Math 327, Term Test Fall Quarter 2011 Thu, Oct 27

Name: _____

Instructions:

Show *all your work* on these sheets. Justify your answers! This test has 5 problems and 7 pages. Make sure you have all of them. No calculators, books, notes, etc. are allowed.

Prob.	Possible	Score
	points	
1	10	
2	10	
3	10	
4	10	
5	10	
TOTAL	50	

Question 1. (10 points)

(a) Define the concept of a <u>basis</u> for a topology on a set X.

(b) Is the collection of all closed intervals, $C = \{[a,b] : a < b \text{ in } \mathbb{R}\}$, a basis for a topology on the set of real numbers?

(c) Suppose that X, Y are topological spaces. Show that $\{U \times V : U \text{ open in } X, V \text{ open in } Y\}$ is a basis for a topology on $X \times Y$. You are not allowed to assume anything about the product topology!

Question 2. (10 points)

(a) Show that \mathbb{R}_{ℓ} is disconnected.

(b) Show that if X is path-connected, then X is connected.

(c) Is \mathbb{R}_{ℓ} path-connected?

Question 3. (10 points) Suppose that $A \subset X$ and suppose that $f : A \to Y$ is a continuous function with Y Hausdorff. Show that there is at most one continuous function $g : \overline{A} \to Y$ that extends f (that is, $g|_A = f$).

Question 4. (10 points) Recall that, as a set, $\mathbb{R}^{\omega} = \prod_{n=1}^{\infty} \mathbb{R}$.

(a) Is the function $f : \mathbb{R} \to \mathbb{R}^{\omega}$ with f(t) = (t, 2t, 3t, ...) continuous, if \mathbb{R}^{ω} carries the product topology?

(b) Does the sequence in \mathbb{R}^{ω} ,

$$\mathbf{x}_{1} = (1, 0, 0, 0, \dots)$$
$$\mathbf{x}_{2} = (\frac{1}{2}, \frac{1}{2}, 0, 0, \dots)$$
$$\mathbf{x}_{3} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, \dots)$$
$$\vdots$$

converge, if \mathbb{R}^{ω} carries the box topology? Justify your answer.

Question 5. (10 points) Suppose that (X, d) is a metric space. Fix any element $x \in X$ and r > 0, a positive real number.

(a) Show that $C_r(x) = \{y \in X : d(x, y) \le r\}$ is a closed subset of X.

(b) Give an example to show that $\overline{B_r(x)}$ need not be equal to $C_r(x)$. (Recall that $B_r(x) = \{y \in X : d(x,y) < r\}$. Hint: one can find such an example that is a subset of \mathbb{R} with the induced metric.)

Scratch Paper