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ABSTRACT. Suppose that G is a connected reductive group over a finite extension
F/Qp, and that C' is a field of characteristic p. We prove that the group G(F’) admits
an irreducible admissible supercuspidal, or equivalently supersingular, representation

over C.
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1. INTRODUCTION

Suppose that F' is a non-archimedean field of residue characteristic p and that G
is a connected reductive algebraic group over F. There has been a growing interest
in understanding the smooth representation theory of the p-adic group G := G(F)
over a field C of characteristic p, going back to the work of Barthel-Livné [BL94]| and
Breuil in the case of G = GLg. The latter work in particular demonstrated the
relevance of the mod p representation theory of p-adic reductive groups to the p-adic
Langlands program.

The results of [AHHVI7] (when C' is algebraically closed) and [HV19] (for a gen-
eral C of characteristic p) give a classification of irreducible admissible representations
in terms of supercuspidal C-representations of Levi subgroups of G. Here, an irre-
ducible admissible smooth representation 7 is said to be supercuspidal if it does not
occur as subquotient of any parabolic induction IndIGg o, where P is a proper parabolic
subgroup of G and ¢ an irreducible admissible representation of the Levi quotient of
P. Unfortunately, so far, the supercuspidal representations themselves remain mostly
mysterious, outside anisotropic groups, GL2(Q,) ([BL94], [Bre03]), and some related
cases ([Abd14], [Cheld], [Kozl6], [KX15]). If F/Q, is a non-trivial unramified exten-
sion, then irreducible supercuspidal representations of GLg(F') were first constructed
by Paskuinas [Pas04]; however, it seems hopelessly complicated to classify them [BP12],
[Hul(]. One additional challenge in constructing supercuspidal representations is that
irreducible smooth representations need not be admissible in general (unlike what hap-
pens over C), as was shown recently by Daniel Le [Le].

There are two ways to characterize supercuspidality in terms of Hecke actions. The
first description assumes C' is algebraically closed and uses weights and Hecke eigenval-
ues for any fixed choice K of special parahoric subgroup (a weight is then an irreducible
representation of K). It was shown to be equivalent to supercuspidality in [AHHV17].
The second description uses the center of the pro-p Iwahori—-Hecke algebra. The equiv-
alence between the second Hecke description and supercuspidality was shown in [OV18]
(when C' is algebraically closed) and [HV19] (for a general C' of characteristic p). In
either description, supercuspidality is characterized by the vanishing of certain Hecke
operators, which is why supercuspidal representations are also called supersingular.

Our main theorem is the following:

Theorem A. Suppose F is of characteristic 0, G is any connected reductive algebraic
group over F, and C any field of characteristic p. Then G admits an irreducible
admissible supersingular, or equivalently supercuspidal, representation over C.

This theorem is new outside the low rank cases mentioned above. It provides an
affirmative answer to Question 3 of when char F' = 0, and carries out the
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announcement contained in [AHHV1T, § II1.26]. Note also that the analogous theorem
for supercuspidal representations over C was proved by Beuzart-Plessis [BP16].

We now briefly explain our argument, which uses several completely different ideas.
First, in Section [3| we reduce to the cases where C' is finite and G is absolutely simple
adjoint. If G is moreover anisotropic, then G is compact and any irreducible smooth
representation of G is finite-dimensional (hence admissible) and supercuspidal. If G is
isotropic, we distinguish three cases.

For most groups G we show in Section [f] that there exists a discrete series represent-
ation 7 of G over C that admits invariants under an Iwahori subgroup B, and that has
moreover the following property: the module 7% of the Iwahori-Hecke algebra H (G, B)
admits a Z[¢'/?]-integral structure whose reduction modulo the maximal ideal of Z[¢"/?]
with residue field F,, is supersingular. The Hecke modules 7P are constructed either
from characters (using [Bor76]) or reflection modules (using [Lus83] and [GS05]; the
latter is needed to handle unramified non-split forms of PSOg).

Suppose from now on that F' is of characteristic zero, i.e. that F)/Q, is a finite
extension. The p-adic version of the de George-Wallach limit multiplicity formula
(IDKV84, App. 3] plus [Kaz86, Thm. K]) implies that the representation m above
embeds in C*°(I'\G, C) for some discrete cocompact subgroup I' of G (as char F' = 0).
By construction we deduce that the Hecke module C*(I'\G/%B,F,) = C®(I'\G,F,)*
of B-invariants admits a supersingular submodule. Crucially, by cocompactness of I"
we know that C°°(I'\G, F,) is an admissible representation of G. Picking any non-zero
supersingular vector v € C*(I'\G/B,F,), the G-subrepresentation of C>*(I'\G,F,)
generated by v admits an irreducible quotient, which is admissible (as char F' = 0) and
supersingular.

Unfortunately, this argument does not work for all groups G. We have the following
exceptional cases:

(i) PGLy (D), where n > 2 and D a central division algebra over F’;

(ii) PU(h), where h is a split hermitian form in 3 variables over a ramified quadratic
extension of F' or a non-split hermitian form in 4 variables over the unramified
quadratic extension of F'.

Note that for the group PGL, (D) with n > 2 the only discrete series representations
7 having B-invariant vectors are the unramified twists of the Steinberg representation
(by Proposition [4.1.5(i) and the classification of Bernstein—Zelevinsky and Tadi¢), but
then 7% is one-dimensional with non-supersingular reduction.

In the second exceptional case, where G = PU(h) for certain hermitian forms h,
we use the theory of coefficient systems and diagrams, building on ideas of Paskunas
[Pas04]. See Section [f] Note that G is of relative rank 1, so the adjoint Bruhat-Tits
building of G is a tree, and our method works for all such groups. In order to carry it
out, we may apply the reductions in Section [3| and assume that G is absolutely simple
and simply connected. Given a supersingular module = for the pro-p Iwahori—Hecke
algebra of G, we naturally construct a G-equivariant coefficient system (or cosheaf)
D= on the Bruhat-Tits tree of G. The homology of D=z admits a smooth G-action,
and any irreducible admissible quotient will be supersingular (by Proposition .
To construct such a quotient, we define an auxiliary coefficient system D’, which is
built out of injective envelopes of representations of certain parahoric subgroups, along
with a morphism D=z — D’. The image of the induced map on homology is admissible,
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and admits an irreducible quotient 7/ which is itself admissible (as char F = 0) and
supersingular.

In the first exceptional case, where G = PGL, (D), we use a global method (see
Section @) We find a totally real number field F* and a compact unitary group G
over F* such that G(F)") is isomorphic to GL,(D) for a suitable place v|p of F'*.
Then, fixing a level away from v and taking the limit over all levels at v, the space S
of algebraic automorphic forms of G (Aoﬁi) over [F,, affords an admissible smooth action

of G(F;}). Using automorphic induction and descent we construct an automorphic
representation 7 of G(Az, ) whose associated Galois representation r, has the property
that its reduction modulo p is irreducible locally at v. From 7 we get a maximal ideal
m in the Hecke algebra (at good places outside p), and we claim that any irreducible
subrepresentation of the localization S, is supercuspidal.

To prove the claim, we use the pro-p Iwahori-Hecke criterion for supercuspidality
and argue by contradiction. If one of the relevant Hecke operators has a non-zero
eigenvalue, we lift to characteristic zero by a Deligne—Serre argument and construct an
automorphic representation 7’ with Galois representation r, having the same reduction
as r; modulo p. Using local-global compatibility at p for r» and some basic p-adic
Hodge theory we show that the non-zero Hecke eigenvalue in characteristic p implies
that r,s is reducible locally at v, obtaining the desired contradiction.

For our automorphic base change and descent argument we require results going
slightly beyond [Labll], since our group G is typically not quasi-split at all finite
places. In the appendix, Sug Woo Shin explains the necessary modifications.

Finally, we remark that we would expect Theorem[A]to be true even when char F' = p.
So far this only seems to be known for the groups GLy(F') [Pas04], outside trivial cases.
We crucially use that char F' = 0 in (at least) the following ways:

(i) the existence of discrete cocompact subgroups, which fails for most groups if
char F' = p [BHT7S, §3.4], [Mar91], Cor. IX.4.8(iv)],
(ii) admissibility is preserved under passing to a quotient representation,
(iii) the automorphic method in case of the group PGL, (D).

1.1. Acknowledgements. The third-named author thanks Boris Pioline, Gordan
Savin and the organizers of the conference on Automorphic Forms, Mock Modular
Forms and String Theory in Banff (10/2017) for emails, discussions and their invitation,
which led to closer examination of unramified minimal representations corresponding to
the reflection modules of the affine Hecke algebras. She also thanks Volker Heiermann
for a discussion on discrete modules, Glinter Harder for emails on discrete cocompact
subgroups, Jean-Loup Waldspurger for recollections on the antipode, and Guy Henniart
for providing a proof below.

The first-named author thanks the University of Paris-Sud and the Mathematics
Institute of Jussieu—Paris Rive Gauche, where some of this work was carried out.

We thank Noriyuki Abe for some helpful comments.

1.2. Notation. Fix a prime number p, and let F' be a non-archimedean local field of
residue characteristic p (we will later assume that char F' = 0, i.e., that F' is a finite
extension of Q,). The field F' comes equipped with ring of integers Op and residue
field kg of cardinality ¢, a power of p. We fix a uniformizer w, and let valp and |- |p
denote the normalized valuation and normalized absolute value of F', respectively.
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If H is an algebraic F-group, we denote by H its group of F-points H(F).

Let G be a connected reductive F-group, T a maximal F-split subtorus of G, B
a minimal F-parabolic subgroup of G containing T, and xg a special point of the
apartment of the adjoint Bruhat—Tits building defined by T. We associate to x¢ and
the triple (G, T, B) the following data:

o the center Z(G) of G,

the root system & C X*(7),

the set of simple roots A C 9,

the centralizer Z of T,

the normalizer N of T,

the unipotent radical U of B (hence B = ZU), and the opposite unipotent

radical U°P,

o the triples (G*¢, T, B*°) and (G, T*! B2d), corresponding to the simply-
connected covering of the derived subgroup and the adjoint group of G,

o the apartment o/ := X, (T)/X.(Z(G)°) ®z R associated to T in the adjoint
Bruhat-Tits building,

o the alcove C of &/ with vertex x( lying in the dominant Weyl chamber with
vertex xo,

o the Iwahori subgroups B and B¢ of G and G*¢, respectively, fixing C pointwise,

o the pro-p-Sylow subgroup 4 of B.

O O O O O

Given a field L, we denote by L a fixed choice of algebraic closure. We fix a field
C of characteristic ¢ € {0,2,3,5,7,...}, which will serve as the field of coefficients for
the modules and representations appearing below. In our main result we will assume
c=np.

Suppose K is a compact open subgroup of G, and R is a commutative ring. We
define the Hecke algebra associated to this data to be the R-algebra

Hp(G, K) := Endg R[K\G].

If R = Z, we simply write H(G, K). In our applications below, we will often assume
that K =8 or K =4l

Given a module or algebra X over some ring R and a ring map R — R/, we let
Xp = X ®g R’ denote the base change.

Other notation will be introduced as necessary in subsequent sections.

2. IWAHORI-HECKE ALGEBRAS

In this section we review some basic facts concerning Iwahori—-Hecke algebras and
their (supersingular) modules. We will use these algebras extensively in our construc-
tion of supercuspidal G-representations. See [Vigl6], [Vigl4], and [Vigl7] for references.

2.1. Definitions. Recall that we have defined the Iwahori-Hecke ring as
H(G,B) = Endg Z[B\G].

We have an analogous ring H (G*¢,8%°) for the simply-connected group. The natural
ring homomorphism H(G*,B8%°) — H(G,B) (induced by the covering G* — G of the
derived subgroup) is injective, so we identify H(G®°,B5¢) with a subring of H (G, B).
We first discuss presentations for these rings.
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There is a canonical isomorphism
7% H(G™,B%) — H(W, S, gs),

where H := H(W, S, qs) is the Hecke ring of an affine Coxeter system (W, S) with
parameters {qs := qu}ses. The d, are positive integers, which we will abusively also
refer to as the parameters of G. Thus, H(W,S,¢s) is a free Z-module with basis
{T» }wew, satisfying the braid and quadratic relations:

TwTy = Ty for w,w' € W, L(w) + L(w') = L(ww'),
(Ts —qs)(Ts+1)=0 for s € S.

Here ¢ : W — Z>o denotes the length function with respect to S. We identify
H(G™,98%¢) with H via j%.

In order to describe H(G,B), we require a larger affine Weyl group. We define the
extended affine Weyl group to be

W = N/Zo,

where Zj is the unique parahoric subgroup of Z. The group W acts on the apartment
&/, and permutes the alcoves of &/ transitively. We let 2 denote the subgroup of;Wv
stabilizing C. The affine Weyl group W is isomorphic to a normal subgroup of W,
and permutes the alcoves simply transitively. We therefore have a semidirect product
decomposition

W =W xQ.

The function ¢ extends to W by setting ¢(uw) = f(wu) = (w) for u € Q,w € W. In
particular, we see that Q is the group of length-zero elements of w.

Let X denote the reduced root system whose extended Dynkin diagram Dyn is equal
to the Dynkin diagram of (W, S), and let Dyn’ denote the Dynkin diagram Dyn deco-
rated with the parameters {ds}ses. The quotient of © by the pointwise stabilizer of C
in Q is isomorphic to a subgroup ¥ of Aut(W,S,ds), the group of automorphisms of
Dyn’. Thus, © acts on Dyn’ and consequently on H (W, S, ¢s), and the isomorphism j*¢
extends to an isomorphism

(2.1.1) j:H(G,B) = Z[0) @ HW, S, qs),

where ® denotes the twisted tensor product. The generalized affine Hecke ring H =
Z[Y ® H(W, S, qs) as above is the free Z-module with basis {T\}, 3y, satisfying the
braid and quadratic relations:

(2.1.2) TwTw = Ty for w,w' € W, £(w) + £(w') = ((ww),
(2.1.3) (Ts —qs)(Ts+1)=0 fors € S.

Thus, we see that the Iwahori—Hecke ring H (G, B) is determined by the type of ¥, the
parameters {d;}scs, and the action of  on Dyn’.

The group W forms a system of representatives for the space of double cosets
B\G/B. Under the isomorphism j, the element T, € H forw € W corresponds
to the endomorphism sending the characteristic function of 8 to the characteristic
function of BnB, where n € N lifts w.
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Finally, let P = MN denote a standard parabolic F-subgroup of G (meaning B C
P), and suppose that M contains T. Then the group M N B is an Iwahori subgroup
of M, and we may form the algebra

H(M,M N*B) = EndpyZ[(M NB)\M].

It is not a subalgebra of H(G,B) in general. The basis of H (M, M N*B) will be denoted
TM where w is an element of the extended affine Weyl group associated to M.

2.2. Dominant monoids. The subgroup
A= Z/ZO

of W=N /Zo is commutative and finitely generated, and its torsion subgroup is equal
to Zo/Zy, where Zy denotes the maximal compact subgroup of Z. (When the group
G is F-split or semisimple and simply connected, we have Zy = Zj.) The short exact

sequence
1-AN—>N/Zy > N/Z -1

splits, identifying the (finite) Weyl group Wy := N/Z of ¥ with Staby (z9). We
therefore obtain semidirect product decompositions

AxWy=W
and
AN x Wy =W,
where A€ :=ANW.
Given a subgroup J of Z, we define
Ay = JZU/ZO C A.

We analyze A ; for various groups J presently.

Let Ty denote the maximal compact subgroup of T, and note that Ty = ZgNT'. This
implies that the inclusion T < T'Zy induces an isomorphism T/Ty — T Zy/Zy = Ar,
and therefore the map
(2.2.1) X.(T) = Ar

W )‘li = (W)Zo/Zo

is a Wy-equivariant isomorphism.

Recall that we have a unique homomorphism

v:Z — o,
determined by the condition
(o, v(t)) = —valp(a(t))

for t € T and o € ®. We claim that the kernel of v is the saturation of Z(G)Zy in
Z, i.e., the set of all elements z € Z such that 2" € Z(G)Z for some n > 1. Indeed,
the kernel of v contains Z(G) and Zj, and the group Z/Z(G)Zy is commutative and
finitely generated. This gives an induced map
(2.2.2) v:Z)Z2(G) 2y — .

We note the following three facts: (1) the image of 724 in Z/Z(G)Z, is of finite index
(cf. comments following (16) in [Vigl6]); (2) the Z-span of the coroots ®" is of finite
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index in X,(7%); (3) v(a"(w 1)) = a" for any coroot a¥ € X,(T). Combining these,
we see that the image of has the same rank as Z/7 (G)Zo, which is equal to
the rank of X, (74). Therefore, the kernel of is exactly the torsion subgroup of
Z/Z(G)Zy. This gives the claim.

Since Zj is contained in the kernel of v, the group A acts by translation on & via v.
Therefore, Ayer, is the pointwise stabilizer of C in A. Similarly, one easily checks that
Axery is the pointwise stabilizer of C in 2. (In fact, we have AN Q = Agery, cf. [Vigl6),
Cor. 5.11].) Hence, we obtain

(223) Q/Akeru ; \I’a
and the embeddings of A and €2 into W induce

~

(2.2.4) A/ (Akery X A%) =5 W/ (Agery X W) <= Q/Aer .-
An element \ € A is called dominant (and A~ is called anti-dominant), if
2UNB)z"t cUNDB

for any z € Z which lifts A\. We let AT denote the monoid consisting of dominant
elements of A, and similarly for any subgroup A’ < A we define A’" := AN A™. Using
the isomorphism , we say a cocharacter p € X, (T') is dominant if \, is, and let
X.(T)* denote the monoid consisting of dominant elements of X, (7). The group of
invertible elements in the dominant monoid A™ is exactly the subgroup Ayer ., and the
invertible elements of AS®" are trivial.

Lemma 2.2.5. The subgroup Azq) x A*¢ (resp. Ar) of A is finitely generated of finite

index. The submonoid Az X ASST (resp. A}) of the dominant monoid A is finitely
generated of finite indez.

Here, we say that a submonoid N of a commutative monoid M has finite index if
M = U (N + z;) for some z; € M. If M is finitely generated, then dM is of finite
index in M for all d > 1.

Proof. The groups ker v/Z(G) Zy and Zy/Zy are finite, and equations and
imply that A/(Ager, X A%) is isomorphic to the finite group W. Thus, we see that the
commutative group Azg) X A* is a finitely generated, finite index subgroup of A.
Similarly, Az is finite free and it is well known that it is of finite index in A. Gordan’s
lemma implies the second assertion (as in the proof of [HV15] 7.2 Lem.]). O

2.3. Bernstein elements. Let w € W, and let w = usy - - s, be a reduced expres-
sion, with u € 0, s; € S. We set ¢, := ¢s, - - - ¢s,,, and define

Ty :=Ts—qs+1 and T, :=T,T1; ---T; .
Then T:wT'_1 = qu, and the linear map defined by T, (—1)5(“’)qu is an automor-

phism of H.
For € X, (T), we let O, C A denote the Wy-orbit of A,. We then define

Zp = Z E)\,

AEO,
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where E) are the integral Bernstein elements of H corresponding to the spherical ori-
entation induced by A ([Vigl6, Cor. 5.28, Ex. 5.30]). Precisely, they are characterized
by the relations

To i M is anti-dominant
(2.3.1) By = i if A is anti-dominant,

Ty if A is dominant,
(2.3.2) E\ Ey, = (QA1QA2q;11)\2>1/2E)\1)\2 if A\, \g € A,

where we take the positive square root. (If A1, Ag are both dominant (or anti-dominant),
then Ey Ey), = E),»,.) The elements z,, are central in H, and when p € X, (T5), 2y
lies in H.

We let A denote the commutative subring of the generalized affine Hecke ring H
with Z-basis {Ex}rea. When G = Z, we have H = A = Z[A], but A is not isomorphic
to Z[A] in general. The rings A, H, and the center of H are finitely generated modules
over the central subring with basis {2} ,ex, (1), which is itself a finitely-generated ring.

2.4. Supersingular modules. We now discuss supersingular Hecke modules.

_ Recall that C is our coefficient field of characteristic c. We define Ho := H ® C' and
He := H ® C, which are isomorphic to the Iwahori-Hecke algebras Ho(G*¢, B5¢) and
Hc(G,*B), respectively.

Definition 2.4.1 (cf. [OVIS, §5.1(3)]). Let M be a non-zero right He-module. A non-
zero element v € M is called supersingular if v -z, = 0 for all u € X.(T)* such that
—p & X.(T)*, and all sufficiently large n. The He-module M is called supersingular
if all its non-zero elements are supersingular. We make a similar definition for modules
over Hc, using the monoid X, (7%¢)7.

We remark that the definition of a supersingular module differs slightly from that
of [Vigl7, Def. 6.10]. There it was required that ¢ = p, and that M - z, = 0 for all
p € Xu(T)T such that —p & X.(T)* and n sufficiently large.

Lemma 2.4.2.
(i) Any simple ﬁc—module s finite dimensional, and is semisimple as an Hc-
module. ~
(ii) If ¢t p|Wo|, then He does not admit any simple supersingular modules.
(iii) If ¢ = p, a simple flc—module s supersingular if and only if its restriction to
He is supersingular.

Proof. (i) The first statement follows from [Vig07, §5.3]. For the second part, note that
there exists a finite index subgroup €' of  which acts trivially on H (for example, we
may take Q' = Ayery). Set Hj := C[Q] ®c Hc. Any simple Ho-module N extends
trivially to an H/,-module N’, and the restriction of N’ ®my, He to He is a finite direct
sum @ueQ/Q’ N* of (simple) conjugates N* of N by elements u € Q. If M is a simple

ﬁc—module and N is contained in M|p,, then M is a quotient of N’ ®my, ﬁc (and
thus the restriction of M is semisimple).

(ii) It suffices to assume C' is algebraically closed. Let M denote a simple super-
singular module. Since the center of H is commutative and M is finite dimensional,
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there exists an eigenvector v € M with eigenvalues y for the action of the center.
Supersingularity then implies

(2.4.3) 0=v-2zy =x(zw)v

for any ¢/ € X.(T)" such that —p/' & X,.(T)*.
Choose p € X.(T)* lying in the interior of the dominant Weyl chamber, so in
particular —p & X.(T)", and let w, € Wy denote the longest element. We claim that

(2.4.4) ZuZ o () = Ir, | Wolzo + Z a2y
pEXL(T)T
£(A,1)>0

for some a,s € Z. To see this, note that the product of the orbits O,,-O_,,, (,,) consists of
elements of the form Ay () A_waw, (1), Where w, w’ € Wy. If the length of Aw () A —w'wo (11)
is 0, then [Vigl6l Cor. 5.11] implies w(u) — w'wo () is orthogonal to every simple root.
Since this element is also a sum of coroots, we conclude that w(u) —w'ws () = 0, which
implies w = w'w,, as the Wy-stabilizer of y is trivial. The product formula then
gives equation .

Now, for 1/ € X.(T)*, the condition —p' ¢ X, (T)" is equivalent to £()\,) > 0.
Applying x to both sides of and using (for varying p) gives gy, |Wo| = 0,
a contradiction.

(iii) This follows from [Vigl7, Cor. 6.13] and part (i). O

Remark 2.4.5. The conditions in part of the above lemma are necessary: when ¢ # p
divides |Wp|, there exist non-zero supersingular modules. For an example, suppose
G = SLo, gis odd, and ¢ = 2. Then Hp = flc admits a unique character x, which
sends T to 1 for each s € S. If we let pu:= (1,—1) € X, (T)", then

2y =T Tsy + T, Ty,

where S = {s1, s2}. Thus, we have x(z,) = 0. By induction, and using the assumption
c = 2, we see that the element 2z, lies in the ideal of the center generated by z,, for
every k > 1. From this, we conclude that x is supersingular.

3. ON SUPERCUSPIDAL REPRESENTATIONS

The aim of this section is to collect various results concerning supercuspidal repre-
sentations. We first state Proposition[3.1.3] which gives a convenient criterion for check-
ing that a given irreducible admissible representation is supercuspidal when char C' = p.
Propositions [3.2.1] and [3.3.2] allow us to make further reductions: in order to prove that
G(F) admits an irreducible admissible supercuspidal C-representation when char F' = 0
and char C' = p, it suffices to assume that C'is finite and G is absolutely simple, adjoint,
and isotropic.

3.1. Supercuspidality criterion. We begin with a definition.

Definition 3.1.1. Let R be a subfield of C. We say that a C-representation 7 of G
descends to R if there exists an R-representation 7 of G and a G-equivariant C-linear
isomorphism

¢:CQrT —> .
We call ¢ (and more often 7) an R-structure of m, or a descent of w to R.
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We now describe the scalar extension of an irreducible admissible C-representation
7 of G [HV19]. Given such a 7, the commutant D := End¢ () is a division algebra of
finite dimension over C. Let E denote the center of D, Es/C the maximal separable
extension contained in £/C and 6 the reduced degree of D/E. Let L be an algebraically
closed field containing E and 77 the scalar extension of 7 from C to L.

Proposition 3.1.2 ([HV19, Thms. 1.1, IIL4]). The length of 7 is 6[E : C| and

1)
@ @

i€Home (Es,L)

12

™

where each ; is indecomposable with commutant Z®i,E5 E, descends to a finite exten-
sion of C, has length [E : Es], and its irreducible subquotients are pairwise isomorphic,
say to p;. The p; are admissible, with commutant L, Autc(L)-conjugate, pairwise
non-isomorphic, and descend to a finite extension of C. Any descent of p; to a finite
extension C'/C, viewed as C-representation of G, is w-isotypic of finite length.

Proof. By [HVI9, Thms. 1.1, II1.4], it suffices to prove that if p; descends to a C’-
representation p; with C’/C finite, then p) is m-isotypic of finite length. Then (p});
injects into w7, and so p} injects into mor by [HV19, Rk. I1.2], which implies the claim.

]

In particular, any irreducible admissible C-representation m with commutant C' is
absolutely irreducible in the sense that its base change 7y is irreducible for any field
extension L/C'. For example, this holds when C' is algebraically closed.

Given an irreducible admissible C-representation =, the space 7% of il-invariants
comes equipped with a right action of the pro-p Iwahori-Hecke algebra Hg (G, ).
This algebra has a similar structure to that of Ho(G,®B). In particular, we have
analogous definitions of the Bernstein elements E) (A € A) and the central elements
zu (1 € Xi(T)), as well as an analogous notion of supersingularity for right Ho (G, 4)-
modules (cf. Definition . We say an irreducible admissible C-representation 7 is
supersingular if the right Ho(G, 4)-module 7% is supersingular.

Finally, recall that an irreducible admissible C-representation 7 of G is said to be
supercuspidal if it is not a subquotient of IndIGg 7 for any parabolic subgroup P = M N C
G and any irreducible admissible representation 7 of the Levi subgroup M.

Proposition 3.1.3 (Supercuspidality criterion). Assume ¢ = p. Suppose that 7 is an
irreducible admissible C-representation of G. The following are equivalent:
(i) 7 is supercuspidal;
(ii) 7 is supersingular;
(iii) 7 contains a non-zero supersingular element;
(iv) every subquotient of ™ is supersingular;
(v) some subquotient of ™ is supersingular.

Proof. We have (i)<(ii)<(iii) by [HV19, Thms. 1.13, II1.17]. Since (ii)=(iv)=(v), it
suffices to show that (v)=-(ii). Let C' denote an algebraic closure of C. Say 7% has
supersingular subquotient M. Then (7%)z = (75)" has subquotient Mz, and Mz
is clearly supersingular. By Proposition there exists an irreducible admissible

constituent p of 7 such that the Ho (G, 4)-module p* shares an irreducible constituent
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with M. In particular, p* has a supersingular subquotient, and [OV18, Thm. 3] implies
p is supersingular. Then [HVI9, Lem. II1.16 2)] implies that 7 is supersingular. O

Remark 3.1.4. When 7% # 0, the above criterion holds with 7% replaced by 72 in
items (iii), (iv), and (v). This follows from the fact that 7 is a direct summand of 7
as an Ho (G, 4)-module, and the action of Ho(G, ) on 7 factors through Ho (G, B).

We now discuss how supercuspidality behaves under extension of scalars. We require
a preliminary lemma.

Lemma 3.1.5. Suppose that C'/C is a finite extension and that 7' is an irreducible
admissible C'-representation of G. Then 7r’|C[G] >~ 79" for some irreducible admissible
C-representation m of G and some n > 1.

Proof. Let C be an algebraic closure of C. Then the finite-dimensional C-algebra
A = C"®c¢ C is of finite length over itself. The simple A-modules are given by C with
C" acting via the various C-embeddings C' — C'. It follows that 7’| g ®cC = 7' @cr A
is of finite length as C-representation by Proposition So 7/ lcay is of finite length.
If 7 denotes an irreducible submodule, then » ; \im = 7'|¢q), where {\;}], is a basis
of C'/C. Tt follows that 7'|¢(q = 7@ for some n < m. Moreover 7 is admissible, as
W/‘C[G’} is. O

Proposition 3.1.6. Let L denote an algebraically closed field containing C. If ¢ # p,
we assume that L = C is an algebraic closure of C.

A C-representation m is supercuspidal if and only if some irreducible subquotient p of
mr s supercuspidal, if and only if every irreducible subquotient p of wr is supercuspidal.

Proof. If ¢ = p, we note that 7 is supercuspidal if and only if 7 is supersingular by
Proposition This is equivalent to some/every subquotient of 7 being super-
singular [HV19, Lem. IT1.16 2)], or equivalently supercuspidal (again by [HV19, Thm.
1.13]).

Now suppose that ¢ # p and L = C. Recall that parabolic induction Indg is exact,
and commutes with scalar extensions and restrictions [HV19, Prop. IT1.12(i)]. If 7 is not
supercuspidal, then 7 is a subquotient of Indg 7 for some proper parabolic P = M N
and irreducible admissible C-representation 7 of M. Then 7z is a subquotient of
(Ind% T)e = Indg(Tg). In particular, each irreducible (admissible) subquotient 7" of
T is a subquotient of Ind% 7/ for some irreducible (admissible) subquotient 7/ of 7.
Hence none of the n’ are supercuspidal.

For the converse, suppose by contradiction that m has an irreducible subquotient
p that is not supercuspidal, i.e. p is a subquotient of Indg 7 for some proper parabolic
P = MN and irreducible admissible C-representation 7 of M. By [Vig96] 11.4.7]
(as ¢ # p), respectively by Proposition we can choose a finite extension C'/C
with ¢’ C C such that 7, respectively all irreducible constituents of IndgT and 7,
can be defined over C’. Write 7 = (7')5 for some C’-representation 7'. Say the
irreducible subquotients of Ind% 7/ are o1, ..., 6,. So by our choice of C’, we know
that p & (o) for some i. As o; is a subquotient of Ind% 7/, we see that ailciq) is a
subquotient of Ind% (7’ lcpy)- But oiloq) is m-isotypic by Proposition and 7’| ¢
has finite length by Lemma so 7 is a subquotient of IndICSv 7" for some irreducible
(admissible) subquotient 7" of 7'|c(py- O
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3.2. Change of coefficient field. This section contains the proof of the following
result.

Proposition 3.2.1 (Change of coefficient field).

(i) If G admits an irreducible admissible supercuspidal representation over some
finite field of characteristic p, then G admits an irreducible admissible super-
cuspidal representation over any field of characteristic p.

(ii) If G admits an irreducible admissible supercuspidal representation over some
field of characteristic ¢ # p, then G admits an irreducible admissible supercus-
pidal representation over any algebraic extension of the prime field of charac-
teristic c.

Proof. Let F, be the prime field of characteristic ¢ (so that Fy = Q and F. = F, if
c#0).

Step 1: We show that, if ¢ # p and G admits an irreducible admissible supercuspidal
C-representation 7, then G admits one over a finite extension of F.

Indeed, by Proposition [3.1.6| we can suppose C' is algebraically closed. We claim that
we may twist m by a C-character x of GG, so that the central character of ™ ® y takes
values in F.. To see this, we first note that there exists a subgroup °G of G such that
(1) G/°G = Z" for some r > 0; (2) the restriction to Z(G) of the map v : G — Z"
has image of finite index; (3) ker(u|z(g)) = Z(G) N °G is compact. (For all of this, see
[Ber84, §1.12, 2.3].) Let £ := im(u|z(g)) C Z" denote the image of u|z(g). Since C is
algebraically closed, the restriction map

Hom(Z",C*) X Hom(g,C>)

is surjective. Let w,; denote the central character of the irreducible admissible C-
representation 7, and note that wy| z(G)nec takes values in F, (since 7 is smooth and
Z(G) N °G is compact). Choose a splitting v of the surjection u : Z(G) — £, and let
X" € Hom(£,C*) denote the character w_! owv. We then let ' € Hom(Z", C*) denote
any preimage of x” under res, and let y : G — C* be the inflation of ¥’ to G via u.
Using that wrey = wax and wrey|z(@)nea = Walz(@)neq, the construction of x implies
wrey(2) € Fe for all z € Z(G).

We may therefore assume that the central character of 7 takes values in F,.. As
¢ # p, by [Vigd6, 11.4.9] the representation 7 descends to a finite extension F/F..
Since descent preserves irreducibility, admissibility and supercuspidality, we obtain an
irreducible admissible supercuspidal F!-representation of G.

Step 2: We show that if G admits an irreducible admissible supercuspidal represent-
ation over a finite extension of F, then G admits such a representation over Fv.

Suppose C/F, is a finite field extension and 7 an irreducible admissible C-representation
of G. By Lemma , 7|, contains an irreducible admissible Fe-representation 7.
By adjunction, 7 is a quotient of the scalar extension my, of 7’ from F, to C.

We now show that if 7 is supercuspidal, then 7’ is also supercuspidal. Assume that
7’ is not supercuspidal, so that it is a subquotient of Ind]Gg 7', where P is a proper
parabolic subgroup of G and 7’ is an irreducible admissible F,.-representation of the
Levi subgroup M of P. Since parabolic induction is compatible with scalar extension
from F. to C, the representation 7, is a subquotient of Indg 74, and therefore the
same is true of 7. The C-representation 7/, of M has finite length and its irreducible
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subquotients are admissible by [HV19, Thm. ITT.4]. Hence, 7 is a subquotient of Indg P
for some irreducible admissible subquotient p of 7/, and we conclude that 7 is not
supercuspidal.

Step 3: We show that if G admits an irreducible admissible supercuspidal F-
representation (resp., F.-representation, where ¢ # p), then G does so over any field
of characteristic p (resp., any algebraic extension of F.). More generally we show that
if L/C is any field extension, assumed to be algebraic if ¢ # p, and G admits an
irreducible admissible supercuspidal C-representation then the same is true over L.

Let L/C be a field extension as above, and choose compatible algebraic closures
L/C. Suppose 7 is an irreducible admissible supercuspidal C-representation of G, and
let 7 be an irreducible subquotient of the scalar extension my of = from C' to L. By
[HV19, Lem. II1.1(ii)], 7 is admissible. The scalar extension 77 of 7 from L to L is a
subquotient of the scalar extension 7 of 77, from L to L (the latter being equal to
the scalar extension of m from C to L). By Propositions and 77 has finite
length and its irreducible subquotients are admissible and supercuspidal. Therefore,
the same is true of 77. By Proposition this implies that 7 is supercuspidal. [J

We now use extension of scalars to prove the following lemma, which will be used in
the proof of Prop. [3:3.9

Lemma 3.2.2. Let m be an irreducible admissible C-representation of G and H a finite
commutative quotient of G. Then the representation m @c C[H| of G, with the natural
action of G on C[H], has finite length and its irreducible subquotients are admissible.

Proof. The scalar extension of the C-representation 7 (resp. C[H]) to C has finite
length with irreducible admissible quotients m; (resp. x;, of dimension 1). Therefore

(mr®c C[H])g = 75 @ C[H] has finite length with irreducible admissible subquotients
(namely, the m; ®& x;), implying the same for 7 ®c C[H]. O

3.3. Reduction to an absolutely simple adjoint group. As is well known, the
adjoint group G of G is F-isomorphic to a finite direct product of connected reductive
F-groups

(3.3.1) G* = H x [[Resp/r(GY),

where H is anisotropic, the F/F are finite separable extensions, and Resp /r(GY)
are scalar restrictions from F to F' of isotropic, absolutely simple, connected adjoint
F!-groups G/.

Proposition 3.3.2. Assume that the field C' is algebraically closed or finite, and that
char FF = 0. If, for each i, the group GL(F!) admits an irreducible admissible su-
percuspidal C-representation, then G admits an irreducible admissible supercuspidal
C'-representation.

The proposition is the combination of Propositions[3.3.3} [3.3.6] [3.3.8], and [3.3.11] be-
low, corresponding to the operations of finite product, central extension, and scalar re-
striction (all when C' algebraically closed or finite). We also note that if G is anisotropic,
then G is compact and any irreducible smooth representation of G is finite-dimensional
(hence admissible) and supercuspidal.
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3.3.1. Finite product. Let G and Go be two connected reductive F-groups, and o
and 7 irreducible admissible C-representations of G; and Gs, respectively.

Proposition 3.3.3. Assume that C is algebraically closed.

(i) The tensor product o @c T is an irreducible admissible C-representation of
Gl X Gg.
(ii) Ewvery irreducible admissible C-representation of G1 X Ga is of this form.
(iii) The C-representation o @c T determines o and T (up to isomorphism).
(iv) The C-representation o @¢ T is supercuspidal if and only if o and T are super-
cuspidal.

Proof. Note first that ¢ ®¢ 7 is admissible: for compact open subgroups K; of G; and
K of G2, we have a natural isomorphism ([Boul2, §12.2 Lem. 1])

Homg, (1x,,0) ®c Homg, (1f,,T) — Hompg, xr,(1x, ®c 1k,,0 @c T),

where 1k, denotes the trivial representation of K;. Thus, the admissibility of o and 7
implies the admissibility of o ®¢ 7.

Suppose now C' algebraically closed.

(i) Proposition implies that the commutant of o is C. Irreducibility of o ®c T
then follows from [Boul2) §12.2 Cor. 1].

(ii) Let m be an irreducible admissible C-representation of G x G, and let K, K»
be any compact open subgroups of Gy, Ga, respectively, such that 751Kz £,

If ¢ = p, the C-representation of G given by 7' *%2 is admissible (since 7
is finite dimensional for any K7). By [HV12] Lemma 7.10], it contains an irreducible
admissible C-subrepresentation o. Set 7 := Homg, (0, 7) # 0, with the natural action
of G5. The representation o ®¢c 7 embeds naturally in w. As 7 is irreducible, it is
isomorphic to 0 ®¢ 7, and 7 is irreducible. As 7 is admissible, 7 is admissible as well.
(This proof is due to Henniart.)

If ¢ # p, the space w51 *K2 ig a simple right Ho(G1 x Ga, K1 x Ka)-module ([Vig96),
1.4.4, 1.6.3]), and we have

KiXKQ

Hco(Gh x G, K1 x Kp) = Ho(Gh, K1) @c Ho(Ga, K»).

By [Boul2l, §12.1 Thm. 1], the finite-dimensional simple Ho(G1, K1) ®c Ho(Ge, K»)-
modules factor, meaning 751 %K2 > K10 752 for irreducible admissible C-representations
o,7 of Gy,Gs, respectively (this uses [Vig96l, 1.4.4, 1.6.3] again). Thus, we obtain
T=20QcT.

(iii) As a C-representation of G, c®¢T is o-isotypic. Similarly, as a C-representation
of Ga, 0 ®¢ 7 is T-isotypic. The result follows.

(iv) The parabolic subgroups of G; x G9 are products of parabolic subgroups of
G1 and of G2. Let P, @ be parabolic subgroups of G1,Ga, respectively, with Levi
subgroups M, L, respectively, and let 7’ be an irreducible admissible C-representation
of the product M x L. By part (ii), the C-representation 7’ factors, say ' = o/ ®¢c 7/
for irreducible admissible C-representations ¢’ of M and 7/ of L. We then obtain a
natural isomorphism

Imdg1 o ®c Ind82 = IndJGDIXXQG2 7.
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Since the inductions on the left-hand side have finite length, we conclude that the irre-

ducible subquotients of IndglxeG2 7’ are tensor products of the irreducible subquotients
of Indg1 o’ and of Indg2 7/, which gives the result. O

We assume from now until the end of that C is a finite field.

Proposition 3.3.4. Assume that C is finite. Let m be an irreducible admissible C'-
representation of G. The commutant of 7w is a finite field extension D of C and the
scalar extension mp of w from C to D is isomorphic to

m= B

i€Gal(D/C)

where the m; are irreducible admissible D-representations of G. Moreover, the m; each
have commutant D, are pairwise non-isomorphic, form a single Gal(D/C)-orbit, and,
viewed as C-representations, are isomorphic to 7.

Proof. The commutant D of « is a division algebra of finite dimension over C. Since
the Brauer group of a finite field is trivial, D is a finite Galois extension of C'. The
result now follows from [HV19, Thms. I.1, ITL.4] by taking R’ = D. (Note also that as
a C-representation, wp is m-isotypic of length [D : C].) O

Recall that we have fixed irreducible admissible C-representations o and 7 of G; and
G, respectively. Their respective commutants D, and D; are finite extensions of C' of
dimensions d, and d, respectively. We embed them into C', and consider:

o the field D generated by D, and D,, which has C-dimension lem(d,, d;),
o the field D' := D, N D, which has C-dimension ged(d,,d;).
The fields D,, D, are linearly disjoint over D', we have D, @ pr D, = D and
[D":C]
(3.3.5) D, ®c Dy = H D.
k=1
Proposition 3.3.6. Assume that C is finite. The C-representation 0 @c T of G1 X G
18 isomorphic to
ged(do,dr)

0—@@07—g @ Tk,

k=1
where the m are irreducible admissible C-representations with commutant D, which

are pairwise non-isomorphic. The C-representations o and T are supercuspidal if and
only if all the my are supercuspidal, if and only if some my, is supercuspidal.

Proof. By Proposition [3.3.4] we have
op = @ 04, D = @ Tj,
i€Gal(Dy/C) j€Gal(D,/C)

where the o; (resp. 7;) are irreducible admissible D-representations of G (resp. G2)
with commutant D, which are pairwise non-isomorphic, form a single Gal(D/C)-orbit,
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descend to D, (resp. D;) and their descents, viewed as C-representations, are isomor-
phic to o (resp. 7). The C-representation o @¢c 7 of G1 x G2 is admissible, and its
scalar extension from C' to D is equal to

(3.3.7) (c®cT)p = 0pQ®pTp = @ 0; &p Tj.
(i,)€Gal(Dy /C)x Gal(D- /C)

The D-representation ;@ p7; of G1 X G is admissible and has commutant D&®p D = D
(IBoul2l §12.2 Lem. 1]). Hence, 0; ®p 7; is absolutely irreducible and equation
implies (0 ®¢ 7)p is semisimple. By [Boul2, §12.7 Prop. 8], this implies that o ®¢ 7 is
semisimple; its commutant is isomorphic to D, ®¢c D, by [Boul2 §12.2 Lem. 1]. From
equation we see that o ®¢ 7 has length [D' : C] = ged(d,, d), its irreducible
constituents m; are admissible and pairwise non-isomorphic with commutant D.
Applying Proposition over C' and Proposition (several times), we see
that o and 7 are supercuspidal if and only if some/every o; and some/every 7; are
supercuspidal, if and only if some/every o; ®p 7; is supercuspidal. From Proposition
again, this is also equivalent to 7 being supercuspidal for some/every k. ]

3.3.2. Central extension. Recall that we have a short exact sequence of F-groups
15 Z(G) = G5 G 1,
which induces an exact sequence between F-points
15 2(G) = G5 6™ - HY(F, Z(G)).

The image i(G) of G is a closed cocompact normal subgroup of G2 and H'(F,Z(G))
is commutative.

Until the end of §3.3.2] we assume that char F' = 0. The group H'(F,Z(G)) is then
finite (JPR94, Thm. 6.14]), implying that i(G) is an open normal subgroup of G*! and
the quotient G*/i(G) is finite and commutative. Our next task will be to prove the
following;:

Proposition 3.3.8. Suppose that char F = 0. Then G* admits an irreducible admis-
sible supercuspidal C-representation if and only if G admits such a representation such
that moreover Z(G) acts trivially.

Inflation from i(G) to G identifies representations of i(G) with representations of G
having trivial Z(G)-action; this inflation functor respects irreducibility and admissibil-
ity. The composite functor

(inflation from i(G) to G) o (restriction from G® to i(G))
from C-representations of G®? to representations of G trivial on Z(G) will be denoted
by — o1.
Suppose p is an irreducible admissible C-representation of G with trivial action of

Z(G). Then p is the inflation of a representation p of the open, normal, finite-index
subgroup i(G) of G*. The C-representation p of i(G) is irreducible and admissible,

and therefore the induced representation Indggj) p of G*4 is admissible of finite length.

Any irreducible quotient 7 of Indicggi) p is admissible (if ¢ = p, this uses the assumption
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char F' = 0; see [Hen09, §4, Thm. 1]). By adjunction, 7|;) contains a subrepresenta-
tion isomorphic to p and, by inflation from i(G) to G, p is isomorphic to a subquotient
of moi.

Conversely, suppose 7 is an irreducible admissible C-representation of G*d. The re-
striction 7|y of 7 to i(() is semisimple of finite length, and its irreducible constituents
p are G*®-conjugate and admissible (see [Vigd6], 1.6.12]; note that the condition that
the index is invertible in C' is not necessary and not used in the proof). Hence, the
C-representation moi of G is semisimple of finite length, and its irreducible constituents
are the inflations p of the irreducible constituents p of 7|;(q).

Proposition now follows from:

Proposition 3.3.9. Suppose that char F = 0 and let 7, p and p be as above. Then 7 is
supercuspidal if and only if some p is supercuspidal, if and only if all p are supercuspidal.

Proof. We first check first the compatibility of parabolic induction with — o 4. The
parabolic F-subgroups of G and of G are in bijection via the map i ([Bor91], 22.6
Thm.]). If the parabolic F-subgroup P of G corresponds to the parabolic F-subgroup
Q of G* | then i restricts to an isomorphism between their unipotent radicals, and
sends a Levi subgroup M of P onto a Levi subgroup L of Q. Further, we have an exact
sequence between F-points:

15 Z(G) » M5 L — HY(F,Z(G)).

We have G = Qi(G) and Q Ni(G) = i(P) = i(M)U, where i(M) is an open normal
subgroup of L having finite commutative quotient, and U is the unipotent radical of
Q. Thus, if ¢ is a smooth C-representation of L, the Mackey decomposition implies

(Indgad o)liq) = Indjgg;(a“(M)) and, by inflation from i(G) to G, we obtain:

3.3.10 IndS™ o) 0 i = Ind$ (0 0 4).
Q P
We may now proceed with the proof. It suffices to prove:

(i) if 7 is non-supercuspidal, then all p are non-supercuspidal,
(ii) if some p is non-supercuspidal, then 7 is non-supercuspidal.

To prove (i), let ™ be an irreducible admissible non-supercuspidal C-representation of

G which is isomorphic to a subquotient of Indgad o for Q@ € G* and o an irreducible
admissible C-representation of L. Therefore, m o 4 is isomorphic to a subquotient of
(Indgad o) oi, and by equation , each p is isomorphic to a subquotient of Indg T
for some irreducible subquotient 7 of o o i (depending on p). Since T is admissible and
P C G, all the p are non-supercuspidal.

To prove (ii), let 7 be an irreducible admissible C-representation of G®! such that
some irreducible constituent p of 7 o4 is non-supercuspidal. Suppose p is isomorphic to
a subquotient of Ind% 7/ for P C G and 7/ an irreducible admissible C-representation
of M. The central subgroup Z(G) acts trivially on p, and hence also on 7/. Therefore
7/ = T for some irreducible subquotient 7 of i), where o is an irreducible admis-
sible C-representation of L. The representation p is isomorphic to a subquotient of
Ind% (o o). By equation (3.3.10) and exactness of parabolic induction, IndiG(gi)(p), and

hence its quotient 7, is isomorphic to a subquotient of IndiG(Zj)((Indgad o)|i(@))- This
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representation is isomorphic to
ad ad ad .
Indyy(olian) = mdg™ (Indfiy) (olian)) = Indg™ (o @c Cli(M)\L]).

By Lemma the C-representation o0 ®c C[i(M)\L] of L has finite length and its
irreducible subquotients v are admissible. Therefore 7 is isomorphic to a subquotient

of Indgad v for some v and some Q C G®, and therefore 7 is non-supercuspidal. O

3.3.3. Scalar restriction. Now let F'/F be a finite separable extension, G’ a connected
reductive F'-group and G := Respr/p(G’) the scalar restriction of G from F' to F.
As topological groups, G’ := G'(F”) is equal to G := G(F). By [BT65, 6.19. Cor.], G’
and G have the same parabolic subgroups. Hence:

Proposition 3.3.11. G’ admits an irreducible admissible supercuspidal C-representation
if and only if G does.

4. PROOF OF THE MAIN THEOREM FOR MOST SIMPLE GROUPS

4.1. Discrete Iwahori-Hecke modules. Let Reps(G,*B) denote the category of
C-representations of G generated by their B-invariant vectors, and let Mod(H¢c (G, B))
denote the category of right Ho (G, ®B)-modules. The functor of B-invariants

Repe(G,B) — Mod(H¢ (G, B))

T

admits a left adjoint
T : Mod(H¢c(G,B)) — Repe(G,B)
M— M ®Hc(G,‘B) C[%\G]

Proposition 4.1.1. When ¢ # p, the functor m — 72 induces a bijection between
the isomorphism classes of irreducible C-representations © of G with 7 # 0 and
isomorphism classes of simple right Ho(G,B)-modules ([Vig96l, 1.4.4, 1.6.3]). When
C = C, the functors are inverse equivalences of categories (cf. [Ber84, Cor. 3.9(ii)]; see
also [Mor99, Thms. 4.8, 4.4(iii)]).

Remark 4.1.2. The above functors are not as well-behaved when ¢ = p. In this case,
the functor of B-invariants may not preserve irreducibility. Similarly, the left adjoint
T may not preserve irreducibility.

When C = C, the Bernstein ring embedding Hc(Z, Zy) 9, fI@ is the linear map
defined by sending T)\Z to 0y := q;1/2E,\ for A € A. Its image is equal to Ac. Note that
if A € A is anti-dominant and z € Z lifts A, we have gy = dp(z), where 5 denotes the
modulus character of B.

We now recall some properties of the category Repc (G, %), including Casselman’s
criterion of square integrability modulo center, before giving the definition of a discrete
simple right Hc(G,B)-module. Recall that ny denotes the space of U-coinvariants
(i.e., the unnormalized Jacquet module) of a representation 7.

Lemma 4.1.3. Suppose that m is an admissible C-representation of G. Then the

natural map © — wy induces an isomorphism ¢ @ T2 7", Moreover, we have

pv-0\-1) = 5;1/2(t)(t - p(v)) for X € Ap, t €T lifting X\, and v € 7°.
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Proof. Recall that B has an Iwahori decomposition with respect to Z, U, U°P. Then
[Casl, Prop. 4.1.4] implies that the map 7 — 7y induces an isomorphism 7% - Ty -1 —
7750 for A € Ar with maxaea |a(M)|F sufficiently small. By [Vigl6l, Prop. 4.13(1)] the
operator Ty-1 is invertible in Hc(G,B), so 72 - Ty-1 = 72,

To show the last statement, we may assume that A € A;. Then, in our terminology,

[Cas, Lemma 4.1.1] says that ¢(|BtB/B|~[BtB]-v) = t-p(v), where [BtB] denotes the
usual double coset operator on 7F. Now [BtB]-v = v-T,-1 and T}-1 = E,1 = qtl,/fetq.
Moreover, |BtB/B| = ¢, = ¢, = dp(t~1). Putting this all together, we obtain the
claim. ]

Remark 4.1.4. The lemma and its proof hold when 93 is replaced by U and Z is replaced
by Zp N4l

Proposition 4.1.5. Let 7 be an irreducible C-representation of G with m> # 0.

(i) 7 is isomorphic to a subrepresentation of Indg o, where o is a C-character of
Z trivial on Zjy.

(ii) Casselman’s criterion: w is square integrable modulo center (as defined in
[Casl, §2.5]) if and only if its central character is unitary and

Ix(p(@))le <1
for all p € X.(T)" such that —pu ¢ X.(T)", and all characters x of T con-
tained in 5;1/2771].

Proof. (i) Since 7 is irreducible and smooth, it is admissible by [Vig96], I1.2.8], and [Cas),
3.3.1] implies 7y is admissible as well. By Lemma and the assumption 7% # 0,
we see that my # 0. The claim now follows by choosing an irreducible quotient 7y — o
for which ¢%° # 0 and applying Frobenius reciprocity.

(ii) This follows from [Cas, Thm. 6.5.1]. O

Definition 4.1.6. We say a simple right Hc (G, B)-module is discrete if it is isomorphic
to 2 for an irreducible admissible square-integrable modulo center C-representation
of G. We say a semisimple right Hc (G, 8)-module is discrete if its simple subquotients
are discrete.

Proposition 4.1.7. A simple right Hc(G,B)-module M is discrete if and only if any
C-character x of Ac contained in M satisfies the following condition: the restriction
of X to Az is a unitary character, and

(4.1.8) IX(0y-1)le <1
for any p € Xo(T)T such that —p & X.(T)7.

Proof. Note that M = 7 for an irreducible (admissible) C-representation 7 of G. Then
7 has unitary central character if and only if Az acts by a unitary character on M.
As any irreducible Ac-module is a character, by Casselman’s criterion (Proposition

4.1.5) and Lemma M is discrete if and only condition (4.1.8) holds. O

Remark 4.1.9. Some authors view 7% as a left He(G,B)-module. One may pass be-
tween left and right modules by using the anti-automorphism T, — T,,-1; that is, we
may define

Ty -v=0v- T,
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for w € W, v € m2. The space 72, viewed as either a left or right Hc (G, B8)-module,
is then called discrete if 7 is square integrable modulo center. For left modules, the
proposition above holds with “dominant” replaced by “anti-dominant,” and “6” re-

placed by “pt (for the definition of 5*, see the paragraph preceding Proposition 8 in
[Vig05]).

Lemma 4.1.10. For a character x : Ac — C such that X’Azm) is unitary, the following
conditions are equivalent:
(i) Ix(0\-1)lc <1 for any p € X.(T)" such that —p & X.(T)T,
(ii) [x(0x-1)|c < 1 for any A € At such that \=1 ¢ ASSF,
(iii) |x(Ox-1)|c < 1 for any X\ € AT such that \~' & AT.

Proof. We first recall that the invertible elements in AT consist of Ayer,, 50 [x(0))|c =1
for all invertible elements of A™.

As Ap = X (T), we see that (iii) implies (i) and (ii). To prove that (ii) implies (iii),
we need to show that |y(fy-1)|c = 1 for A € AT implies A™' € A*. By Lemma [2.2.5]
pick 7 > 1 such that X" € Az(g) x A>T, Then A\"Ag € A** for some A\g € Ay(c). As
‘X(g,\—n,\al)’C = 1 we deduce from (ii) that A" \g € AS¢ TN (ASS )~ which is contained
in AT N (AT)~L. Therefore \» € AT N (AT)~!. From the definition of dominance it
follows that A € At N (AT)~L

The proof that (i) implies (iii) is similar but easier. O

Proposition 4.1.11. A simple right Hc(G,B)-module M is discrete if and only if
Az ) acts on M by a unitary character and if its restriction to Hc (G, B%°) is discrete.

Proof. This follows from Proposition [4.1.7] and Lemma [4.1.10 O

4.2. Characters. In this section we continue to assume C' is a field of characteristic
¢, and suppose further that G is absolutely simple and isotropic. We determine the
characters H = H (G, 8*¢) — C which extend to H = H(G, ). This is an exercise,
which is already in the literature when C' = C (cf. [Bor76]).

For distinct reflections s,t € S, the order ny; of st is finite, except if the type of X
is A1. In the finite case, the braid relations imply

(4.2.1) (T.T,)" = (T,T,)  if ngy = 2r,
(422) (TsTt)rTs = (TtTS)TTt if Nst = 2r + 1.

The T for s € S and the relations (2.1.3]), (4.2.1]) and (4.2.2]) give a presentation of H.
A presentation of H is given by the T, Ts for u € ;s € S and the relations (2.1.3)),

[@27), (22) and
(4.2.3) T, T, = Ty if u,u’ € Q,
(4.2.4) T.Ts = TysTy ifuecQ,ses,

where u(s) denotes the action of 2 on S.
We have a disjoint decomposition
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where S; is the intersection of S with a conjugacy class of W. The S; are precisely the
connected components of Dyn when all multiple edges are removed (see [Bou02, VI.4.3
Th. 4] and [Bor76, 3.3]). Thus, we have

1 Af (522)7Df (624)7E67E770r ES?
m=< 2 when the type of ¥ = ¢ A1, By (£ > 3),F4,or Go;
3 Cy (£ >2).

When m > 1, we fix a labeling of the S; such that |S1| > |S2|, and when the type of
Yis Cp (0 > 2), we let So = {s2} and S5 = {s3} denote the endpoints of Dyn. (Note
that there are two possible labelings in types A; and C; (¢ > 2).) The parameters d
are equal on each component S;; we denote this common value by d;.

Definition 4.2.5. The unique character x : H — C with x(Ts) = ¢s (resp., x(Ts) =
—1) for all s € S is called the trivial (resp., special) C-character.

Lemma 4.2.6. Suppose {Ts}scs — C is an arbitrary map.

(i) When ¢ # p, the above map extends to a character of H if and only if it is
constant on each S;, and takes the value —1 or q% on each Ts,s € S;. There
are 2™ characters if ¢% +1 # 0 in C for each 1.

(ii) When ¢ = p, the above map extends to a character of H if and only if its values
are —1 or 0 on each Ty, s € S. There are 215 characters. Such a character is
supersingular if and only if it is not special or trivial.

Proof. (i) This follows from the presentation of H and the fact that the 7, are invertible
(so that the map must be constant on conjugacy classes).

(ii) This follows from [Vigl7, Prop. 2.2]. The claim about supersingularity follows
from [Vigl7, Thm. 6.15]. O

We wish to determine which characters of H extend to H. Since the elements 7, w
for u € © are invertible in H, the relations imply that a character x : H — C
extends to a character of H if and only if x(T}) = X(Ty(sy) for all s € S and u € €.
For example, if the image ¥ of Q in Aut(W,S,d;) is trivial, then any character of H
extends to H. The extensions are not unique in general. By their very definition, the
trivial and special characters always extend, and we also refer to their extensions as
trivial and special characters.

Let x : H — C denote a character, and suppose ¢ # p. By Lemma [4.2.6(i), the value
of x on Ty for s € S; is constant for each 1 < i < m. We define x; := x(Ts) € C for
s € S;, and identify the character y with the m-tuple (x;)i1<i<m.-

Lemma 4.2.7. Assume ¢ # p. Let x : H — C denote a character of H, associated
to the m-tuple (xi)1<i<m- Then x extends to a character of H except in the following
cases:

o type A1, equal parameters dy = do, ¥ #£ 1, and x1 # X2;

o type Cp (¢ > 2), equal parameters dy = ds, ¥ # 1, and x2 # X3-
Proof. When m = 1, then x(T5) = x(Ty()) for all u € Q and s € S, so that x extends
to H. We may therefore assume m > 1. We proceed type-by-type:
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o Type Ay with equal parameters di = dg. The group Aut(W,S,ds) = Z/27
permutes s; and so. If ¥ =1 or x; = X2, then x extends to ﬁ, while if ¥ #£ 1
and y1 # X2, the character x cannot extend.

o Type By (¢ > 3). In this case, Aut(W, S, ds) = Z /27 stabilizes the sets S; and
Sa, so that x(Ts) = x(Ty(s)) for all u € Q and s € S. Thus x extends to H.

o Type Cy (£ > 2) with equal parameters do = d3. The group Aut(W,S,ds) =
7./27 permutes s and s3. If ¥ =1 or if yo = 3, then x extends to fl, while
if ¥ # 1 and x2 # X3, the character x cannot extend.

o Type A; with unequal parameters dy # do; Type Fy; Type Ga; Type Cyp (£ > 2)
with unequal parameters dy # d3. In these cases, Aut(W,S,ds) (and conse-
quently W) is trivial, and thus x extends to H.

O

Before stating the next result, we require a definition.

Definition 4.2.8. Let R C C be a subring of C. We say a right ﬁc—module M is
R-integral if there exists an Hpg-submodule M° C M such that the natural map

CrM°— M

is an isomorphism of flclmodules. We call M° an R-integral structure of M. If p is a
maximal ideal of R, the Hp/,-module R/p @r M® is called reduction of M° modulo p.
We make similar definitions for the algebra Hc.

The following proposition combines the above results.

Proposition 4.2.9.

(i) Hc admits 2™ C-characters. They are all Z-integral, and their reductions
modulo p are supersingular except for the special and trivial characters.

(ii) Suppose x : Hc — C is a character, associated to the m-tuple (x:)i<i<m, and
suppose we are in one of the following two cases:

o type A1, equal parameters dy = do, ¥ #£ 1, and x1 # Xx2;

o type Cp (¢ > 2), equal parameters dy = ds, ¥ # 1, and x2 # X3-
Then the Hc-module x®X extends to a two-dimensional, Z-integral simple (left
or right) Hec-module with supersingular reduction modulo p, where Y = (x2, x1)
in the Ay case and Y = (X1, X3, x2) in the Cy case.

(iii) Suppose x : Hc — C is a character which does not fall into either of the two
cases of the previous point. Then x extends to a Z-integral complex character
of He, and its reduction modulo p is supersingular if x is not special or trivial.

Proof. The claims regarding integrality in (i) and (iii) are immediate.
(i) This follows from Lemma
(ii) and (iii): Let xo : H — Z denote the underlying Z-integral structure of x. If

we are not in one of the two exceptional cases, the result follows from Lemmas [4.2.6
[4.2.7| and [2.4.%(iii)l Otherwise, the character xo of H extends to a character x, of
Ig’ = Z[Axer,] ® H that is trivial on Age,. The tensor product x{ ®@p His a right
H-module that is free of rank 2 (since the subgroup Aye, of € has index |¥| = 2, by
(2.2.3))). If X’ : H" — C denotes the base change of x{ to C, then ' ® H. Hg is simple
and its restriction to H¢ is equal to x @Y. Note that the characters x and Y in (ii) are
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neither special nor trivial, since the x; are unequal by assumption and therefore have
supersingular reduction modulo p. We conclude by Lemma [2.4.2((iii)} O

4.3. Discrete simple modules with supersingular reduction. @ We continue
to assume G is absolutely simple and isotropic. Let p denote the maximal ideal of
Z[q"/?] C C with residue field F,. We now discuss discrete, Z[q"/?]-integral He-modules
with supersingular reduction modulo p.

The following is the key proposition of this section.

Proposition 4.3.1. Suppose the type of ¥ is not equal to A, with equal parameters.
Then there exists a right Ho-module Mc such that:

o Mg is simple and discrete as an ﬁ@—module;
o Mg has a Z[q'/?]-integral structure M which is furthermore free over Z[q"/?];
o M has supersingular reduction modulo p.

The proposition will follow from Propositions[4.3.2], [£.3.3] and[£.3.4| below. We sketch
the main ideas of the proof.

Consider first the special character x : Hec — C. Tt is Z[¢'/?]-integral, its reduction
modulo p is non-supersingular, and ¥(x) is equal to the Steinberg representation of
G®¢ over C, so that y is discrete. Any discrete, non-special character of H¢ is Z[ql/ 2]-
integral (in fact, Z-integral) and Lemma implies that its reduction modulo p is
supersingular (since the trivial character of H is not discrete). Thus, we first attempt
to find a discrete non-special character of Hc; these have been classified by Borel in
[Bor76, §5.8]. (Note that in [Bor76|, the Iwahori subgroup is the pointwise stabilizer
Zg% of an alcove; recall again that if G is F-split or semisimple and simply connected we
have Zo = Zy.) We describe these characters in Proposition and use Proposition
to determine which of these characters extend to ﬁ(c.

When m = 1, there do not exist any discrete non-special characters of Hc, and we
use instead a reflection module of Hyj g1/ (see Proposition . It is free of rank

|S| over Z[q'/?] and has supersingular reduction modulo p. When the type is Ay, this
module is non-discrete, which is why we must omit this type. (We also use reflection
modules in Proposition [£:3.4] to handle certain groups of type Bs for which Proposition

does not apply.)

We now proceed with the required propositions.

Proposition 4.3.2. Suppose the type of ¥ is By (¢ > 4), Cy (£ > 2), Fy, Go, Ay
with parameters di # da, or Bs with parameters (dyi,d2) # (1,2). Then the algebra
Hc admits a discrete non-special simple right module Mc, induced from or extending a

character of Hc, which is Z[ql/z]—z'ntegml. Moreover, the dimension of Mc is 1, unless
W #£ 1 and the type is

o Cy with parameters (1,1,1),(2,1,1), or (3,2,2);
o Cs with parameters (1,1,1),(1,2,2), or (2,3,3);
o Cy4 with parameters (1,2,2), or (2,3,3);

o Cy with parameters (1,2,2).

In these cases, Mc extends the Ho-module (=1, —1,¢%) @ (-1, ¢%, —1) where d := dy =
ds, and thus the dimension of Mc is 2
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Proof. When m = 1, the only discrete character of Hc is the special one ([Bor76}, §5.7]).
Suppose m > 1. For each choice of irreducible root system 3, we list in Tables [I] and
the possible parameters (dy,ds) or (di,ds,ds) for G (from the tables in [Tit79, §4]),
and describe if Hc has a discrete non-special character (using [Bor76l §5.8]).
We start with m = 2 in Table For every entry marked “Y,” the given discrete
non-special character extends to a character of Hc using the condition of Lemmam

TABLE 1. m =2

3 discrete non-special
>z Parameters character of H¢?
Ay (d,d) (d >1) N

(1,3) Y

(2,3) Y

(1,2) Y

(1,4) Y

(3,4) Y

By (£ >3) (1,1) Y
(1,2) Y (if £ >4), N (if ¢ =3)

(2,1) Y

(2,3) Y

Fy (1,1) Y

(1,2) Y

(2,1) Y

Go (1,1) Y

(1,3) Y

(3,1) Y

We now consider m = 3 (that is, type Cy) in Table In this case, the tables in
[Bor76l, §5.8] show that Hc always admits a discrete, non-special character. Note also
that Borel omitted the parameters (3,2, 2) for type Cy. In order to obtain this missing
case, we use the criterion of [Bor76l Eqn. 5.6(2)] to see that the only discrete non-special
characters of Hc are (—1,—1,1) and (—1,1, —1) (in the notation of [Bor76]). Note that
the characters corresponding to parameters with do # ds automatically extend to ﬁ@,
by Lemma [4.2.7]

(We have one more remark about the tables in [Bor76, §5.8]: the character (—1,—1,1)
for parameters (2,1,4) only works for £ > 3.)

__ Finally, we remark that in all cases, Propositions [4.1.11] and [4.2.9 imply that the
Hc-module Mc constructed above (either as the extension of a character of Hc, or as
the induction of a character from Hg to Hg) is discrete and Z[q'/?]-integral. O

We consider now the types Dy (¢ > 4), Eg, E7, and Eg. The tables in [Tit79) §4]
imply that G is F-split, so that d; = 1 for all s € S, and for distinct s,t € .S, the order
ngy of stis 2 or 3.
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TABLE 2. m = 3

5 Parameters Condition that some discrete N
non-special character of H¢ extends to Hc
C,((>2)] (1,1,1) (>4, 00U =1
(2,1,1) £>3,or¥v=1
(2,3,3) £=2,4>5or¥=1
(2,1,3) none
(1,1,2) none
(2,2,3) none
(2,1,2) none
(1,2,2) {=2,0>6,0or¥=1
(2,1,4) none
(2,3,4) none
Cs (3,2,2) T=1

Proposition 4.3.3. Assume that the type of ¥ is Dy (¢ > 4), Eg, E7, or Eg. Let M
denote the right ﬁz[ql/z}-module obtained as the twist of the (left) reflection ﬁz[ql/Q]'
module by the anti-automorphism Ty, — (—1)€(w)T:},1. Then M s free of rank |S]|
over Z[ql/z], has supersingular reduction modulo p, and Mc is a discrete simple right
f[@—module.

Proof. The left reflection ﬁz[quz}-mOdUIG is the free Z[g'/?]-module with basis {e;}scs,

with ﬁz[ql/z}—module structure given by

—et if s =1t,
Ts-er = < qgeq if s#t, ngy =2,
ger + ¢ %es if s#t, ngy =3,

Tu cEt = eu(t),

where s,t € S,u € Q. Twisting this module by the automorphism Ty, +~ (—1)“®) T3
gives a left Hy1/2-module M, satisfying

qet if s =t,
Ts-er =< —e if s #t, ngy =2,
—ep — ql/zeS if s #t, ngy =3,

Tu c et = eu(t)'

Finally, we define M to be the right ﬁz[ql /2-module obtained from M’ by applying the

anti-automorphism 7, +— T,,-1. The Hc-module M is simple (even as an Hc-module,
cf. [Lus83, §3.13]).

By applying Lemma [2.4.2(iii)| and Proposition twice, we may assume that G
is adjoint in order to prove the required properties of M. The reduction modulo p of
M is the Fp-vector space with basis {e;}scs, with the structure of a right Hp, -module
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given by

0 if s =
e Ty = 1 s=t

—ep if 5 F#t,
€t - Tu = eufl(t).

The restriction to Hy, of this fI]Fp—module is the direct sum of the characters {xs}ses,

where
0 if s =1,
—1 if s #t.

By Lemmas [2.4.2(iii)| and [4.2.6) we deduce that My, is supersingular. Further, one
checks that the right action of 9/\71 (u € X.(T)") on Mc is equal to the left action of

(=17 v L on (the base change to C of) the reflection module, where T Aot is defined

in [Lus83, §4.3] (note that with respect to our normalizations, the elements w; of op.
cit. are anti-dominant). The discreteness of Mc¢ now follows from Proposition m
and [Lus83| §3.2, Thm. 4.7]. (See also [Lus83, §4.23].) O

Finally, we consider one of the omitted cases from Proposition [4.3.2] namely type
Bs with parameters (1,2).

PropOSItlon 4.3.4. Assume that the type of ¥ is B3 with parameters (1,2). Then
HZ[ 1/2] admits a right module M, such that M is free of rank 3 over Z[q 1/2] has

supersingular reduction modulo p, and Mc s a discrete simple right H(c module.

Proof. In this case, the group G*¢ is an unramified non-split form of Sping, by the
tables in [Tit79]. We will use the reflection module as defined in [GS05] §7].

Denote by Along the subset of simple affine roots A which are long. We define an
action of Hyy,1/2) on the free Z[g 1/21-module of rank 3 with basis {eﬁ}ﬁem as follows.
ong

If a € Elong, we set
—es if a =g,
TSa 'eﬁ: qeﬁ lfOé;éB, nSa,SB :27
qges + ql/2 if a #£ 3, Msa,s5 = 3,
and if « is the unique short root in A, we set
T, -eg = qzeg.
Twisting this reflection module by the automorphism 7, — (—1)““’)T;} gives a new
left Hypg1/2-module M’ with action given by
qeg if =7,
Ts, -eg = —eg if a # B, Msa,s5 = 2,
—eg — ql/zea if a # B, Msa,s5 = 35

if v € ﬁlong; and
Ts, -eg = —eg
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if @ € A is short. We extend the action of Hz[ql/Z] on M’ to ﬁz[ql/Q] by declaring that
Tu € = eu(a).

As the algebra I;'Z[ql/z] is generated by Hz[q1/2] and the elements Ty, u € €2, subject to

the relations T, = T, 1, and TuTsaTu_1 = Tsu(a) for u,v € Q and o € &, we see that

M’ is a well-defined module of ﬁz[q1/2]. Finally, we define M to be the right ffz[qm]—

module obtained from M’ by applying the anti-automorphism T, + T,,~1. One checks
directly that Mc is simple (even as an Hc-module).

By Lemma [2.4.2(iii)| and Proposition 4.1.11| we are now reduced to the case where
G is simply connected. The reduction modulo p of M is the [F)-vector space with basis
{es} BERiony’ with the structure of a right Hg,-module given by

0 if =0,
eg-Ts, = )
—eg if a # 3,

for a € A. Therefore M, is equal to the direct sum of the characters {xs} BeRp,
ong
where
0 if =0,
Xﬁ(Tsa) - .
-1 ifa#p0.

for « € A. Lemma therefore implies that Mp, is supersingular.
Once again, we see that the right action of 9)\;1 (u € Xi(T)%) on Mc is equal to

the left action of (—1)5()‘H)q§\£ 2T/\111 on (the base change to C of) the reflection module.
mn

Section 8.5 of [GS05] gives an explicit description of Hecke operators associated to the
fundamental anti-dominant coweights in terms of 7T;, and the T ,. Using this description
along with Proposition we see that the He-module Mg is discrete. (See also
[GS05, Prop. 7.11].) O

4.4. Admissible integral structure via discrete cocompact subgroups. Let
be a number field with ring of integers Op, p a maximal ideal of O with residue field
k:= Og/p, and C/FE a field extension.

For any extension of fields, the scalar extension functor commutes with the 8-
invariant functor and its left adjoint T ([HVI19, Lem. III.1(ii)]). Therefore, if 7 is
an E-structure of a C-representation 7, then 72 is an E-structure of 72. Conversely,
if M is an E-structure of an Ho-module N, then T(M) is an E-structure of T(N).

Definition 4.4.1. We say that an admissible C-representation 7 of G is Og-integral
if m contains a G-stable Og-submodule 7° such that, for any compact open subgroup
K of G, the Og-module (7°)X is finitely generated, and the natural map

0:CRp, T° =7

is an isomorphism. We call ¢ (and more often 7°) an Og-integral structure of w. The
G-equivariant map 7° — k ®p, 7° (and more often the k-representation k ®o,, 7° of
G) is called the reduction of T° modulo p. We say that 7° is admissible if k ®p,, 7° is
admissible for all p.
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For any commutative ring R and any discrete cocompact subgroup I' of G, we define

forallyeI',ge G

oo — . _ ’ )
C¥N\GLR) = { G R | b = ) gy L5 b

where Ky is some compact open subgroup of GG depending on f. Letting G act on
this space by right translation, we obtain a smooth R-representation p%. The complex
representation ,0(15 of G has an admissible Op-integral structure given by p(FQE: the
reduction of ng modulo p is the admissible representation ,01,;.

Proposition 4.4.2. Assume char F' =0 and G semisimple. If 7 is a square-integrable
C-representation of G, then there exists a discrete cocompact subgroup I' of G such that

Homg(, pt) # 0.

Proof. Since char F' = 0, there exists a decreasing sequence (I'),),en of discrete cocom-
pact subgroups of G with trivial intersection, such that each is normal and of finite
index in I'g. (See [BH78, Thm. A]. The construction there is global, and we obtain the
required decreasing sequence by passing to congruence subgroups.) For any discrete
cocompact subgroup I', the normalized multiplicity of 7 in pg is

mndg(ﬂ) = VOIF . dim(c (Homg(ﬂ', p(rj)),

where volr is the volume of I'\G for a G-invariant measure induced by a fixed Haar
measure on G. By the square-integrability assumption on 7 and the limit multiplicity
formula, the sequence (mr,, 44(7))nen converges to a nonzero real number (see [DKV84]
App. 3, Prop.] and [Kaz86, Thm. KJ). O

Proposition 4.4.3. Assume char F = 0. Let w be an irreducible C-representation of
G and ' a discrete cocompact subgroup of G.

(i) If p: C®p T —> 7 is an E-structure of m, then the natural map
C @p Hompg(7, pip) — Homgygy(, pr)

is an isomorphism.
(ii) Any irreducible subrepresentation T of p% admits an admissible Og-integral
structure T N ng, whose reduction modulo p is contained in pg.

Proof. We recall a general result in algebra from [Boul2, §12.2 Lem. 1]: let C'/C be a
field extension and A a C-algebra. For A-modules M, N, the natural map

(4.4.4) c’ K¢ HomA(M, N) —>HOHIC/®CA(C/ ®c M, c’ Rc N)
is injective, and bijective if C’/C' is finite or the A-module M is finitely generated.

(i) Take C'/C = C/E, A = E[G], (M,N) = (1, p%). Then (4.4.4) is an isomorphism
because 7 is an irreducible E-representation of G.

(ii) For any compact open subgroup K of G, the Og-module (pBE)K is finite free

and ng contains 7° := 7N ng as Opg-representations of GG. Since the ring O is

noetherian, these facts imply the Og-submodule (7°)% of (pl(;E)K is finitely generated.
The natural linear G-equivariant isomorphism

E ®oy, po, — PE
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restricts to a linear G-equivariant isomorphism
E®o, T° =T,

and therefore 7° is an Og-integral structure of 7. It remains to verify that the injection
° T o . . T . .. . .
T <> pg,, stays injective after reduction modulo p. (As py, is admissible, this will also
imply that k ®p,, 7° is admissible.) More generally, suppose that 0 — M’ — M —
M" — 0 is any exact sequence of Og-modules with M” torsion-free. Then M” is
the direct limit of its finitely generated submodules, and finitely generated torsion-free
modules are projective, as Og is Dedekind. Hence Tor?E (M" k) =0, as Tor functors
commute with direct limits, so the sequence stays exact after reduction modulo p. [

The above result will be used in our construction of irreducible, admissible, super-
singular C-representations. It also has the following consequence, which may be of
independent interest.

Corollary 4.4.5. Assume char F =0 and G semisimple. Then any irreducible super-
cuspidal C-representation admits an admissible Og-integral structure whose reduction
modulo p is contained in pg, for some discrete cocompact subgroup I' of G.

Proof. When G is semisimple, any irreducible admissible supercuspidal C-representation
7 of G descends to a number field (see [Vig96, I1.4.9]). Since 7 is in particular square-
integrable, Propositionimplies that m embeds into p£ for some discrete cocompact
subgroup I'' of G. The claim the follows from points and of Proposition m ]

4.5. Reduction to rank 1 and PGL, (D). We now prove that most p-adic reductive
groups admit irreducible admissible supersingular (equivalently, supercuspidal) repre-
sentations.

Theorem 4.5.1. Assume that ¢ = p and char F' = 0. Suppose G is an isotropic,
absolutely simple, connected adjoint F-group, not isomorphic to any of the following
groups:
(i) PGL, (D), where n > 2 and D a central division algebra over F';
(ii) PU(h), where h is a split hermitian form in 3 variables over a ramified qua-
dratic extension of F or a non-split hermitian form in 4 variables over the
unramified quadratic extension of F.

Then G admits an irreducible admissible supercuspidal C-representation.

Proof. We first note by the tables in [Tit79] that the above exceptional groups are
precisely the ones where X is of type A, with equal parameters. (In that reference our
exceptional groups have names A,,_1, ?A,,q_1 for m > 2, d > 2 in case (i) and C-BCy,
2AY in case (ii).)

By Propositionthere exists a right ﬁz[ql/z]-module M which is free over Z[q/?],

whose base change Mc is a discrete simple Hc-module, and whose reduction Mg, is
supersingular. Set E := Q(q¢'/?), so that Z[¢"/?] € Op. Let © := T(Mc) denote
the irreducible square-integrable C-representation of G corresponding to Mc; then
T := %T(Mg) is a E-structure of m. We know by Proposition that 7 injects into
pg for some discrete cocompact subgroup I' of G, and therefore 7 injects into p% by
Proposition |4.4.3(i)} We identify 7 and 7 with their images in pg and pI;E, respectively.
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Proposition then ensures that 7° = 7N ng is an admissible Og-integral
structure of 7. In particular, we have a G-equivariant map C ®¢, 7° — 7.

Define M’ := (7°)%; since E is a localization of O, the isomorphism above implies
C®o, M' = 7% = Mg, so that M’ is an Opg-integral structure of Mc. Let p C O
denote the prime ideal lying over p, and let O, C C denote the localization of O at p.
Then M(’Qp = O, ®o, M’ is a finitely generated, torsion-free module over the discrete
valuation ring Oy, which implies it is free.

Both Mo, and M, é,)p are H, o,-modules which are free over O, and they are isomorphic
over C. Thus, we see that the reductions Mo, , and M('Qp /p dgree up to semisimplifi-
cation by the Brauer—Nesbitt theorem. In particular, Mé,)p Iy = Mé,)E Jp 1 supersingular
(since the same is true of Mo, /p = Mp,) and, by construction, MéQE /p is a submodule

of ( pl(;E /p)% (this uses the final claim of Proposition . Therefore we can pick a

non-zero supersingular element v of (ng /p)%. The G-representation ng /p is admissi-
ble, as I is cocompact, and hence so is its subrepresentation (G-v) generated by v. Any
irreducible quotient of (G - v) (which exists by Zorn’s lemma) is admissible by [Hen09,

84, Thm. 1], as F' is of characteristic zero, and supersingular by Proposition as
it contains (the nonzero image of) v. The theorem now follows from Proposition

O

The two exceptional cases will be dealt with in Sections [5] [6] below. Assuming this,
we can now prove our main result.

Proof of Theorem [A] Suppose that G is a connected reductive group over F. We want
to show that G = G(F') admits an irreducible admissible supercuspidal representation
over any field C' of characteristic p. By Proposition |3.2.1| we may assume that C'is finite
and as large as we like. Then by Proposition [3.3.2] we may assume that G is isotropic,
absolutely simple, and connected adjoint. The result then follows from Theorem

Corollary and Corollary O

5. SUPERSINGULAR REPRESENTATIONS OF RANK 1 GROUPS

In this section we verify Theorem [A] when G is a connected reductive F-group of

relative semisimple rank 1. In particular, this deals with the second exceptional case
in Theorem [£.5.1]

5.1. Preliminaries. = We suppose in this section that C is a finite extension of F,
which contains the |G|,-th roots of unity, where |G|,y denotes the prime-to-p part of
the pro-order of G.

Suppose that char I’ = 0. We will show that G admits irreducible, admissible,
supercuspidal C-representations. By Proposition [3.3:2] it suffices to assume G is an
absolutely simple and adjoint group of relative rank 1. We make one further reduction.
Let G®¢ denote the simply-connected cover of G:

1-Z(G*) -G —>G— 1

By Proposition [3.3.8, we see that G°¢ admits an irreducible, admissible, supercuspidal
representation on which Z(G*¢) acts trivially if and only if G does. Therefore, we may
assume that our group G is absolutely simple, simply connected, and has relative rank
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equal to 1. We will then construct irreducible, admissible, supercuspidal representations
of G on which its (finite) center acts trivially.

5.2. Parahoric subgroups. Let #Z denote the adjoint Bruhat-Tits building of G.
By our assumptions on G, 4 is a one-dimensional contractible simplicial complex, i.e.,
a tree. Recall that C denotes the chamber of % corresponding to the Iwahori subgroup
B, and let g and z; denote the two vertices in the closure of C. We let Ky and K3
denote the pointwise stabilizers of g and x1, respectively. We then have 8 = KyN Kj.

The vertices xg and x1 are representatives of the two orbits of G on the set of vertices
of ZA, and the edge C is a representative of the unique orbit of G on the edges of . By
[Ser03, §4, Thm. 6], we may therefore write the group G as an amalgamated product:

GgKo*sBKl.

Since the group G is semisimple and simply connected, the stabilizers of vertices
and edges in # are parahoric subgroups (see, e.g., [Vigl6, §3.7]). For i € {0,1}, we let
Kf denote the pro-p radical of K;, that is, the largest open, normal, pro-p subgroup
of K;. The quotient G; := K;/K ;r is isomorphic the group of kp-points of a connected
reductive group over kp (see [HV15, §3.7]). Likewise, the pro-p-Sylow il is the largest
open, normal, pro-p subgroup of B, and Z := B /4 is isomorphic to the group of
kp-points of a torus over kr. The image of B in G; is equal to a minimal parabolic
subgroup B;, with Levi decomposition B; = Z;U;. Thus, we identify the quotient Z

5.3. Pro-p Iwahori—-Hecke algebras. We work in slightly greater generality than
in Let
HC’ = Hc(G,ﬂ) = EndG C[ﬂ\G]

denote the pro-p Iwahori—Hecke algebra of G with respect to . We view H¢o as the
convolution algebra of C-valued, compactly supported, il-bi-invariant functions on G
(see [Vigl6, §4] for more details). For g € G, we let T; denote the characteristic function
of Ygil. The algebra H¢ is generated by two operators T5,,Ts,, where 50 and 51 are
lifts to the pro-p Iwahori-Weyl group N'/(Z N4) of affine reflections sg, s1 fixing xg, 71,
respectively, along with operators T, for z € Z. (Note that this labeling is different
than the labeling in ) For ¢ € {0,1}, we let Hc,; denote the subalgebra of H¢
generated by T3, and T, for z € Z; this is exactly the subalgebra of functions in H¢
with support in Kj, i.e.,

Heyi = Ho (K, 4) = Endg, CJU\K;].

The algebra H¢ ; is canonically isomorphic to the finite Hecke algebra Hc(G;, U;) (see
[CE04, §6.1]).

Since K;r is an open normal pro-p subgroup of Kj;, the irreducible smooth C-
representations of K; and G; are in bijection. Further, the finite group G; possesses a
strongly split BN pair of characteristic p ([Vigl6, Prop. 3.25]). Therefore, by [CE04],
Thm. 6.12], the functor p — p* induces a bijection between isomorphism classes of
irreducible smooth C-representations of K; and isomorphism classes of simple right
Hc -modules, all of which are one-dimensional.

We briefly recall some facts about supersingular Hc-modules (compare Lemma
[4.2.6). We refer to [Vigl7, Def. 6.10] for the precise definition (which is analogous
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to Definition and give instead the classification of simple supersingular Hc-
modules. Since G is simply connected, every supersingular Hc-module is a character.
The characters = of H¢ are parametrized by pairs (x,J), where x : Z — C* is a
character of the finite torus and J is a subset of

Sy == {s € {s0,s1} : x(cs) # 0}

(here ¢z is a certain element of C[Z] which appears in the quadratic relation for Tj;
note also that the definition of Sy, is independent of the choice of lift § € N'/(Z N4l) of
s). The correspondence is given as follows (cf. [Vigl7, Thm. 1.6]): for z € Z, we have

—_

=(T,) = x(#), and for s € {so, 51}, we have

_ 0 if se J,
2(Ts) = .
x(cs) if s & J.

Since G is simple, [Vigl7, Thm. 1.6] implies that = is supersingular if and only if
(Sx> J) # ({s0.51},0), ({s0.s1}, {s0,s1}).

5.4. Diagrams. Since the group G is an amalgamated product of two parahoric sub-
groups, the formalism of diagrams used in [KX15] applies to the group G. We recall that
a diagram D is a quintuple (po, p1, 0, Lo, t1) which consists of smooth C-representations
pi of K; (i € {0,1}), a smooth C-representation o of B, and B-equivariant morphisms
ti 0 — pi|s. We depict diagrams as

P1

Morphisms of diagrams are defined in the obvious way (i.e., so that the relevant squares
commute).

Let E denote a supersingular character of H¢, associated to a pair (x, J). We define
a diagram D= as follows:

o set o := x~!, which we view as a character of B by inflation;

o we let p=; denote an irreducible smooth C-representation of K; such that
p%,i = Ely,; as Hey-modules (by the discussion above, p=; is unique up to
isomorphism);

o let ¢; denote the B-equivariant map given by o = y~+ == p%z — Pz

B
Pictorially, we write
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We now wish to construct an auxiliary diagram D’ into which D= injects. This will
be done with the use of injective envelopes. Recall that if G is a profinite group and 7
is a smooth C-representation of G, an injective envelope consists of a smooth injective
C-representation injg7 of G along with a G-equivariant injection j : 7 < injg7 which
satisfies the following property: for any nonzero C-subrepresentation 7/ C injg7, we
have j(7) N 7" # 0. This data exists and is unique up to (non-unique) isomorphism.

Lemma 5.4.1 ([Pas04, Lem. 6.13]). Let 7 denote a smooth C-representation of G, and
let j : 7 = injgT denote an injective envelope. Let J denote an injective representation
of G, and suppose we have an mjection ¢ : 17— TJ. Then ¢ extends to an injection
qb injgT < J such that ¢ = q5

Lemma 5.4.2. Suppose G has an open, normal subgroup G*. Let T denote a smooth
C-representation of G such that G* acts trivially, and let j : T < injgT denote an

injective envelope of T in the category of C-representations of G. Then T — (inng)gJr
is an injective envelope of T in the category of C-representations of G/GV.

Proof. This is [Pas04, Lem. 6.14]; its proof does not require that 7 be irreducible or
that G be pro-p, as we assume that G* acts trivially. O

We now begin constructing D’.

Lemma 5.4.3. Let i € {0,1}. We then have

(inj g, C[Gi])|s = @ inj%g@UBi\GiI’
3

where & runs over all C-characters of B (or, equivalently, of Z;), and we have fized
choices of injective envelopes.

Proof. Consider the B-representation (injx, C[G;])*. The action of B factors through
the quotient B /4 = Z, which is commutative of order coprime to p. Therefore, we
obtain a B-equivariant isomorphism

(5.4.4) (IDJK L[ o~ @g@mﬁ

for non-negative integers my satisfying
mg¢ = dime Homgg (€, inj ;. C[G;])
— dime Homs (€, (injx, C[G:]) %)
= dim¢ Hompg, (€, injg, C[G:])
= dim¢ Homg, (5, (injg, C[G:)) 7).

(The third equality follows from Lemma[5.4.2]) Since C[G,] is injective as a represent-
ation of Gy, we have isomorphisms of Z; representatlons

(injg, C[G])Y = ClUN\G] @g®|13 NGl

so that me = |B;\ Gy



EXISTENCE OF SUPERSINGULAR REPRESENTATIONS 35
The isomorphism (5.4.4]) implies we have a B-equivariant injection
PP < (injg, OG-
3

As B is open, [Vig96, §1.5.9 d)] implies that the representation on the right-hand side is
injective. Lemma, then says that the above morphism extends to a split injection
between injective B-representations

P injuc PG < (injg, C[Gi)) |-
13

Since the U-invariants of both representations agree, the above injection must be an
isomorphism. O

Lemma 5.4.5. Set a := lem(|Bo\Go|, |B1\Gi|). There exists a diagram D" of the
form

inj g, C[Go] @@ Bo\Col ™!

%
T

inj e, C[Gy]®eB1\G1|™!

D/ — @5 inj%f@“

where kg and k1 are isomorphisms, and a morphism of diagrams

¥ .. -
PE0 © L » inj g, C[Go] P Bo\Gol ™!
. -1 . Y s D). inicsa
CE X » D¢ Inj¢
x R
(4 .. _
PE1 € = » injg, C[Gy] P /BIG™

in which all arrows are injections.

Proof. We fix the following injections, which are equivariant for the relevant groups:
o injective envelopes j¢ : £ < injg& for each C-character £ of B;
o injective envelopes j; : C[G;]P@IBAGI ™ imjKiC’[(GZ-]EB“'llBi\Gi|71 fori € {0,1};
o an inclusion ¢ : y ! — @5 £%a;
o an inclusion ¢; : p=; — C[G,])®eBAGI™" for § € {0,1}.

Let 7 € {0,1}. We first construct the x;. We have a B-equivariant sequence of maps

©a-[B;\Gi| ! ®a-|B;\G;| !

X pmi < C[G] 2 inj ., C[Gy]

and thus we obtain
_q1 Jiociou . . ARG [~ 18 8L
X == (inj, O[G;] 2 PAGITH
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By Lemmas |5.4.3| and |5.4.2L we have D, ¥ = (ianiC[Gi]EBa"Bi\Gi'_l)u. We fiz an
isomorphism «; : @, £ (ianiC’[Gi]@“’“Bi\‘gi‘_1)u such that

(5.4.6) Q;; 0C=J;0C;O0 L.
Now consider the maps of C-representations of B:

D e < (injg, C[G]*¢BACIT ) (i, O[Gi] P IBAGI)
13

By Lemma the above map extends to an B-equivariant split injection

.. a .. a|BAG, |1
Rq ¢ @lnj%feB — (IDJK,C[G'L]GB 1B \G:| )‘%
3
such that

(5.4.7) K O (@j?a) = q;.
3

Since both P, inju¢®* and (ianiC[Gi]eaa"Bi\GiP)|% are injective C-representations
of B and k; induces an isomorphism between their {-invariants (cf. Lemma [5.4.3)), we
see that k; must in fact be an isomorphism.

We now construct the morphism of diagrams. Set 9k, := j;oc; and g := (EBE jéB“) o
c. We have

(5.4.6) (5.4.7)
vic, o1 P2V a0 e B2 o,

and therefore we obtain the desired morphism of diagrams. O

5.5. Supersingular representations via homology. Recall that a G-equivariant
coefficient system D consists of C-vector spaces Dr for every facet F C %, along
with restriction maps for every inclusion of facets. This data is required to have a
compatible G-action such that each Dr is a smooth C-representation of the G-stabilizer
of F. The functor sending D to the quintuple (Dy,, Da,,De, o, t1), where the ¢; are
the natural restriction maps, is an equivalence of categories between G-equivariant
coefficient systems and diagrams (cf. [KX15] §6.3]).

We let D= and D’ denote the G-equivariant coefficient systems on 4 associated to
D= and D', respectively. The homology of G-equivariant coefficient systems gives rise
to smooth C-representations of G, and we define

7= im (HO(%,DE) LiN HO(@,D’)) ,
where 9, denotes the map on homology induced by .

Theorem 5.5.1. Suppose char F' = 0. Then the C-representation w of G admits an
wrreducible, admissible, supercuspidal quotient.

Proof. We use language and notation from [Pas04] and [KX15].
Step 1: The representation 7 is nonzero.
Fix a basis v for x~'. Let Wo,0(v) denote the O-chain with support zo satisfy-

ing w0y (z0) = to(v) and let @y, () denote its image in Ho(%,D=z). Set w :=
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VYu(@D040(v)) = @0,y o0(w) € T C Hy(%,D’). This is the image in Hy(#,D’) of a D}, -
valued O-chain supported on zg, and since the maps kg, k1 are isomorphisms and ) is
injective, we have @ # 0 [Pas04, Lem. 5.7]. We also note that therefore wg o) # 0.
Step 2: The representation 7 is admissible.
Since kg, k1 are isomorphisms, [Pas04, Prop. 5.10] gives

s C Ho(B,D')|w = D = (P injs¢ ™,
13

which by Lemma implies 7 — @5 £%9 5o that 7 is admissible.

Step 3: The Hco-module 7 contains =.

The element @, (,) € Ho(%#, Dz) is U-invariant and stable by the action of Hc, and
the vector space it spans is isomorphic to Z as an Ho-module (for all of this, see the
proof of [KX15| Prop. 7.3]). Since 1, is G-equivariant, the same is true for w € .

Step 4: The vector w generates .

Since Wy, (v) generates Hy(#,D=) as a G-representation and 1, is G-equivariant, @
generates m as a G-representation.

Step 5: We construct the quotient 7’ and list its properties.

By the previous step, the representation 7 is generated by w. Proceeding as in the
end of the proof of Theorem we see that any irreducible quotient of 7 = (G - @)
is admissible (since char F' = 0, and such quotients exist by Zorn’s lemma). Let 7’ be
any such quotient.

Step 6: We prove 7’ is supercuspidal.

Since @ generates m, its image in 7’ is nonzero. Thus, we obtain an injection of H¢-
modules = = Cw — (7')¥, and supercuspidality follows from Proposition O

Corollary 5.5.2. Suppose char ' = 0 and G is a connected reductive F-group of
relative semisimple rank 1. Then G admits an irreducible admissible supercuspidal
C'-representation.

Proof. By the reductions in it suffices to assume G is absolutely simple and simply
connected, and to construct a supercuspidal C-representation on which Z(G) acts triv-
ially. Since the center of G is finite, it is contained in BNZ = Z,. Hence, taking = to be
associated to (17, J), where 1y is the trivial character of Z and J # 0, {so, s1} (noting
that S1, = {s0,s1}), Theorem m produces an irreducible admissible supercuspidal
C-representation 7’ with trivial action of the center. This gives the claim. 0

Remark 5.5.3. The construction of 7’ above shares some similarities with the construc-
tion in §4.5l Therein, supercuspidal representations are constructed as subquotients
of C®(I'\G,C) = Indf 1r, where T is a discrete, cocompact subgroup of G and 1p
denotes the trivial character of I'. Taking I' to be torsion-free, we use the Mackey
formula to obtain

~Y Kz ~ 3 : /
(Ind§ 1p)| g, = @ Ind{l} 1 = injg, C[G;])¥%
I\G/K;
where a; = |[I'\G/K;|. (The last isomorphism follows from the fact that Indﬁi} 1is
injective, by [Vig96), §1.5.9 b)], and (Indﬁ"} I)Ki+ =~ (C[G;]; we may then proceed as in
the proof of Lemma ) The construction of Theorem [5.5.1] produces supercuspidal
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representations as subquotients of Hy(%,D’), for which we have
HO(‘@7,D/)‘K@' = ianiC[Gi]®ai7
where a; = a - |B;\G;|™! (cf. [Pas04, Prop. 5.10]).

6. SUPERSINGULAR REPRESENTATIONS OF PGL, (D)

In this section we verify Theorem [A| when G = PGL, (D), where n > 2 and D a
central division algebra over F'. In particular, this deals with the first exceptional case
in Theorem [4.5.1]

6.1. Notation and conventions. Throughout Section @ we let @p denote a fixed
algebraic closure of Q,, with ring of integers Z,, and residue field F,. We normalize the
valuation val of Q, such that val(p) = 1.

Let D denote a central division algebra over F' of dimension d?. Let B = ZU denote
the upper-triangular Borel subgroup of GL,, (D) with diagonal minimal Levi subgroup
Z = (D*)™ and unipotent radical U. Let T' = (F*)™ denote the diagonal maximal split
torus, N its normalizer in GL, (D), and U°P the lower-triangular unipotent matrices.

Let Op denote the ring of integers of D, mp the maximal ideal of Op, and kp the
residue field, so [kp : kp] = d. Let D(1) := 1+mp, so D(1) <D*. Let valp : D* - Z
denote the normalized valuation of D. Let I(1) denote the pro-p Iwahori subgroup

I(1) :=={g € GL,(Op) : g € GLy(kp) is upper-triangular unipotent}.

For any field K let I'x denote the absolute Galois group for a choice of separable
closure. If K'/K is a finite separable extension, then 'k is a subgroup of T'y, up to
conjugacy, hence the restriction of a I'ix-representation to 'k is well defined up to
isomorphism.

If K/Q, is finite we let Ik denote the inertia subgroup of I'x and kg the residue
field of K. If p: ' — GLn(@p) is de Rham and 7 : K — @p is continuous, we let
HT,(p) denote multi-set of 7-Hodge—Tate weights. We normalize Hodge-Tate weights
so that the cyclotomic character ¢ has 7-Hodge-Tate weight —1 for any 7. We let
WD(p) denote the associated Weil-Deligne representation of Wy over Q, (defined by
Fontaine, cf. Appendix B.1 of [CDT99)).

We normalize local class field theory so that uniformizers correspond to geometric
Frobenius elements under the local Artin map. Let recr denote the local Langlands cor-
respondence from isomorphism classes of irreducible smooth representations of GL,, (F)
over C to isomorphism classes of n-dimensional Frobenius semisimple Weil-Deligne rep-
resentations of Wr over C. (See [HT01].)

If L is a global field, we let |- |1 denote the normalized absolute value of Ap.

6.2. On the Jacquet—Langlands correspondence. We recall some basic facts
about the representation theory of GL,(D) and the local Jacquet-Langlands corre-
spondence. All representations in this section will be smooth and over C.

For a finite-dimensional central simple algebra A let Nrd : A* — Z(A)* (or Nrdy
for clarity) denote the reduced norm. Let v denote the smooth character |Nrd|p of
GL,, (D) for any m. If m; are smooth representations of GL,, (D), let m x --- X 7,
denote the normalized parabolic induction of 71 ®- - ® 7, to GLy~,, (D). In particular
these notions also apply to general linear groups over F' (by setting D = F).
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We will say that a representation is essentially unitarizable if some twist of it is
unitarizable.

The Jacquet—Langlands correspondence [DKV84] is a canonical bijection JL between
irreducible essentially square-integrable representations of GL,, (D) and irreducible es-
sentially square-integrable representations of GL,4(F") that is compatible with char-
acter twists and preserves central characters. (For short, we say “square-integrable”
instead of “square-integrable modulo center”.)

On the other hand, Badulescu [Bad08] defined a map | LJgr,, (p) | in the other direc-
tion, from irreducible essentially unitarizable representations of GL,,4(F') to irreducible
essentially unitarizable representations of GLy, (D) or zero, which in general is neither
injective nor surjective. (More precisely, [Bad08] only considers unitarizable represent-
ations, but we can extend it by twisting.) In the split case | LJqr,, (r) | is the identity.
It follows from Thm. 2.2 and Thm. 2.7(a) in [Bad08] that | LJqr,,(p) [(JL(7)) = 7 for
any essentially square-integrable representation m of GL, (D).

If p is a supercuspidal representation of GL,,(F) and ¢ > 1, then Z%(p,¥) is by
definition the unique irreducible quotient of pr1=9/2 x prB3=0/2 x ... x pp(E=1/2 Tt
is an essentially square-integrable representation of GLy,¢(F'). All essentially square-
integrable representations of GL,,(F') arise in this way, for some decomposition n = m/.

If p is a supercuspidal representation of GL,, (D), we can write JL(p') & Z%(p, s) for
some supercuspidal representation p and integer s > 1. Then Z*(p',¢) is by definition
the unique irreducible quotient of p/r3(1=0/2 x ppsB=0/2 ... x ppsE=1/2 0 Tt g
an essentially square-integrable representation of GL,/(D). All essentially square-
integrable representations of GL, (D) arise in this way, for some decomposition n = m/¢
(a result of Tadi¢, cf. [Bad08, §2.4]). Moreover, JL(Z“(p/,£)) = Z"(p, £s) [Bad08, §3.1].

If 7 is a smooth representation of GL, (D) let 7y denote its (unnormalized) Jacquet
module. The following lemma was proved earlier, cf. Remark

Lemma 6.2.1. Suppose that m is an admissible representation of GLy (D) over C.
Then the natural map py : ™ — 7y induces an isomorphism w1 — (WU)ZN(I).

The following results will be needed in Section

Lemma 6.2.2. Suppose that I is an irreducible generic smooth representation of
GL,4(F) over C that is essentially unitarizable and such that the representation m =
| LIgL,(py [(IT) of GLy, (D) is non-zero. If 7l =£ 0, then there exist irreducible repre-
sentations py, ..., pn of D*/D(1) such that 7 is a subquotient of p} x -+ x pl, and
recp(I)|w, = @iy recr (JL(P)) lw-

Proof. After a twist we may assume that II is unitarizable. As II is moreover generic,
we know that IT = o1 X --- X g,v% for some square-integrable o; of GL,,(F') and
real numbers «; € (— % %) satlsfylng aj+apy1—; =0and o5 = opq1- if @ # 0 (see e.g.
[HT01, Lemma I1.3.8]). Since |LJGL (p) [(IT) # 0 by assumption, it follows that d | n;
for all i and m = | LIqr,, (py [(IT) = o} 1/0‘1 XX o.v*, where o} is the square-integrable
representation of GL,,, /q(D) such that JL(o}) = ;. (See [Bad08, §3.5].) Let n; := n;/d.

From /(1) #£ 0 and Lemma it follows that the supercuspidal support of 7 is a
tame representation of Z (up to conjugacy), so each o, is of the form Z"(p,n.), where
p! is an irreducible representation of D*/D(1). We write JL(p!) = Z*(p;, el) with p;
irreducible supercuspidal, so 0; = Z%(p;, e;n};). In particular, w is a subquotient of the
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normalized induction of @) ;<. 0<j<ni-1 prveite(ni=1)/2=3) - On the other hand, IT is
a subquotient of the normalized induction of ®1§i§r,0§j§ein;—1 piv@itlemi=1)/2=3 = Ag

recp(IT)|w,. only depends on the supercuspidal support of IT (see the paragraph before
Thm. VII.2.20 in [HT01]), we obtain

i+(esnl—1)/2—j
recy (IT) | = B Y e (0) e
1<i<r,0<j<e;n}—1

Similarly, recp(JL(p!))|w, = @6171 (61 )/27krecF(pi)|WF. Denoting by pf, ..., pl,
the representations p” aitei((ni=1)/2— 9) in any order, a straightforward computation
confirms that ;. recy(JL(p}))|w, = recy(II)|w,. O

We now recall a result of Bushnell-Henniart concerning explicit functorial transfers
of irreducible representations of D* /D(1). An admissible tame pair (E/F, () consists of
an unramified extension of degree f dividing d, and a tamely ramified smooth character
¢ : EX — C* such that all Gal(E/F)-conjugates of ¢ are distinct. In that case, after
choosing an F-embedding of E into D (which is unique up to conjugation by D*),
B := Zp(E) is a central simple E-algebra of dimension e?, where e := d/f. Define a
smooth character A : B*(1 + mp) — C* by declaring it to be ( o Nrdg on B* and
trivial on 1+mp. Then define 7p(() := Indgi (14+mp) A\ is an irreducible representation

of D*/D(1) (of dimension f).

Proposition 6.2.3.

(i) Any irreducible representation of D*/D(1) is isomorphic to wp(C) for some
admissible tame pair (E/F, ().
(ii) The element w € F acts as the scalar ((w)® on 7p(().
(iii) If (E/F,() is an admissible tame pair, then

recr (JL(Tp(C))) = Sp,(Indyy (i~ ¢)),
where ng 1s the unramified quadratic character of E*.

We recall that the special Weil-Deligne representation Sp, (o), for o an irreducible

e—1
. .. . _ e=1l_p
representation of W, is indecomposable and satisfies Sp,(o)|w, = 2:%) ol .

Proof. For (i), see [BH11l §1.5]. Part (ii) follows from the definition. Part (iii) is the
main result of [BHI11]. O

6.3. On lifting non-supersingular Hecke modules. Let H := H(GL,(D), (1))
the corresponding pro-p Iwahori-Hecke algebra over Z [Vigl6] and for a commutative
ring R let Hp := H®R. Similarly we define Hz := H(Z,ZNI(1)) and Hz r :== HzR.
Note that the pro-p Iwahori subgroup Z N I(1) is normal in Z. All Hecke modules we
will consider are right modules. A finite-dimensional H@p—module is said to be integral

if it arises by base change from a HZ -module that is finite free over Z,.
Let W (1) : N/Z NI(1), A1) := Z/Z N I(1), and define monoids

= {diag(d1,...,0n) € Z :valp(d1) > --- > valp(dn)}
and A(1)T := Z+/Z NI(1).
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We recall that H has an Iwahori-Matsumoto basis T, for w € W(1) and a Bernstein
basis E,, for w € W (1), which in fact depends on a choice of spherical orientation. We
choose our spherical orientation such that £, = T, for w € A(1)*. (This is possible
by [Vigl6, Ex. 5.30]. It is the opposite of our convention in §2.3|) Similarly, #; has
basis T/ for w € A(1).

For w € W(1) we have integers q,, € ¢%>°, as recalled in (Note that our base
alcove C is the one fixed pointwise by I(1).)

Lemma 6.3.1. For z = diag(d1,...,0,) € Z with 6; € D™ we have

g = ¢ Sics [valp (3 —valn (5;)]

Proof. As the Iwahori-Hecke algebra has equal parameters ¢¢ we deduce that ¢, =
g™ where ¢ is the length function relative to the alcove C. By using the action of the
finite Weyl group N /Z and the first length formula in [Vigl6, Cor. 5.11], we may assume
that 2 € Z*. By [Vigl6}, §3.9] we then have ¢, = (I(1)zI(1) : I(1)) = (I(1) : I(1) N
2I(1)zY) = (Up : 2UpzY), where Ug := U N I(1). Hence ¢, = ¢%2i<s(Valp (@) —valn(9;))
as required. O]

Let Wy = S,, denote the Weyl group of T'. Recall from [Vigl7, §5, §1.3] that Ag(Ar)
is the free module with basis E,, () for 4 € A7 := X, (T') and that the central subalgebra
Zp = Ao(A7)"? of H has a basis consisting of the sums 4 Bu(w) with p running over
the Wo-orbits in X,(T'). For I C {1,...,n} let By := E, (&), where ui; € X,(T) = Z" is
defined by pr; = 1if i € I and pur; = 0 otherwise. For 1 <17 <nlet 2 := ZI,|I|:i Ey.
By induction and [Vigl6, Cor. 5.28] we see that the algebra Zp is generated by %7,

oy Dy, L
The following lemma follows from [Vigl7, Prop. 6.9].

Lemma 6.3.2. A finite-dimensional HE, -module M is supersingular if and only if the
action of Z; on M is nilpotent for all 1 <i<n—1.

Lemma 6.3.3. There exists a unique injective algebra homomorphism 0 : HZ@ —
~ ’ p
Mg, such that 0(TZ) =Ty, for allw € A(1)*. We have

|I|+1))~

2 i—
(6.3.4) By = ¢* G =G ).

Proof. The first assertion follows from [OV18, §2.5.2, Rk. 2.20]. We claim that for any
© € X* (T)v

d2 . s Mr N,
(6.3.5) By =4 2r<siap <ias (s~ )Q(Tuz(w))v
which implies (6.3.4) by taking p = p7.

Note that X, (T)t ={pu € Xu(T): p1 > -+ > pp}. If p € Xy (T), then p(w) € Z+
and hence E, 5y = T,y and formula (6.3.5) holds. In general, choose u' € X.(T)*
such that g+ u' € X, (T)*. Then formula (6.3.5)) follows easily from the following three
assertions: (1) T T% ) = T2 o) (et (2) i) B (o) = (Gpu(eo) G () G sy () Bt ()
in the notation of [Vigl6, §4.4], where we take the positive square root; and (3)
Lemma [6.3.1] Assertion (1) is clear and assertion (2) is [Vigl6| Cor. 5.28]. O

The following simple and presumably well-known lemma will be used below.
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Lemma 6.3.6. Suppose that p: Wgp — GLn(@p) s a smooth representation. Then for
any v € Wg the valuations of the eigenvalues of p(7y) depend only on the image of 7y in
Wgp/lp 2 7.

Proof. Fix a geometric Frobenius element Frobr € Wg, and let v; < --- < v, denote
the valuations of the eigenvalues of p(Frobp). We need to show that the eigenvalues
of p(Frob% g) have valuations rvqy < -+ < ro, for any g € Ip. As p(Ip) is finite and
normalized by p(Frobr), we see that p(Frobp)?" and p(Ir) commute for some £ > 1, so
p(Ir) preserves the generalized eigenspaces of p(Frob%). Hence the valuations of the
eigenvalues of p(Frobﬁ,f g) are independent of g € Ir, and the claim follows by passing
to ¢-th powers. O

We now fix an isomorphism 2 : Q, — C.

Proposition 6.3.7. Suppose that 11 is an irreducible generic smooth representation
of GL,q(F') over C that is essentially unitarizable and such that the representation
7 = |LlgL,(p) [(II) of GLn(D) is non-zero. Suppose that 7! W) is a non-zero
integral ”H@p—module with non-supersingular reduction, and let vi < --- < v,g denote

the valuations of the eigenvalues of a geometric Frobenius on 1~ (recr(I1)). Then there
erists 1 < j <n —1 such that

jd

Z v = _dj(n—j) val(q).
- 2
=1
Proof. Step 1: We compute the action of 27, ..., Z;, on the Hecke module zfl(wl(l))

and show in particular that it is scalar.

Note by Lemma that 7/() is a subquotient of (p} x --- x p/)!() for some
irreducible representations p} of D*/D(1), and pj x - - X p, = IndgL"(D) (phrin=D/2
- @ ply~n=1/2) (unnormalized induction). By [OVIS, Prop. 4.4] we have
(6.3.8)

Z,Qp’
where we used the homomorphism 0 of Lemma m

By Proposition [6.2.3(i) we can write p, = mp((;) for some admissible tame pair
(F;/F,¢). Welet fi := [F; : F] and e; := d/fi. Let ¢/ := 17({;). From equations

(6.3.4), (6.3.8) and Proposition [6.2.3{(ii) we deduce that Z; acts on 2~ !(7/(})) as the

scalar
(639) )\j — Z <qd2(2iel i_(jgl))qd2((n+1)j/272iel i) chl(w)el>
|7|=3 iel
= q—dQ(g) Z (qu(nl)jﬂ H C{(w)ei)

|I|=j i€l
Step 2: We complete the proof. By assumption, the Hecke module s~ (7/(M) is
integral, so \; € Z,, for all i and \,, € Z; . Moreover, as the reduction of 2~ (x!(1) is

non-supersingular we deduce by Lemma that A\,_; € Z; for some 1 < j<n-—1.
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From now on assume for convenience that the ¢/ are ordered such that the sequence
val({/(ww) ™) is non-increasing. Consider the polynomial H?:l(l—qdz(”_l)ﬂg(w) 4 X).
By its Newton polygon is defined by the points (i,val()\;) + d? (;) val(q)) for
0 <i<n From A\,_; € Z; , A\i € Zy, and the convexity of the quadratic function

z(x —1)/2 we deduce that (n — j, d? (";j) val(q)) is a vertex of the Newton polygon. It
follows for the sum of the largest j root valuations that

(6.3.10) Zval (n=1/2¢! () =¢i) = d2<<;‘) - (“;9» val(q).

Again by convexity we obtain the root valuation bounds

(6.3.11) val(¢@ " V/2¢ () "4) > dP(n — j)val(q) Vi < j,
(6.3.12) val(g@ " D/2¢! (@) "4) < d2(n — 5 — 1) val(q) Vi > j.
From Lemma and Proposition [6.2.3|(iii) we see that
n e—1
recy (1) |y, =2 @ @ IndWF‘ ez fz_l) G| - ‘;fi_l)/2_k_
=1 k=0

If Frobr denotes a geometric Frobenius of Wy, then Frob?i is a geometric Frobenius
of Wg,. We see that all eigenvalues of Frobp on Ind&vfi A (me;‘i(f Fl)({) have valuation
} Val(C’(Frobfi)) = } val(¢/(w)). Hence, for ¢ < j and 0 Z§ k < e; — 1 all eigenvalues
of Frobp on IndWF (n % fz_l)C N (ci=1)/2=F Yave valuation

€; 61‘—1

@)~ (5 = k) vall) < vl +

) val(a)

<"t (- ) vall) + S va(g) = A1

where we used (6.3.11]) and that e; — 1 < d. Similarly, for ¢ > jand 0 < k <e; — 1

we find that the eigenvalues of Frobr on Ind%? (ng(fi—l)g)‘ . |§fi_1)/2_k

greater than w val(g). Therefore, from (/6.3.10) we deduce that

val(g),

have valuation

J e

ivl ZZfz(VaICZ @)) - ( il )val ) ZV&]CZ

=1 k=0

—e(("57) - (3) + 25 v - —anuq).

O

6.4. A reducibility lemma. Let Fy denote the maximal absolutely unramified
intermediate field of F//Q,. The following lemma generalizes [EGHI13|, Prop. 4.5.2],
which dealt with regular crystalline Galois representations.

Lemma 6.4.1. Suppose that p: I'r — GLn(@p) is a de Rham Galois representation.
Let v1 < --- < v, denote the valuations of the eigenvalues of a geometric Frobenius
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element acting on WD(p), and for each embedding T : F — Qp let hyp < -+ < hep
denote the T-Hodge—Tate weights of p. Then Ztl v; > [F : Fy]~ lel ZT:F—@p hri
for any 0 < j <n.
Suppose that th < hrp for some T and that for some 1 < j < n — 1 we have
o =[F R psg, iri- Then pis reducible.

Proof. We first choose E/Q, a sufficiently large finite subextension of @p /Qp, so that
in particular p can be defined over F and all embeddings 7 have image contained
in E. Choose F'/F a finite Galois extension over which p becomes semistable. Let
D := Dg(p|r,,) be the covariantly associated free Fj ®g, E-module, equipped with
actions of ¢, N, Gal(F'/F), where F denotes the maximal absolutely unramified
intermediate field of F'/Q,. As usual, we write D = €. Fi»E D,. Fix any embedding

0: Fj) = E and let f := [F} : Q). Note that /" acts linearly on D and stabilizes
each D, .

By construction of WD(p) and Lemma m the eigenvalues of ¢/’ on Dy, have
valuations rv; < --- < rv,, where r := [Fj : Fy]. For any 0 < j < n, choose a <pr—
stable E-subspace D), C Dy, of dimension j such that the eigenvalues of ©!" on Dy,
have valuations rv; < --- < rvj. Then D’UO is also N-stable, since Ny = ppN. Now for
each o : Fjj — E choose the unique E-subspace D/ C D, that agrees with our choice
of D), when ¢ = 0¢ and such that D" := @U:F(;%E D! is p-stable. Then D’ is stable
under the actions of Fj ®q, E, ¢, N. As in the proof of [EGHI3, Prop. 4 5.2] (see also

the proof of [BS07, Prop. 5.1]) we now compute that ty(D’) = [[FEO%]”]] /_,v; and that

ty(D') > g%ﬁ 1 >r g hri. By weak admissibility of D we have

J
(*5) Z > [F: Fy) 12 3 e,

i=1 T:F—=FE

proving the first claim (Wlth equahty when j =0 or j =n).

Now suppose that equality holds in for some 1 < j <n —1. If v; = vj;1 then
monotonicity of the hr; and (¥;41) imply that equality holds in both (¥;—1), (*;41)
and that hr; = h, 41 for all 7. Thus, by modifying j, we may assume without loss of
generality that equality holds in and that v; < vjy1 (as hry < hy,, for some 7, by
assumption).

Let D’ be the sum of all generalized o/ /—eigenspaces in the F-vector space D whose
corresponding eigenvalues have valuation at most rv;. As v; < vj41 we see that D’ is
a free F} ®q, E-module of rank j, stable under the actions of ¢, N, and Gal(F’'/F).
Equality in (*;)) gives that tz(D’) = tnx(D’), so p admits a j-dimensional subrepresen-
tation. g

Remark 6.4.2. The lemma can fail when h,; = h;, for all 7. For example, let F//Q,, be
a quadratic extension and y : I'p — @; a potentially unramified character that does
not extend to I'g,. Then Ind??;” x is irreducible and de Rham with all Hodge-Tate
weights equal to 0 (since it is potentially unramified). In particular/,\vl = vy = 0.
Concretely, via local class field theory, we can take F' = Q2 and x : QZQ — @; tame
and non-trivial on fu,41(Qp2).
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6.5. On base change and descent for compact unitary groups. The purpose
of this section is to discuss base change and descent results for compact unitary groups
that go slightly beyond those in [Labll], namely allowing that the unitary group is
non-quasisplit at some finite places. The proofs will be provided by Sug Woo Shin in
Appendix [A] o N

Suppose that F/F* is a CM extension of number fields with F© # Q and G a
unitary group over F* such that

(i) G/ﬁ is an inner form of GL,4;

(ii) G(F;) is compact for any place u | 0o of F't;
(iii) G is quasi-split at all finite places that are inert in F/F*.
Let ¢ denote the complex conjugation of F/FT. Let AT(G) denote the set of finite

places of F*+ where G is not quasi-split. This is a finite set of places that split or ramify
in F. Let A(G) denote the set of places of F' lying over a place of AT(G).

Proposition 6.5.1. Suppose that 7 is a (cuspidal) automorphic representation of
G(Agzy). Then there exists a partition n = ny + --- + n, and discrete automorphic
representations I1; of GLy,a(Ap) satisfying 1LY = 1I§ such that 11 := 11, B8 - - - B1II, s
a weak base change of w. More precisely, at every finite split place v = ww® of F+ we
have |LJG,(};M) |(ILy) = 7, as representations of G(Fy) = G(F}), and at infinity the
compatibility is as in [Lablll Cor. 5.3].

Proposition 6.5.2. Suppose that ﬁ/ﬁJr is unramified at all finite places and that 11 is
a cuspidal automorphic representation of GL,q(Ag) such that 1V = 11°, Il is cohomo-
logical, and 11, is supercuspidal for all w € A(G) (in particular |LJG(EU) |(IL,) # 0).
Then there evists a (cuspidal) automorphic representation 7 of G(Ag,) such that at
every finite split place v = ww® of F* we have | LJG(ﬁw) |(I1,) = m, as representations
OfG(ﬁw) = G(ﬁ;_)

6.6. Supersingular representations of GL, (D). We now prove the existence of
supersingular (equivalently, supercuspidal) representations of GL, (D) and PGL, (D).

Theorem 6.6.1. Suppose that C is algebraically closed of characteristic p. For any
smooth character ¢ : F* — C* there exists an irreducible admissible supercuspidal
C-representation of GL,(D) with central character . In particular, there exists an
irreducible admissible supercuspidal C-representation of PGL, (D).

Corollary 6.6.2. If C is any field of characteristic p, then PGL, (D) admits an irre-
ducible admissible supercuspidal representation over C.

The proof uses Galois representations associated to automorphic representations on
certain unitary groups. We now make a few relevant definitions in preparation for the
proof. ~ ~

As in we fix an isomorphism 2 : @p —~ C. Recall that if F/F* is a CM
extension of number fields and II is a regular algebraic cuspidal polarizable automorphic
representation of GL,(Az) (in the sense of [BLGGT14b| §2.1]) we have an associated

semisimple potentially semistable p-adic Galois representation 7;,,(II) : 'z — GLy, (@p)
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that satisfies and is determined by local-global compatibility with IT at all finite places
[BLGGT14b, Thm. 2.1.1], [BLGGT14a].

Suppose that Ft # Q and that G is a unitary group over F [T as in . If 7 is an
automorphic representation of G(Az, ), then its weak base change Il = IT; 8 --- B1I,
of Proposition [6.5.1] is regular algebraic and each II; is polarizable. By the Moeglinf
Waldspurger classification of the discrete spectrum and the previous paragraph it fol-
lows that II has an associated semisimple potentially semistable p-adic Galois represent-
ation () = rp,(II) : Tz = GLyq(Q,) that satisfies and is determined by local-global
compatibility with 7 at all finite places of F that split over F+ and are not contained in
A(G). (We note that the Chebotarev density theorem shows that the set of Frobenius
elements at places w of F that split over F* is dense in T 7) In particular, if IT is not
cuspidal, then 7, ,(m) is reducible.

Proof of Theorem 6.6.1]. B
Step 0: We show that it suffices to prove the theorem when C' = ).

Given a smooth character ¢ : F* — C* we can define (' : F* — F; by extending

¢ ’0; (which is of finite order and hence takes values in F; ) arbitrarily. If Theorem|6.6.1

holds over Rj, there exists an irreducible admissible supercuspidal E)—representation s
of GL,,(D) with central character ¢’. Then by Step 3| of the proof of Proposition
there exists an irreducible admissible supercuspidal C-representation 7’ of GL, (D)
with central character ¢’. As C is algebraically closed, a suitable unramified twist of
7’ has central character .

We will assume from now on that C' = Fp.

Step 1: We find a CM field F with maximal totally real subfield Bt # Q and a place
v | p of FT such that

(i) F/F* is unramified at all finite places;
(ii) any place of F' F* that divides p splits in F;
(i) Fif = F;
and a cyclic totally real extension L /F* of degree nd in which v is inert.

By Krasner’s lemma we can find a totally real number field H, a place u of H, and
an isomorphism H, — F. Now we apply [Hen83, Lemma 3.6] and its proof to find
finite totally real extensions L /F*/H and a place v of F* above u such that LT /F*
is cyclic of degree nd, F7 = H,, and v is inert in LT. (We briefly recall the proof:
pick a monic polynomial @) of degree nd over F' whose splitting field is the unramified
extension of degree nd. Then let L™ be the splitting field of a monic polynomial P
over H that is u-adically very close to () and let F* be the decomposition field of some
place above u. We can use sign changes of P at real places to ensure that L™ is totally
real.)

Now pick any totally imaginary quadratic extension ﬁ/ F* in which any place di-
viding p splits. By [CHTOS, Lemma 4.1.2] we can find a finite solvable Galois totally
real extension K+ /FT that is linearly disjoint from L*/ F*, such that v splits in K+,
and such that for any prime ' of F'* that ramifies in F and any prime w’ of K+ above
v’ the extension K I,/ Fv, is isomorphic to the extension Fv / Fv,. Then we can replace
F/F+ by KYF/K*, LT by K*L*, and v by any place of K* lying above v to ensure
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that, without loss of generality, F / F* is unramified at all finite places. (In particular,
we can always achieve F'* # Q in this way.)

We let w denote a place of F lying over v and fix an isomorphism of topological
fields F,, = F. We let L := LTF and let ¢ denote the unique complex conjugation of
L.

Step 2: Letting vy 1 p denote any place of F'* that is inert in L™ and splits in F, we

now find a unitary group G over F'* such that
0) G5 ~
(i) G(E;") is compact for any place u | oo of F't;

(iti) G(Fy) = GL, (D);

(iv) G is quasi-split at all finite places not contained in {v,v;}.

is an inner form of GL,4;

Let G* denote the unique quasi-split outer form of GL,4 over F* that splits over F.
By [Clo91l §2] we can find an inner form G of G* that satisfies all the above conditions.
(If nd is odd we do not need the auxiliary place vi. If nd is even we use v; to ensure
our local conditions can be globally realized.)

The set AT(G) (defined in contains v if d > 1 and is contained in {v,v1}. Any

place of A(G) is inert in L and splits over F*, and the set Az(G) of places of L lying
above A(G) is in canonical bijection with A(G).

For any finite place v/ € AT(G) of F* that splits as v/ = w'w’® in F we obtain an
isomorphism ¢,y : G(F, ~+) = G(Fy) = GLpg(F,) that is unique up to conjugacy.
Moreover, ¢ o s and Lure differ by an outer automorphism of GL,,4(F,c). We also fix
an isomorphism ¢y, : G(E) = G(F,) =5 GL,(D). (It is canonical, up to conjugacy,
by condition (i).)

Step 3: We find an algebraic Hecke character x : A} /L* — C* with associated
potentially crystalline p-adic Galois representation ¢ = rp,(x) : I'r, — Q (cf. [CHTOS,
Lemma 4.1.3]) such that

() wyr = e,
Wi ,
(ii) for any place w' € Ap(G) the induced representation Indy, " X, is irre-
ducible; ‘
F~
(iii) the representation r := Inde 1 has regular Hodge—Tate weights, i.e., for each

~ = . I's .. ..
K F — Q) the nd integers HT s (Indrf 1) are pairwise distinct;

. _ _ . _ Pg—. . .
(iv) the restriction r|pﬁw to I'z, of the reduction 7 = Indy.! ¢ is irreducible.

We first introduce some notation. Let A, denote the places w’ of L that divide p.
Note that, by construction, any place w’ € Ar(G)U A, splits over LT, i.e. w' # w'.
Let Sk := Homes(K,Q,) for any topological field K of characteristic zero and S, :=
Hom(k,F)) for any field k of characteristic p.

Our strategy is to carefully choose continuous characters 6, : I'r, , — @; for any
w' € AL(G)U A, that satisfy (6,/05.)|1, =€ —(nd=1)| _, and are potentially crys-
talline when w' € A,. We then deduce by [BLGGT14b, Lemma A.2. 5(1)] that there
exists a character ¢ : I'f, — Qp such that ¢¢ = e~ (=1 and ¢|1Lw, = ew"ILw, for
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all w' € Ar(G) U A,. In particular, ¢ is potentially crystalline, and we let x be the
associated algebraic Hecke character. It follows that condition |(i)| holds.

For any w’ € Ar(G) we can choose a smooth character ¢, : Fak;, =15 — @; such

that the Gal(Lyy/Fl )-conjugates of Cu| ox are pairwise distinct. (For example, we

can take a faithful character of ¥ = and inflate it to O .) We may assume without
loss of generality that /(5. = 1. N ‘

Now suppose that w’ € A,. Suppose that we are given any integers A, (k € SL)
satisfying Ay + Axe = nd — 1 for all k € Sp. Let 07, : I'p, — @; be any crystalline

character with HT(65,) = A, for all Kk € S L, C Sr. Without loss of generality, by
cr )c — 6—(nd—1)‘

our constraint on the A,, we may assume that 6, (6.

For v’ € AL(G) UA, define

Cur if w' € AL(G) — Ap;
O = efJICw’ if w € AL(G) N Ap;
0, ifw € Ay — AL(G).

This completes the construction of a potentially crystalline character 1 and its asso-
ciated algebraic Hecke character x. By construction, for any w’ € Ap(G) the charac-
ter 2Cyr|7, , corresponds to x| ox under the local Artin map. Therefore, since the

Gal(Lyy /Fy)-conjugates of Cy |Of are pairwise distinct, we deduce that condition |(ii)

holds.
Finally, we will choose the integers A\ (k € Sr) so that conditions and hold.
Note that condition is equivalent to the condition

(iii") for any x’ € S the nd integers {\. : k € Sp, K|z = &'} are pairwise distinct.
First choose the A\, for those k € Sp, that do not induce either of the places w, w¢

on L soNthat condition holds for any ' € S 7 not inducing either of the places w,

w® on F. It remains to choose the A, for those x that induce the place w on L (since
the remaining ), are determined by the condition A\, + Ax. = nd — 1 for all k), i.e. for
keES Ly -

To choose the A, for k € Sr,, we note that F|pﬁw = Ind?i”u (|, ) is irreducible if
and only if the Gal(L,,/ ﬁw)—conjugates of Y|r ., are pairwise distinct, or equivalently if
the characters @\‘}:w (0 <i < nd-—1) are pairwise distinct. (Recall that ¢ = #kp.) We
have |7, = 05 Culr,, if d>1or [, =05, otherwise. By [GHS18, Cor. 7.1.2],
noting our opposite conventions concerning Hodge-Tate weights, we have 05|, =
IL,c Ser., Wy bs  where w, corresponds to the character Ozw —» k;w Z F; under local

class field theory and b, := >

resy, w—o M- Fix any o € S, and s € Z. Then we

can choose the A, for k € Sp, so that o|;, = wi. By taking s so that the wd
(i =0,...,nd — 1) are pairwise distinct (taking, for example, s = 1), condition
holds. Finally, we can ensure that condition |(iii’){ holds for all x" € S5 while keeping
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7| I;, unchanged by varying the A\, (for k € Sz, ) modulo ¢™ — 1. This completes
Step Bl

Step 4: Using automorphic induction and descent we define an automorphic repre-
sentation 7’ of G(Az, ) with associated Galois representation r = Ind?f .

Let I1” denote the automorphic induction of x with respect to the cyclic extension
L/F. 1t is an automorphic representation of GLy4(A#) that is parabolically induced
from a cuspidal representation. (For the functoriality of automorphic induction in
cyclic extensions we refer to [Henl2], which shows in particular that it is compatible
with local automorphic induction at all places. Note the results of [Henl2] apply to
unitary representations, but by twisting they continue to hold for twists of unitary
representations. )

We claim that I1” is cuspidal. This follows from [Hen12], Theorems 2, 3, and Proposi-

tion 2.5, provided that the Hecke characters {x° : 0 € Gal(L/F)} are pairwise distinct.
Equivalently, the Galois characters {47 : ¢ € Gal(L/F)} are pairwise distinct, which
in turn is equivalent to the condition that Indgf~ 1 is irreducible. This is a consequence
of condition in Step [3] so II" is cuspidal.

Let II' := 11" ® | de t\ (nd=1)/2. By conditionm Stepwe have xx¢ = |- \ (nd=1),
hence (IT')Y 2 I1°. On the other hand, II’_ is cohomological by [Clo90, Lemma 3.14],
as it is regular by condition in Step |3 It follows that II' is regular algebraic and
polarizable in the sense of [BLGGT14bl §2.1], so we have an associated Galois repre-
sentation rp,(II'). By local-global compatibility at unramified places and Chebotarev
we deduce that rp,,(I") = Ind?f .

For w' € A(G) the local factor II; , is supercuspidal, as recz (II),,) is irreducible by
condition|(ii)|in Step It follows from what we recalled in that | LJ G(F.) |(IT,) #

By Proposition we deduce that II' descends to a (cuspidal) automorphic rep-
resentation 7’ of G(AF +), such that for all finite places v' ¢ AT(G) of F* that split

as v/ = ww' in F we have ml, = 1II' , as representations of G(F+) GLng(Fy). We

deduce that rp,,(7") = Ind E "

Step 5: We use the automorphlc representation 7’ to define an irreducible admissible
F,-representation o of G(E) = GLy (D).

Fix a maximal compact open subgroup K, of Hv,‘p G(f ). If U is any compact
open subgroup of K, G(Aoo’p) and W is any Z,|[K,]-module, we let S(U,W) be the

Zy-module of functions f : G(F*)\G(A%ﬂr) — W such that f(gu) = u,'f(g) for all
g€ G(A%"Jr) and u € U (where u, denotes the projection of u to K,,).

Using the compactness of GG at infinity, we see as in [EGH13, Lemma 7.1.6] that
there exists a Qp-algebraic representation Wy of [] o'lp (F;, ) over @p such that
LﬂU S(U, W) contains 17/ as G(A%O+)—reprfsentat10n. Choose a Kj-invariant
Zy-lattice W° in Waig and let Wye := Wy ¢ 97, [F,.

Pick a compact open subgroup U =[], ., Uy of G(AOo ) such that

oo

() ()" # 0
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(i) there exists a place v/ t poo of F't such that U, contains no element of finite
order other than the identity;
(iii) the group HU,‘p U, is contained in K, and acts trivially on Wai.
Note that condition (ii) implies that for any compact open subgroup U’ = UI; Hv”[poo Uy
with U] < K, we have S(U', W) = W% as Z,-modules for some s > 1 depending only
on U’. In particular,

(6.6.3) S, W) &z R S(U',W ez R)

for any Zy-algebra R (see e.g. [EGHI3, §7.1.2]). We will apply this with R = Q,, and
R—F,.

Let P denote the set of places w’ 1 p of F that split over a place v’ of F'* not contained
in A*(G), and are such that U, is a maximal compact subgroup of G(F ™). For each
such w’ we conjugate the isomorphism ¢, of Step [2| so that 1, (Uy) = GLnd(Oﬁw,)-
Note that the set P has finite complement in the set of places of F that split over F+.
Let T” denote the commutative polynomial Zp—algebra in the variables TS,) for w' € P
and 0 < ¢ < nd, acting on any S(U, W) as double coset operators as in [EGH13, §7.1.2].
Note that the ring T” acts by scalars on (7 '7/°°)V inside S(U, W,ig) and stabilizes the
Zy-lattice S(U, Wy)e)- Therefore there exists a unique maximal ideal m of TP with
residue field F,, such that (27 17°°)Y C S(U, Waig)m.-

Applying and localizing at m we obtain that S(U, Waig)m # 0. Then

S(Uu Fp)m ®Fp Walg = (U7 Walg)m ?’é 07

where the isomorphism uses condition (iii) on U. Writing U" := [],, Uy and
S(UY,Fp) = limy, - S(U U,,F,), we have S(UY,Fp)m # 0. This is a non-zero admissible
smooth representation of G(ﬁj ) 2 GL, (D), using the isomorphism ¢,, of Step |2l Let
o be an irreducible (admissible) GL,,(D)-subrepresentation of S(U",F,)m, which exists
by the proof of Lemma 9.9 in [Herll] or [HVI2, Lemma 7.10].

Step 6: We show that o is supersingular, or equivalently, supercuspidal.

By [OVIS8, Thm. 3] it suffices to show that the ’Hﬁp—module ol ig supersingular,

where I(1) denotes the pro-p Iwahori subgroup of GL, (D) = G(F;") defined in §6.3
In fact, we will even show that (S(UY,Fp)m)!™ = S(U? - I(1),F,)n is supersingular.
Assume by contradiction that this is false, so one of the operators 2 for 1 < j <n-—1
has a nonzero eigenvalue A; on S(UY - I1(1),Fp)m.

Again from we know that S(U"Y - I(l),zp) ®7, R~ S(U"-I(1),R) for R = @p
and R = F,. By applying [EGHI3, Lemma 4.5.1] (a version of the Deligne-Serre
lemma) with A = TP[2], M = S(U" - I(1),Z,), n the maximal ideal of A generated
by m and Z; — )j, we deduce that there exists a homomorphism 6 : A — Z, such
that the §-eigenspace of S(U" - I(1),Q,) is non-zero, ker(f|y») = m, and 6(Z;) € Z;.
By [EGH13, Lemma 7.1.6], there exists an automorphic representation 7 of G(Az,)
satisfying

(i) (¢ '7>)U"I(1) has a non-trivial f-eigenspace;
(i) 7o is trivial.
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It follows from (i) that il # 0 is an integral Hg -module whose reduction is non-
P

supersingular. (A priori, we get that (Z_lml,(l))@S is integral for some s > 1, but then
we can project to any factor. Note that any finitely generated submodule of a finite
free Z,-module is free.)

By local-global compatibility and [CHT08, Cor. 3.1.2], for any w’ € P the char-
acteristic polynomial of 7(Frob,,) equals Z?jo(—l)i(Nw’ yii=1)/ 2T75JZ,)X nd=i modulo m,
where Frob,, denotes a geometric Frobenius element at w’. The same is true for
Tpa(m), as ker(f|pr) = m, and hence we deduce by the Chebotarev density theorem
that r,,(7) = 7.

By Proposition we obtain an automorphic representation II of GLj,4(Af) with
associated Galois representation r, ,(II) lifting 7 such that | LJ G(F.) |(IL,y) = m, for all

finite places v’ of F* that split as v/ = w'w'® in F. As 7 is irreducible by construction
we know that II is cuspidal. In particular, II,s is essentially unitarizable and generic
for each finite place w’ of F.. Let v; < --- < v,4 denote the valuations of the eigenvalues
of a geometric Frobenius on 2~ !(recy(Il,)). From Proposition m (applied to II,,)
we deduce that there exists 1 < j < n — 1 such that

2
(6.6.4) D = —w val(q).

Note that the infinitesimal character of II is the same as that of the trivial representa-
tion. By [BLGGT14b, Thm. 2.1.1] we deduce that HT(rp,(II)|r ) = {0,1,...,nd—1}

for all 7 : F, — Q, and that tWD(rp,,(IT) |- V= = pecp (I, ® | det \gfnd)/z). To-
gether with (6.6.4) it follows that

d2' _ 4 id
ng = —‘](7;‘7) val(q) + jdval(¢"=Y/?) = <j2 ) val(g),

where v} < --- </, denote the valuations of the eigenvalues of a geometric Frobenius
on WD(rp,(II)|r,, ). By Lemma noting that val(q) = [Fy : Qp), it follows that

7p,.(IT)

Step 3]
Step 7: We fix the central character.

Suppose we are given a smooth character ¢ : F* — E: . As in Step |§| it is enough

v is reducible, which contradicts that its reduction 7|p_ is irreducible by

to construct an irreducible admissible supercuspidal representation such that (’)}X7 acts
via C|O;~ .

Note that o has a central character y,, as it is irreducible and admissible. We
claim that XU’O§ = det(7| Iﬁw) - gndnd=1)/2 ypder the local Artin map. The central

character of the GL,,(D)-representation 2~ ', in Step |§| lifts x, and is equal to the

central character of ¢~ 'II,,. (This equality follows from the definition of LJ in [Bad08,
§2.7], noting that I, is generic and hence fully induced from an essentially square-
integrable representation.) By local-global compatibility at p (cf. Step |§[) the lat-
ter character equals WD(det TW(H)‘Fﬁw)‘ I on Oy, under the local Artin map. As
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TW(H)\FI; has parallel Hodge-Tate weights 0,1,...,nd — 1, we have det r,,(II)
g nd(nd=1)/2 . WD(det rp, (IT)|r .
It thus suffices to show that in Step 3 above we can choose r such that det(7|r ) is

|I P
)|1; and hence deduce the claim.

any prescribed character that is extendable to I" P Let us fix any & € Sk, and write
|1, = ws for some s € Z. Then the condition that the @\?Lw (t=0,1,...,nd — 1)

are pairwise distinct means:

(6.6.5) s#0 (mod L=1) V| nd, £ < nd.

On the other hand, det(7|;, ) = | m}lzw = w?,, where &' € Sky, 1s the restriction

of ¥ to kg . As any character I'z — E: restricts to a power of wyz on inertia, we can
prescribe det(7|;_ ) if and only if we can choose s in any residue class modulo ¢ — 1.

Since q;d:ll > q+ 1 for any ¢ | nd, { < nd, it follows that we can pick any s in the
interval [1,q — 1], completing the proof. O

Proof of Corollary[6.6.3. Going back to Step [5] of the proof of Theorem [6.6.1] it is
clear that the representation S(UY,F,)n # 0 is defined over a finite field (as 7 is), and
hence so is its irreducible subrepresentation ¢. This proves the corollary when C' is a
sufficiently large finite field of characteristic p. We conclude by Proposition U
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APPENDIX A. BASE CHANGE

Sug Woo ShinE|

In this appendix we will prove Propositions and
We need a character identity for the Jacquet—Langlands correspondence. We fix

compatible Haar measures on GLy4(F) and GL, (D) in the sense of [Kot88, p.631].
We say that f € C°(GL,(D)) and f* € C°(GL,q(F)) are associated, or that f* is
a transfer of f, if the orbital integral identity Os(f) = Os+(f*) holds for every regular
semisimple elements § € GL, (D) and §* € GL,4(F) with the same characteristic
polynomial. (We use the same Haar measures on the centralizers of 6 and 6* in GL,, (D)
and GL,,4(F), respectively, to compute the orbital integrals.) A well-known fact, proven
in [DKV84], is that every f € C°(GL, (D)) admits a transfer in C°(GL,4(F)). (This
is a special case of the Langlands—Shelstad transfer.) Let e(GL, (D)) € {£1} denote
the Kottwitz sign [Kot83]. Explicitly e(GL,(D)) = (1),

ISupported by NSF grant DMS-1802039.
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Proposition A.0.1. Let ™ be an irreducible unitarizable representation of GLyq(F).
For every associated pair f € C°(GL, (D)) and f* € C°(GLypa(F)), we have

trw*(f7) = e(GLn(D)) - tr (| Ligr, (p) | (7)) (f).

Proof. This follows from [Bad07, Prop 3.3] and the Weyl integration formula [DKV84]
A.3.1] for GL, (D) and GL,4(F). O

We assume that the CM extension F / F+ and the unitary group G over F+ are as
in Section [6.5

Write G* for a quasi-split inner twist of G over Bt (with an isomorphism between
G* and G over an algebraic closure of F' +) By convention, every trace considered on
p-adic or adelic points of G* over F (as opposed to over F' +) will mean the twisted trace
relative to the action of Gal(F/FT) on Res=, =, G* (with the Whittaker normalization),
unless specified otherwise.

F/F+

Proof of Proposition [6.5.1. This proposition is implied by [Lab11l Cor. 5.3] except pos-
sibly the relation |LJ G(F) |(I1,) = 7y | We elaborate on this point. Thus we assume
v = ww* as in the proposition. We will omit the subscript for |LJ | when there is little
danger of confusion.

Let S be a finite set of places of Bt containing all infinite places as well as all finite
place where either 7 or GG is ramified. Denote by Sf the subset of finite places in S.
In particular S D A*(G). For an irreducible admissible representation o of G(Az, )
unramified outside S, we write BC(¢%) = ITI¥ to mean that the local unramified base
change of oy, is II,, at all places v ¢ S. (The unramified base change is defined via the
Satake transform.) Using the Langlands parametrization at archimedean places, we
write BC(0a) = Il to mean that the local base change of o is s

For each finite place u and f, € COO(G(ﬁj)) let £ € C°(G*(F;})) denote a transfer.
There exists ¢, € COO(G*(F R F+)) whose base change transfer is f; by [Lablll
Lem. 4.1]. Write fg, := Huesf fu and b5 = Huesf G-

Let I, := 1L, ® I1,c be the v-component of II, which is a representation of G*(ﬁ Rp4

Ef). Let 7% := I, via the isomorphism G*(F,") & G*(F,). Then we have the following
character identities, where tr I, (¢,) means the twisted trace by abuse of notation:

(A.0.2) il (¢y) = trmy(f7) = e(G(EF)) - tr (| LI|(m3)) (fo)-

The first equality holds by the same computation as for [Rog90, Prop. 4.13.2 (a)]. The
second equality is Proposition On the other hand, the trace formula argument
of [Lablll Thm. 5.1] shows

(A.0.3) Zm o) tros,(fs;) = ¢ trlls (¢s;),

2In fact this assertion is implicit in [Labl1l Cor. 5.3] where it reads “Aux places non ramifiées ou
décomposées la correspondance o, — m, est donnée par le changement de base local.” However when
v = ww® the author introduced the notion of local base change (§4.10 of op. cit.) only when U is a
general linear group at v (in his notation). We need the case when U is a nontrivial inner form of a
general linear group at v.
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with a constant ¢ and the automorphic multiplicity m(o) € Z>o, where the sum runs
over o such that BC(c®) = II¥ and BC(0s) = . Again the trace on the right-
hand side is the twisted trace. Since (A.0.3) holds for each f* =[], fu (and fJ
and ¢, constructed from f, at each u as above), we choose f, to be the characteristic
function on a sufficiently small compact open subgroup of G (ﬁj ) at u € Sg\{v}. Then
troy(fu) > 0, so we obtain

> n(ly,0) troy(fo) = ¢ - trlly(¢y), with n(Il,,0) > 0,

g

where ¢ is a new constant and the sum runs over ¢ such that BC(c®) = II, BC(04) =
I, and troy(fy) # 0 at every u € Sg\{v}. Notice that o = 7 contributes to the sum
with n(H 7) > 0, by choice of fu at u € Sf\{v}. By choosing a suitable f, we deduce

that ¢’ # 0. Substltutlng we obtain
Zn(ﬂma) troy(fo) = ¢ - e(G(E))) - tr (| LI [(73)) (f),

g
with the sum running over the same set of o. Since the sum is not identically zero,
| LY | () is irreducible (rather than 0). By linear independence of characters of G(F;),
we deduce that the coefficients on the left-hand side are zero unless o, = |LJ|(7}).
Since n(Il,,7) > 0, we must have m, = |LJ|(7}), noting that no cancellation takes
place in the sum as the coefficients are non-negative. O

Proof of Proposition[6.5.3. The proposition would follow from [Labll, Thm. 5.4] but
we need some care since our G is not quasi—splitﬁ; we also need some more information at
split places. Thus we sketch the trace formula argument. Again we drop the subscript
from | LJ|.

The argument of [Labl1, Thm. 5.4] shows the identity (adapted to our notation)

(A.0.4) Zm tro(f) = trI(¢)

with the functions ¢ = [], ¢, on G*(Az) and f = [[, fu on G(Az,) as in the proof
there, where the sum runs over automorphic representations o of G(Az, ) with multi-
plicity m(c) whose weak base change is II. The right-hand side is interpreted as the
twisted trace by the convention mentioned earlier.

The key point to show is that the right-hand side does not always vanish. There is a
subtlety when G is not quasi-split, because not every test function ¢ may be allowed in
(A.0.4). The potential problem is that a base change transfer of ¢,, at u from G* ( w)

to G*(F;}) is not in the image of endoscopic transfer from G(F}) to G*(F;}). We make
a choice of test functions avoiding this problem.

At oo one does the same as in Labesse’s proof so that trll(¢so) # 0. At finite
places u, we recall that f,, and ¢,, are related as follows: writing f,; for a transfer of f,

3Con‘cra]ry to the assumption on U above [Lablll Thm. 5.4] that U is quasi-split at all inert places,
it seems the assumption ought to be that U is quasi-split at all finite places. We believe that “Le
second membre étant non identiquement nul” (in the proof of [Lablll Thm. 5.4], between the second
and third displays) is not always true, e.g. if I, is a principal series representation at a non-quasi-split
place that splits in F. (See the third paragraph of the current proof.) If it were true, we could deduce
Proposition directly from [Lablll, Thm. 5.4].
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from G(F;}) to G*(F;}), the functions f* and ¢, are associated in the sense of [Labl1]
4.5]. There is no problem when u ¢ A*(G) as G and G* are isomorphic outside AT (G);

more precisely we choose ¢, on G(F ® e EF) such that

tr 1, (¢y) # 0

and choose f, to be a base change transfer to G(F") (which exists by [Labll, Lem. 4.1],
where it is called an “associated” function). At each v = ww® € A*(G), choose f, and
let f} be a transfer. Write 7 := II,, via the chosen isomorphism G*(F,) = G*(F,}).
Then by Proposition

trmp(f3) = e(G(E)) - tr (LT [(m) (fo)-
Note that | LJ |(7}) is irreducible (i.e. nonzero) since 7;; is supercuspidal by assumption.
If we choose f, such that tr (| LJ |(7})) (fy) # O then the above identity tells us that

tr i (fa) # 0. Choosing ¢, to be a function associated with f;* (such a ¢, exists by
either [Lablll Lem. 4.1]), we have as in (A.0.2]),

trIl, (¢) = tray(f7) # 0.

We have exhibited a choice of f and ¢ above such that is valid with the
right-hand side non-vanishing. Therefore there exists some 7 on the left-hand side
contributing with positive multiplicity. Let S be the set of places of F'™ containing all
infinite places and the finite places where G and II are ramified. Write St for the subset
of finite places in .S. As we are free to choose ¢, in the unramified Hecke algebra at each
u € S, we may assume that 7 is unramified with BC(7%) = II¥. The nonvanishing
of tr oo (foo) tells us that BC(7so) = . Thus is reduced to a formula of the
form , with 7 contributing nontrivially to the sum. Arguing as in the proof of

the preceding proposition, we deduce that |LJ|(7)) = 7. O
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