FJXiK

〈
Xj

Xi

, j 6= i
〉)
⊆ T \ V (X0, . . . , Xf−1).

Then U ∩Ui and T gen = ⋂
j Uj are two open subsets of Ui with the same points of rank

1, and thus a fortiori with the same points with residue field being a finite extension
of F((Xi)). Let U rig

i ⊆ Ui (resp. (T gen)rig ⊆ T gen) be the subset of points of Ui (resp.
T gen) with residue field being a finite extension of F((Xi)), then U rig

i (resp. (T gen)rig)
can be identified with the affinoid rigid analytic space over F((Xi)) corresponding to
Ui (resp. T gen) by [Hub96, (1.1.11)(a)], and we have U ∩ U rig

i = (T gen)rig. Note that
U , Ui and T gen are quasi-compact (U by assumption, Ui, T gen as they are affinoid).
As T is a quasi-separated adic space (being spectral as the adic space associated to
a Huber pair, see for instance [Mor, Cor. III.2.4]), the open subset U ∩ Ui is still
quasi-compact. As U rig

i is quasi-separated, we deduce U ∩Ui = T gen from U ∩U rig
i =
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(T gen)rig by [Hub96, (1.1.11)] (see also [Sch12, Thm. 2.21]). Since U = ⋃
i(U ∩Ui) (as

U ⊆ T \ V (X0, . . . , Xf−1)), we finally obtain U = T gen in T .

Lemma 2.4.3. The following statements hold.

(i) The open subset Zgen
OK of ZOK is stable under the action of K×.

(ii) The open subset Zgen
LT of ZLT is stable under the action of (K×)f oSf .

Proof. (ii) can be easily deduced from (i) and Zgen
LT

def= m−1(Zgen
OK ), so we only prove

(i).

The fact that Zgen
OK is stable under the actions of p and p−1 on ZOK is a direct

computation on FJX1/p∞
0 , . . . , X

1/p∞
f−1 K ↪→ A◦∞ using (38). Let us show that Zgen

OK is
stable under the action of O×K . It follows from Lemma 2.4.2(iv) that it is sufficient
to check that Zgen

OK (C,OC) is stable under the action of O×K on Spa(FJKK)(C,OC) =
B+(C)ϕq=pf for C a perfectoid field containing F (using ZOK (C,C+) ∼→ ZOK (C,OC)
for any open bounded valuation subring C+ ⊆ C). Recall that B+(C)ϕq=pf is the set
of converging power series in B+(C):

F (x0, . . . , xf−1) =
∑
n∈Z

f−1∑
i=0

[xp
−i−nf

i ]pi+nf

where |xi| < 1 for all i with |·| a fixed power-multiplicative norm on C (e.g. as in (25)).
A point x ∈ B+(C)ϕq=pf is in Zgen

OK (C,OC) if and only if 0 6= |x0| = · · · = |xf−1| < 1,
equivalently if and only if its Newton polygon has slopes {cpn, n ∈ Z} for some
c > 0 by Corollary 2.3.7. As the Newton polygon of x only depends on the norms
|x|ρ for 0 < ρ < 1 (see [FF18, Ex. 1.6.22] and (26) for |·|ρ), it is enough to show
that |x|ρ does not change if we multiply x by an element of O×K . This follows from
the multiplicativity of |·|ρ (see [FF18, Prop. 1.4.9]) and the fact that |·|ρ induces the
p-adic norm on K.

From Lemma 2.4.3 we deduce a continuous action of K× on the topological F-
algebra A∞. We denote by ϕ the endomorphism of A∞ induced by the action of
p ∈ K×. It is F-linear and satisfies (see (38))

ϕ(Xi) = Xp
i−1 for 0 ≤ i ≤ f − 1 (43)

(with X−1 = Xf−1 as usual). We also note ϕq def= ϕf (which coincides with x 7→ xq on
A∞ when Fq = F).

We now give an explicit description of Zgen
LT .
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Recall first that if a locally profinite group H acts continuously on a perfectoid
space X ′ over F, a morphism X ′ → X in PerfF (H acting trivially on X) is a pro-
étale H-torsor if there exists a pro-étale cover Y → X in PerfF such that there is an
isomorphism X ′ ×X Y ∼= H × Y in PerfF, where H is the sheaf on PerfF defined by
H(T ) def= Cont(|T |, H), |T | being the underlying topological space of the perfectoid
space T (note that H × Y is perfectoid by [Sch, Lemma 10.13]).

Let Zf/Z be the additive group quotient of Zf by the diagonal embedding of Z
into Zf . If n = (n0, . . . , nf−1) ∈ Zf/Z we let Un be the open affinoid perfectoid
subspace of ZLT ⊆ Spa(FJTK,01/p∞ , . . . , TK,f−1

1/p∞K) defined by the relations

|TK,i|p
nj = |TK,j|p

ni 6= 0, ∀ 0 ≤ i, j ≤ f − 1

or equivalently |TK,i| = |TK,0|p
ni−n0 for 0 ≤ i ≤ f − 1. Note that Un is well-defined as

it only depends on the class of n in Zf/Z, and that Un is disjoint from Un′ if n 6= n′

in Zf/Z. The group Sf acts on Zf/Z by permutation, for σ ∈ Sf and n ∈ Zf/Z we
have

σ(n) def= (nσ−1(i))0≤i≤f−1

and we check that σ(Un) = Uσ(n). Moreover, if a = (a0, . . . , af−1) ∈ (K×)f , we also
easily check that (where vp is the unique valuation on K with vp(p) = 1):

a(Un) = Un+fvp(a).

Proposition 2.4.4. Let n0
def= (0, 1, . . . , f − 1) and let (Zf/Z)0 be the image in Zf/Z

of the subgroup of Zf of m = (m0, . . . ,mf−1) such that ∑f−1
i=0 mi = 0. We have in ZLT

Zgen
LT =

⋃
σ∈Sf

⋃
m∈Zf/Z

Uσ(n0)+fm =
∐
σ∈Sf

∐
m∈(Zf/Z)0

Uσ(n0)+fm =
∐

γ∈(∆oSf )/∆1

γ(Un0
). (44)

Moreover for each Un in (44) the map m : Zgen
LT → Zgen

OK restricts to a pro-étale
∆1-torsor m|Un : Un → Zgen

OK .

Proof. One first easily checks that any element in Zf/Z of the form σ(n0) + fm can
uniquely be written (in Zf/Z) as σ′(n0) + fm′ for a unique σ′ ∈ Sf and a unique
m′ ∈ (Zf/Z)0. Assuming γ(Un0

) = Un0
when γ ∈ ∆1 this gives the last two equalities

in (44) (recall that ∆1 is normal in ∆ oSf ).

We check that Zgen
LT and ⋃

σ∈Sf
⋃
m∈Zf/Z Uσ(n0)+fm have the same rank 1 points,

i.e. the same (C,OC)-points, where C is a perfectoid field containing F
(recall that ZLT(C,C+) ∼→ ZLT(C,OC) for any open bounded valuation subring
C+ ⊆ C). We use Newton polygons and notation as in the proof of Lemma 2.4.3. If
(F (t0), . . . , F (tf−1)) ∈ (B+(C)ϕq=p)f , the element F (ti) has slopes {(q−1)v(ti)qn, n∈
Z} by Corollary 2.3.7, where v is the valuation of C such that |·| = q−v(·), and recall
that (F (t0), . . . , F (tf−1)) ∈ Zgen

LT (C,OC) if and only if F (t0) · · ·F (tf−1) ∈ B+(C)ϕq=pf
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lies in Zgen
OK (C,OC). As the slopes of the Newton polygon of a product ab in B+(C)

is the union of the slopes of the Newton polygons of a and b (see [FF18, Prop. 1.6.20]
for instance), we see that F (t0) · · ·F (tf−1) ∈ Zgen

OK (C,OC) if and only if there ex-
ists c > 0 such that ⋃i{(q − 1)v(ti)qn, n ∈ Z} = {cpn, n ∈ Z} (see the proof of
Lemma 2.4.3). Equivalently F (t0) · · ·F (tf−1) ∈ Zgen

OK (C,OC) if and only if there
exist c > 0, σ ∈ Sf and m0, . . . ,mf−1 ∈ Z such that v(ti) = cpσ

−1(i)+fmi for
0 ≤ i ≤ f − 1 if and only if there exist σ ∈ Sf and m0, . . . ,mf−1 ∈ Z such that
v(ti) = p(σ−1(i)+fmi)−(σ−1(0)+fm0)v(t0) for 0 ≤ i ≤ f−1 if and only if F (t0) · · ·F (tf−1) ∈
Uσ(n0)+fm. This proves our statement on rank 1 points.

For a point x of the analytic adic space ZLT define x̃ ∈ ZLT as its maximal
generization, then the corresponding valuation |·|x̃ is of rank 1, i.e. real valued (see
for instance [Hub96, Lemma 1.1.10] or [Mor, Cor. II.2.4.8]). Thus one can define
continuous maps as in [SW20, proof of Prop. 4.2.6]:

κi,j : ZLT →]0,+∞[, x 7→ κi,j(x) def= log(|TK,i|x̃)
log(|TK,j |x̃) .

For n ∈ Zf/Z, define the closed subset of ZLT

Vn
def= κ−1(pn0−n1 , . . . , pn0−nf−1),

where κ = (κ0,1, . . . , κ0,f−1). For x ∈ Un, we still have x̃ ∈ Un by [Hub96, Lemma
1.1.10(v)] applied to X def= Un ↪→ Y

def= ZLT, hence we have an inclusion of topological
spaces Un ⊆ Vn. Let us prove that the open subspace Zgen

LT of ZLT is contained in
V

def= ⋃
σ∈Sf

⋃
m∈Zf/Z Vσ(n0)+fm. Let x ∈ Zgen

LT of rank 1, then x ∈ Un ⊆ Vn for some n
of the form n0) + fm by the second paragraph. As Vn is closed, we have {x} ⊆ Vn.
Now let x ∈ Zgen

LT be any point and x̃ its maximal generization (which is in Zgen
LT by

[Hub96, Lemma 1.1.10(v)] applied to Zgen
LT ↪→ ZLT), then x̃ is of rank 1 and x ∈ {x̃},

which implies x ∈ Vn for some n, i.e. Zgen
LT ⊆ V . As Zgen

LT is open in ZLT, we have
Zgen

LT ⊆ V̊ ⊆ V , where V̊ is the interior of the topological space V in ZLT (V̊ is then
open in the perfectoid space ZLT, hence itself a perfectoid space). Let x ∈ V̊ , then
x ∈ Vn for some n. But Vn is open in V as V is the inverse image by κ of a discrete set
and Vn is the inverse image of a single, hence open, element in this discrete set. Hence
there exists an open subset U of ZLT such that Vn = U ∩ V . As x ∈ U ∩ V̊ which
is open in ZLT, we deduce x ∈ V̊n which proves that V̊ = ⋃

σ∈Sf
⋃
m∈Zf/Z V̊σ(n0)+fm.

Thus we finally have Zgen
LT ⊆

⋃
σ∈Sf

⋃
m∈Zf/Z V̊σ(n0)+fm which implies (using the first

sentence of the proof)

Zgen
LT =

∐
σ∈Sf

∐
m∈(Zf/Z)0

(Zgen
LT ∩ V̊σ(n0)+fm) (45)

as open (perfectoid) subspaces of ZLT.

Now we go into group actions. It is not hard to check that ∆ oSf stabilizes V
(inside ZLT), more precisely σ ∈ Sf sends Vn to Vσ(n), (pd0 , . . . , pdf−1) ∈ ∆ ∩ (pZ)f
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sends Vn to Vn+f(d0,...,df−1) and ∆1 preserves each Vn (indeed, using that f(x̃) = f̃(x)
for any x ∈ ZLT and any endomorphism f of ZLT by [Hub96, Lemma 1.1.10(iv)&(v)],
it is enough to check this for rank 1 points, i.e. (C,OC)-points for perfectoid fields
C containing F, which is an easy exercise left to the reader). Then by continuity of
the action of ∆ oSf the same holds for the interiors V̊n, and thus also for Zgen

LT ∩ V̊n
by Lemma 2.4.3(ii). In particular, the group (∆ ∩ (pZ)f ) oSf permutes transitively
the perfectoid spaces Zgen

LT ∩ V̊n for n ∈ Zf/Z of the form σ(n0) + fm as in (45), and
the group ∆1 preserves each Zgen

LT ∩ V̊n. Thus the associated sheaf ∆1 acts on (the
sheaf corresponding to) Zgen

LT ∩ V̊n, and one easily checks that the group ∆1 moreover
acts freely on the (C,OC)-points of Zgen

LT ∩ V̊n. By the proof of [Wei17, Prop. 4.3.2],
Zgen

LT ∩ V̊n is a pro-étale ∆1-torsor over ∆1\(Zgen
LT ∩ V̊n), seen as a pro-étale sheaf on

PerfF. Since ∆1 is a normal subgroup in ∆ oSf , we deduce with (45) that Zgen
LT is a

pro-étale ∆ oSf -torsor over

∆ oSf\Zgen
LT

∼= ((∆ ∩ (pZ)f ) oSf )\(∆1\Zgen
LT )

∼= ((∆ ∩ (pZ)f ) oSf )\
( ∐
σ,m

∆1\(Zgen
LT ∩ V̊σ(n0)+fm)

)
∼= ∆1\(Zgen

LT ∩ V̊n)

for each n = σ(n0)+fm as in (45). Now, it follows from (42) (and Lemma 2.4.3) that
we have an isomorphism ∆oSf\Zgen

LT
∼−→ Zgen

OK of pro-étale sheaves, hence ∆1\(Zgen
LT ∩

V̊n) ∼= Zgen
OK for each n as above.

We now finish the proof. As Zgen
OK is affinoid perfectoid by Lemma 2.4.2(ii), each

Zgen
LT ∩ V̊n is affinoid perfectoid by [SW20, Prop. 9.3.1], in particular is a quasi-

compact open subset of ZLT. The quasi-compact open subspaces Zgen
LT ∩ V̊n and Un of

ZLT ⊆ Spa(FJKK)\V (TK,0) have the same points of rank 1 by the second paragraph of
this proof, and we can then argue in a similar way as for the proof of Lemma 2.4.2(iv),
applying the results in [Hub96, (1.1.11)] (or [Sch12, Thm. 2.21]) to the affinoid rigid
analytic space over F((TK,0)) associated to Spa(FJTK,0, . . . , TK,f−1K) \ V (TK,0) (recall-
ing that Spa(FJTK,0, . . . , TK,f−1K) → Spa(FJT 1/p∞

K,0 , . . . , T
1/p∞
K,f−1K) = ZLT is a homeo-

morphism). In particular, we obtain Un = Zgen
LT ∩ V̊n for all n ∈ Zf/Z of the form

σ(n0) + fm, which finishes the proof.

As a consequence of the above proof and of [Sch, Lemma 10.13], we also obtain:

Corollary 2.4.5. The map m : Zgen
LT → Zgen

OK is a pro-étale ∆ oSf -torsor, in partic-
ular is a pro-étale cover.

Remark 2.4.6. Note that Zgen
LT is not affinoid (contrary to Zgen

OK ) as it is not quasi-
compact.
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Let us denote by A′∞
def= O(Un0

) the ring of global sections on Un0
. The following

result on A′∞ can be proved exactly as Lemma 2.4.2, and we leave the details to the
reader.

Lemma 2.4.7. The following statements hold.

(i) The ring A′∞ is the perfectoid F-algebra

F((T 1/p∞
K,0 ))

〈TK,i
T p

i

K,0

±1/p∞

, 1 ≤ i ≤ f − 1
〉
.

(ii) We have Un0
= Spa(A′∞, (A′∞)◦).

(iii) There exists a multiplicative norm |·| on A′∞ such that |TK,0| = p−1 inducing
the topology of A′∞.

(iv) Any quasi-compact open subset of ZLT whose points of rank 1 are exactly the
points of Un0

of rank 1 is necessarily Un0
itself.

2.5 Equivariant vector bundles on Zgen
OK

and Zgen
LT

We show that continuous (K×)fo Sf -equivariant vector bundles on Zgen
LT and étale

(ϕ,O×K)-modules over A∞ are the same thing.

Recall first that if X is an adic space with a left action of a group H, an H-
equivariant vector bundle onX is a locally finite freeOX-module V with a collection of
OX-linear isomorphisms (ch : h∗V ∼−→ V)h∈H satisfying the relation ch2h1 = ch1◦h∗1(ch2)
for all h1, h2 ∈ H. This induces a right action of H on Γ(X,V) given by

c∗h : Γ(X,V) = Γ(X, h∗V) ∼−→ Γ(X,V).

Now assume that X is perfectoid space (the only case we will use) and that H is
a locally profinite topological group acting continuously on X. Let V be a vector
bundle on X, for an open affinoid perfectoid subspace U = Spa(A,A+) ⊆ X, the
finite projective A-module V(U) is endowed with the Banach topology given by the
quotient topology of any surjection of A-modules A⊕d � V(U). If U ⊆ X is any open
subspace, we endow V(U) ∼= lim←−

U ′⊆U
V(U ′) with the projective limit topology, where U ′

ranges over open affinoid subspaces of U , and we define HU
def= {h ∈ H, h(U) = U},

which is a closed subgroup of H by continuity of the action of H on X. We then define
a continuous H-equivariant vector bundle on X as an H-equivariant vector bundle V
on X such that for any open subspace U ⊆ X the natural map HU × V(U)→ V(U),
(h, s) 7→ c∗h(s) is continuous (for the product topology on the left).
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By Lemma 2.4.2(i),(ii) and [KL15, Thm. 2.7.7] or [KL, Thm. 3.5.8], the functor
of global sections induces an equivalence of categories from the category of vector
bundles on Zgen

OK to the category of finite projective A∞-modules. This equivalence is
exact, rank preserving and compatible with tensor products. As a finite projective
A∞-module is in fact always free (see [DH21, Thm. 2.19]) and as the action of K× on
Zgen
OK is continuous, we see that the functor of global sections induces a rank-preserving
⊗-equivalence of categories from the category of continuous K×-equivariant vector
bundles on Zgen

OK to the category of étale (ϕ,O×K)-modules over A∞, where ϕ on A∞
is given by (43).

As Zgen
LT is perfectoid and as the fibered category of vector bundles on PerfF is a v-

stack by [SW20, Lemma 17.1.8], we easily deduce from Corollary 2.4.5 an equivalence
of categories between the category of (continuous) ∆oSf -equivariant vector bundles
on Zgen

LT and the category of vector bundles on Zgen
OK (the continuity condition is then

automatic in that case, as ∆ o Sf acts continuously on Zgen
LT ), hence also between

the category of continuous (K×)f o Sf -equivariant vector bundles on Zgen
LT and the

category of continuous K×-equivariant vector bundles on Zgen
OK . In both cases this

equivalence is given by the two functors V 7→ (m∗V)∆oSf and W 7→ m∗W , where
m : Zgen

LT → Zgen
OK . If V is (K×)f o Sf -equivariant, the K×-equivariant structure on

(m∗V)∆oSf can be made explicit as follows. For a ∈ K× and any i ∈ {0, . . . , f − 1}
we have an isomorphism using the notation in (41)

a∗m∗V ∼= (a−1)∗m∗V ∼= (a−1m)∗V ∼= (mji(a)−1)∗V ∼= m∗(ji(a)−1)∗V ∼= m∗ji(a)∗V

(where the first isomorphism is id ∈ Hom(m∗V ,m∗V) = Hom((a−1)∗a∗m∗V ,m∗V) ∼=
Hom(a∗m∗V , (a−1)∗m∗V), the third comes from (41) and the last is analogous to
the first). We then obtain an isomorphism of sheaves for a ∈ K× and any i ∈
{0, . . . , f − 1}:

m∗(cji(a)) : a∗m∗V ∼= m∗ji(a)∗V ∼→ m∗V

which preserves the subsheaf (m∗V)∆oSf (as ∆oSf is a normal subgroup of (K×)fo
Sf ) and induces an isomorphism m∗(cji(a)) : a∗(m∗V)∆oSf ∼→ (m∗V)∆oSf which does
not depend on i.

We deduce from Proposition 2.4.4 that we have an isomorphism of perfectoid F-
algebras A∞ ∼−→ (A′∞)∆1 , and as above using [SW20, Lemma 17.1.8] that there is also
an equivalence of categories between the category of ∆1-equivariant vector bundles
on Un0

and the category of vector bundles on Zgen
OK . Using again [KL15, Thm. 2.7.7]

(or [KL, Thm. 3.5.8]) and [DH21, Thm. 2.19], we deduce:

Theorem 2.5.1. The functor DA∞ 7→ A′∞⊗A∞DA∞ induces an exact rank-preserving
⊗-equivalence of categories from the category of finite free A∞-modules to the category
of finite free A′∞-modules with a semi-linear action of ∆1. A quasi-inverse is given
by DA′∞ 7→ D∆1

A′∞
.
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Let δ ∈ Sf be the cyclic permutation i 7→ i + 1 (with f − 1 7→ 0). If σ ∈ Sf ,
let pσ def= (1, . . . , p, . . . , 1) ∈ (K×)f with p at the σ(0)-th entry. From the discussion
before Proposition 2.4.4 we get

(pσ ◦ σ)(Un0
) = pσ(Uσ(n0)) = Uσδ(n0).

In particular, pδ−1 ◦ δ−1 : Un0

∼−→ Un0
and we define an F-linear continuous automor-

phism ϕ of A′∞ = O(Un0
) by

ϕ
def= (pδ−1 ◦ δ−1)∗ = (δ−1)∗ ◦ p∗δ−1 . (46)

Using (28) and since δ−1(0) = f − 1 this automorphism is easily checked to satisfy

ϕ(TK,i) = TK,i+1 for i 6= f − 1 and ϕ(TK,f−1) = T qK,0. (47)

In particular, ϕf on A′∞ is F-linear and such that ϕf (TK,i) = T qK,i for all i. Moreover
if a ∈ (O×K)f , we have ϕ ◦ a = δ(a) ◦ϕ, where δ(a) = (ai−1)0≤i≤f−1 (with a−1 = af−1),
in particular ϕf commutes with (O×K)f . As m : Zgen

LT → Zgen
OK is K×-equivariant and

Sf -equivariant, the action of K× on Zgen
LT being through ji for any 0 ≤ i ≤ f − 1 and

the action of Sf on Zgen
OK being trivial, the isomorphism A∞

∼−→ (A′∞)∆1 commutes
with the actions of ϕ and O×K on both sides (see (43) for ϕ on A∞).

The following result sums up the previous discussion and gives a more explicit
way to compute the (ϕ,O×K)-module over A∞ associated to a continuous (K×)foSf -
equivariant vector bundle on Zgen

LT .

Corollary 2.5.2. There is an equivalence of categories between the category of con-
tinuous (K×)f o Sf -equivariant vector bundles on Zgen

LT and the category of étale
(ϕ,O×K)-modules over A∞. If V is a continuous (K×)f oSf -equivariant vector bun-
dle on Zgen

LT , its associated A∞-module is Γ(Zgen
OK , (m∗V)∆oSf ) which is isomorphic to

Γ(Un0
,V|Un0

)∆1. The action of a ∈ O×K on Γ(Zgen
OK , (m∗V)∆oSf ) is induced by the ac-

tion of (a, 1 . . . , 1) = j0(a) on Γ(Un0
,V|Un0

) and the action of ϕ on Γ(Zgen
OK , (m∗V)∆oSf)

is induced by

(δ−1)∗ ◦ p∗δ−1 : Γ(Un0
,V|Un0

) = Γ(Uδ−1(n0), (p∗δ−1V)|Uδ−1(n0)
)

∼= Γ(Un0
, ((pδ−1 ◦ δ−1)∗V)|Un0

) ∼−→ Γ(Un0
,V|Un0

).

2.6 The (ϕq,O×K)-module over A of an arbitrary Galois repre-
sentation

To an arbitrary ρ we functorially associate an étale (ϕq,O×K)-module D(i)
A (ρ) over A

for i ∈ {0, . . . , f − 1}.
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Let ρ be a continuous representation of Gal(K/K) on a finite-dimensional F-
vector space and DK,σ0(ρ) its Lubin–Tate (ϕq,O×K)-module (see §2.1). The étale
(ϕq,O×K)-module F((T 1/p∞

K,σ0 )) ⊗F((TK,σ0 )) DK,σ0(ρ) is the space of global sections of a
continuous K×-equivariant vector bundle Vρ on Spa(F((T 1/p∞

K,σ0 )),FJT 1/p∞
K,σ0 K), where p

acts by ϕf ⊗ ϕq. For i ∈ {0, . . . , f − 1} we define

V(i)
ρ

def= OZLT ⊗F((T 1/p∞
K,σ0

)),ιi
Vρ ∼= OZLT ⊗F((TK,σ0 )),ιi DK,σ0(ρ),

where ιi denotes the F-linear embedding F((T 1/p∞
K,σ0 )) ↪→ OZLT corresponding to TK,σ0 7→

TK,i. Each V(i)
ρ is a ∆-equivariant vector bundle on ZLT with (a0, . . . , af−1) ∈ ∆ ⊆

(K×)f acting on F((T 1/p∞
K,σ0 )) ⊗F((TK,σ0 )) DK,σ0(ρ) via ai. In particular, V(i)

ρ |Un0
is a ∆1-

equivariant vector bundle on Un0
and Γ(Un0

,V(i)
ρ |Un0

) = A′∞⊗F((TK,σ0 )),ιi DK,σ0(ρ). We
define for i ∈ {0, . . . , f − 1}

D
(i)
A∞(ρ) def= Γ(Un0

,V(i)
ρ |Un0

)∆1 = (A′∞ ⊗F((TK,σ0 )),ιi DK,σ0(ρ))∆1 (48)

which is a finite free A∞-module of rank dimF ρ by Theorem 2.5.1.

The endomorphism ϕf ⊗ϕq on A′∞⊗F((TK,σ0 )),ιi DK,σ0(ρ) (see below (47) for ϕf on
A′∞) commutes with the action of ∆1 and induces a ϕq-semi-linear automorphism of
D

(i)
A∞(ρ), which is thus naturally a ϕq-module (see below (43) for ϕq on A∞). The

action of O×K on A′∞⊗F((TK,σ0 )),ιiDK,σ0(ρ) defined by a(x⊗v) def= ji(a)(x)⊗a(v) induces
a continuous semi-linear action of O×K on D(i)

A∞(ρ) (with respect to the action of O×K on
A∞) which commutes with ϕq. In particular, D(i)

A∞(ρ) is naturally an étale (ϕq,O×K)-
module over A∞. Note that the functor ρ 7→ D

(i)
A∞(ρ) from continuous representations

of Gal(K/K) on finite-dimensional F-vector spaces to étale (ϕq,O×K)-modules over A∞
is exact and F-linear. We also have isomorphisms of functors for 0 ≤ i ≤ f − 1:

φi : D(i)
A∞(−) ∼−→ D

(i+1)
A∞ (−), φi =

ϕ⊗ Id if i < f − 1
ϕ⊗ ϕq if i = f − 1.

(49)

We now show that étale ϕq-modules over A∞, and hence étale (ϕq,O×K)-modules
over A∞, canonically descend to the ring A of §2.2. First we need an easy lemma.

Lemma 2.6.1. The ring A of §2.2 can be identified with the ring of global sections
of the structure sheaf O on the rational open subset of the adic space Spa(FJOKK)
defined by the relations

|Yσ0| = · · · = |Yσf−1| 6= 0,

where the variables Yσi ∈ FJOKK are defined in (18).
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Proof. Recall that A is by definition the completed localization (FJOKK(Yσ0 ···Yσf−1 ))∧ =
(FJYσ0 , . . . , Yσf−1K(Yσ0 ···Yσf−1 ))∧, where the completion is for the (Yσ0 , . . . , Yσf−1)-adic
topology. Then using (for instance) [BHH+, Rk. 3.1.1.3(iii)] one easily checks that

A ∼= F[(Yσ1/Yσ0)±1, . . . , (Yσf−1/Yσ0)±1]JYσ0K[1/Yσ0 ]
∼= F((Yσ0))〈(Yσ1/Yσ0)±1, . . . , (Yσf−1/Yσ0)±1〉,

where 〈 〉 means, as usual, the corresponding Tate algebra with respect to the non-
archimedean local field F((Yσ0)). This is exactly the Tate algebra of the statement.

Note that the open subset of Lemma 2.6.1 is stable under the endomorphisms
deduced from the actions of p and O×K on OK by multiplication, in particular the
F-linear endomorphism ϕ on A sending Yσi to Y p

σi−1
(see §2.2) is the one deduced

from the action of p.

Remark 2.6.2. It follows from Lemma 2.6.1 and [Lüt77, Satz 3, p. 131] (we thank
Ofer Gabber for pointing out this reference to us) that any projective A-module of
finite type is actually free.

Let X0, . . . , Xf−1 be as at the end of §2.3, we have FJOKK = FJX0, . . . , Xf−1K =
FJYσ0 , . . . , Yσf−1K, and from the equalities in (38) we deduce that there is λ ∈ F×q such
that for i ∈ {0, . . . , f − 1}

Xi = σ0(λ)piYσi + (degree ≥ 2 in the variables Yσj). (50)

This easily implies an isomorphism of completed localized rings(
FJX0, . . . , Xf−1K(X0···Xf−1)

)∧ ∼= (
FJYσ0 , . . . , Yσf−1K(Yσ0 ···Yσf−1 )

)∧
= A,

where the completion on the left-hand side is for the (X0, . . . , Xf−1)-adic topology.
In other words we can use the variables Xi defined in §2.3 instead of the variables
Yσi to define the ring A. In particular, the perfectoid Tate algebra A∞ in Lemma
2.4.2 is the completion of the perfection of A and the action of ϕ and O×K on A∞ are
compatible with the corresponding actions on A.

We will use the following result:

Proposition 2.6.3. For R a perfect Fq-algebra there is an equivalence of categories
between the category of locally constant sheaves L of finite-dimensional Fq-vector
spaces on Spec(R)ét and the category of pairs (M,φ) where M is a finite projec-
tive R-module and φ is an isomorphism ϕ∗qM

∼−→ M (where ϕq(−) = (−)q). This
equivalence is given by the two inverse functors L 7→ (Γ(L⊗Fq OSpec(R)), Id⊗ϕq) and
(M,φ) 7→ (S 7→ (M ⊗R S)φ⊗ϕq=1, S étale R-algebra).

Proof. This is (a trivial variant of) [KL15, Prop. 3.2.7].
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We let A1/p∞ = lim−→
x 7→xp

A =
⋃
n≥0

(
FJX1/pn

0 , . . . , X
1/pn
f−1 K(X0···Xf−1)

)
be the perfection of

the ring A. It is used in the next proof.

Theorem 2.6.4. The functor DA 7→ A∞ ⊗A DA induces an exact equivalence of
categories from the category of étale ϕq-modules over A to the category of étale ϕq-
modules over A∞.

Proof. Note first that DA 7→ A1/p∞ ⊗ADA induces an exact equivalence of categories
from the category of étale ϕq-modules over A to the category of étale ϕq-modules over
A1/p∞ (use that any étale ϕq-module over A1/p∞ comes by extension of scalars from an
étale ϕq-module over A1/qN for some N � 0 and apply ϕNq ). Hence we can replace A
by A1/p∞ . It follows from [SW20, Thm. 7.4.8] (more precisely the discussion following
loc. cit.) that there is an equivalence of categories between the category of finite étale
A1/p∞-algebras and the category of finite étale A∞-algebras. Hence, when F = Fq,
the result follows from Proposition 2.6.3 applied to both R = A1/p∞ and R = A∞.
In general, let Aq be the ring of §2.2, i.e. Aq is A but with Fq instead of F, A1/p∞

q its
perfection and Aq,∞ the completion of A1/p∞

q . Then one can see an étale ϕq-module
over A1/p∞ (resp. A∞) as an étale ϕq-module over A1/p∞

q (resp. Aq,∞) together with
the structure of an F-vector space compatible with the action of Fq (seen in F via
σ0). We only prove essential surjectivity (full faithfulness being easy). Let DA∞ be
an étale ϕq-module over A∞. By the equivalence of categories for F = Fq, there is an
étale ϕq-module DA1/p∞ over A1/p∞

q , which is also an F ⊗Fq A
1/p∞
q = A1/p∞-module,

such that

Aq,∞⊗A1/p∞
q

DA1/p∞ ∼= (F⊗Fq Aq,∞)⊗F⊗FqA
1/p∞
q

DA1/p∞ = A∞⊗A1/p∞ DA1/p∞
∼→ DA∞ .

We need to prove that DA1/p∞ is finite projective over A1/p∞ (or equivalently free
by faithfully flat descent with Remark 2.6.2). The following argument is due to
Ch. Du. Let 0 → N ′ → N → N ′′ → 0 be a short exact sequence of A1/p∞-
modules. Since DA1/p∞ is free over A1/p∞

q there is a short exact sequence 0 →
Hom

A
1/p∞
q

(DA1/p∞ , N ′′) → Hom
A

1/p∞
q

(DA1/p∞ , N) → Hom
A

1/p∞
q

(DA1/p∞ , N ′) → 0.
Making F× act on Hom

A
1/p∞
q

(DA1/p∞ , (−)) by (λf)(x) def= λf(λ−1x) and taking F×-
invariants we deduce a short exact sequence

0→ HomA1/p∞ (DA1/p∞ , N ′′)→ HomA1/p∞ (DA1/p∞ , N)→ HomA1/p∞ (DA1/p∞ , N ′)→ 0.

Hence DA1/p∞ is finite projective over A1/p∞ .

Remark 2.6.5. We thank Laurent Berger for a discussion around Theorem 2.6.4,
and Laurent Fargues for suggesting to use Proposition 2.6.3 in its proof. Note that
one can characterize the subspace A1/p∞ ⊗ADA of an étale ϕq-module DA∞ over A∞
as the A-submodule of DA∞ of elements d ∈ DA∞ such that ∑n≥0Aϕ

n
q (d) is a finite

type A-module.
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Corollary 2.6.6. The functor DA 7→ A∞ ⊗A DA induces a rank-preserving ⊗-
equivalence between the category of étale (ϕq,O×K)-modules (resp. étale (ϕ,O×K)-
modules) over A and the category of étale (ϕq,O×K)-modules (resp. étale (ϕ,O×K)-
modules) over A∞.

Proof. Let DA∞ be an étale (ϕq,O×K)-module over A∞. Any a ∈ O×K gives an isomor-
phism of étale ϕq-modules id⊗a : a∗DA∞

∼→ DA∞ which canonically descends to an
isomorphism of étale ϕq-modules a∗DA

∼→ DA by Theorem 2.6.4. Now let DA∞ be
an étale (ϕ,O×K)-module over A∞, then replacing ϕ by ϕq def= ϕf , it is also an étale
(ϕq,O×K)-module over A∞. Let ϕ∗DA∞

def= A∞ ⊗ϕ,A∞ DA∞ , then id⊗ϕ induces an
isomorphism of étale ϕq-modules ϕ∗DA∞

∼→ DA∞ which canonically descends to an
isomorphism ϕ∗DA

∼→ DA by Theorem 2.6.4, giving the endomorphism ϕ on DA. The
action of O×K canonically descends too by the first case of the proof and commutes
with ϕ (using Theorem 2.6.4 again). The rest of the statement is easy and left to the
reader.

From (48), (49) and Corollary 2.6.6, we deduce:

Corollary 2.6.7. For i ∈ {0, . . . , f − 1} there is a covariant exact F-linear functor
ρ 7→ D

(i)
A (ρ) compatible with tensor products from RepF Gal(Qp/K) to étale (ϕq,O×K)-

modules over A and an isomorphism A∞ ⊗A D(i)
A (−) ∼−→ D

(i)
A∞(−) between functors

from RepF Gal(Qp/K) to the category of étale (ϕq,O×K)-modules over A∞. These
functors are related by functorial A-linear isomorphisms φi : A ⊗ϕ,A D(i)

A (ρ) ∼−→
D

(i+1)
A (ρ) which commute with (ϕq,O×K) and are such that φf−1 ◦ φf−2 ◦ · · · ◦ φ0 :

A⊗ϕf ,A D
(0)
A (ρ) ∼−→ D

(0)
A (ρ) is id⊗ϕq.

Remark 2.6.8. One can check that D(0)
A (ρ)×D(f−1)

A (ρ)×D(f−2)
A (ρ)× · · · ×D(1)

A (ρ)
can be given the structure of an étale (ϕ,O×K)-module over F ⊗Fp Aq in the sense of
§2.2.

2.7 The (ϕ,O×K)-module over A associated to a Galois repre-
sentation

To an arbitrary ρ we associate an étale (ϕ,O×K)-module D⊗A(ρ) (which will be partic-
ularly important when dimF ρ = 2).

Keep the notation of §2.6 and let V�f
ρ

def= ⊗f−1
i=0 pr∗iVρ be the f -th “exterior tensor

product” of Vρ on ZLT =(Spa(F((T 1/p∞
K,σ0 )),FJT 1/p∞

K,σ0 K))f , where

pri : (Spa(F((T 1/p∞
K,σ0 )),FJT 1/p∞

K,σ0 K))f � Spa(F((T 1/p∞
K,σ0 )),FJT 1/p∞

K,σ0 K)
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is the i-th projection (so pr∗iVρ is the sheaf V(i)
ρ of §2.6). As Vρ is a continuous K×-

equivariant vector bundle, V�f
ρ is naturally a continuous (K×)f -equivariant vector

bundle. We promote it to a (continuous) (K×)f oSf -equivariant vector bundle using
the commutativity of the tensor product (where σ ∈ Sf ):

cσ : σ∗V�f
ρ = σ∗

( f−1⊗
i=0

pr∗iVρ
)
∼=

f−1⊗
i=0

σ∗pr∗iVρ ∼=
f−1⊗
i=0

pr∗σ−1(i)Vρ
σ
∼−→

f−1⊗
i=0

pr∗iVρ = V�f
ρ .

We define D⊗A∞(ρ) as the A∞-module with a continuous semi-linear action of K×
obtained as the global sections of the continuous K×-equivariant vector bundle on
Zgen
OK corresponding to V�f |Zgen

LT
, more concretely (see §2.5):

D⊗A∞(ρ) def= Γ
(
Zgen
OK , (m∗(V

�f
ρ |Zgen

LT
))∆oSf

)
= Γ(Zgen

LT ,V
�f
ρ )∆oSf .

This is an étale (ϕ,O×K)-module over A∞ (recall ϕ is bijective).

Using Corollary 2.5.2 and §2.6, we can give a more explicit description of D⊗A∞(ρ).
Note that we have:

D⊗A∞(ρ) = Γ(Un0
,V�f

ρ |Un0
)∆1

and that the vector bundle V�f
ρ is isomorphic to the tensor product

V(0)
ρ ⊗OZLT

· · · ⊗OZLT
V(f−1)
ρ .

As the equivalence with vector bundles on Zgen
OK , i.e. finite free A∞-modules, is com-

patible with tensor products (see §2.5), we deduce an isomorphism of A∞-modules

D⊗A∞(ρ) ∼= (A′∞ ⊗F((TK,σ0 )),ι0 DK,σ0(ρ))∆1 ⊗A∞ · · · ⊗A∞ (A′∞ ⊗F((TK,σ0 )),ιf−1 DK,σ0(ρ))∆1 .

Lemma 2.7.1. There is a functorial isomorphism of étale (ϕ,O×K)-modules over A∞

D⊗A∞(ρ) ∼−→
f−1⊗
i=0

D
(i)
A∞(ρ),

where the automorphism ϕ on the right-hand side is given by (see (49) for φi)

ϕ(v0 ⊗ · · · ⊗ vf−1) = φf−1(vf−1)⊗ φ0(v0)⊗ · · · ⊗ φf−2(vf−2)

(and the action of O×K is as defined in §2.6 on each factor D(i)
A∞(ρ)).

Proof. Recall that δ ∈ Sf sends i to i + 1. Let αi : (δ−1)∗V(i−1)
ρ

∼−→ V(i)
ρ be the

tautological isomorphism deduced from the identifications

(δ−1)∗V(i−1)
ρ = (δ−1)∗pr∗i−1Vρ ∼= (pri−1 ◦ δ−1)∗Vρ = pr∗iVρ = V(i)

ρ .
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Recall that pδ−1 ∈ (K×)f is defined in §2.5 and let βi : p∗δ−1V(i)
ρ

∼−→ V(i)
ρ be the

isomorphism of sheaves on ZLT defined by (f ∈ OZLT , v ∈ Vρ and compare with (47)):

f ⊗ v 7−→

f(pδ−1(−))⊗ v if i 6= f − 1
f(pδ−1(−))⊗ ϕq(v) if i = f − 1.

We obtain isomorphisms of sheaves on ZLT for i ∈ {0, . . . , f − 1}

αi ◦ (δ−1)∗(βi−1) : ϕ∗V(i−1)
ρ

(46)∼= ((δ−1)∗ ◦ p∗δ−1)V(i−1)
ρ

∼−→ (δ−1)∗V(i−1)
ρ

∼−→ V(i)
ρ .

The isomorphism cpδ−1◦δ−1 : ϕ∗V�f
ρ

∼−→ V�f
ρ (with the notation as at the beginning of

§2.5) is easily checked to decompose as a tensor product
f−1⊗
i=0

(
αi ◦ (δ−1)∗(βi)

)
: ϕ∗V�f

ρ
∼=

f−1⊗
i=0

ϕ∗V(i−1)
ρ

∼−→
f−1⊗
i=0
V(i)
ρ .

Taking global sections on Un0
and ∆1-invariants, we obtain the desired formula.

From Lemma 2.7.1 and Corollary 2.6.6 we deduce D⊗A∞(ρ) ∼= A∞ ⊗A D⊗A(ρ) for a
unique étale (ϕ,O×K)-module D⊗A(ρ) over A such that

D⊗A(ρ) ∼=
f−1⊗
i=0

D
(i)
A (ρ) (51)

with the same ϕ and action of O×K on the right-hand side as in Lemma 2.7.1.
Remark 2.7.2. Note that, for 0 ≤ i < f−1, the isomorphism φi in (49) is induced by
the natural A∞-linear isomorphism ϕ∗D

(i)
A∞(−) ∼= D

(i+1)
A∞ (−), whereas φf−1 coincides

with the A∞-linear isomorphism

ϕ∗D
(f−1)
A∞ (−) ∼= ϕ∗((ϕf−1)∗D(0)

A∞(−)) = ϕ∗qD
(0)
A∞(−) −→ D

(0)
A∞(−)

induced by the ϕq-semi-linear automorphism ϕq of D(0)
A∞(−). Therefore the isomor-

phism class of the (ϕ,O×K)-module D⊗A∞(ρ) (equivalently of D⊗A(ρ)) is completely
characterized by the isomorphism class of the (ϕq,O×K)-module D(0)

A∞(ρ) (equivalently
of D(0)

A (ρ)).

2.8 Relation to classical (ϕ,Γ)-modules

We show that the étale (ϕq,O×K)-module D(0)
A (ρ) is related in a simple way to the

(usual) étale (ϕq,Z×p )-module Dσ0(ρ) of §2.1 and derive some consequences.

As in [BHH+, §3.1.3], let tr : A � F((T )) be the ring surjection induced by the
trace tr : FJOKK → FJZpK ∼= FJT K. Since the map tr commutes with ϕ (hence ϕq)
and the action of Z×p , we deduce that F((T ))⊗A D(0)

A (ρ) is an étale (ϕq,Z×p )-module.
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Proposition 2.8.1. There is d ∈ {0, . . . , f − 1} such that we have a functorial
isomorphism of (ϕq,Z×p )-modules

F((T ))⊗A D(0)
A (ρ) ∼= Dσd(ρ),

where Dσd(ρ) is as above (9) choosing the embedding σd : Fq ↪→ F instead of σ0.

Proof. The trace tr : FJKK→ FJQpK ∼= FJT p−∞K induces a ring surjection tr : A∞�
F((T p−∞)) commuting (in an obvious way) with tr : A� F((T )). Using Corollary 2.6.6
it is enough to prove F((T p−∞))⊗A∞ D

(0)
A∞(ρ) ∼= F((T p−∞))⊗F((T )) Dσd(ρ).

For any perfectoid F-algebra R we have a commutative diagram

B+(R)ϕq=p � � //

��

(B+(R)ϕq=p)f

mR����

B+(R)ϕ=p � � // B+(R)ϕq=pf
(52)

where the top horizontal injection sends x ∈ B+(R)ϕq=p to (x, ϕ(x), . . . , ϕf−1(x)) ∈
(B+(R)ϕq=p)f , the left vertical map sends x ∈ B+(R)ϕq=p to xϕ(x) · · ·ϕf−1(x) ∈
B+(R)ϕ=p and where the bottom horizontal injection is the canonical injection. Note
that the left vertical map commutes with the action of K, where K acts on B+(R)ϕ=p

via NormK/Qp : K → Qp. As at the beginning of §2.4, using Remark 2.3.3 and
[SW20, Prop. 8.2.8(2)], we deduce from (52) a corresponding commutative diagram
of perfectoid spaces over F:

(G̃LT ×Spf(Fq) Spf(F) \ {0})ad � � //

��

ZLT

��
ZZp

// ZOK

(53)

where the top horizontal map is r 7→ (r, rp, . . . , rpf−1) on the coordinates and the right
vertical map is the map m in (40). From the discussion above, the map ZZp → ZOK
commutes with the action of K×, where K× acts on ZZp via NormK/Qp . Also, it
follows from the end of §2.3 (see in particular (33), (34), (35) and (36)) that the
bottom horizontal map is induced by the morphism FJKK → FJQpK deduced from
the trace TrK/Qp : K → Qp. Hence we deduce from (53) a commutative diagram of
perfectoid rings over F:

A′∞ // // F((T p
−∞

K,σ0 ))

A∞
?�

OO

tr // // F((T p−∞))
?�

OO

(54)
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where the top horizontal surjection sends T p
−n

K,i to T p
i−n

K,σ0 for i ∈ {0, . . . , f − 1}. The
right vertical injection commutes with O×K (acting on F((T p−∞)) via the norm O×K �
Z×p ), hence we deduce from Theorem 2.1.1 (and (5)) that it induces an injection
of perfectoid fields ι : F((T p−∞)) ↪→ F((T p

−∞

K,σ0 ))Gal(K∞/K(p
∞√

1)) ∼= F((T p−∞)). Since ι
commutes with the action of Z×p , one easily checks that it must be an isomorphism,
as any continuous F-algebra homomorphism F((Qp)) → F((Qp)) commuting with the
action of Z×p sends [1] ∈ F((Qp)) to [λ] ∈ F((Qp)) for some λ ∈ Q×p by [BR22, Thm.
3.1] (and continuity).

Now let ρ be a continuous representation of Gal(K/K) on a finite-dimensional
F-vector space, using the isomorphism A′∞ ⊗F((TK,σ0 )),ι0 DK,σ0(ρ) ∼= A′∞ ⊗A∞ D

(0)
A∞(ρ)

from Theorem 2.5.1 we deduce from (54):

F((T p
−∞

K,σ0 ))⊗F((TK,σ0 )) DK,σ0(ρ) ∼= F((T p
−∞

K,σ0 ))⊗A′∞
(
A′∞ ⊗F((TK,σ0 )),ι0 DK,σ0(ρ)

)
∼= F((T p

−∞

K,σ0 ))⊗A′∞
(
A′∞ ⊗A∞ D

(0)
A∞(ρ)

)
∼= F((T p

−∞

K,σ0 ))⊗ι,F((T p−∞ ))

(
F((T p−∞))⊗A∞ D

(0)
A∞(ρ)

)
.

By Proposition 2.1.2 we also have

F((T p
−∞

K,σ0 ))⊗F((TK,σ0 )) DK,σ0(ρ) ∼= F((T p
−∞

K,σ0 ))⊗F((T p−∞ ))

(
F((T p−∞))⊗F((T )) Dσ0(ρ)

)
∼= F((T p

−∞

K,σ0 ))⊗ι,F((T p−∞ ))

(
F((T p−∞))⊗ι−1,F((T p−∞ )) (F((T p−∞))⊗F((T )) Dσ0(ρ))

)
.

Since the action of Gal(K∞/K( p∞
√

1)) ∼= Gal(F((T p
−∞

K,σ0 ))/F((T p−∞))) is trivial on both
F((T p−∞))⊗A∞ D

(0)
A∞(ρ) and F((T p−∞))⊗F((T )) Dσ0(ρ), we deduce by Galois descent an

isomorphism of (ϕq,Z×p )-modules over F((T p−∞))

F((T p−∞))⊗A∞ D
(0)
A∞(ρ)∼= F((T p−∞))⊗ι−1,F((T p−∞ )) (F((T p−∞))⊗F((T )) Dσ0(ρ)).

This easily gives the statement, using that all the above isomorphisms are functorial
in ρ (note that, if ι is given by [1] 7→ [λ] as above, then d is the unique integer in
{0, . . . , f − 1} congruent to val(λ) modulo f).

Remark 2.8.2. Using Theorem 2.9.4 below together with Lemma 2.1.5 and [Bre11,
Prop. 3.5], one can compute that d = f − 1. We won’t need this fact.

We can also consider the tensor product F((T )) ⊗A D⊗A(ρ) for tr : A � F((T )). It
is obviously an étale (ϕ,Z×p )-module.

Corollary 2.8.3. The (ϕ,Z×p )-module F((T ))⊗A D⊗A(ρ) is the (ϕ,Z×p )-module of the
tensor induction ind⊗QpK ρ.

Proof. This easily follows from (51), Proposition 2.8.1, Corollary 2.6.7 and the “tensor
product version” of [Bre11, Lemma 3.6] (which we leave to the reader).
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Proposition 2.8.1 also enables to prove the following full faithfulness statement.

Corollary 2.8.4. For i ∈ {0, . . . , f − 1} the functor ρ 7→ D
(i)
A (ρ) from continuous

representations of Gal(K/K) on finite-dimensional F-vector spaces to étale (ϕq,O×K)-
modules over A is exact and fully faithful.

Proof. By Corollary 2.6.7 it is enough to prove the full faithfulness for i = 0. We
have morphisms:

HomGal(Qp/K)(ρ, ρ′) −→ Hom(ϕq,O×
K

)(D(0)
A (ρ), D(0)

A (ρ′)) −→ Hom(ϕq,Z×
p )(Dσd (ρ), Dσd (ρ′))

where we use Proposition 2.8.1 for the second. By the theory of (ϕq,Z×p )-modules (see
e.g. §2.1), we know that the composition of the two morphisms is bijective. Hence
the first morphism is injective. It is enough to prove that the second morphism is
also injective. Let f : D(0)

A (ρ) → D
(0)
A (ρ′) mapping to 0, i.e. f(D(0)

A (ρ)) ⊆ pD
(0)
A (ρ′),

where p def= Ker(tr : A� F((T ))) (a maximal ideal of the noetherian domain A). Using
the fact that D(0)

A (ρ) is étale and that f commutes with ϕq, we derive f(D(0)
A (ρ)) ⊆

ϕnq (p)D(0)
A (ρ′) for any n ≥ 0. For those n such that x 7→ xq

n is F-linear, the map
ϕnq on A is just x 7→ xq

n , hence ϕnq (p) ⊆ pq
n for those n, and thus f(D(0)

A (ρ)) ⊆
(⋂m≥0 p

m)D(0)
A (ρ′) = 0. This finishes the proof.

Remark 2.8.5.

(i) We do not expect the functor ρ 7→ D
(i)
A (ρ) to be essentially surjective (for any

i). It is probably an interesting question to characterize its essential image.

(ii) It is not true that the functor ρ 7→ D⊗A(ρ) is fully faithful, as in general the iso-
morphism class of the (ϕ,O×K)-module D⊗A(ρ) does not determine the one of the
Galois representation ρ. For instance, one can check by an explicit computation
using Theorem 2.9.4 below that, if f = 2 and ρ ∼= (indωh4 )⊗unr(λ) is irreducible,
D⊗A(ρ) only sees λ4, i.e. does not distinguish ρ and (indωh4 ) ⊗ unr(λ′), where
λ′2 = −λ2. However, one can also check (again using Theorem 2.9.4) that, at
least when ρ is 2-dimensional and semi-simple, D⊗A(ρ) determines ρ if ρ is split
or if det(ρ)(p) = 1.

2.9 An explicit computation in the semi-simple case

When ρ is semi-simple we show that the explicit étale (ϕq,O×K)-module DA,σ0(ρ)
defined in §2.2 is isomorphic to the (ϕq,O×K)-module D(0)

A (ρ) defined in §2.6.

It follows from (50) that for all a ∈ O×K and 0 ≤ i ≤ f − 1, we have (using as
usual σ0 : Fq ↪→ F) a(Xi) = ap

i
Xi modulo terms of degree ≥ 2. Therefore we have

the following result:
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Lemma 2.9.1. For 0 ≤ i ≤ f − 1, we have a(Xi) ∈ ap
i
Xi(1 + A◦◦).

We define
fXa,0

def= aX0

a(X0) ∈ 1 + F−1A = 1 + A◦◦ ⊆ 1 + A◦◦∞

(note that by (50) fXa,0 in fact coincides with fa,σ0 in (21) up to a factor in 1 +F−2A).

Lemma 2.9.2. There exists u ∈ O(Un0
)(1+pOK)f∩∆1 such that

uq−1 =
Xp
f−1

X0

(43)= ϕ(X0)
X0

∈ A ⊆ A∞ = O(Un0
)∆1 ⊆ O(Un0

)(1+pOK)f∩∆1 .

Moreover we have
∀ a = (a0, . . . , af−1) ∈ ∆1 a(u) = a0u

∀ a ∈ O×K (a, 1, . . . , 1)(u) = a
(

fXa,0
ϕ(fXa,0)

) 1
q−1

u

noting that
(

fXa,0
ϕ(fXa,0)

) 1
q−1

is well-defined in 1+F−1A ⊆ 1+A◦◦∞ since fXa,0
ϕ(fXa,0) ∈ 1+F−1A.

Proof. Let |·| be a multiplicative norm on A′∞ = O(Un0
) such that |TK,i| = |T p

i

K,0| =
p−p

i for 0 ≤ i ≤ f − 1 whose existence comes from Lemma 2.4.7(iii)&(i). Let |·|1 be
the associated norm on B+(A′∞) defined in Remark 2.3.4. As |·| is multiplicative, the
same proof as in [FF18, Prop. 1.4.9] shows that |·|1 is multiplicative.

By definition of the map mA′∞ in (39), we have the relation in B+(A′∞)

f−1∏
i=0

∑
n∈Z

[T q
−n

K,i ]pn
 =

∑
n∈Z

f−1∑
i=0

[Xp−nf−i

i ]pnf+i = F (X0, . . . , Xf−1). (55)

For c ∈ R>0 let pc be the ideal of B+(A′∞)

pc
def= {x ∈ B+(A′∞), |x|1 < p−c} ⊆ B+(A′∞)

(note that it is an ideal as |·|1 is multiplicative and with values in [0, 1] ⊆ R≥0). Let
c = 1 + p + · · · + · · · + pf−1. As |T q

n

K,i| = p−p
iqn ≤ p−q

n
< p−c for n ≥ 1, we have∣∣∣∑n≤−1[T q

−n

K,i ]pn
∣∣∣
1
≤ p−q < p−c, see Remark 2.3.4, hence we obtain from (55)

f−1∏
i=0

∑
n≥0

[T q
−n

K,i ]pn
− F (X0, . . . , Xf−1) ∈ pc

and we deduce from Lemma 2.9.3 below applied to the element

x
def=

f−1∏
i=0

(
∑
n≥0

[T q
−n

K,i ]pn)− F (X0, . . . , Xf−1) =
∑
n∈Z

[xn]pn ∈ B+(A′∞)
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(where ∑
n≥0[xn]pn = ∏f−1

i=0 (∑n≥0[T q
−n

K,i ]pn) − ∑
n≥0

∑f−1
i=0 [Xp−nf−i

i ]pnf+i and where∑
n<0[xn]pn = −∑n<0

∑f−1
i=0 [Xp−nf−i

i ]pnf+i) that we have

∑
n≥0

[xn]pn =
f−1∏
i=0

∑
n≥0

[T q
−n

K,i ]pn
−∑

n≥0

f−1∑
i=0

[Xp−nf−i

i ]pnf+i ∈ pc.

Note that the left-hand side is now in W ((A′∞)◦). As a consequence, we have

|x0| = |TK,0 · · ·TK,f−1 −X0| < p−c

so that we can write in (A′∞)◦

X0 = TK,0 · · ·TK,f−1(1 + w0) (56)

with |w0| < p−c+(1+p+···+pf−1) = 1, i.e. w0 ∈ (A′∞)◦◦. Applying the automorphism ϕ of
A′∞ to (56) and since ϕ respects (A′∞)◦ and (A′∞)◦◦ (as it is continuous) we obtain in
(A′∞)◦

Xp
f−1 = TK,1TK,2 · · ·TK,f−1T

q
K,0(1 + w1)

with w1
def= ϕ(w0) ∈ (A′∞)◦◦. We deduce the equality

Xp
f−1X

−1
0 ∈ T q−1

K,0 (1 + (A′∞)◦◦).

Using that x 7→ xq−1 is bijective on 1 + (A′∞)◦◦, we see that there exists a unique
u ∈ TK,0(1 + (A′∞)◦◦) such that uq−1 = Xp

f−1X
−1
0 .

As ∆1 acts trivially on A∞, we have a(u)q−1 = uq−1 for all a ∈ ∆1. Therefore
there exists a character χ of ∆1 with values in F×q

σ0
↪→ F such that

∀ a ∈ ∆1, a(u) = χ(a)u.

Writing u = TK,0(1 + w) with w ∈ (A′∞)◦◦, this gives a0TK,0f
LT
a0 (TK,0)−1(1 + a(w)) =

χ(a)u, where fLT
a (TK,0) = aTK,0(aLT(TK,0))−1 ∈ 1 + (A′∞)◦◦. As u ∈ TK,0(1 + (A′∞)◦◦)

this implies
χ(a)a0

−1 ∈ (1 + (A′∞)◦◦) ∩ F×q = {1}

which proves χ(a) = a0.

For the last relation, we have

((a, 1, . . . , 1)(u))q−1 = (a, 1, . . . , 1)(uq−1) = a(Xp
f−1X

−1
0 ) = a(ϕ(X0))

a(X0) = ϕ(a(X0))
a(X0)

=
fXa,0

ϕ(fXa,0)
ϕ(X0)
X0

=
fXa,0

ϕ(fXa,0)u
q−1 =

( fXa,0
ϕ(fXa,0)

) 1
q−1

u

q−1
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so that as above there is a character χ : O×K → F×q ⊆ F× such that (a, 1, . . . , 1)(u) =

χ(a)
(

fXa,0
ϕ(fXa,0)

) 1
q−1

u. But u ∈ TK,0(1 + (A′∞)◦◦) implies (a, 1 . . . , 1)(u) ∈ aTK,0(1 +

(A′∞)◦◦) so that χ(a) = a since
(

fXa,0
ϕ(fXa,0)

) 1
q−1
∈ 1 + A◦◦∞. This finishes the proof.

Lemma 2.9.3. Let R be a perfectoid F-algebra and let (xn)∈Z a family of elements
of R◦◦ such that the series ∑n∈Z[xn]pn converges to an element x in B+(R). Assume
that |x|1 < c for some c ∈ [0, 1[. Then we have∣∣∣∣∣∑

n<0
[xn]pn

∣∣∣∣∣
1

< c.

Proof. Recall that |x|1 = lim
ρ<1
ρ→1

|x|ρ (see the reference in Remark 2.3.4). Therefore we

can find 0 < ρ < 1 such that |x|ρ < c. This implies supn∈Z{|xn|ρn} < c and thus for
n ≤ −1, |xn|ρn < c which implies |xn| < cρ < c. The claim then follows from Remark
2.3.4 applied to cρ.

Let v def= uT−1
K,0. We have v ∈ 1 +O(Un0

)◦◦ from the proof of Lemma 2.9.2, so that,
for each r ∈ Z(p) (= Z localized at the prime ideal (p)), the element

vr
def=
∑
n≥0

(
r

n

)
(v − 1)n ∈ 1 +O(Un0

)◦◦

exists. Writing a(v) = a(u)a0(TK,0)−1 and using the formula for a(u) in Lemma 2.9.2
and the fact that fLT

a0 (TK,0) ∈ 1 +O(Un0
)◦◦, we have

∀ a ∈ ∆1 ∀ r ∈ Z(p), a(vr) = fLT
a0 (TK,0)rvr. (57)

We also have ϕf (v)/vq ∈ 1 + O(Un0
)◦◦ and (ϕf (v)/vq)q−1 = ϕf (uq−1)/uq(q−1) = 1 as

uq−1 = ϕ(X0)/X0. It follows that ϕf (v) = vq and

ϕf (u) = uq. (58)

Now, let ρ be an absolutely irreducible continuous representation of Gal(K/K) on
a finite-dimensional F-vector space and choose a basis (e0, . . . , ed−1) of the F((T q−1

K,σ0))-
module DK,σ0(ρ)[F×q ] as in (15). We consider the associated étale (ϕq,O×K)-module
DA,σ0(ρ) = A⊗F((T q−1

K,σ0
))DK,σ0(ρ)[F×q ] defined in Lemma 2.2.2, where A has the structure

of F((T q−1
K,σ0))-algebra given by (19).

Theorem 2.9.4. Assume that ρ is absolutely irreducible. The étale (ϕq,O×K)-module
D

(0)
A (ρ) in Corollary 2.6.7 is isomorphic to DA,σ0(ρ).

51



Proof. First, replacing the variable Yσ0 by the variable X0 in Lemma 2.2.2 and using
(50), it is easily checked that one obtains an isomorphic étale (ϕq,O×K)-module. By
Corollary 2.6.6, it is enough to prove the statement of the theorem after extending
scalars everywhere from A to A∞. Recall we have DK,σ0(ρ) = F((TK,σ0)) ⊗F((T q−1

K,σ0
))

DK,σ0(ρ)[F×q ] with basis (1 ⊗ ei)0≤i≤d−1 as in Lemma 2.1.5, let u ∈ TK,0(1 + (A′∞)◦◦)
be as in Lemma 2.9.2 and let again v = uT−1

K,0. Then using (48), (57) and the action
of O×K in (15) we obtain

A∞ ⊗A D(0)
A (ρ) = (A′∞ ⊗F((T q−1

K,σ0
)),ι0 DK,σ0(ρ)[F×q ])∆1 =

d−1⊕
i=0

A∞v
−hq

i(q−1)
qd−1 (1⊗ ei).

Moreover it follows again from the last equality in Lemma 2.9.2 that we have in
A′∞ ⊗F((T q−1

K,σ0
)),ι0 DK,σ0(ρ)[F×q ] for a ∈ O×K

a(v−
hqi(q−1)
qd−1 (1⊗ ei)) =

( fXa,0
ϕ(fXa,0)

) 1
q−1 aTK,0

a(TK,0)v
−

hqi(q−1)
qd−1

fLT
a (TK,0)

hqi(q−1)
qd−1 (1⊗ ei)

=
(
ϕ(fXa,0)
fXa,0

) hqi

qd−1

v
−hq

i(q−1)
qd−1 (1⊗ ei).

We define an A∞-linear isomorphism A∞⊗ADA,σ0(ρ) = A∞⊗F((T q−1
K,σ0

))DK,σ0(ρ)[F×q ] ∼−→

A∞ ⊗A D(0)
A (ρ) by 1 ⊗ ei 7→ v

−hq
i(q−1)
qd−1 ⊗ ei for i ∈ {0, . . . , d − 1}. This isomorphism

commutes with the actions of O×K on both sides by the above computation (together
with Lemma 2.2.2). It also commutes with ϕq, namely we have in A′∞ ⊗F((T q−1

K,σ0
)),ι0

DK,σ0(ρ)[F×q ] (using (58)):

ϕq
(
v
−hq

i(q−1)
qd−1 ⊗ ei

)
= v

−hq
i+1(q−1)
qd−1 ⊗ ei+1 for i < d− 1

and (using the formula for uq−1 in Lemma 2.9.2)

ϕq
(
v
−hq

d−1(q−1)
qd−1 ⊗ ed−1

)
= v−h(q−1)v

−h(q−1)
qd−1 ⊗ λdT−h(q−1)

K e0

= u−h(q−1)λd
(
v
−h(q−1)

qd−1 ⊗ e0
)

= λd
(
ϕ(X0)
X0

)−h (
v
−h(q−1)

qd−1 ⊗ e0
)
.

Remark 2.9.5. Theorem 2.9.4 shows that, when ρ is a direct sum of absolutely irre-
ducible representations, one can obtain the étale ϕq-module D(0)

A (ρ) from the Lubin–
Tate (ϕq,O×K)-moduleDK,σ0(ρ) = F((TK,σ0))⊗F((T q−1

K,σ0
))DK,σ0(ρ)[F×q ] by the simple recipe

(19). However, we do not expect this recipe to work in general when ρ is not semi-
simple.
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Define DA,σ(ρ) as DA,σ0(ρ) (see §2.2) but using the embedding σ instead of σ0.
From §2.2 one easily checks that there are canonical A-linear isomorphisms for i ∈ Z

Id⊗ϕ : A⊗ϕ,A DA,σi(ρ) ∼−→ DA,σi−1(ρ) (59)

which commute with O×K and ϕq on both sides. Comparing the isomorphism φi in
Corollary 2.6.7 with the isomorphism (59) we see that we have for i ∈ {0, . . . , f − 1}

D
(i)
A (ρ) ∼= DA,σf−i(ρ). (60)

Using (60) and (51) we have therefore

D⊗A(ρ) ∼= DA,σ0(ρ)⊗A DA,σ1(ρ)⊗A · · · ⊗A DA,σf−1(ρ). (61)

When dimF ρ = 1, i.e. for χ : Gal(K/K) → F× a continuous character, we will
need in §3 the (very simple) description of D⊗A(χ).

Lemma 2.9.6. Viewing χ as a character of K× via the local reciprocity map, we
have (for a ∈ O×K): 

D⊗A(χ) = AFχ
ϕ(Fχ) = χ(p)Fχ
a(Fχ) = χ(a)Fχ.

In particular, D⊗A(ρ ⊗ χ) equals D⊗A(ρ), but with the action of ϕ multiplied by χ(p)
and the action of a ∈ O×K multiplied by χ(a).

Proof. By (59) and (61) replacing ρ by χ we can describe D⊗A(χ) as AEχ, where
Eχ

def= eχ ⊗ ϕ(eχ) ⊗ · · · ⊗ ϕf−1(eχ) with ϕj(eχ) ∈ DA,σf−j(χ) (noting eχ instead of
1 ⊗ eχ). Write χ = ω

hχ
f unr(λχ) for hχ ∈ Z≥0 and λχ ∈ F×. Set Fχ def= Y hχ

σ0 Eχ, then
one computes:

ϕ(Fχ) = ϕ(Yσ0)hχϕ(Eχ) = ϕ(Yσ0)hχϕf (eχ)⊗ ϕ(eχ)⊗ · · · ⊗ ϕf−1(eχ)

= λχϕ(Yσ0)hχ
(

Yσ0

ϕ(Yσ0)

)hχ
Eχ = λχFχ = χ(p)Fχ

where the third equality follows from (24). An analogous computation using a(Y hχ
σ0 ) =

σ(a)hχY hχ
σ0 f

−hχ
a,σ0 and a(ϕj(eχ)) =

(
ϕj(fa,σ0 )
ϕj+1(fa,σ0 )

) hχ
1−qϕj(eχ) (see again (24)) gives a(Fχ) =

σ0(a)hχFχ. But σ0(a)hχ = χ(a) (see (14)). The rest of the statement follows from the
discussion after (24).
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3 Étale (ϕ,O×K)-modules and modular representa-
tions of GL2

In this section we prove that the étale (ϕ,O×K)-module DA(π) over A associated in
[BHH+, §3] to certain automorphic admissible smooth representations π of GL2(K)
over F is isomorphic to (a certain twist of) the étale (ϕ,O×K)-module D⊗A(ρ) of §2,
where ρ is the underlying 2-dimensional representation of Gal(K/K) over F, which is
assumed semi-simple and sufficiently generic. We conjecture that an analogous state-
ment holds without these assumptions and for any automorphic admissible smooth
representation of GL2(K) over F.

We let I def=
( O×K OK
pOK O×K

)
be the Iwahori subgroup of GL2(OK), K1

def=
(

1+pOK pOK
pOK 1+pOK

)
the first congruence subgroup, I1

def=
(

1+pOK OK
pOK 1+pOK

)
the pro-p radical of I and Z1 the

center of I1. We recall from §2.2 that N0 =
(

1 OK
0 1

)
⊆ I1. If C is a pro-p group we

denote by FJCK its Iwasawa algebra over F (a local ring), and mC the maximal ideal
of FJCK. If M is a filtered module in the sense of [LvO96, §I.2] with (FnM)n∈Z its
ascending filtration, we define gr(M) def= ⊕

n∈Z FnM/Fn−1M . When R = FJCK and
M is an R-module, the filtration FnM = m−nR M if n ≤ 0 and FnM = M if n ≥ 0 is
called the mR-adic filtration on M .

3.1 A local-global compatibility conjecture for (ϕ,O×K)-modu-
les over A

We conjecture that any automorphic smooth representation of GL2(K) over F gives
rise to an étale (ϕ,O×K)-module over A which is (up to twist) a direct sum of copies
of the module D⊗A in §2.7 of the corresponding local Galois representation at p. We
state our main results.

First, we quickly review the construction of the A-module DA(π) associated to
certain smooth representations π of GL2(K) over F in [BHH+, §3.1].

Let π be an admissible smooth representation of GL2(K) over F with a central
character and endow the F-linear dual π∨ with the mI1-adic filtration, or equivalently
the mI1/Z1-adic filtration (which, in general, strictly contains the mN0-adic filtration).
We endow

(π∨)(Yσ0 ···Yσf−1 )
def= FJN0K(Yσ0 ···Yσf−1 ) ⊗FJN0K π

∨

with the tensor product filtration (where the localization FJN0K(Yσ0 ···Yσf−1 ) is endowed
with the filtration described by (16), replacing Fq by F) and define DA(π) as the
completion of (π∨)(Yσ0 ···Yσf−1 ) for this filtration ([LvO96, §I.3.4]). Then DA(π) is a
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complete filtered A-module and the action of O×K on π∨ extends by continuity to
DA(π). Moreover the action f 7→ f ◦

(
p 0
0 1

)
on π∨ gives rise to a continuous A-linear

morphism (see [BHH+, §3.1.2])

β : DA(π) −→ A⊗ϕ,A DA(π), (62)

where ϕ on A is as in §2.2. We let C be the abelian category of those π such that
gr(DA(π)) is a finitely generated gr(A)-module. Then for any π ∈ C, the A-module
DA(π) is finite free (see [BHH+, Cor. 3.1.2.9] and Remark 2.6.2).

The following straightforward lemma will be used. For χ : K× → F× a smooth
character, denote by DA(χ) the rank 1 étale (ϕ,O×K)-module over A defined by Aeχ
with ϕ(eχ) def= χ(p)eχ and a(eχ) def= χ(a)eχ for a ∈ O×K . (Note that this is an ad hoc
definition, as DA(π) = 0 if π = χ ◦ det.)

Lemma 3.1.1. Let χ : K× → F× be a smooth character and π in the category C,
then DA(π ⊗ χ) ∼= DA(π)⊗A DA(χ−1) with diagonal ϕ and action of O×K.

Proof. This directly follows from the definitions of DA(π) and of the actions of ϕ and
O×K on DA(π).

For π in C, when β is moreover an isomorphism, its inverse β−1 = Id⊗ϕ makes
DA(π) an étale (ϕ,O×K)-module.

We now go to the global setting.

We fix a totally real number field F that is unramified at p. We fix a quaternion
algebra D of center F which is split at all places above p and at not more than
one infinite place. When D is split at one infinite place we say that we are in the
indefinite case, and in the definite case otherwise. For a compact open subgroup
U = ∏

Uw ⊆ (D ⊗F A∞F )× we let XU be the associated smooth projective algebraic
Shimura curve over F (see [BHH+, §8.1] and the references therein for more details).

Fix an absolutely irreducible continuous representation r : Gal(F/F ) → GL2(F)
and for a finite place w of F we write rw def= r|Gal(Fw/Fw). We let SD be the set of finite
places where D ramifies, Sr the set of (finite) places where r is ramified and Sp the
set of (finite) places above p. Finally, we fix a place v ∈ Sp. Let ω = ω1 denote the
mod p cyclotomic character.

For any compact open subgroup U v = ∏
w 6=v Uw ⊆ (D ⊗F A∞,vF )× we consider the

following admissible smooth representation π of GL2(Fv) over F with central character
(ωdet(rv))−1:

π
def= lim−→

Uv

HomGal(F/F )

(
r,H1

ét(XUvUv ×F F ,F)
)

(63)
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where the inductive limit runs over the compact open subgroups Uv of (D⊗F Fv)× ∼=
GL2(Fv). In the definite case, we replace HomGal(F/F )(r,H1

ét(XU ×F F ,F)) by the
Hecke eigenspace S(U,F)[m] ⊆ S(U,F) def= {f : D×\(D ⊗F A∞F )×/U → F} associated
to r (see [BHH+, §8.1]) and define analogously

π
def= lim−→

Uv

S(U vUv,F)[m]. (64)

We also need the “multiplicity 1” variants of the representations π. For that, we
need to assume that p ≥ 5, that r|GF (p

√
1)

is absolutely irreducible, that the image
of r(GF (5√1)) in PGL2(F) is not isomorphic to A5, that rw for w ∈ Sp is generic in
the sense of [BP12, Def. 11.7] (which implies Sp ⊆ Sr) and that rw is non-scalar if
w ∈ SD. Under these assumptions, a so-called “local factor” is defined in [BD14, §3.3]
(in the indefinite case and when rw is reducible for all w ∈ Sp) and in [EGS15, §6.5]
(without these two conditions):

π
def= HomUv

(
M

v
,HomGal(F/F )

(
r, lim−→

V

H1
ét(XV ×F F ,F)

))
[m′] (indefinite case) (65)

π
def= HomUv

(
M

v
, lim−→
V

S(V,F)[m]
)

[m′] (definite case) (66)

where the inductive limits run over the compact open subgroups V of (D ⊗F A∞F )×,
and where we refer to loc. cit. for the definitions of the compact open subgroup
U v ⊆ (D ⊗F A∞,vF )×, of the (finite-dimensional) irreducible smooth representation
M

v of U v over F and of the maximal ideal m′ in a certain Hecke algebra.

Conjecture 3.1.2. Let π be as in (63), (64), (65) or (66) and assume π 6= 0. Then
π is in the category C, β in (62) is a bijection and we have an isomorphism of étale
(ϕ,O×K)-modules DA(π) ∼= D⊗A(rv(1))⊕r for some integer r ≥ 1 which is equal to 1
when π is as in (65) or (66).

In the sequel, we prove Conjecture 3.1.2 for π as in (65) or (66) when rv is semi-
simple and satisfies a strong genericity hypothesis (as defined below). We actually
prove a purely local result for certain smooth representations π, that will ultimately
include the representations in (65) and (66).

Let first ρ : Gal(K/K) → GL2(F) be a continuous representation satisfying the
genericity assumption of [BP12, Def. 11.7]. Let π be a smooth representation of
GL2(K) over F satisfying the following two conditions:

(i) there is an isomorphism of diagrams (πI1 ↪→ πK1) ∼= D(ρ)⊕r for some r ∈ Z≥1,
where D(ρ) is a diagram associated to ρ as in [BP12] or [BHH+, §3.2.1] with
the constants νσ for σ ∈ W (ρ) as in Remark 3.4.9 below;
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(ii) for any character χ : I → F× appearing in π[mI1 ] there is an equality of multi-
plicities [π[m3

I1 ] : χ] = [π[mI1 ] : χ].

We moreover assume that ρ is of the following form up to twist:

ρ|IK ∼=

ω
∑f−1

j=0 (rj+1)pj

f ⊕ 1 if ρ is reducible

ω

∑f−1
j=0 (rj+1)pj

2f ⊕ ω
∑f−1

j=0 (rj+1)pj+f

2f if ρ is irreducible
(67)

where the integers ri satisfy the following (strong) genericity condition:

max{12, 2f − 1} ≤ rj ≤ p−max{15, 2f + 2} if j > 0 or ρ is reducible
max{13, 2f}≤ r0 ≤ p−max{14, 2f + 1} if ρ is irreducible.

(68)

The following is the main result of §3.

Theorem 3.1.3 (See §3.9). Assume that ρ and π are as above with moreover (πI1 ↪→
πK1)∼= D(ρ), i.e. r = 1. Then π is in the category C, β in (62) is a bijection and we
have an isomorphism of étale (ϕ,O×K)-modules DA(π) ∼= D⊗A(ρ∨(1)), where ρ∨(1) is
the Cartier dual of ρ.

It implies the following special cases of Conjecture 3.1.2.

Corollary 3.1.4. Let π be as in (65) or (66) and assume moreover that rv satisfies
(68), (67), and that the framed deformation ring Rrw of rw over W (F) is formally
smooth if w ∈ (SD ∪ Sr) \ Sp. Then Conjecture 3.1.2 is true for π.

Proof. By [DL21, Thm. 5.36] (and the references therein) π satisfies condition (i)
above with ρ = r∨v and r = 1. By [BHH+23, Thm. 8.3.14], [BHH+23, Thm. 1.5]
and [BHH+23, Rem. 8.4.5] π satisfies condition (ii). Hence we can apply Theorem
3.1.3.

Remark 3.1.5.

(i) Under the assumptions of Theorem 3.1.3, we already know that π is in C (see
[BHH+, Thm. 3.3.2.1]) and that β is a bijection (see [BHH+, Rem. 3.3.5.4(ii)]
noting that we do not need here the assumption (iii) in [BHH+, §3.3.5]). Hence
we only need to prove DA(π) ∼= D⊗A(ρ∨(1)). In that direction, we already know
the étale (ϕ,Z×p )-module F((T )) ⊗A DA(π). Indeed, it follows from [BHH+,
Cor. 3.3.2.4], [BHH+, Thm. 3.1.3.7], Remark 2.6.2 – and some unravelling of
the definition of the functor VGL2 of [BHH+, §2.1.1] using Lemma 3.1.1 and
Lemma 2.9.6 – that DA(π) is free of rank 2f and F((T )) ⊗A DA(π) is isomor-
phic to the (ϕ,Z×p )-module of the tensor induction ind⊗QpK (ρ∨(1)) (compare with
Corollary 2.8.3).
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(ii) Under similar hypothesis but assuming that ρ is reducible non-split with only
one Serre weight, Conjecture 3.1.2 is proven in [Wana] (using the results of
[Wanb]).

The rest of this paper is devoted to the proof of the isomorphism DA(π) ∼=
D⊗A(ρ∨(1)) in Theorem 3.1.3 and to the necessary material that needs to be introduced
for that.

We fix ρ and π as in Theorem 3.1.3. Twisting both ρ and π using Lemma 2.9.6
and Lemma 3.1.1, we can and do assume from now on ρ ∼= (indωh2f ) ⊗ unr(λ) or

ρ ∼=
(
ωhfunr(λ0) 0

0 unr(λ1)

)
with h = ∑f−1

j=0 p
j(rj + 1).

3.2 Duality for étale (ϕ,O×K)-modules over A

If D is an étale (ϕ,O×K)-module over A we equip HomA(D,A) with the structure of
an étale (ϕ,O×K)-module over A.

Fix D an étale (ϕ,O×K)-module over A.

We first equip D with a left inverse ψ : D → D of ϕ, as follows. Fix a set of
representatives {n} of N0/N

p
0 including 1. Note that as D is étale, every element x of

D can be uniquely written as x = ∑
N0/N

p
0
δnϕ(xn), where δn denotes the image of the

element [n] ∈ FJN0K in A. Let ψ : D → D be defined by ψ(x) def= x1. The following
easy lemma is left to the reader.

Lemma 3.2.1. The map ψ : D → D is a left inverse of ϕ that is independent of any
choices. We have x = ∑

N0/N
p
0
δnϕ(ψ(δ−1

n x)) for any x ∈ D. Moreover, the actions of
ψ and O×K commute.

To define ϕ on HomA(D,A) recall that we have

β : D ∼−→ A⊗ϕ D
x 7→

∑
n

δn ⊗ϕ ψ(δ−1
n x), (69)

where the sum runs over representatives {n} of N0/N
p
0 . Now if M , N are A-modules

with M projective, we have for any A-algebra B a canonical isomorphism B ⊗A
HomA(M,N) ∼= HomB(B ⊗AM,B ⊗A N), hence the A-linear dual of (69) gives rise
to

A⊗ϕ HomA(D,A) ∼−→ HomA(D,A),

in other words we get a ϕ-linear endomorphism of HomA(D,A) that we also call ϕ
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(an étale Frobenius). Explicitly, this endomorphism is given by the formula

HomA(D,A)→ HomA(D,A)
h 7→ ϕ(h) = (x 7→

∑
N0/N

p
0

δnϕ(h(ψ(δ−1
n x)))). (70)

By construction, it is independent of the choice of representatives.

Using Lemma 3.2.1 we can rewrite formula (70) as follows:

ϕ(h) :
∑
n

δnϕ(xn) 7→
∑
n

δnϕ(h(xn)). (71)

We also define the action of a ∈ O×K by the formula a(h) def= a ◦ h ◦ a−1.

Lemma 3.2.2. With the definitions above, HomA(D,A) is an étale (ϕ,O×K)-module.
Moreover, the natural pairing D×HomA(D,A)→ A is equivariant for the actions of
ϕ and O×K.

Concretely, the (ϕ,O×K)-module structure on HomA(D,A) is uniquely character-
ized by the relations, for x ∈ D, y ∈ HomA(D,A), a ∈ O×K :

〈ϕ(x), ϕ(y)〉 = ϕ(〈x, y〉), 〈a(x), a(y)〉 = a(〈x, y〉), (72)

where 〈·, ·〉 is the natural pairing D × HomA(D,A)→ A.

Fix now a smooth representation π of GL2(K) in the category C and endow the
finite free A-module DA(π) with its filtration coming from the mI1-adic filtration on
π∨, cf. §3.1. If D is an étale (ϕ,O×K)-module (endowed with its natural topology
of finite free A-module), recall that Homcont

F (D,F) is the vector space of continuous
F-linear morphisms D → F, or equivalently (F being endowed with the discrete
topology) the F-linear locally constant morphisms D → F. We give F the filtration
such that Fd F = 0 if and only if d < 0.

We write now Yi for Yσi (as in [BHH+, §3.1.1], note that there will be no confu-
sion with the variables Yi ∈ Aq in §2.2 which are not used here) and Y (i0,...,if−1) for
Y i0

0 · · ·Y
if−1
f−1 ∈ A (as in [BHH+, §3.2.2]). We also sometimes use the shorthand Y for

Y 1 = ∏f−1
j=0 Yj.

Proposition 3.2.3. There is an isomorphism of FJN0K-modules between
Homcont

F (DA(π),F) and the set of sequences (xk)k≥0 such that xk ∈ π and

(i) Y xk = xk−1 for all k ≥ 1;

(ii) there exists d ∈ Z such that xk ∈ π[mfk+d+1
I1 ] for all k ≥ 0 (where π[mj

I1 ] def= 0
for j ≤ 0).
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A continuous F-linear map h : DA(π)→ F corresponds to a sequence (xk)k≥0 as above
if and only if

h(Y −ky) = 〈xk, y〉

for all y ∈ π∨, k ≥ 0 and where we denote again by y the image of y in DA(π).
Moreover, h is filtered of degree d if and only if xk ∈ π[mfk+d+1

I1 ] for all k ≥ 0.

Proof. Let S denote the multiplicative subset of FJN0K generated by Y0 · · ·Yf−1. Then
from the definitions we have

(π∨)S ∼= lim−→
k≥0

Y0···Yf−1

π∨ and F−d−1(π∨)S ∼= lim−→
k≥0

Y0···Yf−1

mfk+d+1
I1 π∨,

so
(π∨)S/F−d−1(π∨)S ∼= lim−→

k≥0
Y0···Yf−1

π∨/mfk+d+1
I1 π∨.

(Explicitly, the k-th map π∨ → (π∨)S is given by multiplication by (Y0 · · ·Yf−1)−k.)
Therefore, we have

Homcont
F (DA(π),F) = Homcont

F ((π∨)S,F) =
⋃
d≥0

HomF((π∨)S/F−d−1(π∨)S,F)

=
⋃
d≥0

HomF((π∨)S/F−d−1(π∨)S,F) =
⋃
d≥0

lim←−
k≥0

Y0···Yf−1

HomF(π∨/mfk+d+1
I1 π∨,F)

=
⋃
d≥0

lim←−
k≥0

Y0···Yf−1

π[mfk+d+1
I1 ].

The final claims follow by unravelling these identifications.

We now make explicit the actions of A and O×K on Homcont
F (DA(π),F), where

the definitions of these actions in the following lemma are a posteriori motivated by
Lemma 3.3.5 (namely, the map µ∗ in (84) becomes A and O×K-linear).

Lemma 3.2.4. Suppose that h : DA(π) → F is continuous of degree d, i.e. sending
F−d−1DA(π) to 0. Let h correspond to the sequence (xk)k≥0 as in Proposition 3.2.3,
so Y xk+1 = xk and xk ∈ π[mkf+d+1

I1 ].

(i) If a ∈ A, then ah def= h ◦ a corresponds to the sequence (yk)k≥0, where

yk = Y `−kax` (73)

for `�k 0.
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(ii) If a ∈ O×K, then a(h) def= NFq/Fp(a)−1(h◦diag(a−1, 1)) corresponds to the sequence
(zk)k≥0, where

zk = NFq/Fp(a)−1
(
a

1
) Y `

a−1(Y k)
x` = NFq/Fp(a)−1a(Y `)

Y k

(
a

1
)
x` (74)

for `�k 0.

Remark 3.2.5. To explain the notation in equations (73), (74) we note that for
x ∈ π[me

I1 ] (e ≥ 0) we can extend the action of FJN0K on x to an action of the ring
FJN0K + F−eA such that F−eA kills x (because F−eFJN0K = FJN0K ∩ F−eA kills x,
by assumption). For (73) we note that Y −ka ∈ A = FJN0KS + F−d−1A (where S is
generated by Y ), so Y `−ka ∈ FJN0K + F−`f−d−1A for ` �k 0 and x` ∈ π[m`f+d+1

I1 ].
Similarly for (74) we note that a(Y `)

Y k
∈ FJN0K + F−`f−d−1A for ` �k 0 (and

(
a

1
)

normalizes I1).

Proof. For (i) we first note that h(F−d−1A · π∨) ⊆ h(F−d−1DA(π)) = 0, so h ◦ a′|π∨
only depends on a′ modulo F−d−1A. Writing Y −ka ∈ Y −`b + F−d−1A as above with
b ∈ FJN0K and `�k 0, we compute for k ≥ 0,

h ◦ a ◦ Y −k|π∨ = h ◦ Y −` ◦ b|π∨ = 〈x`, b(−)〉 = 〈bx`,−〉 = 〈Y `−kax`,−〉 (75)

as functions π∨ → F, as desired (keeping in mind Remark 3.2.5).

For (ii), first note that a(h) ◦ Y −k = NFq/Fp(a)−1
(
h ◦ a−1(Y −k) ◦ diag(a−1, 1)

)
. By

(75) (applied with k = 0), h ◦ a−1(Y −k)|π∨ = 〈Y ` · a−1(Y −k)x`,−〉 for `�k 0 and the
result follows.

3.3 The continuous morphism µ : A→ F

For D an étale (ϕ,O×K)-module over A we relate HomA(D,A) to Homcont
F (D,F) using

a certain continuous morphism µ : A→ F.

Let us write FJN0K = FJT0, . . . , Tf−1K with Tj def= [αj]− 1, where (αj)j∈{0,...,f−1} is
a fixed Zp-basis of OK . Recall that A is endowed with a map ψ : A → A defined in
§3.2, and which is a left inverse of ϕ : A→ A.

Proposition 3.3.1. Up to scalar in F× there exists a unique µ ∈ Homcont
F (A,F) such

that µ ◦ ψ ∈ F×µ, and we have µ ◦ ψ = (−1)f−1µ.

It will be convenient for the proof to avoid using the variables Yj. To obtain A
from FJN0K it suffices to invert elements Zj (0 ≤ j ≤ f −1) such that gr(Zj) = gr(Yj)
in the graded ring and then complete. We will let Zj be the unique linear combination
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of the Tj′ such that gr(Zj) = gr(Yj). (Note that the Zj are not canonical but depend
on the choice of T0, . . . , Tf−1.) There exists an element of GLf (F) that relates the
Zj and the Tj. Hence we get the same description of A as in [BHH+, Rk. 3.1.1.3(iii)]
with Zj instead of Yj, and also the valuation of an element of A is still given by the
minimal total degree as a series in Z. We note that ϕ(Tj) = T pj and ϕ(Zj) = Zp

j−1
(because ϕ(Zj) is a homogeneous polynomial of degree p in the Tj′ and hence in the
Zj′ , and since ϕ(Yj) = Y p

j−1).

Before starting the proof of Proposition 3.3.1 we note that µ ◦ ψ = cµ (with
c ∈ F×) is equivalent to the two conditions

µ = c(µ ◦ ϕ), (76)
µ(δnϕ(x)) = 0 ∀ n ∈ N0 \Np

0 ,∀ x ∈ A. (77)

This follows immediately from the definition of ψ : D → D in §3.2.

Proof (Uniqueness). Suppose that µ◦ψ = cµ for some c ∈ F×. For the representatives
{n} of N0/N

p
0 we take n =

(
1
∑

j
ijαj

1

)
(0 ≤ ij ≤ p − 1), so δn = ∏

j(1 + Tj)ij . By
induction and (76)–(77) we have for any 0 ≤ i ≤ p− 1 that

µ(T iϕ(x)) = (−1)‖i‖µ(ϕ(x))
= (−1)‖i‖c−1µ(x).

(78)

Take now x ∈ Ff−1A. Then by iterating (78) we have

µ(x) = cµ(T p−1ϕ(x)) = · · · = cnµ(T pn−1ϕn(x)) = 0

for n � 0, since T pn−1ϕn(x) → 0 in A as n → ∞ if x ∈ Ff−1A and µ is continuous.
Hence

µ(Ff−1A) = 0. (79)

We claim that µ(Zi) for i ∈ Zf is an explicit multiple of µ(Z−1), only depending
on c. To prove the claim, we may suppose that ‖i‖ ≤ −f by (79) and we will argue
by descending induction on ‖i‖. Write i = r + ps with 0 ≤ r ≤ p− 1 and s ∈ Zf .
Hence µ(Zi) = µ(ZrZps) and that can be expressed in terms of various µ(T r′Zps)
with r′ ≥ 0 and ‖r′‖ = ‖r‖. Fix now one such term and write r′ = r′′ + pr′′′ with
0 ≤ r′′ ≤ p− 1 and 0 ≤ r′′′. Then we can express µ(T r′Zps) = µ(T r′′T pr′′′Zps)
in terms of various µ(T r′′Zpt) with ‖t‖ = ‖s‖ + ‖r′′′‖. By (78) we are reduced to
±µ(Zpt) = ±c−1µ(Zt′), where t′ is a cyclic permutation of t and hence ‖t′‖ = ‖t‖ =
‖s‖+ ‖r′′′‖ = (‖i‖ − ‖r′′‖)/p.

From ‖r′′‖ ≤ (p− 1)f and ‖i‖ ≤ −f it follows that ‖i‖ ≤ ‖t′‖ and moreover that
equality can only hold if r′′ = p− 1 and ‖i‖ = −f , in which case r = r′ = p− 1 and
r′′′ = 0 (as ‖r‖ = ‖r′′‖ + p‖r′′′‖ ≤ (p − 1)f). Thus ‖i‖ < ‖t′‖ and we are done by
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induction, except possibly when ‖i‖ = −f and i ≡ −1 (mod p). Applying the same
argument to µ(Zt′), we are done in the exceptional case except if t′ ≡ −1 (mod p),
which implies s = t ≡ −1 (mod p) and hence i = p− 1 + ps ≡ −1 (mod p2). By
iterating we are left with the case i = −1, which completes the proof of the claim.

Finally we show that c is uniquely determined (assuming µ 6= 0). Consider i = −1
above. Then

µ(Z−1) = µ(Zp−1Z−p) = c′µ(T p−1Z−p) = c′c−1µ(Z−1),

where c′ is the coefficient of T p−1 in Zp−1. Here, the second equality follows from the
analysis in the preceding paragraph (the case ‖i‖ = −f) that all other intervening
terms T r′Z−p with r′ ≥ 0 and ‖r′‖ = ‖p− 1‖ lie in the kernel of µ (by (79)). The third
equality follows from (78) with i = p− 1. Hence c = c′ is uniquely determined.

Proof (Existence). We define

µ(x) def= ε−1(x
∏
j

(1 + Tj)−1) (80)

for x ∈ A, where ε−1(y) is the coefficient of Z−1 in y for y ∈ A (expanded in terms of
the Zi as in [BHH+, Rk. 3.1.1.3(iii)]. Then µ ∈ Homcont

F (A,F), as µ(F0A) = {0}.

By (76)–(77) it suffices to show that for 1 ≤ i ≤ p we have

ε−1(
∏
j

(1 + Tj)ij−1ϕ(x)) = 0 if i 6= p (81)

and
ε−1(

∏
j

(1 + Tj)p−1ϕ(x)) = (−1)f−1ε−1(x). (82)

(This time we take representatives n =
(

1
∑

j
ijαj

1

)
with 1 ≤ ij ≤ p.)

Recalling that we can write

Zj =
∑
i

aijTi for some (aij) ∈ GLf (F), (83)

we deduce (81) and reduce (82) to showing that the coefficient of Zp−1 in T p−1 equals
(−1)f−1. From (83), by considering the action of ϕ and letting ai def= ai0, we obtain
that

Zj =
∑
i

ap
j

i Ti with (ap
j

i ) ∈ GLf (F).

As ap
f

i = ai, the ai are in the image of Fq in F and in fact they form an Fp-basis of
Fq. (If not, then

∑
i λiai = 0 for some λi ∈ Fp that are not all zero. This implies that∑

i λia
pj

i = 0 for all 0 ≤ j ≤ f − 1, contradicting that (ap
j

i ) ∈ GLf (F).)

Let us now work with formal variables x def= (xi)0≤i≤f−1 and bi (0 ≤ i ≤ f − 1).
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Lemma 3.3.2. The coefficient of xp−1(= ∏
j x

p−1
j ) in ∏j(

∑
i b
pj

i xi)p−1 equals∏
c∈(Ffp−{0})/F×p

(
∑
i

cibi)p−1 = (−1)(pf−1)/(p−1) ∏
c∈Ffp−{0}

(
∑
i

cibi).

(Note that the first product does not depend on the choice of representatives, and
for the equality note that ∏x∈F×p x = −1.)

This lemma implies what we want: as the ai form an Fp-basis of Fq, the lemma
(applied with xi = Ti, bi = ai) shows that the coefficient of T p−1 in Zp−1 equals
−(−1)(pf−1)/(p−1) = (−1)f−1, as ∏x∈k× x = −1.

To prove Lemma 3.3.2, we use the following.
Sublemma 3.3.3. Suppose h ∈ F[x0, . . . , xf−1]. Then the coefficient of xp−1 in h is
invariant under any linear change of variables over Fp, i.e. is equal to the coefficient
of yp−1 in h if x and y are related by an element γ of GLf (Fp).

(This is presumably well known. For the proof we may assume that h is a mono-
mial and that γ is an elementary transformation, in which case it follows from the
facts that F×p is of order p− 1 and that

(
r
p−1

)
= 0 for p ≤ r ≤ 2p− 2.)

Let C denote the coefficient of xp−1(= ∏
j x

p−1
j ) in ∏

j(
∑
i b
pj

i xi)p−1. Then C ∈
F[b0, . . . , bf−1] is a homogeneous polynomial of degree pf − 1, which is clearly divis-
ible by bp−1. For any linear change of variables xi = ∑

i λijyj with λij ∈ Fp, Sub-
lemma 3.3.3 then implies that ∏j(

∑
i biλij)p−1 divides C. In particular, (∑i cibi)p−1

divides C for each c ∈ (Ffp − {0})/F×p . But the product of such polynomials is al-
ready of degree pf − 1 and they are pairwise relatively prime, hence we are done by
remarking that the coefficient of ∏i b

pi(p−1)
i is the same on both sides.

Remark 3.3.4. Fix µ 6= 0 as in Proposition 3.3.1. By uniqueness we must have
µ ◦ a−1 ∈ Fµ for any a ∈ O×K . But it is easy to compute the scalar: by applying the
explicit formula (80) to the element ∏j(1 + Tj)p−1Z−1 we obtain

µ ◦ a−1 = NFq/Fp(a)µ ∀ a ∈ O×K .

Suppose µ ∈ Homcont
F (A,F) is nonzero such that µ ◦ ψ = (−1)f−1µ and D is an

étale (ϕ,O×K)-module over A. Then composition with µ induces an A-linear map

µ∗ : HomA(D,A)→ Homcont
F (D,F). (84)

Recall from Lemma 3.2.2 that HomA(D,A) is naturally an étale (ϕ,O×K)-module. The
following lemma will allow us to calculate this structure on the level of Homcont

F (D,F).

Lemma 3.3.5.
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(i) The map µ∗ in (84) is injective.

(ii) We have µ∗(ϕ(h)) = (−1)f−1µ∗(h) ◦ ψ.

(iii) We have µ∗(a(h)) = NFq/Fp(a)−1µ∗(h) ◦ a−1 for a ∈ O×K.

Proof. Part (iii) follows immediately from Remark 3.3.4.

For (i) we can reduce to D = A by using that D is finite projective. Observe then
that the kernel of µ∗ is an O×K-stable ideal of A by (iii); but by [BHH+, Cor. 3.1.1.7]
it is zero, as it cannot be all of A. (Alternatively part (i) also follows from the explicit
formula for µ above.)

Part (ii) follows from the explicit formula (71) for ϕ on HomA(D,A) as well as
the two conditions at the beginning of the proof of Proposition 3.3.1.

We make part (ii) more explicit. Suppose that h ∈ Homcont
F (DA(π),F) corresponds

to a sequence (xk)k≥0 as in Proposition 3.2.3. Then (−1)f−1h ◦ ψ corresponds to a
sequence (x′k)k≥0 determined by the relation

x′pk = (−1)f−1
(
p

1

)
xk, (85)

since ψ ◦ Y −pk = Y −k ◦ ψ on DA(π).

Lemma 3.3.6. Suppose that D is a finite projective A-module. Then the image of
µ∗ : HomA(D,A) ↪→ Homcont

F (D,F) consists precisely of all continuous F-linear maps
h : D → F such that for all M ∈ Z and all x ∈ D the set X ′M

def= {i ∈ Zf : h(Zix) 6=
0, ‖i‖ = M} is finite.

Equivalently, the image of µ∗ : HomA(D,A) ↪→ Homcont
F (D,F) consists precisely

of all continuous F-linear maps h : D → F such that for all M ∈ Z and all x ∈ D
the set XM

def= {i ∈ Zf : h(Y ix) 6= 0, ‖i‖ = M} is finite.

Proof. For the first part it is easy to reduce to the case where D = A, using the
compatibility of µ∗ with direct sums D = D1 ⊕D2. If h = µ∗(a) for some a ∈ A and
x ∈ A, then we write ax∏j(1 +Tj)−1 = ∑

i λiZ
i for λi ∈ F. Then h(Zix) = λ−i−1 (by

the explicit formula for µ∗ in §3.3), so h(Zix) 6= 0 can only happen for finitely many
i of any fixed degree ‖i‖ = M . Conversely, if h : A → F is continuous such that for
all M ∈ Z the set {i : h(Zi) 6= 0, ‖i‖ = M} is finite, then by continuity of h and the
finiteness assumption it follows that a def= (∏j(1 +Tj))

∑
i h(Zi)Z−i−1 ∈ A, and by the

explicit formula for µ∗ we have µ∗(a) = h.

To justify the second part, recall that Yj, Zj ∈ FJN0K with gr(Yj) = gr(Zj), so
Zj = Yj

∑∞
d=0 Fd,j, where YjFd,j is a homogeneous polynomial in Y0, . . . , Yf−1 of degree
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d+ 1 and F0,j = 1. Define the subring

A0
def=
{ ∞∑
d=0

Fd

Y d : Fd a homog. poly. in Y0, . . . , Yf−1 of degree d(f + 1)
}

of A with maximal ideal m0 defined by the condition F0 = 0. The above observation
then implies that Zj ∈ Yj(1 + m0) for any j, hence

Zi ∈ Y i(1 + m0) ∀ i ∈ Zf . (86)

Also note that
A0 =

{ ∑
k∈Zf ; kj≥−‖k‖ ∀j

λkY
k : λk ∈ F

}
(87)

and that the condition kj ≥ −‖k‖ for all j implies kj ≤ f‖k‖ for all j (and ‖k‖ ≥ 0),
so that there are only finitely many terms of any fixed degree.

Fix now x ∈ D and suppose that the set XN = {i ∈ Zf : h(Y ix) 6= 0, ‖i‖ = N}
is finite for any N ∈ Z. By continuity of h we know that h(Y ix) = 0 for all ‖i‖ ≥ e
(some e ∈ Z). Fix any M ∈ Z and suppose that h(Zix) 6= 0 and ‖i‖ = M . By
equations (86)–(87) we get that h(Y i+kx) 6= 0 for some k ∈ Zf such that kj ≥ −‖k‖
for all j. In particular, ‖i‖ ≤ ‖i‖+ ‖k‖ < e, so

X ′M ⊆
⋃

kj≥−‖k‖ ∀j
0≤‖k‖<e−M

(
XM+‖k‖ − k

)
,

a finite union of finite sets. The converse direction follows by reversing the roles of
Yj and Zj.

3.4 Some combinatorial lemmas and computations

We give several technical but important lemmas (some generalizing results in
[BHH+, §3.2]) involving the combined action of Y k (for some k ∈ Zf≥0) and

(
p 0
0 1

)
in

a representation π as at the end of §3.1.

We recall some notation and results from [BHH+]. Let H def=
(
F×q 0
0 F×q

)
≤

GL2(Fq). As in [BP12] we write (s0, s1, . . . , sf−1)⊗ η for the Serre weight

Syms0F2 ⊗F (Syms1F2)Fr ⊗ · · · ⊗F (Symsf−1F2)Frf−1 ⊗F η ◦ det,

where the si are integers between 0 and p− 1, η is a character F×q → F× and GL2(Fq)
acts on (SymsiF2)Fri via σi : Fq ↪→ F. We fix ρ as at the end of §3.1. We identify
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W (ρ) with the subsets of {0, . . . , f − 1} as in [Bre11, §2] and let Jσ be the subset
associated to σ. More precisely, W (ρ) is exactly the set of Serre weights of the form

(λ0(r0), . . . , λf−1(rf−1))⊗ dete(λ)(r0,...,rf−1)

where λ ∈ ID(x0, . . . , xf−1) (resp. λ ∈ RD(x0, . . . , xf−1)) if ρ is irreducible (resp. ρ
is reducible), see [BP12, §11] or [Bre11, §2]. If σ ∈ W (ρ) corresponds to λ, then we
have λj(xj) ∈ {p−2−xj, p−3−xj} if and only if j ∈ Jσ when j > 0 or ρ is reducible,
λ0(x0) ∈ {p− 2− x0, p− 1− x0} if and only if 0 ∈ Jσ when ρ is irreducible.

Let σ ∈ W (ρ). Let δ(σ) def= δirr(σ) if ρ is irreducible and δ(σ) def= δred(σ) if ρ is
reducible the Serre weights defined in [Bre11, §5]. Then δ(σ) ∈ W (ρ) and we have
the following explicit description of Jδ(σ) (see [Bre11, §5]):

j ∈ Jδ(σ), j < f − 1 (resp. f − 1 ∈ Jδ(σ)) ⇐⇒ j + 1 ∈ Jσ (resp. 0 /∈ Jσ) if δ = δirr
j ∈ Jδ(σ) ⇐⇒ j + 1 ∈ Jσ if δ = δred.

We fix a nonzero vector vσ ∈ σN0 , and let χσ : H → F× be the H-eigencharacter of vσ.
Let χsσ : H → F× denote the conjugate of χσ by

(
0 1
1 0

)
. As in [BP12, §2] we identify

the irreducible constituents of IndGL2(OK)
I (χsσ) with the subsets of {0, . . . , f − 1} (for

example ∅ corresponds to the socle σ of IndGL2(OK)
I (χsσ)). We know that δ(σ) occurs

in IndGL2(OK)
I (χsσ) and we denote by Jmax(σ) ⊆ {0, . . . , f − 1} the associated subset.

Precisely, using [BP12, Lemma 2.7] one checks that

Jmax(σ) = (Jσ ∪ Jδ(σ)) \ (Jσ ∩ Jδ(σ)).

By [BHH+, Lemma 3.2.3.2], we have |Jmax(σ)| = |Jmax(δ(σ))|. As a consequence, the
quantity

m
def= |Jmax(σ)| ∈ {0, . . . , f − 1}

depends only on the orbit of σ. By the proof of [BP12, Lemma 19.5], the vec-
tor

(
0 1
p 0

)
vσ generates a GL2(OK)-subrepresentation of π isomorphic to the unique

quotient of IndGL2(OK)
I (χsσ) with irreducible socle parametrized by Jmax(σ), which in

particular yields an embedding of δ(σ) in socGL2(OK)(π).

Write
σ = (s0, . . . , sf−1)⊗ η, δ(σ) = (s′0, . . . , s′f−1)⊗ η′.

Define c ∈ Zf by cj def= s′j if j ∈ Jmax(σ), and cj def= p− 1 otherwise.

The following lemma explicitly determines s′j−1 and cj−1 in terms of sj. We remark
that if f = 1 and ρ is irreducible, some formulas need to be modified, e.g. Lemma
3.4.1(i). But the main result (Theorem 3.1.3) is known in this case, so it is harmless
to exclude it.

Lemma 3.4.1.
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(i) Assume that ρ is irreducible and f ≥ 2. Then

s0 s′f−1 cf−1

r0 p− 2− rf−1 f − 1 ∈ Jmax(σ) p− 2− rf−1
r0 − 1 p− 3− rf−1 f − 1 /∈ Jmax(σ) p− 1

p− 2− r0 rf−1 f − 1 /∈ Jmax(σ) p− 1
p− 1− r0 rf−1 + 1 f − 1 ∈ Jmax(σ) rf−1 + 1

while if 1 ≤ j ≤ f − 1 we have

sj s′j−1, j = 1 s′j−1, j > 1 cj−1

rj r0 − 1 rj−1 j − 1 /∈ Jmax(σ) p− 1
rj + 1 r0 rj−1 + 1 j − 1 ∈ Jmax(σ) s′j−1

p− 2− rj p− 1− r0 p− 2− rj−1 j − 1 ∈ Jmax(σ) s′j−1
p− 3− rj p− 2− r0 p− 3− rj−1 j − 1 /∈ Jmax(σ) p− 1

(ii) Assume that ρ is (split) reducible. Then for any 0 ≤ j ≤ f − 1 we have

sj s′j−1 cj−1

rj rj−1 j − 1 /∈ Jmax(σ) p− 1
rj + 1 rj−1 + 1 j − 1 ∈ Jmax(σ) rj−1 + 1

p− 2− rj p− 2− rj−1 j − 1 ∈ Jmax(σ) p− 2− rj−1
p− 3− rj p− 3− rj−1 j − 1 /∈ Jmax(σ) p− 1

Proof. This is an easy exercise using the relation between Jσ and Jδ(σ). Note also
that j 6∈ Jσ if and only if sj+1 ∈ {rj+1, p− 2− rj+1}.

Remark 3.4.2. Strictly speaking, we should state Lemma 3.4.1 in terms of λ, λ′,
which are the elements in ID(x0, . . . , xf−1) or RD(x0, . . . , xf−1) (depending on
whether ρ is irreducible or reducible) corresponding to σ, δ(σ) respectively. Lemma
3.4.1 determines λ′j−1(xj−1) in terms of λj(xj), not s′j−1 in terms of sj (because am-
biguities arise when r0 = p−1

2 in the first table, and when rj = p−3
2 in the second and

third tables.) The same comment applies to Lemma 3.4.7.

Lemma 3.4.3. The vector Y c
(
p

1

)
(vσ) spans δ(σ)N0 as an F-vector space. Hence

there is a unique scalar µσ ∈ F× such that

vδ(σ) = µσ · Y c
(
p

1

)
(vσ) (88)

Proof. This is [BHH+, Prop. 3.2.3.1(i)].
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By [BHH+, Lemma 3.2.2.6(ii)], if 0 ≤ i ≤ s, there is a unique H-eigenvector
Y −ivσ ∈ σ that is sent by Y i to vσ. The following result is a generalization of [BHH+,
Lemma 3.2.3.5].

Lemma 3.4.4. Assume m > 0. Let k, i ∈ Zf≥0 such that ‖i‖ ≤ f − 1 and
Y k
(
p

1

)
(Y −ivσ) 6= 0.

(i) We have
‖k‖ ≤ p‖i‖+ ‖c‖.

(ii) If ‖k‖ ≥ p‖i‖ − (f − 1) + ‖c‖, then

µσ · Y k
(
p

1

)
(Y −ivσ) = Y −`vδ(σ) ∈ δ(σ)

for some ` ≥ 0 with ‖`‖ ≤ f − 1. More precisely, `j = ij+1p+ cj − kj for all j.

Proof. Before starting the proof, we first remark that Lemma 3.2.3.3 and Lemma
3.2.3.4 of [BHH+] remain true if we replace the assumption ‖i‖ ≤ m−1 by ‖i‖ ≤ f−1
in the statements. Indeed, for Lemma 3.2.3.3, this new assumption ‖i‖ ≤ f−1 implies
ij ≤ f − 1, and so

2ij + 1 ≤ 2f − 1 ≤ sj

for all j (sj is denoted by tj in loc. cit.) by the genericity assumption. Hence,
[BHH+23, Prop. 6.2.2] still applies and the rest of the proof of Lemma 3.2.3.3 works
without change. The proof of Lemma 3.2.3.4 of [BHH+] also works through, because
one checks that besides the citation to Lemma 3.2.3.3 the condition ‖i‖ ≤ m − 1 is
only used to deduce ‖i‖ ≤ f − 1.

Now we prove the lemma, following the proof of [BHH+, Lemma 3.2.3.5]. We first
prove by induction on ‖i‖ ≤ f − 1 the following fact: if

‖k‖ ≥ p‖i‖ − (f − 1) + ‖c‖ def= B

and Y k
(
p

1

)
(Y −ivσ) 6= 0, then Y k

(
p

1

)
(Y −ivσ) = Y k′

(
p

1

)
(vσ) for some k′ ∈ Zf≥0

such that k′j = kj − ij+1p for all j. This is trivial if i = 0, so we can assume i 6= 0.
Moreover, as in loc. cit., by induction we are reduced to the case kj < p for all j. We
make this assumption and derive below a contradiction (so this case cannot happen).

Define a set J as in loc. cit., i.e.

J
def= {j ∈ Jmax(σ), ij+1 = 0}. (89)

As in loc. cit. we have

‖k‖ ≤ (p− 1)(f − |J |) +
∑
j∈J

(s′j + 2ij) + |J \ (Jmax(σ) + 1)| def= A
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and to get a contradiction it is enough to show A < B, which is equivalent to

mp+ |J \ (Jmax(σ) + 1)| < (p− 2)‖i‖+ (p− 1)|J |+ C +D, (90)

where
C

def= m− (f − 1), D
def= 2

∑
j /∈J

ij +
∑

j∈Jmax(σ)\J
s′j.

We have the following two cases.

• If |Jmax(σ) \ J | > 0, then as in loc. cit. m ≤ ‖i‖+ |J |, hence (90) is implied by

mp+ |J \ (Jmax(σ) + 1)| < (p− 2)‖i‖+ (p− 2)(m− ‖i‖) + |J |+ C +D,

or equivalently

m+ (f − 1) + |J \ (Jmax(σ) + 1)| < |J |+D.

This is slightly stronger than (140) of [BHH+], but one checks that the argument
in loc. cit. still allows to conclude.

• If Jmax(σ) = J , then as in loc. cit. we have |J \ (Jmax(σ) + 1)| ≤ f −m and
|J | = m, and (90) is implied by

mp+ (f −m) < (p− 2)‖i‖+ (p− 1)m+ C +D

or equivalently
2f − 1 < (p− 2)‖i‖+m+D.

As ‖i‖ > 0 and D ≥ 0, the last inequality holds by our genericity condition (i.e.
p > 4f).

This proves the desired fact. The rest of the proof is the same as the proof of [BHH+,
Lemma 3.2.3.5] and we omit the details. (Several times f −m = (f − 1) − (m − 1)
has to be added or subtracted from expressions in the last three paragraphs of the
proof in loc. cit. to account for the weaker lower bound in Lemma 3.4.4(ii).)

Remark 3.4.5. Taking i = 0 in Lemma 3.4.4, we get the following. If Y k
(
p

1

)
(vσ) 6=

0 for some k ∈ Zf≥0 and if
‖k‖ ≥ ‖c‖ − (f − 1),

then µσ · Y k
(
p

1

)
(vσ) = Y −`vδ(σ) ∈ δ(σ) for some ‖`‖ ≤ f − 1. More precisely,

` = c− k.

We will need the following analogue of Lemma 3.4.4.
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Lemma 3.4.6. Assume m > 0. Let i ∈ Zf≥0 such that ‖i‖ ≤ f − 1. Let k ∈ Zf≥0 and
assume that there exists 0 ≤ j0 ≤ f − 1 such that

(a) kj0 ≤ p(ij0+1 − 1) (hence ij0+1 ≥ 1);

(b) ‖k‖ > p‖i‖+ ‖c‖ − cj0.

Then Y k
(
p

1

)
(Y −ivσ) = 0.

Proof. Assume for a contradiction that Y k
(
p

1

)
(Y −ivσ) 6= 0. As in the proof of

[BHH+, Lemma 3.2.3.5], by induction we are reduced to the case kj < p for all j; we
make this assumption from now on. Note ‖c‖ = ∑

j∈Jmax(σ) s
′
j +∑

j /∈Jmax(σ)(p− 1).

Let J be the set defined by (89). Then by (a) we have j0 /∈ J . As explained in
the proof of Lemma 3.4.4, [BHH+, Lemma 3.2.3.4] still applies, and we get (see the
fourth paragraph of the proof of Lemma 3.2.3.5 of loc. cit.)∑

j 6=j0
kj ≤ (f − 1− |J |)(p− 1) +

∑
j∈J

(s′j + 2ij) + |J \ (Jmax(σ) + 1)| def= A.

On the other hand, letting γ def= 1 if ij0+1 > 1 and γ
def= 0 if ij0+1 = 1 we see that

kj0 ≤ (p− 1)γ (using (a) when γ = 0), which together with condition (b) implies∑
j 6=j0

kj > p‖i‖ − (p− 1)γ +
∑

j∈Jmax(σ)
s′j +

∑
j /∈Jmax(σ)

(p− 1)− cj0
def= B.

To get a contradiction it is enough to show A ≤ B.

A computation shows that A ≤ B is equivalent to

mp+ |J \ (Jmax(σ) + 1)| ≤ (p− 2)‖i‖+ (p− 1)|J |+ (p− 1)(1− γ) + C +D

= (p− 2)(‖i‖+ |J |+ 1− γ) + |J |+ 1− γ + C +D,
(91)

where
C

def= m− cj0 , D
def= 2

∑
j /∈J

ij +
∑

j∈Jmax(σ)\J
s′j.

If j ∈ Jmax(σ) \ J , then ij+1 > 0, so we obtain

|Jmax(σ) \ J | ≤
∑

Jmax(σ)\(J∪{j0})
ij+1 + 1 =

( ∑
Jmax(σ)\(J∪{j0})

ij+1

)
+ ij0+1 + (1− ij0+1)

≤ ‖i‖+ (1− ij0+1).

As |Jmax(σ) \ J | = m− |J | and ij0+1 ≥ γ + 1, this means

m ≤ ‖i‖+ |J |+ (1− ij0+1) ≤ ‖i‖+ |J | − γ.
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Thus, to show (91) it is enough to show

mp+ |J \ (Jmax(σ) + 1)| ≤ (p− 2)(m+ 1) + |J |+ 1− γ + C +D

or equivalently

2m+ |J \ (Jmax(σ) + 1)| ≤ |J |+ (p− 1− γ + C) +D.

If |Jmax(σ)\J | > 0, then it is true by [BHH+, Eq. (140)] (and using p−2+m−cj0 ≥ 0
asm ≥ 1). If Jmax(σ) = J , then again as in loc. cit., we have |J\(Jmax(σ)+1)| ≤ f−m
and |J | = m, and (91) is implied by

mp+ f −m ≤ (p− 2)‖i‖+ (p− 1)(m+ 1− γ) + (m− cj0) +D,

equivalently,

f ≤ (p− 2)‖i‖+ (p− 1)(1− γ) + (m− cj0) +D

= (p− 2)(‖i‖ − γ) + (p− 1− cj0) + (m− γ) +D.

This is true by our genericity condition: indeed, as ‖i‖ ≥ γ + 1, m ≥ 1, cj0 ≤ p− 1,
and D ≥ 0, the above inequality is implied by f ≤ p− 2 ≤ p− 1− γ.

Now, fix σ ∈ W (ρ) and define σi ∈ W (ρ) inductively by σ0
def= σ and σi def= δ(σi−1)

for i ≥ 1. Let d ≥ 1 be the smallest integer such that σd ∼= σ0. For convenience,
if i ≥ 0 we set σi def= σi′ , where i′ ∈ {0, . . . , d − 1} is the unique integer such that
i ≡ i′ (mod d). Write

σi = (s(i)
0 , . . . , s

(i)
f−1)⊗ ηi.

To make the notation consistent, we also write sj = s
(0)
j .

For convenience, we introduce the following notation. For i ≥ 1, define cσi ∈ Zf≥0
by

cσi,j
def=

s
(i)
j if j ∈ Jmax(σi−1),
p− 1 otherwise

(92)

(in particular 0 ≤ cσi ≤ p− 1). Define a shift function δ : Zf → Zf by setting

δ(i)j def= ij+1, i = (ij) ∈ Zf .

Note that δ does not change ‖ · ‖ and that Y pδ(i)
(
p

1

)
=
(
p

1

)
Y i. We inductively

define aσn ∈ Zf≥0 for n ≥ 0 as follows: aσ0
def= 0 and for n ≥ 1,

aσn
def= pδ(aσn−1) + cσn. (93)

For example, aσ1,j = cσ1,j = s
(1)
j if j ∈ Jmax(σ) and aσ1,j = cσ1,j = p− 1 if j /∈ Jmax(σ).
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The following result determines aσd′ in terms of the sj (where d′
def= df). For

0 ≤ j ≤ f − 1, recall that hj = rj + 1 and define

h[j] def= hj + phj+1 + · · ·+ pf−1−jhf−1 (94)

(thus h[0] = h).
Lemma 3.4.7.

(i) Assume that ρ is irreducible and f ≥ 2. Then

s0 r0 r0 − 1 p− 2− r0 p− 1− r0
aσ
d′,0

1−pd′ −1 + h
1+q −1 −1 − h

1+q

while if 1 ≤ j ≤ f − 1 we have

sj rj rj + 1 p− 2− rj p− 3− rj
aσ
d′,j

1−pd′ −1 h[j] − hpf−j

1+q −1− h[j] + hpf−j

1+q −1

(ii) Assume that ρ is (split) reducible. Then for any 0 ≤ j ≤ f − 1:

sj rj rj + 1 p− 2− rj p− 3− rj
aσ
d′,j

1−pd′ −1 h[j] + hpf−j

1−q −1− h[j] − hpf−j

1−q −1

Proof. (i) Note that we always have 2|d (as d - f but d|(2f)) and so (2f)|d′. Thus
it suffices to prove the formulas for aσ2f,j

1−p2f ; we choose to work with 2f because d|(2f)
by [Bre11, Lem. 5.2]. Using Lemma 3.4.1, we can inductively determine cσn,j for
1 ≤ n ≤ 2f , and then compute aσ2f,j using the formula aσ2f,j = ∑2f−1

k=0 pkcσ2f−k,j+k,
where cσn,j is understood to be cσn,j (mod f) if j ≥ f .

We do this in the case j = 0 and s0 = r0, and leave the other cases to the reader.
In this case, we obtain using Lemma 3.4.1 that

cσ1,f−1 = p− 2− rf−1, . . . , c
σ
f−1,1 = p− 2− r1, c

σ
f,0 = p− 1− r0,

cσf+1,f−1 = rf−1 + 1, . . . , cσ2f−1,1 = r1 + 1, cσ2f,0 = r0,

and so
aσ2f,0 = r0 + p(r1 + 1) + · · ·+ pf−1(rf−1 + 1)

+pf (p− 1− r0) + pf+1(p− 2− r1) + · · ·+ p2f−1(p− 2− rf−1)
= (h− 1) + pf (pf − h)
= (1− p2f )(−1 + h

1+pf ),

proving the result.

(ii) In this case it suffices to prove the formulas for aσf,j
1−pf . The computation is

similar to (i) and is easier, and we leave it to the reader.
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For i ≥ 0 let
vi

def= vδi(σ) ∈ δi(σ)N0 \ {0}

and µi def= µδi(σ) ∈ F×, as defined in Lemma 3.4.3. Then by (88) we have

vi = µi−1 · Y cσi
(
p

1

)
(vi−1) ∀ i ≥ 1. (95)

Let
λσ

def= (−1)d(f−1)
( ∏

0≤i′≤d−1

∏
j∈Jmax(σi′ )

(p− 1− s(i′+1)
j )!

)−1
νσ, (96)

where νσ ∈ F× is defined as before [BHH+, Prop. 3.2.4.2], i.e. the eigenvalue of the
operator Sd defined in [Bre11, §4] acting on σI1 . Note that νσ depends only on the
orbit of σ, and hence the same is true for λσ.

Lemma 3.4.8. We have
d−1∏
i=0

µi = λ−1
σ .

Proof. This follows from [BHH+, Lemma 3.2.2.5] and the definition of νσ.

Remark 3.4.9. When π moreover comes from cohomology, i.e. is as in (63) or (64),
it is conjectured in [Bre11, §6] and proved in [DL21, Thm. 5.36] that

• if ρ is irreducible, then νσ = (−1)
dh
2f (1+

∑f−1
j=0 rj)(− det(ρ)(p)) d2 ;

• if ρ is reducible, then νσ = (−1)
dh
f

∑f−1
j=0 rjλ

|Jσ | df
0 λ

|Jσ | df
1 , where Jσ ⊆ {0, 1, . . . , f −

1} is the set corresponding to σ and Jσ denotes its complement.

Here, h is the number attached to σ in [Bre11, Lemma 6.2] (it is not the integer h of
§3.1). By the proof of [Bre11, Lemma 6.2], we deduce

λσ =

 (−1)d(f−1)(− det(ρ)(p)) d2 if ρ irreducible,
(−1)d(f−1)λ

|Jσ | df
0 λ

|Jσ | df
1 if ρ reducible.

(97)

The following result follows by induction from (95), as well as Lemma 3.4.8.

Lemma 3.4.10. For all n ≥ 0, we have
( n−1∏
i=0

µi
)
·Y aσn

(
p

1

)n
(v0) = vn. In particular,

for all n ≥ 0, Y aσnd
(
p

1

)nd
(vσ) = λnσvσ.

Proposition 3.4.11. Let k ∈ Zf≥0 and n ≥ 0. If ‖k‖ ≥ ‖aσn‖ − (f − 1) and
Y k
(
p

1

)n
(v0) 6= 0, then k = aσn − ` for some ` ≥ 0 satisfying ‖`‖ ≤ f − 1 and

( n−1∏
i=0

µi
)
· Y k

(
p

1

)n
(v0) = Y −`vn ∈ σn.
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Proof. If n = 0, we necessarily have k = aσ0 = ` = 0 and there is nothing to prove.
Assume n ≥ 1 and that the statement holds for n− 1.

Let k ∈ Zf≥0 with ‖k‖ ≥ ‖aσn‖ − (f − 1). Write k = pδ(k′) + k′′, with k′ ≥ 0 and
0 ≤ k′′ ≤ p− 1. Recalling that ‖δ(·)‖ = ‖ · ‖, the assumption implies the following
inequalities

p‖k′‖+ (p− 1)f ≥ ‖k‖ > ‖aσn‖ − f ≥ p‖aσn−1‖ − f,

from which we deduce ‖k′‖ > ‖aσn−1‖ − f , equivalently

‖k′‖ ≥ ‖aσn−1‖ − (f − 1).

We clearly have

Y k
(
p

1

)n
(v0) = Y k′′

(
p

1

)(
Y k′

(
p

1

)n−1
(v0)

)
, (98)

so in particular Y k′
(
p

1

)n−1
(v0) 6= 0. As ‖k′‖ ≥ ‖aσn−1‖ − (f − 1), by the inductive

hypothesis there exists `′ ≥ 0 with ‖`′‖ ≤ f − 1 such that

k′ = aσn−1 − `′ and
( n−2∏
i=0

µi
)
· Y k′

(
p

1

)n−1
(v0) = Y −`

′
vn−1 ∈ σn−1. (99)

We first assume m > 0 and claim that `′ = 0. Indeed, the relation ‖k‖ ≥
‖aσn‖ − (f − 1) together with (99) gives

‖k′′‖ ≥ p‖`′‖ − (f − 1) + ‖cσn‖.

Lemma 3.4.4(ii) applied with σ = σn−1 (and genericity) shows that k′′j ≥ `′j+1p for all
j. However, by definition 0 ≤ k′′j ≤ p − 1, so we must have `′j+1 = 0 for all j. This
proves the claim.

By the claim and by equations (98)–(99) we have k′ = aσn−1 and

( n−2∏
i=0

µi
)
· Y k′

(
p

1

)n−1
(v0) = vn−1, so Y k′′

(
p

1

)
(vn−1) 6= 0.

By the previous paragraph we have moreover that ‖k′′‖ ≥ ‖cσn‖ − (f − 1). Remark
3.4.5 applied with σ = σn−1 gives µn−1 ·Y k′′

(
p

1

)
(vn−1) = Y −`vn ∈ σn for some ` ≥ 0

satisfying ‖`‖ ≤ f − 1 and ` = cσn − k′′. As k′ = aσn−1 we deduce ` = aσn − k and the
result follows.

Now we assume m = 0, equivalently σ ∼= δ(σ). It is easy to see that this case
only happens when ρ is (split) reducible and either Jσ = ∅ or Jσ = {0, . . . , f − 1}.
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In this case we have aσn = pn − 1 for any n ≥ 0, and Lemma 3.4.3 implies that
Y aσn

(
p

1

)n
(v0) 6= 0. Using (98) and the fact Yjv0 = 0 for all j, an induction shows

that if kj ≥ pn for some 0 ≤ j ≤ f − 1, then

Y k
(
p

1

)n
(v0) = Y k−pnk′

(
p

1

)n(
Y δ−n(k′)v0

)
= 0,

where k′ ∈ Zf≥0 is defined as: k′j = 1 and k′j′ = 0 for j′ 6= j. We deduce that
Y k
(
p

1

)n
(v0) 6= 0 if and only if k ≤ aσn, which implies the first assertion. The

second assertion can be proved as above, noting that Remark 3.4.5 remains true
when m = 0.

Corollary 3.4.12. Let k ∈ Zf≥0 and n ≥ 0.

(i) If ‖k‖ > ‖aσn‖, then Y k
(
p

1

)n
(v0) = 0.

(ii) If ‖k‖ = ‖aσn‖ and if Y k
(
p

1

)n
(v0) 6= 0, then k = aσn.

Proof. It is a direct consequence of Proposition 3.4.11.

3.5 The degree function on an admissible smooth represen-
tation of GL2(K)

We define and study a “degree function” on representations π as at the end of §3.1.

Let ρ and π be as in loc. cit. We define gr(π) def= ⊕
n≥0 π[mn+1

I1 ]/π[mn
I1 ]. For v ∈ π,

we define
deg(v) def= min{n ≥ −1 : v ∈ π[mn+1

I1 ]} ∈ Z≥−1.

We let gr(v) be the image of v in π[mdeg(v)+1
I1 ]/π[mdeg(v)

I1 ] if v 6= 0 and gr(v) = 0 if
v = 0.

Fix σ ∈ W (ρ) and let vσ ∈ σN0 \ {0}. Define aσn ∈ Zf≥0 as in §3.4.

Proposition 3.5.1. For all n ≥ 0 we have

deg
((

p
1

)n
(vσ)

)
= ‖aσn‖.

Proof. Put un def=
(
p

1

)n
(vσ) for simplicity. First, by the proof of [BHH+23, Cor. 5.3.5],

we know that as a gr(FJI1/Z1K)-module gr(π) is annihilated by the ideal J defined
by J def= (yjzj, zjyj; 0 ≤ j ≤ f − 1), so that gr(π) becomes a graded module over R def=
gr(FJI1/Z1K)/J which is commutative, isomorphic to F[yj, zj]/(yjzj; 0 ≤ j ≤ f − 1),
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with yj, zj of degree −1. On the other hand, as vσ ∈ σN0 = σI1 , it is direct to check
that un is fixed by

(
1 0

pOK 1

)
for all n ≥ 0, hence

∑
λ∈Fq

λ−p
j
(

1 0
p[λ] 1

)
un =

( ∑
λ∈Fq

λ−p
j
)
un = 0.

Namely, un is annihilated by ∑λ∈Fq λ
−pj
(

1 0
p[λ] 1

)
∈ FJI1/Z1K (a lifting of zj), hence

zj gr(un) = 0 and consequently we observe that any element in 〈R · gr(un)〉 is annihi-
lated by zj.

Next we note the following fact: if v ∈ π with deg(v) > 0 and if gr(v) is annihilated
by all zj, then there exists some i ∈ {0, . . . , f − 1} such that yi gr(v) 6= 0. (If not,
then R−1, the degree −1 part of R, annihilates gr(v). Suppose v ∈ π[mn+1

I1 ] \ π[mn
I1 ]

for some n ≥ 1. Since R−1 = mI1/m
2
I1 , we deduce mI1v ⊆ π[mn−1

I1 ], i.e. v ∈ π[mn
I1 ],

contradiction.) As a consequence, Yiv 6= 0 and

deg(Yiv) = deg(v)− 1;

moreover we have gr(Yiv) = yi gr(v) ∈ 〈R · gr(v)〉. Applying this fact to un (and to
Yiun, etc.) and using the observation of the last paragraph, we find that there exists
a′σn ∈ Zf≥0 such that Y a′σn un is of degree 0, i.e. Y a′σn un ∈ πI1 \ {0} and

deg(un) = ‖a′σn ‖.

On the one hand, we have ‖a′σn ‖ ≤ ‖aσn‖ by Corollary 3.4.12(i) (as Y a′σn un 6= 0). On
the other hand, we have deg(

(
p

1

)n
(vσ)) ≥ ‖aσn‖ by Lemma 3.4.10, so the result

follows.

If V is any admissible smooth representation of GL2(K) over F, we define deg(v)
for v ∈ V as above. On the other hand, by restricting V to N0, we can also define

deg′(v) def= min{n ≥ −1 : v ∈ V [mn+1
N0 ]}.

This is well-defined as V is smooth. It is clear that deg(v) ≥ deg′(v).

We note the following consequence of the proof of Proposition 3.5.1 (it will not
be used in this paper).

Corollary 3.5.2. Let V be in the category C of §3.1 and assume that gr(V ) is an-
nihilated by the ideal J defined in the proof of Proposition 3.5.1. If v ∈ V is an
element fixed by

(
1 0

pOK 1

)
, then there exists k ∈ Zf≥0 with ||k|| = deg(v) such that

0 6= Y kv ∈ V I1. Moreover, we have deg(v) = deg′(v).
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3.6 A crucial finiteness result

We prove an important finiteness result (Proposition 3.6.1) which will be crucially
used in §3.7 to construct elements of HomA(DA(π), A).

Fix σ ∈ W (ρ) and define σi ∈ W (ρ), vi ∈ σi and d ∈ Z≥1 as in §3.4 (before
Lemma 3.4.8). We have elements cσn, aσn ∈ Zf≥0 defined for n ≥ 1 (resp. n ≥ 0) in (92)
(resp. (93)). By induction we have

aσn =
n−1∑
i=0

piδi(cσn−i)

and as cσn is periodic with period d, we deduce

aσnd′ = pd
′
aσ(n−1)d′ + aσd′ , (100)

where we recall that d′ = df (so δd′ is the identity).

We consider the following elements for i ∈ Zf :

xσ,i
def= λnσY

aσnd−i
(
p

1

)nd
(vσ),

where λσ is defined in (96) and n ≥ 0 is chosen large enough so that aσnd − i ≥ 0. By
Lemma 3.4.10 the definition is independent of the choice of n.

The following finiteness result is the main result of this section.

Proposition 3.6.1. For any M ∈ Z the set {i ∈ Zf : xσ,i 6= 0, ‖i‖ = M} is finite.

For Lemmas 3.6.2 and 3.6.3 below, we assume m = |Jmax(σ)| > 0.

Lemma 3.6.2. Let k ∈ Zf≥0 and n ≥ 1. Assume that for some 0 ≤ j0 ≤ f − 1,

(a) kj0 ≤ aσn,j0 − p− c
σ
n,j0,

(b) ‖k‖ > ‖aσn‖ − cσn,j0.

Then Y k
(
p

1

)n
(v0) = 0.

Proof. Write k = pδ(k′) + k′′ with k′, k′′ ≥ 0 and k′′ ≤ p− 1. Condition (b) implies

p‖k′‖+ (p− 1)f ≥ ‖k‖ > p‖aσn−1‖+
∑
j 6=j0

cσn,j

and consequently
p‖k′‖+ pf > p‖aσn−1‖.
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Thus, we have ‖k′‖ > ‖aσn−1‖ − f .

Assume Y k
(
p

1

)n
(v0) 6= 0 for a contradiction. Then by the proof of Proposition

3.4.11 we also have Y k′
(
p

1

)n−1
(v0) 6= 0. Moreover, by Proposition 3.4.11, there

exists i ≥ 0 with ‖i‖ ≤ f − 1 such that k′ = aσn−1 − i and

( n−2∏
i=0

µi
)
· Y k′

(
p

1

)n−1
(v0) = Y −ivn−1 ∈ σn−1.

Thus, condition (a) translates to

p(aσn−1,j0+1 − ij0+1) + k′′j0 ≤ aσn,j0 − p− c
σ
n,j0

from which we deduce k′′j0 ≤ p(ij0+1 − 1) using (93), and we get a contradiction
by Lemma 3.4.6 applied to k′′. Indeed, Y k′′

(
p

1

)
(Y −ivn−1) 6= 0 and the equality

k′ = aσn−1 − i together with condition (b) imply

‖k′′‖ > p‖i‖+ ‖cσn‖ − cσn,j0

which verifies the corresponding condition (b) of Lemma 3.4.6 (with σ = σn−1).

Recall that d′ = df , that δd′ is the identity, and that cσn is periodic with period d.

Lemma 3.6.3. Let k ∈ Zf≥0 and n′ > n ≥ 0. Assume that for some 0 ≤ j0 ≤ f − 1,

(a) kj0 ≤ aσn′d′,j0 − a
σ
nd′,j0 − p

nd′(p+ cσd,j0) and

(b) ‖k‖ > ‖aσn′d′‖ − ‖aσnd′‖ − pnd
′
cσd,j0 + f(pnd′ − 1).

Then Y k
(
p

1

)n′d′
(v0) = 0.

Proof. Applying Lemma 3.6.2 with n def= (n′ − n)d′, we see that if k′ ∈ Zf≥0 such that
k′j0 ≤ aσ(n′−n)d′,j0−p−c

σ
d,j0 (recall that cσd,j0 is periodic) and if ‖k′‖ > ‖aσ(n′−n)d′‖−cσd,j0 ,

then Y k′
(
p

1

)(n′−n)d′
(v0) = 0.

Write k = pnd
′
k′ + k′′ with k′, k′′ ≥ 0 and k′′ ≤ pnd

′ − 1. Note that aσn′d′ − aσnd′ =
pnd

′
aσ(n′−n)d′ by (100). Firstly, by condition (a) we have

pnd
′
k′j0 ≤ kj0 ≤ pnd

′
aσ(n′−n)d′,j0 − p

nd′(p+ cσd,j0)
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and so k′j0 ≤ aσ(n′−n)d′,j0 − p− c
σ
d,j0 . Secondly, as f(pnd′ − 1)− ‖k′′‖ ≥ 0, condition (b)

implies that
pnd

′‖k′‖ > pnd
′‖aσ(n′−n)d′‖ − pnd

′
cσd,j0

so that
‖k′‖ > ‖aσ(n′−n)d′‖ − cσd,j0 .

We then conclude that Y k′
(
p

1

)(n′−n)d′
(v0) = 0 as explained above, hence

Y k
(
p

1

)n′d′
(v0) = Y k′′

(
p

1

)nd′
Y k′

(
p

1

)(n′−n)d′
(v0) = 0.

Proof of Proposition 3.6.1. If m = 0, then the end of the proof of Proposition 3.4.11
implies xσ,i = 0 if ij < 0 for some 0 ≤ j ≤ f − 1, from which the result easily follows.

Assume m > 0 from now on, so that Lemma 3.6.3 applies. Fix any M ∈ Z. We
will show that the set {i ∈ Zf : xσ,i 6= 0, ‖i‖ = M} is finite. Choose n large enough
such that for all 0 ≤ j ≤ f − 1:

‖aσnd′‖+ pnd
′
cσd,j − f(pnd′ − 1) > M ; (101)

this is always possible because the left-hand side tends to infinity when n→∞ (recall
that cσd,j > f , by genericity).

Now pick any i ∈ Zf such that ‖i‖ = M . Choose n′ > n large enough such that
aσn′d′ ≥ i, hence xσ,i ∈ F×Y aσ

n′d′−i
(
p

1

)n′d′
(v0). By (101) and as ‖i‖ = M , we get for

all 0 ≤ j ≤ f − 1:

‖aσn′d′‖ − ‖i‖ > ‖aσn′d′‖ − (‖aσnd′‖+ pnd
′
cσd,j − f(pnd′ − 1)).

There are two cases:

• If ij0 ≥ aσnd′,j0 +pnd
′(p+cσd,j0) for some j0, then xσ,i = 0 by Lemma 3.6.3 (applied

to k def= aσn′d′ − i).

• Otherwise, we must have ij < aσnd′,j + pnd
′(p + cσd,j) for all j, and such a set

(together with the restriction ‖i‖ = M) is automatically finite. Note that the
quantities aσnd′,j + pnd

′(p+ cσd,j) depend only on our fixed M , as n does.

3.7 An explicit basis of HomA(DA(π), A)

We exhibit an A-basis of HomA(DA(π), A) and explicitly describe its image in the
vector space Homcont

F (DA(π),F) via the embedding (84).
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Recall π and ρ are as in Theorem 3.1.3 with ρ as at the end of §3.1, in particular
πI1 is multiplicity-free for the action of I. For any σ ∈ W (ρ) and our fixed choice of
vσ ∈ σN0 \ {0} we define:

xσ,k
def= λnσY

aσnd−k
(
p

1

)nd
vσ (102)

for k ≥ 0 and any n�k 0. This is well-defined by Lemma 3.4.10.

Recall from Proposition 3.5.1 that(
p

1

)nd
vσ ∈ π[m

‖aσnd‖+1
I1 ], so xσ,k ∈ π[mkf+1

I1 ],

hence by Proposition 3.2.3 the sequence (xσ,k)k≥0 defines an element xσ of
Homcont

F (DA(π),F) of degree 0.

Theorem 3.7.1. The elements {xσ : σ ∈ W (ρ)} are contained in the image of the
injection

µ∗ : HomA(DA(π), A) ↪→ Homcont
F (DA(π),F)

and form an A-basis of HomA(DA(π), A).

We first need a lemma. Note that πI1 is multiplicity-free for the action of I, so
there exist unique I-eigenvectors v∗σ ∈ (πI1)∨ = gr0(π∨) such that 〈vσ, v∗σ′〉 = δσ,σ′ (for
σ, σ′ ∈ W (ρ)). We already know that DA(π) is free by Remark 2.6.2. The following
result only applies to our current π but is more precise.

Lemma 3.7.2. Suppose that π is as above. Then gr(DA(π)) is a free gr(A)-module
with basis (v∗σ)σ∈W (ρ). In particular, DA(π) is a filtered free A-module of rank 2f .

Proof. Recall from [BHH+, §3.1] that gr(DA(π)) is obtained from gr(π∨) by localizing
at ∏j yj. By localizing the surjection in [BHH+, Thm. 3.3.2.1] at ∏j yj and using
[BHH+, Lemma 3.3.1.3(i)] we obtain a surjection ⊕

σ∈W (ρ) gr(A) � gr(DA(π)) of
gr(A)-modules, sending the standard basis element indexed by σ on the left to v∗σ.
But rkgr(A)(gr(DA(π))) = rkA(DA(π)) = 2f by [BHH+, Lemma 3.1.4.1] and [BHH+,
Cor. 3.3.2.4], hence the surjection ⊕

σ∈W (ρ) gr(A) � gr(DA(π)) is an isomorphism.
By [LvO96, Thm. I.4.2.4(5)] we can lift it to an isomorphism ⊕

σ∈W (ρ) A
∼−→ DA(π)

of filtered A-modules.

Proof of Theorem 3.7.1. Fix any σ ∈ W (ρ) and consider the continuous F-linear map
hσ(def= xσ) : DA(π)→ F of degree 0 corresponding to the sequence (xσ,k)k≥0. We endow
DA(π) with its natural good filtration (coming from the mI1-adic filtration on π∨, cf.
[BHH+, §3.1.2]). Let again S denote the multiplicative subset of FJN0K generated by
Y0 · · ·Yf−1. To descend hσ to HomA(DA(π), A) we now check the second criterion in
Lemma 3.3.6. Thus fix any x ∈ DA(π) and M ∈ Z. By continuity there exists e ∈ Z
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such that hσ(FeDA(π)) = 0. As (π∨)S is dense in DA(π) we can find ` ∈ Zf and
x∗ ∈ π∨ such that x−Y `x∗ ∈ Fe+‖i‖DA(π). Then hσ((x−Y `x∗)Y i) = 0 for all i ∈ Zf
such that ‖i‖ = M , so we may assume that x = Y `x∗ ∈ (π∨)S.

As in §3.6 we define xσ,i def= λnσY
aσnd−i

(
p

1

)nd
(vσ) for i ∈ Zf , where n �i 0. (In

particular, xσ,(k,...,k) = xσ,k for k ≥ 0 and Y jxσ,i = xσ,i−j for any j ≥ 0.) Explicitly,

hσ ◦ Y −k = 〈xσ,k,−〉 on π∨

for all k ≥ 0, from which it follows from the properties of (xσ,i)i that

hσ ◦ Y −i = 〈xσ,i,−〉 on π∨ (103)

for all i ∈ Zf . This implies that

hσ(Y ix) = hσ(Y i+`x∗) = x∗(xσ,−(i+`))

which can be nonzero for only finitely many i by Proposition 3.6.1. Thus hσ indeed
descends to an element Hσ of HomA(DA(π), A).

For the final claim, first note that

gr
(

HomA(DA(π), A)
) ∼= Homgr(A)

(
gr(DA(π)), gr(A)

)
by [LvO96, Lemma I.6.9] and Lemma 3.7.2. By [LvO96, Cor. I.4.2.5(2)] it then suffices
to show that the gr(Hσ) (σ ∈ W (ρ)) form a basis of Homgr(A)(gr(DA(π)), gr(A)). By
Lemma 3.7.2, the gr(A)-module gr(DA(π)) has basis v∗σ (σ ∈ W (ρ)), so it will be
enough to establish 〈gr(Hσ), v∗σ′〉 = δσ,σ′y

−1 for all σ, σ′ ∈ W (ρ).

By the explicit formula from the proof of Lemma 3.3.6 we know that

Hσ(x) = (
∏
j

(1 + Tj))
∑
i

hσ(Zix)Z−i−1 ∀ x ∈ DA(π).

Consider the equality µ ◦Hσ = hσ. Note that Hσ is a filtered map of degree f , since
hσ is of degree 0, Zi ∈ F−‖i‖A, and

∏
j(1 + Tj) ∈ F0A. Similarly, µ is a filtered map

of degree −f . Therefore
gr(µ) ◦ gr(Hσ) = gr(hσ). (104)

Recall that gr(A) = F[y±1
0 , . . . , y±1

f−1]. Let εi : gr(A) → F be the map sending∑
j∈Zf λjy

j to λi; it is F-linear and of degree ‖i‖. By definition, gr(µ) : grf A → F
sends gr(∏j(1 + Tj)

∑
‖i‖≥−f λiZ

i) to λ−1. As gr(Yj) = gr(Zj), it follows that

gr(µ) = ε−1.

On the other hand, relation (103) implies that

gr(hσ) ◦ y−i = 〈gr(xσ,i),−〉 on gr(π∨) (105)
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for all i ∈ Zf . (They are graded maps of degree ‖i‖; we filter π as in §3.5.)

Using equations (104)–(105) we compute that

εi−1 ◦ gr(Hσ) = ε−1 ◦ y−i ◦ gr(Hσ) = gr(µ) ◦ gr(Hσ) ◦ y−i

= gr(hσ) ◦ y−i = 〈gr(xσ,i),−〉 on gr(π∨).

As εi−1 ◦ gr(Hσ) is a map of degree ‖i‖, if (εi−1 ◦ gr(Hσ))(v∗σ′) 6= 0, then ‖i‖ = 0. By
the definition of xσ,i and by Corollary 3.4.12 we know that xσ,i = 0 if ‖i‖ = 0 and
i 6= 0. Therefore,

gr(Hσ) = 〈gr(xσ,0),−〉y−1 = 〈gr(vσ),−〉y−1 on gr(π∨),

as desired.

3.8 The (ϕ,O×K)-action on HomA(DA(π), A)

We determine the ϕ- and O×K-actions on the elements xσ ∈ HomA(DA(π), A) (σ ∈
W (ρ)), as defined in §3.7.

We first determine the ϕ-action on xσ. Let vσ ∈ σN0 \ {0} be as in §3.7 which
defines xσ = (xσ,k)k≥0 via (102). By Lemma 3.4.3 there exists a constant µσ ∈ F×
such that

vδ(σ) = µσ · Y cσ1
(
p

1

)
(vσ), (106)

where cσ1 is defined in (92).

Proposition 3.8.1. For any σ ∈ W (ρ) we have

ϕ(xσ) = (−1)f−1µ−1
σ Y −c

σ
1xδ(σ).

Proof. Equivalently, we need to check that

xδ(σ),k = (−1)f−1µσY
cσ1 (ϕ(xσ))k (107)

for any k ≥ 0.

We have
aσnd+1 = cσ1 + pδ(aσnd) = a

δ(σ)
nd + pndδnd(cσ1 ) (108)

by (93). By definition (102) and using (106), we have

xδ(σ),k = λnδ(σ)Y
a
δ(σ)
nd
−k( p

1

)nd
(vδ(σ))

= λnδ(σ)Y
a
δ(σ)
nd
−k · µσY pndδnd(cσ1 )

(
p

1

)nd+1
(vσ)

= µσλ
n
δ(σ)Y

aσnd+1−k
(
p

1

)nd+1
(vσ),
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where we applied (108). On the other hand, by Lemma 3.3.5(ii) and (85) the action
of ϕ on xσ can be computed on sequences as follows: for any k ≥ 0,

(ϕ(xσ))k = (−1)f−1Y p`−k
(
p

1

)
(xσ,`),

where ` is chosen arbitrarily so that p` ≥ k. Thus we have (for ` large enough)

Y cσ1 (ϕ(xσ))k = (−1)f−1Y cσ1Y p`−k
(
p

1

)
(xσ,`)

= (−1)f−1Y cσ1Y p`−k · λnσY
pδ(aσnd)−p`( p

1

)nd+1
(vσ)

= (−1)f−1λnσY
aσnd+1−k

(
p

1

)nd+1
(vσ),

where we used again (102) and (108). As λσ = λδ(σ) by the discussion after (96),
relation (107) is verified.

We now determine the O×K-action on xσ. By Lemma 3.3.5(iii) we can compute
this action on the image of xσ in Homcont

F (DA(π),F) (i.e. before descending).

For a ∈ O×K and 0 ≤ i ≤ f − 1 we put

fa,i
def= ap

i
Yi

a(Yi)
∈ 1 + F1−pA,

where we follow the convention in §3.2 of just writing an index i instead of an index
σi (in particular fa,0 = fa,σ0 in (21)). Note that ϕ(fa,i) = fpa,i−1. We also let χσ :
F×q → F× denote the eigencharacter of diag(−, 1) on σI1 .

Proposition 3.8.2. For any σ ∈ W (ρ) and a ∈ O×K we have

a(xσ) = NFq/Fp(a)−1χσ(a)
( f−1∏
i=0

f
−aσ

d′,i/(1−p
d′ )

a,i

)
xσ

in Homcont
F (DA(π),F), where d′ = df .

Proof. First note that we may apply any element of FJN0K +F−kf−1A to (102) (with
F−kf−1A killing both sides) by applying our convention in Remark 3.2.5 to both
xσ,k ∈ π[mkf+1

I1 ] and
(
p

1

)nd′
vσ ∈ π[m

‖aσ
nd′‖+1

I1 ].

To simplify the notation we set M def= ∏f−1
i=0 f

aσ
d′,i/(1−p

d′ )
a,i . Let us now consider

NFq/Fp(a)χσ(a)−1Ma(xσ). Combining both parts of Lemma 3.2.4 and the previous
paragraph, we obtain that its k-th component is given by the following formulas
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(where `�k 0 and n�` 0):

χσ(a)−1M
a(Y `)
Y k

(
a

1
)
xσ,`

= χσ(a)−1M
a(Y `)
Y k

(
a

1
)
λnσY

aσ
nd′−`

(
p

1

)nd′
vσ

= χσ(a)−1Mλnσ
a(Y aσ

nd′ )
Y k

(
p

1

)nd′(
a

1
)
vσ

= Mλnσ
a(Y aσ

nd′ )
Y k

(
p

1

)nd′
vσ.

Recalling that a(Yi) = ap
i
Yif

−1
a,i and aσnd′ = aσd′

pnd
′−1

pd
′−1 the formula simplifies to

= Mλnσ

( f−1∏
i=0

a
piaσ

nd′,i

)
Y
aσ
nd′−k

( f−1∏
i=0

f
−aσ

nd′,i
a,i

)(
p

1

)nd′
vσ

= Mpnd
′
( f−1∏
i=0

a
piaσ

nd′,i

)
λnσY

aσ
nd′−k

(
p

1

)nd′
vσ.

Now Mpnd
′
only matters modulo F−kf−1A. But as fa,i ∈ 1 + F−(p−1)A we have

Mpnd
′
∈ 1 + F−pnd′ (p−1)A, so for n sufficiently large we can omit this factor. In

summary, the k-th component of NFq/Fp(a)χσ(a)−1Ma(xσ) is given by

( f−1∏
i=0

a
piaσ

nd′,i
)
λnσY

aσ
nd′−k

(
p

1

)nd′
vσ =

( f−1∏
i=0

a
piaσ

nd′,i
)
xσ,k.

Finally notice that ∑ piaσnd′,i = (1 + pd
′ + · · · + p(n−1)d′)∑ piaσd′,i ≡ n

∑
piaσd′,i

(mod q − 1), as f | d′. Since n (sufficiently large) was arbitrary above, we deduce
that ∑ piaσd′,i ≡ 0 (mod q − 1), and the result follows.

Let {x∗σ : σ ∈ W (ρ)} denote the A-basis of DA(π) that is dual to {xσ : σ ∈ W (ρ)}.
By (72) we deduce the ϕ- and O×K-actions on the elements x∗σ from Propositions 3.8.1
and 3.8.2.

Corollary 3.8.3. Fix σ ∈ W (ρ). We have

ϕ(x∗σ) = (−1)f−1µσY
cσ1x∗δ(σ),

and for a ∈ O×K,

a(x∗σ) = NFq/Fp(a)χσ(a)−1
( f−1∏
i=0

f
aσ
d′,i/(1−p

d′ )
a,i

)
x∗σ.
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3.9 The main theorem on DA(π)

We prove DA(π) ∼= D⊗A(ρ∨(1)) which finishes the proof of Theorem 3.1.3.

Recall that ρ is as at the end of §3.1.

Theorem 3.9.1. There is an isomorphism of étale (ϕ,O×K)-modules

DA(π) ∼= D⊗A(ρ∨(1)).

Proof. We write DA,σ0(ρ) = Ae0⊕Ae1 with (e0, e1) as in Lemma 2.2.2 (for d = 2 and
noting ei instead of 1⊗ ei) when ρ is absolutely irreducible and where

ϕq(e0) = λ0

(
Y0

ϕ(Y0)

)h
e0

ϕq(e1) = λ1e1

a(e0) =
(

fa,0
ϕ(fa,0)

) h
1−q
e0

a(e1) = e1.

(109)

when ρ is (split) reducible. Let I def= {0, 1}f and denote by i = (ij)j an element of
I. By (61) and since ϕf−1−j(eij) ∈ DA,σj+1(ρ) (see (59)) we have D⊗A(ρ) = ⊕

i∈I AEi,
where

Ei
def=

f−1⊗
j=0

ϕf−1−j(eij).

We will define an explicit A-linear isomorphism from D⊗A(ρ∨(1)) to DA(π) and check
that it is a morphism of (ϕ,O×K)-modules. Twisting ρ and π by the same unramified
character and using Lemma 2.9.6 and Lemma 3.1.1, we can assume det(ρ)(p) = 1,
i.e. det(ρ) = ω

∑f−1
i=0 pi(ri+1)

f . Then

D⊗A(ρ∨(1)) ∼= D⊗A(ρ⊗ det(ρ)−1ω) = D⊗A
(
ρ⊗ ω−

∑f−1
i=0 piri

f

)
,

and using Lemma 2.9.6 and Lemma 3.1.1 again, it is equivalent to define an isomor-
phism ϑ of (ϕ,O×K)-modules

D⊗A(ρ) −→ DA

(
π ⊗ ω−

∑f−1
i=0 piri

f

) ∼= DA(π)⊗A DA

(
ω
∑f−1

i=0 piri
f

)
. (110)

We know by Theorem 3.7.1 that {xσ : σ ∈ W (ρ)} form an A-basis of
HomA(DA(π), A). Let {x∗σ : σ ∈ W (ρ)} denote the A-basis of DA(π) that is dual to
{xσ : σ ∈ W (ρ)}, as in §3.8. For convenience, below we write x∗J instead of x∗σ ⊗ 1
in (110), where J = Jσ.
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Write σ = (s0, . . . , sf−1) ⊗ η and δ(σ) = (s′0, . . . , s′f−1) ⊗ η′. Below when we
write, for example, si = ri + 1, we actually mean that λi(xi) = xi + 1, where λ ∈
ID(x0, . . . , xf−1) or RD(x0, . . . , xf−1) is the element corresponding to σ; see Remark
3.4.2.

(i) Assume first ρ is absolutely irreducible. For J ⊆ {0, 1, . . . , f − 1}, with corre-
sponding Serre weight σ ∈ W (ρ), define

ϑ : EiJ 7−→ αJY
bJ−1x∗J ,

where αJ ∈ F× are suitable constants, iJ def= 1J (i.e. iJ,j = 1 if j ∈ J and iJ,j = 0 if
j /∈ J), and

• bJ,i
def= 0 if either i = 0 and s0 ∈ {r0, r0 − 1}, or i > 0 and si ∈ {ri, p− 3− ri};

• bJ,0
def= −h[0] + 1 if s0 = p− 1− r0;

• bJ,i
def= h[i] + 1 if i > 0 and si = ri + 1;

• bJ,i
def= −h[i] if si = p− 2− ri;

where h[i] was defined in (94). Below we check that for well-chosen αJ , ϑ commutes
with ϕ, i.e. ϑ

(
ϕ(EiJ )

)
= ϕ(αJY bJ−1x∗J). Writing J ′ = Jδ(σ), Corollary 3.8.3 implies

ϕ(x∗J) = (−1)f−1µJY
cJ′x∗J ′ , (111)

where µJ def= µσJ , and cJ ′ is defined as in §3.4 with respect to the pair (σ, δ(σ)). Also,
using Lemma 2.2.2 it is easy to check that

ϕ(EiJ ) =

 EiJ′ if iJ,0 = 0,
−( Yσ0

Y pσf−1
)hEiJ′ if iJ,0 = 1.

Thus, we are reduced to checking:

• if iJ,0 = 0 then {
αJ · µJ = (−1)f−1αJ ′ ,
pδ(bJ) + 1− p+ cJ ′ = bJ ′ ;

(112)

• if iJ,0 = 1 then {
αJ · µJ = (−1)fαJ ′ ,
pδ(bJ) + 1− p+ cJ ′ = bJ ′ + (h, 0, . . . ,−ph). (113)
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First assume 0 /∈ J , i.e. s0 ∈ {r0, r0−1}; note that this implies s1 ∈ {r1, p−2−r1}
by the property of W (ρ). We need to check

pbJ,i + 1− p+ cJ ′,i−1 = bJ ′,i−1

for any 0 ≤ i ≤ f − 1. It is a direct check using Lemma 3.4.1. We do it for i = 0, 1
and leave the other cases as an exercise. Recall that cJ ′,i−1 = s′i−1 if i− 1 ∈ Jmax(σJ)
and cJ ′,i−1 = p− 1 otherwise.

• If i = 0 and s0 = r0, then bJ,0 = 0 by definition and cJ ′,f−1 = s′f−1 = p−2−rf−1
by Lemma 3.4.1, so we obtain

p · 0 + (1− p) + (p− 2− rf−1) = −h[f−1],

which is equal to bJ ′,f−1.

• If i = 0 and s0 = r0 − 1, then bJ,0 = 0 by definition and cJ ′,f−1 = p − 1 by
Lemma 3.4.1, so we obtain

p · 0 + (1− p) + (p− 1) = 0,

which is equal to bJ ′,f−1 (as s′f−1 = p− 3− rf−1).

• If i = 1 and s1 = r1, then bJ,1 = 0 by definition and cJ ′,0 = p − 1 by Lemma
3.4.1, so we obtain

p · 0 + (1− p) + (p− 1) = 0,

which is equal to bJ ′,0 (as s′0 = r0 − 1).

• If i = 1 and s1 = p − 2 − r1, then bJ,1 = −h[1] by definition and cJ ′,0 = s′0 =
p− 1− r0, so we obtain

p(−h[1]) + (1− p) + (p− 1− r0) = −h[0] + 1,

which is equal to bJ ′,0.

Assume 0 ∈ J , i.e. s0 ∈ {p − 2 − r0, p − 1 − r0}; note that this implies s1 ∈
{r1 + 1, p− 3− r1}. We check (113) for i = 0 and leave the other cases as an exercise.

• If s0 = p− 2− r0, then bJ,0 = −h[0] by definition and cJ ′,f−1 = p− 1 by Lemma
3.4.1, so we obtain

p(−h[0]) + (1− p) + (p− 1) = −ph,

which equals to bJ ′,f−1 − ph (as bJ ′,f−1 = 0, since s′f−1 = rf−1).
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• If s0 = p−1−r0, then bJ,0 = −h[0]+1 by definition and cJ ′,f−1 = s′f−1 = rf−1+1,
so we obtain

p(−h[0] + 1) + (1− p) + (rf−1 + 1) = (rf−1 + 1) + 1− ph,

which is equal to bJ ′,f−1 − ph (as bJ ′,f−1 = h[f−1] + 1).

Now we show that the constants αJ can be compatibly chosen so that ϑ is ϕ-
equivariant. Using (112) and (113) it suffices to check, for any J whose orbit has
length d, that

(−1)d(f−1)
d−1∏
j=0

µδj(J) =
d−1∏
j=0

(−1)iδj(J),0 .

As the left-hand side is equal to (−1)− d2 = (−1) d2 by Lemma 3.4.8 and (97) (and
det(ρ)(p) = 1), it suffices to show that

]
{

0 ≤ j ≤ d− 1, 0 ∈ δj(J)
}

= d

2 . (114)

By the proof of [Bre11, Lemma 5.2], letting J ′ = J ∪ {f + j, j ∈ J} (where J is
the complement of J), then d is also the smallest positive integer such that J ′ =
J ′ − d as subsets of Z/2fZ, and in particular d divides 2f . Since |J ′| = f and
J ′ ∩ {0, 1, . . . , f − 1} = J , it is easy to see that

]
{

0 ≤ j ≤ 2f − 1, 0 ∈ δj(J)
}

= f

from which we deduce (114).

We now check that ϑ is O×K-equivariant. By Lemma 2.2.2 we know that

a(EiJ ) =
f−1∏
i=0

ϕf−1−i(fh(1−ϕ)qiJ,i/(1−q2)
a,0 )EiJ

and by Corollary 3.8.3 we have

a(x∗J) = NFq/Fp(a)χσ(a)−1a
∑f−1

i=0 piri

( f−1∏
i=0

f
aσ
d′,i/(1−p

d′ )
a,i

)
x∗J ,

where d′ = df and recall the twist DA(ω
∑f−1

i=0 piri
f ) in (110). Thus it suffices to show

that

a(Y bJ−1)NFq/Fp(a)χσ(a)−1a
∑f−1

i=0 piri

( f−1∏
i=0

f
aσ
d′,i/(1−p

d′ )
a,i

)

=
f−1∏
i=0

f
pf−1−ihqiJ,i/(1−q2)
a,i+1 f

−pf−ihqiJ,i/(1−q2)
a,i Y bJ−1,

which is implied by the following claims (where we use that 2f | d′):
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(a) χσ(a) = a
∑f−1

i=0 pibJ,i+
∑f−1

i=0 piri ,

(b)

aσd′,i
1− pd′ + 1− bJ,i =


hpf−i

1− q2 [q1J (i−1) − q1J (i)] if 1 ≤ i ≤ f − 1,
h

1− q2 [q1J (f−1) − q · q1J (0)] if i = 0.

To verify the first claim, note from [Bre11, §2] that

χσ(a) = a
1
2

(∑f−1
i=0 pi(ri+si)+(q−1)1J (f−1)

)
.

It then suffices to show that

1
2
( f−1∑
i=0

pi(si − ri) + (q − 1)1J(f − 1)
)
≡

f−1∑
i=0

pibJ,i (mod q − 1).

First assume f − 1 /∈ J (so that 1J(f − 1) = 0), equivalently s0 ∈ {r0, p − 2 − r0}.
Then (s0, . . . , sf−1) consists of subsequences of the form p−2−rj, p−3−rj+1, . . . , p−
3− rj′−1, rj′ + 1 for some 0 ≤ j < j′ ≤ f − 1 (and ri for i /∈ {j, . . . , j′}). Since bJ,i = 0
if si = ri, we are reduced to prove that for 0 ≤ j < j′ ≤ f − 1,

1
2
(
(p− 2− 2rj) +

∑
j<i<j′

pi(p− 3− 2ri) + pj
′) ≡ ∑

j≤i≤j′
pibJ,i (mod q − 1). (115)

It is direct to check that the left-hand side of (115) is equal to

pj(p− 1− rj) +
∑

j<i<j′
pi(p− 2− ri) = pj(p− hj) +

∑
j<i<j′

pi(p− 1− hi).

On the other hand, by the definition of bJ,i the right-hand side of (115) is equal to

pj(−h[j]) + pj
′(h[j′] + 1) = pj

′ − pjhj − · · · pj
′−1hj′−1

= pj(p− hj) +∑
j<i<j′ p

i(p− 1− hi),

hence (115) is verified in this case (we actually have an equality). Now assume
f − 1 ∈ J (so that 1J(f − 1) = 1), equivalently s0 ∈ {r0 − 1, p− 1− r0}.

• If s0 = r0 − 1, then (s0, . . . , sf−1) contains a subsequence of the form p − 2 −
rj, p− 3− rj+1, . . . , r0− 1 for some 0 < j ≤ f − 1 (note that the case j = f − 1
is allowable), and one computes

1
2

(
pj(p− 2− 2rj) +∑

j<i≤f−1 p
i(p− 3− 2ri) + (−1) + q − 1

)
= pj(p− 1− rj) +∑

j<i≤f−1 p
i(p− 2− ri) + (−1)

≡ pj(−h[j]) (mod q − 1).
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• If s0 = p − 1 − r0, then (s0, . . . , sf−1) contains a subsequence of the form
p − 2 − rj, p − 3 − rj+1, · · · , p − 1 − r0, p − 3 − r1, . . . , p − 3 − rj′−1, rj′ + 1 for
some 0 < j′ < j ≤ f − 1, and one checks the following congruence relation mod
q − 1:
1
2
(
(p−2−2rj)+

∑
j<i<j′,i 6=0

pi(p−3−2ri)+(p−1−2r0)+pj′+(q−1)
)
≡

∑
j≤i≤j′

pibJ,i,

where ∑j<i<j′ means ∑j<i≤f−1 +∑
0≤i<j′ and similarly for ∑j≤i≤j′ .

Together with (115), claim (a) is verified in this case.

We check claim (b). Using Lemma 3.4.7 and the definition of bJ one checks that

s0 r0 r0 − 1 p− 2− r0 p− 1− r0
aσ
d′,0

1−pd′ + 1− bJ,0 h
1+q 0 h hq

1+q

while if 1 ≤ i ≤ f − 1 we have

si ri ri + 1 p− 2− ri p− 3− ri
aσ
d′,i

1−pd′ + 1− bJ,i 0 −hpf−i

1+q
hpf−i

1+q 0

Then (b) can easily be checked case by case.

(ii) Assume ρ is (split) reducible. For J ⊆ {0, 1, . . . , f − 1}, with corresponding
Serre weight σ ∈ W (ρ), define

ϑ : EiJ 7−→ αJY
bJ−1x∗J ,

where αJ ∈ F× are suitable constants, iJ def= 1Jc (i.e. iJ,j = 1 if j /∈ J and iJ,j = 0 if
j ∈ J), and

• bJ,i = 0 if si = ri;

• bJ,i = −h[i] if si = p− 2− ri;

• bJ,i = h[i] + 1 if si = ri + 1 and i > 0 (resp. bJ,0 = 1 if i = 0);

• bJ,i = 0 if si = p− 3− ri and i > 0 (resp. bJ,0 = −h[0] if i = 0).

Write J ′ = Jδ(σ). Then (111) remains true, and it is easy to check that

ϕ(EiJ ) =

 λ0( Yσ0
Y pσf−1

)hEiJ′ if iJ,0 = 0,
λ1EiJ′ if iJ,0 = 1.

Thus, to check that ϑ is ϕ-equivariant it is equivalent to check
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• if iJ,0 = 0 then {
αJ · µJ = (−1)f−1λ0αJ ′ ,
pδ(bJ) + 1− p+ cJ ′ = bJ ′ + (h, 0, . . . ,−ph); (116)

• if iJ,0 = 1 then {
αJ · µJ = (−1)f−1λ1αJ ′ ,
pδ(bJ) + 1− p+ cJ ′ = bJ ′ .

(117)

We leave it as an exercise to check the second equation of (116), resp. (117), using
Lemma 3.4.1. Thus, to show that the constants αJ can be compatibly chosen so that
ϑ is ϕ-equivariant, it suffices to check, for any J whose orbit has length d,

(−1)d(f−1)
d−1∏
j=0

µδj(J) = λ
|J | d

f

0 λ
−|J | d

f

0 ,

where we have used det(ρ)(p) = 1 and the fact that

]
{

0 ≤ j ≤ d− 1, 0 ∈ δj(J)
}

= |J |d
f
, ]

{
0 ≤ j ≤ d− 1, 0 /∈ δj(J)

}
= |J |d

f
.

We conclude by Lemma 3.4.8 and (97).

We now check that ϑ is O×K-equivariant. Using (109) we know that

a(EiJ ) =
∏

i:iJ,i=0
ϕf−1−i(fh(1−ϕ)/(1−q)

a,0 )EiJ

and by Corollary 3.8.3 we have

a(x∗J) = NFq/Fp(a)χσ(a)−1a
∑f−1

i=0 piri

( f−1∏
i=0

f
aσ
d′,i/(1−p

d′ )
a,i

)
x∗J .

Thus it suffices to show that

a(Y bJ−1)NFq/Fp(a)χσ(a)−1a
∑f−1

i=0 piri

( f−1∏
i=0

f
aσ
d′,i/(1−p

d′ )
a,i

)

=
∏

0≤i≤f−1
iJ,i=0

(fhp
f−i−1/(1−q)

a,i+1 f
−hpf−i/(1−q)
a,i )Y bJ−1,

which is implied by the following claims (where we use that f | d′):

(a) χσ(a) = a
∑f−1

i=0 pibJ,i+
∑f−1

i=0 piri ,
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(b)

aσd′,i
1− pd′ + 1− bJ,i =


hpf−i

1− q [1J(i− 1)− 1J(i)] if 1 ≤ i ≤ f − 1,
h

1− q [1J(f − 1)− q1J(0)] if i = 0.

Both claims are checked as in the irreducible case (we omit the details).
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