A SATAKE ISOMORPHISM IN CHARACTERISTIC p

FLORIAN HERZIG

ABSTRACT. Suppose that G is a connected reductive group over a p-adic
field F, that K is a hyperspecial maximal compact subgroup of G(F),
and that V' is an irreducible representation of K over the algebraic clo-
sure of the residue field of F. We establish an analogue of the Sa-
take isomorphism for the Hecke algebra of compactly supported, K-
biequivariant functions f : G(F) — End V. These Hecke algebras were
first considered by Barthel-Livné for GL2. They play a role in the recent
mod p and p-adic Langlands correspondences for GL2(Qj), in general-
isations of Serre’s conjecture on the modularity of mod p Galois repre-
sentations, and in the classification of irreducible mod p representations
of unramified p-adic reductive groups.

1. INTRODUCTION

1.1. Statement of the theorem. Let F' be a finite extension of Q, with
ring of integers O, uniformiser w, and residue field k of order q. Suppose
that G is a connected reductive group over F' that is unramified (i.e., quasi-
split and split over an unramified extension) and that K is a hyperspecial
maximal compact subgroup. Fix any maximal split torus S in G such that
the apartment corresponding to S contains the hyperspecial point in the
reduced building corresponding to K. Since G is quasi-split, T = Zg(.5) is
a maximal torus of G.

With these assumptions it is known that G extends to a smooth O-group
scheme [Tit79, §3.8.1], that we will also denote by G, whose special fibre is
a connected reductive group over k and such that K = G(O). The tori S
and T extend to smooth O-subgroup schemes S C T of G which reduce to a
maximal split torus and its centraliser in the special fibre of G. The relative
root systems of S in G in the two fibres are naturally identified with each
other. We denote by ® C X*(S) the set of roots, by &1 a choice of positive
roots, and by W the Weyl group. There is a closed O-subgroup scheme
B =T x U of G whose fibres are the Borel subgroups associated to ®.

Suppose that V is an irreducible representation of G(k) over k, which
we also consider as a representation of K via the reduction homomorphism
K = G(0) — G(k). The Hecke algebra Hg(V) of V is the k-algebra of
compactly supported functions f : G(F') — Endj V satisfying f(kigks) =
k1f(g)ke for all ki, ko € K, g € G(F), where the multiplication is given
by convolution. We remark that by Frobenius reciprocity it follows that
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Ha(V) = End,;G(F)(c—Ind[G((F) V), where c—IndIG((F) V={:GF)—V:
Y(kg) = ki (g) Vk € K Vg € G; suppt compact} is the compactly induced
representation (see [BL94, Prop. 5]).

It is known that the T'(k)-representation VU®*) is one-dimensional (see
Lemma 2.5). The corresponding Hecke algebra Hz (VU *)) consists of T'(O)-
biequivariant, compactly supported functions ¢ : T'(F') — End,;:(VU(’“)) = k.

Let ordp : F* — Z denote the valuation of F. For x € X*(S) and
t € T(F) we define (ordp ox)(t) to be 1 ordp(nx(t)), where n > 0 is chosen
so that ny extends to an F-rational character of T'. Since X7 (1) — X*(S)
is injective with finite cokernel, this does not depend on any choices.

Definition 1.1. Let 7~ denote the following submonoid of T'(F):
T-={teT(F): (ordpoa)(t) <0 Vac d}.

Let .’J—C;(Y_/U(k)) denote the subalgebra of Hp(VU*)) consisting of those ¢ :
T(F) — k that are supported on 7.

Theorem 1.2. Suppose that V is an irreducible representation of G(k)
over k. Then

8 : Ha(V) — Hyp(VUK)

folt— > flw

weU(F)/U(0)

VU (k)

is an injective k-algebra homomorphism with image U'C;(VU(I‘:)).

Note that as f is compactly supported, the sum over U(F')/U(O) has only
finitely many non-zero terms and 8f is compactly supported. Since T'(F)
normalises U (F), the image of $f is contained in VU(*),

It is easy to see that A — A(w) yields an isomorphism X, (S) — T'(F)/T(0)
which sends the antidominant coweights X, (S)- = {\ € X.(5) : (\,a) <
0Va € ®} to T~ /T(0) (Lemma 2.1).

Corollary 1.3. Hg (V) is commutative and isomorphic to k[X.(S)_]. In
particular it is noetherian.

At least when G is split and the derived subgroup of G is simply connected,
there is another argument to see that H¢g (V') is commutative which uses an
analogue of a Gelfand involution. See the end of Section 2.1.

1.2. Comparison with the classical Satake isomorphism. Recall that
the classical Satake isomorphism is given by the formula

CIK\G(F)/K] = C[X(5)]"

[ (t — 8(t)1/? f(tu)du> ,

U(F)
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where ¢ is the modulus character of the Borel and the Haar measure du
on U(F) satisfies fU(O) du =1 ([Car79], [Gro98]). The relevance of the factor

6'/2 is to make the image of the Satake transform W-invariant. Leaving it
out still yields an algebra homomorphism 8" into C[X,(S)], which now also
makes sense over Z, and which is obviously compatible with § when V is
the trivial representation:

ZIK\G(F)/K] —>— Z[X.(5)]

He(1) = FE\G(F)/ K] —— F[X.(S)]
In this case (when V' is trivial) there is a simple explanation why the image
of 8 is supported on antidominant coweights. The image of the Satake
transform is W-invariant and the modulus character is a power of p which,
among the W-conjugates of a given coweight, is biggest on the antidominant
one.

The proof of Theorem 1.2 follows the same steps as the classical proof,
but there are two complications. Firstly, it is harder to determine the
space of Hecke operators supported on a given double coset. This re-
quires an argument using the Bruhat-Tits building (Prop. 3.8). Secondly,
for general V it is subtle to prove that the image of S is contained in
fH;(VU(k)). We first show that the image is supported on “almost antidom-
inant” coweights and then use that S is a homomorphism to conclude. This
extra step is really necessary, as one sees by considering the Hecke bimodule

Homg F)(C-Indg(F) Vl,c—Ind?((F) V5) whose support under the Satake map
may extend slightly beyond the antidominant coweights [Her, §6].

1.3. Comparison with the p-adic Satake isomorphism. Schneider—
Teitelbaum [ST06] constructed p-adic Satake maps, and their p-adic com-
pletions, for the Hecke algebras associated to an irreducible representation
of Gp. In Proposition 2.10 we establish a compatibility between their p-adic
Satake map and the mod p Satake map 8, in case V extends to a represen-
tation of G . (This is satisfied, for example, if the derived subgroup of G Yz
is simply connected.) In this case V' is a submodule of the reduction of a
K-stable lattice in some irreducible representation of G ;. Note that V' does
not necessarily equal the reduction; in fact, this cannot usually be achieved.

1.4. The W-regular case. The refined Cartan decomposition says that the
Aw) for A € X, (S)- form a system of coset representatives for K\G(F')/K.
We will see in the proof of Theorem 1.2 that Hg (V) has a natural k-basis
{T\ : A € X,.(S)_}. The Hecke operator T) is characterised by having
support KA(w)K and by T\(A(w)) € End; V being a projection. More
obviously (Lemma 2.1), 3 (VU®) has a k-basis {7y : A € X.(S)_} where
7y is supported on A(w)7T'(0) and 7)(A(w)) = 1.
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We will say that an irreducible representation V of G(k) over k is W-
regular if the “extremal weight subspaces” wVV®) < V for w € W are
distinct.

Proposition 1.4. Suppose that V' is W -regular. Then for each A € X,(S)_,
8T\ = 7x. In particular, T\ * Ty = Toagn for all A\, N € X.(S5)—.

For general V and for A € X, (S)_, the proof of Theorem 1.2 shows that
=y da(wsT,

HEX(S)_
BZRA

where dy(p) € k and dy(\) = 1. In the classical setting the work of Lusztig
and Kato shows that the d)(u) are Kazhdan—Lusztig polynomials in ¢ = |k|.
(See [Kat82], [Gro98], [HKP].) In [Her, §5] we use their results to compute
dy () in all cases, at least when G is split and has simply connected derived
subgroup. It turns out that dy(u) does not depend on V' but only on the
stabiliser of the subspace VV®) in W,

1.5. Satake parameters. Let A - &1 denote the set of simple roots.
Let S be the torus dual to S (over k). For each subset J C A, define the
torus Sy by the exact sequence

G;{l—>§—>§{]—>1,

where the first map is given by [[s.;6. The closed points of the “toric”
variety Spec Hq (V') have the following concrete description. Classically only
one torus (S = Sg) is needed.

Corollary 1.5. The k-algebra homomorphisms Ha(V) — k are parame-
terised by pairs (J,sy), where J C A and s; € Sy(k).

In [Her, §4] we give an alternative parameterisation, analogous to the
classical parameterisation by unramified characters of T

1.6. Example: G = GL,,. We suppose that S = T is the diagonal torus
and that B is the Borel subgroup of upper-triangular matrices. Then the
Ai(z) = diag(1,...,1,z,...,z) (with ¢ non-trivial entries) generate X.(S5)_,
and we denote by T; the corresponding Hecke operator T),. Theorem 1.2
shows that H(V) is the localised polynomial algebra k[T},. .., T, _1, T 1.

n

1.7. Previous work. The Hecke algebras Hq (V') were first calculated by
Barthel-Livné when G = GLy [BL95], [BL94]|. (We follow their strategy
for computing Hg (V) as vector space. However they used explicit methods
to determine the algebra structure.) This was important for their (partial)
classification of irreducible smooth representations 7 of GLy(F) over k that
have a central character, which was completed by Breuil when F' = Q,
[Bre03] and which plays a crucial role for mod p and p-adic local Langlands
correspondences for GL2(Q,). In [Her] we extend the work of Barthel-Livné,
giving a classification of irreducible, admissible representations of GL,,(F)
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over k, in terms of supersingular representations. Our proofs heavily depend
on the methods developed in this paper.

We also remark that Schein independently determined the Hecke algebras
for GL,, by explicit methods [Sch09], after we had done this in a similar
manner.

In another direction, Gross showed that the classical Satake isomorphism
can be defined over Z[q'/?, ¢='/?] [Gro98, §3]. See also [Laz99, §1.2].

1.8. Algebraic modular forms. Suppose that F' = QQ, and that G arises
by base change from a connected reductive Q-group G such that G(R) is
compact. Given a compact open subgroup Ky = K x K? in G(A*>) we can
consider Gross’s space M (Ky, V™) of algebraic modular forms of level K
and weight V*, the linear dual of V' [Gro99]. The Hecke algebra Hq (V)
naturally acts on it and there is a simple compatibility result of the action
of the T\ on M (K, V™) with classical Hecke operators. In joint work with
Matthew Emerton and Toby Gee we use it to prove strong new results on
the weights in a Serre-type conjecture for rank 3 unitary groups [EGH].

1.9. Organisation of the paper. In Section 2 we discuss the proofs of
the main results. Technical parts of the arguments requiring buildings are
discussed in Section 3. We include the proofs of some well-known results
since we did not find an appropriate reference.

For a reader who is inexperienced with algebraic groups, we recommend
to assume first that G = GL,, or, more generally, that G is split with simply
connected derived subgroup. Many arguments simplify in these settings.

1.10. Acknowledgements. [ thank Kevin Buzzard for suggesting the prob-
lem of computing these Hecke algebras in the case of G = GLs3. I thank
Matthew Emerton for encouraging me to generalise and for many helpful
discussions. I am grateful to Jiu-Kang Yu for his helpful comments related
to Section 3 and to Vytautas Paskunas and Peter Schneider for helpful dis-
cussions. I thank the referee for a careful reading of the paper.

2. PROOFS
2.1. The Satake isomorphism for Hq (V).
Lemma 2.1. The map ¢ : T(F) — X, (T') given by
(), x) = ordp(x(t) ¥ € X*(T)
induces isomorphisms of abelian groups
(2.2) S(F)/S(0) = T(F)/T(0) = X.(9).

Moreover T~ /T(0) (see Def. 1.1) corresponds to X.(S)— under the isomor-
phism. A “splitting” of (2.2) is provided by X.(S) — S(F), A — A(w).

Note that x(t) € (F™)* since T splits over an unramified extension, so
ordp(x(t)) € Z.
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Proof. We consider the following diagram.

0——S(O0) ——— S(F) ——

]

Xi(S) —0
0— T(O) — T(F) — X*(T)

Note that ¢ lands in the Gal(F /F)-invariant part of X,(7T), that is in X,(S5).
As Tygnr is split (see Lemma 3.2), ker ¢ = T'(F) N T(0™) = T(0). All the

claims follow immediately. O

We need to introduce a partial order <g on X,(S)r. First note that
X*(S)R = R<(I>> D X*(G/F)R, where X*(G/F) = HOmF(G/F,Gm) Since ¢
is a root system in R(®), for every o € ® there is a “coroot” o € (R(®))*,
characterised by s, (z) = z — (z,a")a. We say that y >g ¢/ for y, ¥/ €
(R(®))* if y — ¢/ is a non-negative real linear combination of the positive
coroots.

Definition 2.3. Suppose that A, X' € X, (S)g. We say that A >g X if A= N
lies in the direct summand (R(®))* and A — X >g 0.

Alternatively one could use the relative coroots in X, (S) as defined in
[Spr98, §15.3].

Lemma 2.4. Suppose that A € X, (S). Then {N € X.(S)_ : N >r A} is
finite.

Proof. By the definition of >r we may project onto (R(®))*. The projections
A, X lie in the coweight lattice for the root system ® in (R(®))* and A is
antidominant. In this setting the result is well known. O

Next we will study the invariants of an irreducible G(k)-representation V'
over k under the unipotent radical of a parabolic subgroup.

Lemma 2.5. Suppose that V is an irreducible representation of G (k) over k.
Then VUK s one-dimensional. Suppose that P = L x N is a parabolic
subgroup of Gy, and denote by P =L x N the opposite parabolic.

(i) VN®) s an irreducible representation of L(k).
(ii) The natural map VN®) -V — Vi i an isomorphism of L(k)-
representations.

Part (i) was first proved by Smith [Smi82] in the case that G/, is semisim-
ple and simply connected. Cabanes provided a general proof [Cab84], using
(B, N)-pairs. Below we give a proof that generalises the proof in the simply
connected case found in [Hum06, §5.10].

Proof. Let us first assume that the derived subgroup of G/,-€ s stmply con-
nected. By conjugating, we may assume that P = L x N is a standard
Levi decomposition, i.e., P D B and T C L. Let G be the split k-form
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of G/; and fix a split maximal torus T and a Borel B containing it. Let

¢ € Gal(k/k) denote the Frobenius element. There is a finite order automor-
phism 7 € Auty(G,B,T) and an isomorphism f : G(k) — G(k) respecting
maximal tori and Borel subgroups such that fo¢ = (mo¢)o f. In particular,
G(k) = G(k)™?. Let L x N be the parabolic subgroup of G corresponding
to L x N in G.

Since G’ is simply connected, a (slight extension of a) result of Steinberg
shows that V' is isomorphic to the restriction to G(k) of an irreducible repre-
sentation F'(v) of the algebraic group G whose highest weight v € X*(T) is
g-restricted, i.e., satisfies 0 < (v, 8V) < ¢ for all simple roots 3 of G [Her09,
Prop. A.1.3]. Moreover VU(*) = F(v), (the weight space of weight v) is
one-dimensional.

(i) This is Cor. 5.10 in [HumO06]. Even though G is assumed to be semisim-
ple in that reference, the proof goes through word by word. From the proof
we see that F(v)Y = F(v)N®) is the sum of weight spaces F(v),, with
v—1' € Z>¢0OT, where ©F are the positive roots of (T,L). This is an irre-
ducible L(k)-representation since v is also g-restricted for L and since L' is
simply connected (as G’ is simply connected).

(ﬁ)snme(ijﬁ%>eéHon%(vﬁwyzgltﬂﬂmWsthm;VNw) (V)N (k)=
is irreducible as L(k)-representation. It thus suffices to show that Vv (k)_—>
Vﬁ(k) is non-zero, or equivalently that V) pairs non-trivially with (V)N (k)
under the duality V xV* — k. By part (i), VN®) contains the highest weight
space L(v), and (V*)N(®*) contains the lowest weight space (L(v)*)_,. Since
these pair non-trivially, this completes the proof. (One even sees directly in
this way that the pairing on VV®) x (V*)N() is non-degenerate, i.e., that
the map VN®) — N(k) Is an isomorphism.)

We remark that this argument shows that VN®*) is a direct summand
of V' as L(k)-representation, which is also clear from the proof in [Humo06].

Let us now reduce the general case to the previous one. For ease of nota-

tion we will be writing G for its special fibre G x ¢ k, and similarly for S, T,
etc. We pick a z-extension of GG. This is an exact sequence

(2.6) 1-R-G5G—1

of affine algebraic k-groups, where G is reductive with G’ simply connected
and R a central torus (even an induced torus). Exactness means that the
first map is a closed embedding, the second map faithfully flat, and that the
first map is the kernel of the second. The notion of a z-extension goes back
to Langlands in characteristic zero; for the general case see [CTOS §3.1].
By [Bor91, Thm. 22.6], (i) T = 7~ (T) is a maximal torus of G, (i) the
maximal split subtorus S C T satisfies (S) = S, (iii) X*(S) — X*(5)
induces a bijection o — a = « o w on relative roots, (iv) Uz maps isomor-
phically to U, for any a € ®. Let © C @ be the set of roots of (S, L). Since
L=(T,U;:ac®) N [Is+_o+ Uz (in any fixed order) and similarly
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for L, N, the map 7 induces
1—>R—>E—>L—>1, N =5 N.
As R is connected, H*(Gal(k/k), R(k)) = 0 by Lang’s theorem so that
G(k) —» G(k), L(k)— L(k), N(k) =5 N(k).

Thus V is an irreducible representation of G(k) on which R(k) acts trivially.
The result now follows from the previous case. O

The following technical lemma is crucial in controlling the support of the
image of the Satake map. Let ®,4 denote the set of non-divisible roots in .
Recall that for any root 3 € ®,4 there is a root subgroup Ug over F' whose
Lie algebra is the sum of weight spaces for the positive multiples of 5. It
extends to a smooth O-subgroup scheme of G (see §3).

Lemma 2.7. Let a be a simple root (so a € ®,).

(i) The product map Hﬁe@jdﬁ;éa Ug — U is an isomorphism of O-
schemes onto a closed subgroup scheme U'. It is normal in U and
independent of the order of the factors in the product. The product
map induces an isomorphism of O-group schemes Uy, x U' — U.

(i1) Suppose that A is an abelian group and that ¢ : U(F)/U(Q) — A is
a function with finite support. Then

Z P(u) = Z Z d(uqu’).
U(F)/U(0) wa€Ua(F)/Ua(0) u'€U' (F) /U (O)

(iii) Suppose that A € X.(S) and a € Pnq are such that (\,a) > 1.
Let t = Nw). Suppose that A is an abelian group of exponent p.
Suppose that ¥ : Uy(F)/tUy(0)t™1 — A is a function with finite
support such that v is left invariant under ker(Uy(O) — Uy(k)).

Then
> Y(ug) = 0.

e €U (F) /tUa (O)t—1

Proof. We will prove (i) and (iii) at the end of Section 3. Part (ii) follows
immediately from (i).

Note however that when G is split, the proof is easier. In that case there
are O-group isomorphisms z,, : G, — U, such that for t € T, txy(a)t~! =
za(a(t)a) and such that for all o, 8 with a # =83, [za(a), 23(0)] = [1; ;=0 Tia+i8(ci ja't?)
(in some order) with ¢; ; € O. See [Jan03, I1.1.2]. Then (iii) is obvious since
U, is abelian and tU,(0)t~! is a proper subgroup of ker(Uy(O) — U,(k))
of p-power index. Part (i) follows like in the general case but instead of
Bruhat-Tits one can appeal to [Jan03, I1.1.7]. U

Proof of Theorem 1.2. We will use the refined Cartan decomposition (Lemma 3.5)

GF)= [ Ex=)E
AeX(S)—
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Step 0. Let f € Hg(V). Since K is compact open in G(F), f is
supported on a finite number of cosets in G(F')/K. By the Iwasawa de-
composition (Lemma 3.4), f is supported on a finite number of cosets
in B(F)/B(0). Thus Sf is supported on a finite number of cosets in
T(F)/T(0) and for each t € T(F), the sum > ;g (o) fEW)|yvm is
zero outside a finite number of terms. As T normalises U, it follows that
the image of >, ey v (o) f(tu)|yum) is contained in VU Tt is clear that
§ is k-linear.

Step 1. Show that the space of functions in Hq (V') supported on any sin-
gle double coset is one-dimensional. The argument is analogous to [BL94,
Lemma 7], but it requires a technical input from Bruhat-Tits theory. Sup-
pose that f € Hg(V) is supported on the double coset KtK with t = A(w)
for some A\ € X,(S)_. Let Py, = L) x Uy denote the parabolic subgroup
of G, defined by A € X.(S) [Spr98, 13.4.2, 15.4.4]. Note that Ly = L_,
and that P_) = Ly x U_) is the opposite parabolic. It follows immediately
from the definitions that the possible values for f(t) are all ¢ € End; V such
that

k1¢ = ¢ko whenever ki, ko € K and kit = tko.

Note that ky € K NtKt™', ko € KNt 'Kt and ky = tket~!. Prop. 3.8
implies that equivalently ¢ has to factor through an Ly (k)-equivariant map
Vi) — VU-2(*) and Lemma 2.5 shows that the space of such ¢ is one-
dimensional (Schur’s lemma).

Again by Lemma 2.5 there is a function in Hg (V) that is supported
on KtK and maps t to the endomorphism

(2.8) V= Vi — VU v

We denote it by T5. Obviously it is a projection.

Step 2. Let us verify that § is a homomorphism. This imitates the classical
argument. Suppose that f; : G(F) — EndgV (i = 1, 2) are elements
of Hg(V). Let v € VUK Then §(f; * f2)(t)v equals

= > > filtug)fa(g

ueU(F)/U(0) geG/K

= Y Y. filtub)fa(dM

welU(F)/U(O) be B(F)/B(0O)

= Z Z Z fi1(turv) fo(v=

weU(F)/U(O) €T (F)/T(O) veU(F)/U(0O)

= Z Z Z fitrv) fo(v i )

r€T(F)/T(0) veU(F)/U(O) ueU(F)/U(O)

= Z Z fitmv) fo(r  u)w

T€T(F)/T(0) veU(F)/U(0) uel(F)/U(O)
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= > Y. At e

T€T(F)/T(0) veU(F)/U(O)

= Y SRS

TET(F)/T(0)
= (8f1 % 8f2)(t)v.

Note that when we sum over quotients, the summand does not depend on the
representative chosen provided we respect the stated order of summation.
The first and the last three equalities come from the definitions, the second
from the Iwasawa decomposition G(F') = B(F)K (Lemma 3.4), and the
third follows from the fact that B = T x U. For the fourth equality7 we
replaced (77 !ur)v by v, and for the fifth, we replaced (7v~17~1)u by w.

Step 3. Show that (ST)\)( (w)) = 0 for p € X,.(S) unless p >g A and
that (87)(A(w)) = 1. The argument is the classical one. By Lemma 3.6,
KXNw)KNu(w)U # @ implies g >r A and KX(@) KN\ (@)U = A(@)U(0).
Since U_y(k) C U(k) and Ty(X\(w)) is a projection onto VU-2(*¥) we see that
(ST (A=) = 1.

Step 4. Show that (Sf)(u(w)) = 0 if (i, ) > 1 for some simple root a.
Let ¢ = p(w). By Lemma 2.7(i), (ii), U = U, x U’ for some normal O-
subgroup scheme U’ and for v € VU*),

(8t = Z Z f(tugu)v
(F)/

e €U (F) /U (O) w' €U’ (F)/U(O)

= Z Z fluat'u)v

U6 €Ua(F) [t Ua(O)'=1 \weU!(F)/U'(0)

By Lemma 2.7(iii) this sum is zero since (i1, ) > 1, since k is of characteris-
tic p, and since the function of u, defined by the expression in parentheses
is left invariant under ker(U,(O) — Uy (k)).

Step 5. Show that (8Ty)(p(w)) = 0if u ¢ X.(S)—. Suppose this is not
the case. Let My = {pu € X.(5) : (8Tn)(u(w)) # 0}. Note that this is a
finite set by Step 0. Label the simple roots (o;)j_; so that (u, 1) > 0 for
some p € My. Define a homomorphism of abelian groups

0:X.(8)—=7Z"
p—= () )1
Note that this is injective on My: if o(u1) = o(uz) for p; € My, then
p1—p2 € Xi(G)* (as p; >g A by Step 3) and puy —pg € (R(®))E, 50 p1 = paa.
Let p be the element of M) such that o(u) is greatest in the lexicographic

order of Z". In particular, (u,a1) > 0. We show that $(T3) = (ST»)?
noN-zero on 2u(w). Consider

(8TH)*(2 = > ST (@)STa((2n — 1)(w)).
weX(S)
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If the term indexed by p’ is non-zero then p/, 2u—p’ € M) and hence o(y') <
o(pn) and o(2u— ') < o(p). But since the sum of these inequalities yields an
equality, it follows easily that p/ = u. So (8T3)?(2u(w)) = ((8T»)(u(w)))? #
0. Since (2u,aq) > 1, we get a contradiction by Step 4 with f = Tf.

Step 6. It remains to show that 8 is injective and maps onto }C;(VU(’“)).
This is again classical. By Step 1, the Ty (A € X, (5)-) form a k-basis
of H (V) and by Lemma 2.1, the 7, (1 € X.(S)_) form a k-basis of H (VU#).
By Step 3, we may write 8T\ = >_ ~_ ax(p)7, With ax(n) € k and ay(\) =
1. Since {p € X.(S)- : p >r A} is finite by Lemma 2.4, the claims fol-
low. (|

Suppose now that G is split and that G’ is simply connected. We give a
sketch of a simpler proof that Hg (V) is commutative. By [Jan03, 11.1.16]
there is a “transpose” involution 7 : G — G that induces the identity on
T. (When G = GL,, one can take the usual transpose map.) Let 7V be
the dual Homg(V,k) with G(k)-action (gi)(v) = % ("g - v). Since G’ is
simply connected, V extends to a representation of the algebraic group G JE-
By using a weight space decomposition of V', it follows that V and 7V
are isomorphic as G(k)-representation [Jan03, I1.2.12(2)]. Fix a G(k)-linear
isomorphism k: V — TV

An element ¢ € Endj; V' induces an endomorphism of "V and hence an
endomorphism "¢ € Endg V' by using k. Given f € Hg(V), we define
f*:G— End;V by f*(g9) :=7f("g). It is easy to check that f* € Hqg(V)
and that f; % f5 = (f2 % f1)*. It remains to show that * acts trivially or
equivalently that Ty = T) for all A € X, (S)_. As " preserves K = G(0)
and A(w), it follows that 7} has the same support as T). Moreover it is
clear that T} (A(w)) is a linear projection. Hence T = T).

2.2. Comparison with the p-adic Satake map. We will explain a com-
patibility result with the p-adic Satake isomorphism of Schneider—Teitelbaum
[ST06, §3]. It will be convenient to state it in a slightly different form. To
keep the notation simple, let us assume in this subsection that G, is split
(just as in [ST06]).

Let E be the (absolutely) irreducible representation of G,p of highest
weight v € X*(T'). Then EV(9) is the highest weight space of E; in particular
it is one-dimensional and T'(O) acts on it via v. (This is because EV(©) ¢ E*,
where u = LieU(0) = LieU(F) = Lie(Ur). But E* = EY since Ujp is
connected.) Consider the following p-adic Hecke algebra,

He(E) = Endgp (c-Ind S E),

which we again think of as algebra (under convolution) of functions f :
G(F) — Endp(F) with compact support such that f(kigks) = k1f(g)ks for
all k1, ks € K and g c G(F)
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Lemma 2.9 ([ST06, Lemma 1.4]). The map
L He(1) — He(E)
with (t9)(g) = ¢(9)g € Endp(FE) is an algebra isomorphism.

The point is that for f € Hg(E) and g € G(F), we have g1 f(g) €
Endp(E)KN9 K9 — Endp(E)Y = F, by considering the action of the Lie
algebra as above. Note that the lemma crucially depends on E being a
representation not just of K but of G(F'), thus the analogue does not work
for the characteristic p Hecke algebras.

Fix a K-stable norm ||.||z on E such that ||E||g = |F|. Equivalently this
corresponds to a choice of K-stable O-lattice Ey C E given by Ey = {x €
E :||z|]|g < 1}. Then Hg(E) carries a sub-multiplicative sup-norm, where
Endp(F) is given the operator norm with respect to ||.||g. Similarly we have
the Hecke algebra .'JN-CT(EU(O)), likewise equipped with a sup-norm. The p-
adic Satake map is then the following isometric isomorphism of normed
F-algebras:

8 : Ha(E) = FHp(EVO)W=

fete DD fltu

U(F)/U(0)

To define the right-hand side, let § : B(F) — ¢* C R* be the modulus
character of the Borel. (Note that our § is inverse to the one in [ST06].)
Then Hp(EV(O)W+ is the subalgebra of those ¢ € Hp(EY(9) such that
v~ 16'2 . T(F)/T(O0) — F is W-invariant. This condition does not depend
on the choice of square-root of ¢ (see [ST06], Example 2 in §2). To prove

EUO)

that § is an algebra isomorphism one reduces to the case £ = 1 by applying
Lemma 2.9 to both sides, in which case it is equivalent to the classical Satake
isomorphism. That § is an isometry follows from Lemma 3.6. For details,
see [ST06, §3]. Note that their map S, : Hg(1) — F[X,.(S)] [ST06, p. 653]
is related to the above one by S, (¢) = @ v =18(11)).

From now on suppose that Ej is a G /g-stable O-lattice and that Ep ®¢ k
contains F'(v), the irreducible representation of G /& of highest weight v, as
subobject. For example, we could take the dual Weyl module Ey = H %()\), in
the notation of [Jan03, I1.8.6(1)] (see also [Jan03, I1.8.8(1), I1.2.4]). Suppose
moreover that v is g-restricted, i.e., that 0 < (v,a¥) < ¢ for all simple
roots a. Then F(v) is irreducible as representation of G(k) and we denote
it by V. (See the proof of Lemma 2.5. If (G ;)" is not simply connected,

this follows by a z-extension argument.) Let Hg(E)y C Ha(E) denote
the elements of sup-norm at most 1. In particular, im(f) C Endg(Ey) for
fe .']ng(E)o and we can consider the reduction f : G(F) — Endg(Ey ®
k). Similarly we have ff(T(EU(O))gV’* C Hp(EV(©)W* By considering the
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weight space decomposition of Fy, it is clear that Fy N EUY(9) reduces to
VIR ¢ By ®o k.

Proposition 2.10. With the above notation, we have the following commu-
tative diagram.

He(E)o ——— Hp (VO

| I
Ha(V) —— H (VU®)

Here (af)(g) = f(g)lv and (Bp)(t) = o(t). The vertical maps are well
defined and induce isomorphisms after base extending from O to k.

Proof. For A € X,(S)- consider T\ € Ha(E) defined by (i) suIlpTv)\ =
KXNw)K and (i) Th(AM(@)) = @~ M A(w). We claim that the Ty form
an O-basis of Hg(E) and that «(Ty) = Ty. On the v/-weight space of E,
for v/ < v, w~ M \(w) acts as the scalar M=), Thus Th(A(w)) is the
linear projection onto the v/-weight spaces of Ey ® k for the weights v/
satisfying (A, — v) = 0. Thus it preserves any G /r-subrepresentation, in
particular, V. By (2.8) and by the description of VU-2(¥) given in the proof
of Lemma 2.5, the claim follows and we see that « is well defined.

Similarly, for A € X,(S)_ consider 7 € Hp(EVO)W+* defined by (i)
T~ Nsupp 7y = AMw)T'(0) and (ii) 7a(A(w)) = 1. We claim that the 7 form
an O-basis of .'J-CT(EU(O))XV’* and that 3(7,) = 7x. Recall that §'/2(u(w)) =
g~ ") for p € X,(S), where p = 135, a [Gro98, (3.3)]. Thus for ¢ €
j‘(T(EU(O))W,*’

p(w(A(@))) = p(A(@))w A=A gtA2e vy e W

Since wA >r A and since the second exponent is positive if wA # A, it follows
that supp(@) C T~ whenever ||| < 1. By the same reasoning, ||7)|| < 1.
The claim follows and we see that § is well defined.

This completes the proof since the diagram obviously commutes. O

Remark 2.11. Note that this argument yields another proof that im(8) C
H;(VU®)) in case V arises from a representation of G /& (which does not
always happen if (G /,;)’ is not simply connected), after the surjectivity of
the map « has been established.

2.3. The W-regular case. For the proof of Prop. 1.4 we will need a lemma.
Let ® denote the set of absolute roots of G with respect to T;. Since
Gy, is quasi-split, W is a subgroup of the absolute Weyl group W and the
restriction homomorphism X*(7;) — X*(S ) is W-equivariant. Moreover,
& maps onto ® under this map; in particular, ®T determines a system of

positive roots 3" in @
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Lemma 2.12.

(i) Suppose that n € X*(T);)4+ and w € W. There are simple reflec-
tions s; € W such that

(2.13) N Z S 2 Z Sy 52817 = Wi
(i1) Suppose that n € X*(T/,;)+ and that o SCD is_sz’mple. Ifn_— Sam >0
then 1 — sq is the sum of simple roots 3; € ® such that §;|s = .

Proof. (i) Let us write w = s; - - - 51 as a reduced product of simple reflections
in W. We will show that

(2.14) N> s1m > > sy 89817 = W,

which implies (2.13) since every time there is an equality, the corresponding
simple reflection s; can be omitted. We claim that fy-(w) = > f45-(s;), where
{37 denotes the length in W. Once we know this, we are done: by writing
each s; as a reduced product of simple reflections in W we are reduced to
proving the analogue of (2.14) in W, where it is easy and well known.

Recall that the length of w in W (resp. W) equals the number of non-
divisible positive roots « in @ (resp. ®) such that w(a) < 0 (see, for example,
[Bou02], VI.1.6, Cor. 2). In particular, a simple reflection s, € W stabilises
d+ — {a}. Say that o; € ® is the simple root corresponding to s; € W.
Since w = s;--- s1 is of length [ in W it sends precisely the following ! non-
divisible positive roots of ® to a negative root: ai, sjao, ..., S1 - S_104.
Letting 4; = {8 € o Bls € Zsoa;}, we see that w sends precisely the
following positive roots of ® to a negative root: A;UsiAaU---Usy---s;_14;.
Clearly fy7(s;) = |A;|, which implies the claim.

(ii) Write n — sqn = By + -+ + B, with 3; € ® simple. Now restrict to S.
On the left-hand side we get an integer multiple of a and on the right-hand
side a sum of simple roots 3;|s in ®. Thus 3;|s = « for all i. O

Proof of Proposition 1.4. By Step 3 of the proof of Thm. 1.2, we know that
(8T»)(A(w)) = 1. It thus suffices to show that for any given p € X, (S)—{A},
each term in the sum defining (87))(u(w)) vanishes.

Let t' = p(w), t = M(w). Choose 0 # v € VUK,

Step 1. We will show that if T)(g)v # 0 then g € KtI, where I =
red 1} (B(k)) is an Iwahori subgroup. Let W) < W be the Weyl group
of (S/i, L) (generated by simple reflections associated to simple roots a € ®
with (A, a) = 0). For each w € W choose a representative w € N(S5)(k) and
a lift of it, w € G(O) = K. Then

Gy = [ Pk)iB®H)
WA\W
by [Bor91, 21.16(3)]. By Prop. 3.8,

K= ] (Knt'Kt)ywI
Wx\W
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and thus
KtK = [ Ktl.
WA\W

So if T(g)v # 0 then g = ktwi for some k € K, w € W, i € I. Thus
T)\(t)wv # 0. We will show that w € W). Recalling the definition of T
(2.8), we may by the proof of Lemma 2.5 reduce to the case that (G/,;)’ is
simply connected. (The lifted Levi equals Ly for any lift NEX *(5 ) of \. We
can lift i since the Weyl groups of (S, G ;) and its lift (§ ,G) are naturally
identified by [Bor91, 22.6].) Since (G ;)" is simply connected, there is a g-
restricted weight v € X*(T")4 such that V = F(v) as G(k)-representation.
But we saw in the proof of Lemma 2.5 that T)(¢) is the projection onto
the weight spaces for v/ € X*(T') such that v — 1/ is a sum of simple roots
of (T/,;.,L)\/,;.), i.e., a sum of simple roots 3 € ® such that (3, \) = 0. Since
Ty () # 0, it follows that v —wv is a sum of simple roots 3 € ® such that
(B,\) =0.

By Lemma 2.12(i) there are simple reflections s; € W corresponding to
simple roots a; € ® such that

V> 81V 2> 8981V 2> +++ 2> 8-+ 81V = WU.

By Lemma 2.12(ii) the i-th and (i 4+ 1)-st term in this sequence differ by a
sum of simple roots 3;; € ® such that 3;;]s = o;. Thus (a;, A) = (B, A) =
0. It follows that s; € W) for all i. Since V is W-regular we see that
w=gy---51 €W,and ge Ktl.

(We remark that we only actually used that Staby (v) C W).)

Step 2. We show that KtI Nt'U(F) = &. Suppose not. We use the
Iwahori decomposition

1= (INT(F)(I N T(F) I NU(F)),
where U is the unipotent radical of the opposite Borel (Lemma 3.10). Since
t contracts I NU(F) we find that tIt~! C IU(F). Thus
o # (KtINtU(F)t™' c KU(F)nt't 'U(F).
Therefore K Nt't~'U(F) # @ and so t't=! € T(0), which contradicts that
w#E A O

2.4. Satake parameters.

Proof of Corollary 1.5. By Cor. 1.3 we need to classify algebra homomor-
phisms 6 : k[X.(S)_] — k, i.e., monoid homomorphisms X,(S)_ — k,
where k is considered with its multiplicative structure. Then M := §=1(k*)
satisfies

(2.15) M+ eEM < M\ €M and Ay € M.
Let X, (S)o := {X € Xi(S) : (\,a) = 0 Va € ®}. Since this is a subgroup

of X.(S)—, X«(S)o C M. For 6 € A choose A\s € X,(S)_ such that (\s,d")
is zero if ¢’ € A — {0} and negative if &' = 4.
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We claim that M = J+ N X,(S)_ (a “facet” of X.(S)_), where J =
{6 : X\s & M}. (Note that J is independent of the choice of the As, since
X.(S)o € M.) Suppose that A € X,(S)_. Then there is an n € Z- such
that nA = > nsAs + Ao for some ns € Z>p and some \g € X, (5)p. Then
from (2.15) we see that A € M iff ns # 0 implies 6§ ¢ J iff A € J*.

Next we show that the subgroup of X, (S) generated by M equals J+. One
inclusion being obvious, suppose that A € J+. Then A+n Zagj As € Xu(S)-

(and hence in M = J*+ N X,(S)_) for some n € Z~, which implies that A
is in the subgroup generated by M.

As k> is a group, 0|y extends uniquely to a group homomorphism 0
J+ — k*. Taking character groups in the exact sequence defining S 7, We
find that X*(S;) = J. Thus 0 corresponds to an element of X, (5;)®@k* =
Sy(k). R

All pairs (J,s;) with s; € Sj(k) are obtained in this way, because
J+ N X,.(S)_ satisfies (2.15), which allows to extend a homomorphism J+ N
X (9)- — k by zero to a monoid homomorphism X (9)- — k. O

3. BUILDINGS ARGUMENTS

The main goal of this section is to prove Prop. 3.8 and Lemma 2.7. We
also justify some basic results about unramified groups using the work of
Bruhat-Tits [BT72], [BT84]. Although most of these are well known, we
could not find a good reference for the proofs.

References to chapters I [BT72] and II [BT84] of Bruhat-Tits will be
given in the form 1.4.4.4, I1.5.1.40 (for example).

We will keep as much as possible with the notation of Bruhat-Tits. In
particular K now denotes the p-adic field and K its residue field, N de-
notes N(S), Z denotes the centraliser Z(S) of S in G, and "W the Weyl
group. Group schemes over O are denoted by fraktur letters (&, T, ...),
their generic fibres by the corresponding roman letters (G, T,...) and their
special fibres are overlined (&, T,...). Note that “fixer” is a synonym for
“pointwise stabiliser.” An O-group scheme is called connected if its two fi-
bres are connected. The connected component of a smooth O-group scheme
is defined fibrewise (I1.1.2.12). As in §2 we are assuming that the valuation
ordg surjects onto the integers.

Let J denote the reduced building of G. The general construction of 1.6 and
1.7 produces J starting with a valuation of the “root datum” (T'(K), (Uy(K))a)-
Such a valuation is constructed for quasi-split groups by descent from the
split case (I1.4.2) and in general by étale descent from the quasi-split case
(I1.5.1). The apartment A of S is an affine space under the vector space V'
which is the quotient of X, (S)r dual to R(®) C X*(S)g.

Lemma 3.1. Suppose that & is a smooth O-group scheme with generic
fibre G. Then & x K is reductive if and only if & = & for some hyperspecial
point x. In this case G is unramified and & x K is connected.
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Recall that a point x € J is hyperspecial if G splits over K™ and z is a
special point inside the building of G x K™ [Tit79, 1.10].

Proof. The first statement is I11.5.1.40. (Note that in I1.5, the superscript f
refers to the objects over the base field; the other objects live over the strict
henselisation of the base field.)

Let us show that G is quasi-split. Without loss of generality, assume
that x lies in the apartment of S. The canonical extension & of S (the
split torus over O with generic fibre S) is a closed subscheme of &9 and its

reduction & is a maximal K-split torus in @2 (I1.5.1.11). The Lie algebra
Lie®? is a free O-module of finite rank (as 2 is a smooth group scheme)

and we can consider its decomposition under &. Note the character groups
X*(6), X*(6%), X*(S5) are naturally isomorphic. Since K is a finite field,

(‘52 is quasi-split and
rank &, = dimg(Lie )%= = dimg (Lie G)%=! = dim Z > rank G.

(Here “rank” denotes the absolute rank of an algebraic group.) On the
other hand, any split torus in the special fibre of &) x O™ can be lifted to a
split torus in the generic fibre, as explained in the proof of 11.4.6.4, so that
rank 62 < rank GG. Thus equality holds, so Z is a maximal torus of G, i.e.,
G is quasi-split.

The connectedness of & x K follows by base change to the strict henseli-
sation and 11.4.6.22. (]

Assume from now on that & =2 &Y for some hyperspecial point z. Then
K := &Y(0) is a hyperspecial maximal compact subgroup of G(K).

Let us summarise some results in 11.4.6 on the structure of & = &2, Fix
an apartment A of J containing x. Let S be the corresponding maximal split
torus of G and let T' = Z (a maximal torus, since G is quasi-split). Let ® be
the set of roots of (G, S) and let ®*° denote the subset of non-divisible roots.
For a € ® let U, denote the corresponding root subgroup. In particular,
Us, C U, whenever {a,2a} C ®. Fix a Steinberg—Chevalley valuation ¢ =
(¢a)aca of the “root datum” (T(K), (Uy(K))aes), as constructed in 11.4.1,
I1.4.2. Here ¢, : Uy(K) — RU{oo}. It yields a filtration of each root
subgroup: Uy = {u € Ug(K) : po(u) > k} (11.4.3.1(1)). Let I'y = @a(Uy —
{1}) and T, = {pa(u) : u € U, — {1}, pa(u) = max o, (uls,)} C Ty; these
are discrete subsets of R.

By 11.4.4.18 there are smooth prolongations & of S (the split torus over O
with generic fibre S) and T of T' (denoted there by T%). Then & is a closed
subgroup scheme of ¥.

Lemma 3.2. T is connected (i.e., its special fibre is connected).

Proof. Let K™ be the maximal unramified extension of K with ring of
integers O™. Since T' x K™ is split, it has a canonical prolongation ™"
to O™ (the split torus over O™ with generic fibre 7' x K™). As remarked in
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I1.5.1.9 (top of p. 149), T descends to the torus ¥ defined in 11.4.4. Since
T is connected, this completes the proof. To justify that remark in I1.5.1.9,
one uses the last item in 11.4.4.12(i) and the fact that ™ is étoffé (I1.1.7)
to see that O[F] = {f € K[T]: f(Z™(0™)) C O™} = O[], where T’ is the
torus descended from T™. O

From 11.4.6.4 it follows that & is a maximal split torus of @2 and that

T is the centraliser of & (a maximal torus, as @2 x K is quasi-split). By
considering the Lie algebra of &, we see that the root systems of (S,Q)
and (&, @2) are naturally identified.

Recall that &9 is the smooth O-group scheme (‘5? with generic fibre G

associated to the optimal, quasi-concave function f : ® — R,
f(a) =min{k € T, : a(z — ¢) + k > 0}.

(See 11.4.6.26.) For all non-divisible roots a € ®, there is a smooth O-group
scheme ¢, with generic fibre U, (I1.4.5) which we denote by ;4. It is

a closed subgroup scheme of &Y and i_lzw is the root subgroup of a in @2
(I1.4.6.4). The product map [[, Uza — &Y, where a runs over all positive,
non-divisible roots in any order, is an isomorphism onto a closed subgroup
scheme Ut (I1.4.6.2). Let U™ denote its generic fibre. ¥ normalises each
Uy o (11.4.4.19) and the product map yields an isomorphism of the semidirect
product T x U* onto a closed subgroup scheme of % whose fibres are the
Borel subgroups associated to ®*. (Note that this is stated in 11.3.8.2 only
for a group scheme whose connected component is &2, but this implies the
assertion here: the scheme T x UT is connected as it is the product of

connected group schemes [G*70, Exp. VI4, Lemme 2.1.2].)

Lemma 3.3. Suppose that F is a facet of A whose closure contains the
hyperspecial point x. Then &p = QiOF. In particular, &, = &9,

Note that & (I1.4.6.26) equals Iprzt () in the notation of [Tit79, 3.4].

Proof. First we show & = ®p by showing that N}, = NL (I1.4.6.26).
Let G(K)' = {g € G(K) : ordk(x(g)) = 0 Vx € X} (G)}. Note that
kerv N G(K)! = H' ¢ N} C ]T/} (I1.4.6.3) so it suffices to show that
v(N}E) = V(]V};) Identify A and V' using the special point = as origin. Then
N L is identified with a subgroup of W, namely the subgroup of elements
fixing F. It is generated by those basic reflections r, of YW such that
F' is contained in the hyperplane through z which is defined by a € ®.
But 1.7.1.3 shows that v(N}.) has the same description. (The point is that
[y =T, U3l (16.2.1) and that r, = ra,.)

Finally, 8 = &% since T is connected (I1.4.6.2). (This is the only part
that uses that z is hyperspecial, not just special.) O
Lemma 3.4 (Iwasawa decomposition [Tit79, 3.3.2]).

G(K) =T(K)UT(K)K
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Proof. We use the description of the building in terms of an affine Tits
system. Associated to the valuation ¢ of the “root datum” (T'(K), (Ua(K))),
we have the apartment A, the set of affine roots o, (a € ®, k € I'}), the
affine Weyl group W generated by the set of reflections in the boundary
hyperplanes of the affine roots and v : N(K) — Aff(A) giving the action on
the apartment with kernel H (1.6.2). Let N' = v=}(W), T" = N' N T(K),
and G = (N',Uy(K))aco. Fix a chamber C C A. Let B = HU¢ and let
S be the set of reflections in the walls of C. By 1.6.5, (G',B,N’,S) is a
saturated Tits system of affine type such that the inclusion G’ — G(K) is
(B, N')-adapted of connected type and such that the condition G’ = BN'B
in 1.4.4(1) holds with % = T'U*(K).

Then J is naturally isomorphic with the building constructed out of this
Tits system, whose facets are the “parahoric” subgroups of (G', B, N',S)
(1.2, 1.7.4.2). Let K’ be the fixer of z in G(K), so that K = K'NG(K)! by
Lemma 3.3. By L4.4.5, K’ = (" (V)NK')K, where V consists of the trans-
lations in W = v(N(K)). As z is special, K is a good maximally bounded
subgroup of G(K) (1.4.4.6(i)) so that G( ) = BK' = B (V) NKHK.
The result follows by using that 8 = v~ 1(V)B (L4.1.5) and v~ (V) = T(K)
(1.6.2.10(i), 1.6.1.11(ii)). O

Lemma 3.5 (Cartan decomposition [Tit79, 3.3.3]).

GE)= ][] KM@K

AEX,(S)—

Proof. We keep the notation of the previous proof Let D be the “Weyl”
chamber in V' corresponding to &+ and let Vp = VND. By 14.4. 3(2),
G(K) = K'v=}(Vp)K' and the set of double cosets biject with Vp. Since
(x7) NK' =kerv = H, K' = HK and G(K) = Kv—(Vp)K. Besides,
G( )t QG( ) and H C T'(K). Using these facts it is easy to see that for ¢,
ty € v 1 (Vp) C T(K), Kt K = Kt,K if and only if t,t;* € HNG(K)! =
ker v! where v! is the action map of N(K) on the extended apartment
(I1.4.2.16). It follows that the set of double cosets K\G(K)/K bijects with
YA/]% = v (v~ (Vp)) (the analogue of Vp for the extended building).
By 1.4.2.16(3), (v1(t),c) = —(ord oc)(t) fort € T(K) and c € X} (T)g =
X*(S)r. By Lemma 2.1, v} (t) = —((t) where ¢ : T(K) — X, (S) was defined
there. The result follows from that lemma. O

Lemma 3.6. Suppose that A € X*(S)_, N € X*(9).

(i) If KN(@)K NN (@)U (K) # @ then N >g \.
(it) KN@)K NAN@)Ut(K) = Nw)U*(0).

Note that (i) is claimed without proof in [Car79, p. 148].

Proof. We keep the notation of Lemmas 3.4 and 3.5.
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(i) For t € T(K) and a € ® we have (v(t),a) = —(ordg oa)(t) (1.4.2.7(3)).
Applying this with ¢ = (A—X')(w@), we see that the image of N'— X € X, (S)r
in the quotient space V 2 (R(®))* is v((A — X)(w)).

Suppose that K\(w) KNN (@)Ut (K) # @. On the one hand, K'\(ww)K'N
HUT(K)N(w)K' # @. This implies that v((A— \)(w)) >p 0 by 1.4.4.4(i),
ie., N >g A (Note that B° = HB? = HU'(K) by L4.1.5 and 1.6.5.) On
the other hand, as K and U'(K) are contained in G(K)!, (N — \)(w) €
G(K)Y, ie, N =X € X3 (G@)g. The assertion follows from the definition
of <g (Def. 2.3).

(ii) Note that the left-hand side is contained in

(K'Me) K/ NHU (K)A@)K') N A(@)U ™ (K) = A@) K/ N\ (@)U (K)

by 1.4.4.4(ii). AsUT(K) C G(K)!, this is contained in A\(w) KNA\(w)Ut(K) =
A(@)UT(0). The opposite containment is obvious. O

Lemma 3.7. If y € A is hyperspecial then a(o —y) € T, for all a € ®.

Proof. We consider the G(K)-equivariant injection of buildings j : J — 5,
where J is the building of G over K™ (I1.5.1.24), or even just the restriction
of j to apartments A — A corresponding to S (resp. T'). Let ® denote the
set of roots of (T, G). For a € ® let us say that an “a-wall” is the boundary
of an affine root defined by a in A. Similarly we have the notion of an “a-
wall” in A for a € ®. By I1.5.1.20, the affine roots in A are precisely the
intersections with A of the affine roots in A.

As y is hyperspecial, for each a € ® there is an a-wall passing through j(y).
By intersecting with A, we see that there is an a-wall passing through y for
each a € ®. Since the affine roots in A are defined to be the g = {z € A:
a(z— )+ k >0} for a € ® and k € I, the lemma follows. O

As in the proof_of Thm. 1.2 we denote by P\ = Ly x Uy the parabolic
subgroup of & x K determined by A € X, (&) = X, (S).

Proposition 3.8. Suppose that A € X.(S). Lett = AMw) € S(K) and let
red : 8(0) — &(K) denote the reduction map. Then

red(&(0) Nt~ 18(0)t) = P\(K).
Moreover,

(3.9) {(red(g),red(tgt™1)) : g € &(0) Nt~ B(0)t}
= {(9+,9-) € PA(K) x P_\(K) : [9+] = [9-] € LA(K) = L_»(K)},
where [-] denotes the projection to the Levi subgroup.
Note that this is actually obvious when & = GL,,.

Proof. Let Q = {x,t7 12} C A. By Lemma 3.3, 8(0) Nt~ 1&(0)t is the fixer
of Q in G(K)'. Thus it equals NAUq by 1.7.4.4, 11.4.6.26.
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Let us first show that V(]/\\[gll) is naturally isomorphic to W) = {w € "W :
wA = A}. As z is special, v(N}) is isomorphic to YW via the forgetful map
Aff(A) — GL(V) (1.6.2.10). Suppose n € ]V; and let w = Yv(n). Then
n e ﬁgz iff w fixes v —t 7tz € V. By 11.4.2.7(3), (x —t"'2,a) = — ordx (a(t))
for a € ®. So w fixes x — t~ 'z iff A — w) € (®). But for all w € "W,
A —w) € X5 (G)t. Thus A — wA € (@) is equivalent to A = wA.

Next we show that red(]/\fé) equals the K-points of the normaliser of &
in L. Note that Np D G(K)' Nkerv = T(O) (I1.4.6.3(3)). Also, NA
N(K)N®(0). If n € N(K)N®(0) then, by considering the O™ -points of &,
we see that red(n) € N(&) and that red(n) induces the same Weyl element
on X, (&) as n on X,(S). From the previous paragraph, red(]/\}é) /Z(K) =
YTV, which is precisely the Weyl group of & in L.

To determine red(Ug), let us compute fo : & — R. By 11.4.6.26, for
acd,

fa(a) = fe(a) + max(a(z — t~12),0)
= fz(a) + max(—(a, A),0).

As z and its translate ¢t "'z are hyperspecial, f§, = fq and f., = f, by
Lemma 3.7.

Recall that Ug = (Ufy.a)qcprea (11.4.6.3). Let us show that red(Uy, q)
is trivial if (a,\) < 0 and equals ; ,(K) otherwise. Note that fi(a) =
fz(a)+ € R for any a € ®, in the notation of IL4.6.9. If (a,\) < 0 then
fa(b) > fz(b) for b € {a,2a} NP so that Uy, , C Uz o and red(Uy, o) = {1}

as 62 is reductive (I1.4.6.10(ii)). Otherwise Uy, o = Uy, o = Hs,4(O) so that
red(Usy.a) = Uz,a(K).

Putting this all together, we see that red(&(0) Nt~ 1&(0)t) = Py\(K) by
the rational Bruhat decomposition [Bor91, 21.15] applied to Ly (K).

To prove the final assertion, note first that tU fmat_l = Uy, a, Where
' = {z,tr}. We show that the left-hand side of (3.9) is contained in
the right-hand side. It suffices to show that ¢ centralises ]/\7& and Uy, q
whenever a € ®** and (a,\) = 0. If n € ﬁgz with “v(n) = w then ntn=! =
nA(w)n~!t = (wA\)(w) = M(w) = t by the above. It is a standard fact that
im(\) centralises U, D Uy, o if (a,A) =0 [Spr98, 15.4.4].

To prove the opposite containment in (3.9), it is enough to show that the
left-hand side contains (g, , 1) for all g, € Uy(K). But this is clear since we

showed above that red(Uy, o) = Uso(K) and red(Uy, ,) = {1} if a € Pred
and (a, A) > 0. O

Lemma 3.10 (Iwahori decomposition). Let I C &(O) be the inverse image
of §(F)5._l+(?) under the reduction map. Then I is an Iwahori subgroup
and the product map (INU(K)) x (I NT(K)) x (INUT(K)) — I is a
bijection, for any chosen order of the factors. Moreover T~ (see Def. 1.1)
contracts INU™(K) and expands INU(K).
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Proof. By Thm. 11.4.6.33 there is a chamber C C A with 2 € C such that
I = 82(0). Thus I is an Iwahori subgroup. We will use the notation of
11.4.6.3. By I1.4.6.7(i), I = P} = HUy, where f = f(,. Also H? = T(0) as T
is connected. Note that Ny C Uy C G(K)!. Since C is not contained in any
walls, Ny < H (see the proof of Lemma 3.3). Thus Ny C G(K)'NH = %(0).

From 1.6.4.9(iii), I = HUy; = T(0)U; U . Note that T(0) C H = kerv
normalises each U, and therefore U;E: this follows from the definitions in
1.6.2. The product map is injective since U~ x T'x UT — G is an open
immersion (the big cell). For the final claim note that U 7 is generated by

the Uy f(q) for a € @7 and that tUa’kt_1 C Uyp fort € T~ and a € &~
(I1.4.2.7(2)). O

Proof of Lemma 2.7. (i) Let ¥ = {b € &t : b ¢ Za} C ®. Since a is
simple, ¥ is closed. Thus Hbe<1>+d " 7éailw?b — T is an isomorphism (as

O-schemes) onto a closed subgroup scheme 4’ of 4t (I1.4.6.2). 4’ normal
in 4T means that the conjugation map U™ x Y — U™ factors through U,
which can be checked on the generic fibre due to the O-flatness of U™ x 4
(IL.1.2.5). But there it is clear from [Up, U] C (Uppyse : 7,8 > 0) (condition
(DR2) in 1.6.1.1). The product map i, , x f — U' is an isomorphism
of O-schemes (11.4.6.2). As $l' is normal, it is an isomorphism of O-group
schemes $l; , x Y — 4T,

(iii) First note that I'j = Z for all b € ®. This is clear when G is split
(I1.4.2.1) and the general case follows either by étale descent (I1.5.1.19) or
by quasi-split descent (I1.4.2.21).

By I1.4.5.1, 843 4(0) = U, ¢, (a)U2a, £, (2a), and this equals U, , (o) as fz(2a) =
2f.(a) (see condition (V4) in 1.6.2.1). Next, from o, (tut™!) = ¢,(u) +
(ordg oa)(t) (I1.4.2.7(2)) it follows that tU, s ()t~" = Usk, where k =
fz(a) + (\ya). Let | = fy(a)+ 1 so that k, | € T/, and k > [. Then
red(U,,;) = {1} since fi(a) = fo(a)+ € R, @2 is reductive, and | > f,(a)
(IL4.6.10(i)).

Suppose first that 2a € ®. Then U,(K) is abelian and

Y W)= ) > Ylugu).

UG(K)/Ua,k Ua,l\U(l(K) Ua,k\Ua,l

We claim that U, C U,; is a proper subgroup of p-power index. This will
finish the proof, since 1) is left U, ;-invariant and the codomain A of v has
exponent p. Since k, [ € I, and k > [, it follows that U, C Uy,. From
11.4.3.2 we see that U,(K) is isomorphic to the additive group of a finite
(unramified) extension L of K. Under this isomorphism, for any r € T,
Uy, corresponds to the Op-lattice {z € L : ordg(z) > r}. Thus the index
[Uq,i : Ug i) is a power of p.
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Now suppose that 2a € ®. We know that Us,(K) is central in U,(K)
with abelian quotient (condition (DR2) in 1.6.1.1). Moreover, from the def-
initions, Uag 2, = U (K) N U, for all € R. Note that

(3.11) > (ul) = > o (uf)

Ua(K)/Uq,k Ua(K)/Uq, kU2 (K)

where ¥'(uq) = Xu. v (r0) /U, x ¥(Uaw), Which is left invariant by Ug,.
Since Uq(K)/Usq(K) is abelian, left and right cosets of U, 1,Usq (K) in Ug(K)
coincide and we can rewrite (3.11) as

Z Z wl(uﬂn)

Ua,lUQQ(K)\Ua(K) Ua,kUQQ(K)\Ua,lUQa(K)

We claim that Ug ,Uso(K) C U, Uz (K) is a proper subgroup of p-power
index. As in the previous case this will finish the proof.

To see that U, Uz (K) € Uq Uz (K), we show that U, yUsq i C Ugy.
Since | € T, we may pick u € U,(K) such that @,(u) = [ and ¢,(u) =
max @q(ulag(K)). It follows that u € U,y — Uy rUsq2i. The index of
U kU2 (K) in Uy Usq(K) equals the index of Ugi/Usgor in Ugy/Usq -
The group U,(K)/Us,(K) is isomorphic to the additive group of a finite-
dimensional K-vector space and for any r € I',, U,/ Usa,2r corresponds to
an O-lattice under this isomorphism (11.4.3.7, 11.4.3.5 with k = r, | = 2r €

be)- Thus the index of U, ;Usq(K) in U, Uz (K) is a p-power. O
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