Putnam Problems: Algebra (F.H., Fall 2015)

October 8, 2015

A1-1999 Find polynomials f(x),g(x), and h(x), if they exist, such that for all x,

$$|f(x)| - |g(x)| + h(x) = \begin{cases} -1 & \text{if } x < -1\\ 3x + 2 & \text{if } -1 \le x \le 0\\ -2x + 2 & \text{if } x > 0. \end{cases}$$

- B1-2005 Find a nonzero polynomial P(x, y) such that $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$ for all real numbers a. (Note: $|\nu|$ is the greatest integer less than or equal to ν .)
 - Do there exist $n \times n$ matrices with AB BA = 1 (identity)?
 - Find the zeroes of the polynomial $x^4 6x^3 + 18x^2 30x + 25$, knowing that the sum of two of its roots is 4.
- B1-2004 Let $P(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_0$ be a polynomial with integer coefficients. Suppose that r is a rational number such that P(r) = 0. Show that the n numbers

$$c_n r, c_n r^2 + c_{n-1} r, c_n r^3 + c_{n-1} r^2 + c_{n-2} r,$$

..., $c_n r^n + c_{n-1} r^{n-1} + \dots + c_1 r$

are integers.

- Find all polynomials P(x) such that (x + 1)P(x) = (x 10)P(x + 1).
- A1-2001 Consider a set S and a binary operation *, i.e., for each $a, b \in S$, $a * b \in S$. Assume (a * b) * a = b for all $a, b \in S$. Prove that a * (b * a) = b for all $a, b \in S$.
- B1-2003 Do there exist polynomials a(x), b(x), c(y), d(y) such that

$$1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)$$

holds identically?

B2-1993 For nonnegative integers n and k, define Q(n,k) to be the coefficient of x^k in the expansion of $(1 + x + x^2 + x^3)^n$. Prove that

$$Q(n,k) = \sum_{j=0}^{k} \binom{n}{j} \binom{n}{k-2j},$$

where $\binom{a}{b}$ is the standard binomial coefficient. (Reminder: For integers a and b with $a \ge 0$, $\binom{a}{b} = \frac{a!}{b!(a-b)!}$ for $0 \le b \le a$, with $\binom{a}{b} = 0$ otherwise.)

A2-1999 Let p(x) be a polynomial that is nonnegative for all real x. Prove that for some k, there are polynomials $f_1(x), \ldots, f_k(x)$ such that

$$p(x) = \sum_{j=1}^{k} (f_j(x))^2.$$

- B2-1999 Let P(x) be a polynomial of degree n such that P(x) = Q(x)P''(x), where Q(x) is a quadratic polynomial and P''(x) is the second derivative of P(x). Show that if P(x) has at least two distinct roots then it must have n distinct roots.
- B2-2001 Find all pairs of real numbers (x, y) satisfying the system of equations

$$\frac{1}{x} + \frac{1}{2y} = (x^2 + 3y^2)(3x^2 + y^2)$$
$$\frac{1}{x} - \frac{1}{2y} = 2(y^4 - x^4).$$

A4-1997 Let G be a group with identity e and $\phi: G \to G$ a function such that

$$\phi(g_1)\phi(g_2)\phi(g_3) = \phi(h_1)\phi(h_2)\phi(h_3)$$

whenever $g_1g_2g_3 = e = h_1h_2h_3$. Prove that there exists an element $a \in G$ such that $\psi(x) = a\phi(x)$ is a homomorphism (i.e. $\psi(xy) = \psi(x)\psi(y)$ for all $x, y \in G$).

B–4 Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$(P(X))^{2} + (Q(X))^{2} = X^{2n} + 1$$

and $\deg P > \deg Q$.

You can find some more algebra problems at

http://www.math.utoronto.ca/barbeau/putnamalg.pdf.