SERIES OF p-ADIC REDUCTIVE GROUPS

NORIYUKI ABE AND FLORIAN HERZIG

ABSTRACT. Suppose that G is the group of F-points of a connected reductive
group over F, where F/Q, is a finite extension. We study the (topological)
irreducibility of principal series of G on p-adic Banach spaces. For unitary
inducing representations we obtain an optimal irreducibility criterion, and for
G = GLy(F) (as well as for arbitrary split groups under slightly stronger
conditions) we obtain a variant of Schneider’s conjecture [Sch06], Conjecture
2.5]. In general we reduce the irreducibility problem to smooth inducing rep-
resentations and almost simple simply-connected G. Our methods include
locally analytic representation theory, the bifunctor of Orlik—Strauch, transla-
tion functors, as well as new results on reducibility points of smooth parabolic

inductions.
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1. INTRODUCTION

Suppose that F//Q, is a finite extension and G = G(F') the group of F-points
of a connected reductive group G over F. This paper concerns the continuous
representations of G on p-adic Banach spaces over a coefficient field C' that is
a (sufficiently large) finite extension of Q,. Such Banach representations were
introduced in the work of Schneider—Teitelbaum [ST02] and play a fundamental
role in the p-adic Langlands program (see for example [Bre04], [BS0T], [Coll(],
[Emeld], [Pasi3], [CEGT16]), particularly the unitary such representations, i.e.

those that admit a G-invariant defining norm. Little has been known about Banach
representations outside the group GL2(Q,) so far. The main goal of this paper is
to greatly extend our knowledge about the (topological) irreducibility of Banach
principal series representations. In particular, we prove a variant of Schneider’s
conjecture [Sch06, Conjecture 2.5].

Fix a minimal parabolic subgroup B = ZU with Levi subgroup Z and unipotent
radical U. Let P = LN be a parabolic subgroup containing B with Levi subgroup
L containing Z and unipotent radical N. We write B := B(F), etc. If o is a
continuous representation of L on a finite-dimensional C-vector space, then we
inflate o to P and form the parabolic induction

(Ind$ 0)* := {f: G = o cts. : f(p'g) = o(p')f(g) for any g € G, p' € P},

which carries a natural Banach topology making it into an (admissible) Banach
representation of G under right translation that we call a Banach principal series.
We show moreover in Proposition that it is topologically of finite length, con-
firming an expectation of [Sch06l §2]. (For technical reasons we will assume for the
remainder of the introduction that p > 2, resp. p > 3, if the absolute root system
of G has irreducible components of type B, C or Fy, resp. G.) From now on we
will assume that o is absolutely irreducible.

1.1. Unitary case. Our first theorem gives an irreducibility criterion for general
G in the case where o is unitary. Let S be the maximal split subtorus of the center
of Z. Let A (resp. Ap) be the set of simple roots of S in B (resp. in BNL). For any
a € A let L, denote the Levi subgroup containing Z with Ay = {a}. Moreover,
let L!, denote the smallest normal subgroup of L, generated by U N L. (This is
not an algebraic subgroup in general.)

Theorem 1.1 (Theorem . Let o be a finite-dimensional absolutely irreducible
unitary Banach representation of L. Then the following are equivalent:
(i) (Ind% o) is reducible;
(ii) there exists a € A\ Ap such that o|znp, is trivial;
(iil) the representation o extends to a continuous representation of a Levi sub-
group strictly containing L.

We briefly explain the easy implications (ii)=-(iii)=-(i). If (ii) holds, let L, D Z

be the Levi subgroup with Ap, = Ap U {a}. If o is trivial on Z N L/, then o
has a unique (continuous) extension to L; which is trivial on N N L,
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I1.7 Proposition], and we get (iii). If (iii) holds, o has a continuous extension to a
larger Levi L; 2 L, which we still denote by 0. Let P; be the parabolic subgroup
containing P with Levi subgroup L;. Then (Indg1 o) — (Ind$ 0)°* is a proper
closed subrepresentation and so (i) holds.

In fact, we obtain the equivalence in Theorem under the weaker assumption
that o lies in a certain closed cone, defined as follows. Let wy,,,: S — C* be
the central character of the coinvariant representation opyny (which is absolutely
irreducible). Then |ws, ., |c: S — RZ, is an unramified character of S (where |-|c
denotes the absolute value of C' with |p|c = p~!) and we let e(wyy,,, ) € X*(S) @R
denote its Harish-Chandra parameter. Then it suffices for our proof to demand
that e(wy,, ., ) be dominant (or even that it is almost dominant in a precise and
explicit sense, see Remark . We also have a version of this theorem where we
only demand a certain dominance condition on the central character w, of o.

1.2. Schneider’s conjecture. Dropping the assumption that o is unitary, we
prove a variant of Schneider’s conjecture for the group GL,,(F') and, under slightly
weaker conditions, for general split (or even quasisplit) groups G.

To state our results, let dp denote the modulus character of B. We say that
a character A\: F* — C* is non-positive algebraic if it is of the form A(z) =
I1.. pc k()% for some (a,) € ZE™FD) For 1 < i < j < n let /i Gy —
SL,, denote the coroot sending ¢ to dlag(l, constye ot o000 1) with ¢ (resp. 1)
appearing in the i-th (resp. j-th) entry. Let |-|p denote the normalized absolute
value of F.

Theorem 1.2 (Theorem[3.9). Let G = GL,,(F) or SL,,(F), B the upper-triangular
Borel subgroup, and Z the diagonal maximal torus. Let x: Z — C* be a continuous
character. If (Indg X)€% is reducible, then there exist 1 < i < j < n and non-
positive algebraic characters A for i < k < j such that

) X5—1/2 ) a,! ki1 = Ak near the identity for any i <k < j, and

1/2
hd X5 z g | ‘ H
In particular, there exists a positive root «a; ; and a non-positive algebraic char-
acter A such that xé5 1/2 oa); = |-|p*A\. As in Theorem . (ii)=(i), if the condition

of the previous sentence holds with j =i+ 1, then (Ind3 X)Cts is redumble. When
n = 3 we show that these are in fact the only possible reducibilities, see our com-
panion paper [AH].

We have a slightly weaker theorem valid for any split connected reductive group
(adding a Weyl group regularity condition).

Theorem 1.3 (Theorem . Suppose that G is split. Let x: Z — C* be a
continuous character. Let P = LN be the largest standard parabolic such that for
all roots a: Z — G, occurring in L we have X(Sgl/Q oaV = A\, near the identity,
for some non-positive algebraic character A. Assume that for all w € Np(Z)\ Z
there exists a root a of L such that

o (05 P 0w laY) - (x65* 0 )"l £ Ap1aAs L

If (Indg X)<% is reducible, then there ewists a positive Toot o occurring in L such
that

.\ 6,;1/2

To compare Theorems with [Sch06, Conjecture 2.5], let us assume that

in addition that G is semisimple simply connected (as is assumed there) and in

addition for simplicity that F' = Q,. Let 62 Z — G,, denote the half-sum of

positive roots, which is integral by our assumption on G, and note that |61/ g =

oa¥ = |~|;1)\a.
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5113/2. Then [Sch06, Conjecture 2.5] is equivalent to: if (Ind% x)** is absolutely
reducible, then there exists a positive root a of G such that

o x6 Y2 0aVY = (-)71\, for some non-positive algebraic character \.

(If « is a simple root, this is equivalent to ngl/Q oa¥ = |~|;1)\a, exactly as in
Theorem ) We remark that our conditions/conclusion in Theorems are
compatible with the equivalence in Theorem below.

We obtain more refined versions of Theorem [I.3] for any classical quasisplit group
in (These results are stated for smooth o, for simplicity.)

For general reductive G one may wonder whether (Indg o) is absolutely re-
ducible if and only if (Indé‘;j L. o) is reducible for some simple root a. Our
evidence is rather limited, consisting mostly of Theorem and our result for
GL3(F) [AH|]. The group L, is of semisimple rank 1, and we obtain an optimal
irreducibility criterion for (Indk 1. 0)°%, at least when o is simple as 3¢-module
(which holds when dime o = 1) or when the unipotent radical U is abelian. See
Theorem [3.68] and also Corollary

1.3. A criterion and some reductions. By replacing G by Resp/q, G we may
and will assume that F' = Q,. Then the action of L on o becomes locally analytic
and we can study the Banach representation (Indg o) by means of its dense
subspace of locally analytic vectors

(Ind$ )™ :={f: G = o loc. an. : f(p'g) = o(p')f(g) for any g € G, p’ € P},

see [ST02], [Emel7]. Note that (Ind$ )" naturally carries a compact type topol-
ogy and becomes an admissible locally analytic representation of G in the sense
of Schneider—Teitelbaum [ST03]. If o is smooth and we replace locally analytic
functions by locally constant functions, then we obtain a smooth subrepresentation
(Ind$ o)™ of (Ind$ o).

Orlik and Strauch [OS15], [OS14D] introduced a beautiful theory to understand
the structure of the locally analytic principal series (Indg 0)®®. (In their papers
they restrict to split groups G. See Appendix [A]for the general case, and note that
another treatment will appear in the revised version of [OS14b].) We just recall
some basic definitions for now. Let g denote the Lie algebra of G, g¢ := g®@rC, and
likewise for other subgroups of G. For any parabolic subgroup P, Orlik—Strauch
define artinian abelian categories O, an adaptation of a parabolic BGG category
O over C whose objects consist of certain finitely generated U(g¢)-modules, and
OF whose objects consist of pairs (M,7) with M € OF and 7 a locally finite
locally analytic action of P on M satisfying p’ o X o p/~! = Ad(p)(X) for p’ € P,
X € g¢ which lifts the given action of po (see for the precise definition). If
@ D P is another parabolic subgroup, then 0% C OF and 0° c OF are naturally
full subcategories, and we say that M € OF is equimaximal if for any parabolic
subgroup @ containing P we have M € O if and only if M|y, € O9. For any
simple object W € OF there is a unique simple object L(W) € OF such that
LW)N = W (Lemma . (Here, OF is the category O with G = L. Its
objects are automatically finite-dimensional.)

Recall that o is an absolutely irreducible finite-dimensional continuous represen-
tation of L. Then o lies in O (recall that F = Q, now), as o is automatically
locally Qp-analytic. Assume now that ¢ = o9 ® 7 for some o € O whose under-
lying [c-module is simple and some smooth L-representation 7 such that moreover
L(oy) is equimaximal, where o{, denotes the dual of o¢. Such a decomposition of o
always exists when the derived subgroup G s simply connected by Lemma m
and is unique up to smooth characters of Lg in general, where Q@ = LN, is the

largest parabolic subgroup containing P such that L(o() € O%.
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We then have the following theorem, which is fundamental to our work.
Theorem 1.4 (Theorem Corollary . The following are equivalent:
(i) (Ind% o) is irreducible;
(ii) (IndILD%LQ )% s irreducible;
(iii) (IndILD%LQ T) s irreducible;
(iv) any irreducible subrepresentation of (Ind]LD%LQ 7)™ is dense in (Ind]LJ%LQ T)cts.,

In particular, (Ind$ o) is irreducible if (Ind}L,?] Lo T

(iv).

Based on this equivalence we would expect that it is extremely difficult to
find a precise irreducibility criterion of Banach principal series, even for G =
GL,,(F). The problem is that the submodule structure of the smooth principal se-

is irreducible, by part

ries (IndIL)% Lo 7)*™ is badly understood in general, and even when it is understood
it is challenging to prove the p-adic density of a proper smooth subrepresentation.

Corollary 1.5 (Corollary. FEach of the following conditions implies the next:
(i) U(gc) @upe) 0g is irreducible as U(gc)-module;
(ii) Q = P;
(i) (Ind$ o)°t is irreducible.
By Theorem we can reduce the irreducibility problem of (Indg )" to the
case where ¢ is smooth. The following general result on intertwiners and some

Clifford theory furthermore allows us to reduce to the case where G is almost
simple and simply connected (and isotropic), see Propositions and

Proposition 1.6 (Proposition [2.37). Suppose that P = LN is a parabolic subgroup
and o, T are Banach representations of L. Then the natural map

cts

Hom$" (0, 7) — Hom&*((Ind$ 0)°*, (Ind$ 7))
is an isomorphism.

1.4. Proof of Theorem For simplicity we will assume that P = B. We first
make a reduction to F' = Q, and Gaer simply-connected, so in particular we have a
decomposition o = 0 ® T as in Then Theorem |1.4| implies that if (Ind$ o)ct
is reducible, then (Indé% Lo 7)*™ is reducible, where ) is defined as in By
relabeling we may assume that Q = G, i.e. L(o}) € O%. This implies that, up to
twisting o by a locally analytic character of G, we may assume that og is algebraic
with antidominant central character. Write (Indg 7)™ as normalized induction
(n—Indg 7'(5];1/ 2)5“‘. Using that o is unitary we deduce that 7(5,;1/ ?is Weyl group
regular. We now fix an isomorphism C = C and work over the complex numbers.
Then a result of Harish-Chandra implies that there exists a reduced positive root

a such that (n—Indé}}La 7551/2)5“1 is reducible, where L, is the Levi subgroup of

. . . —1/2 .
semisimple rank 1 associated to a. We can write 70, 2 o TudBnr, N With 7,

unitary (in the complex sense!), s € R, and 1 a positive-real unramified character
of L. A result of Silberger shows that —% <s< % There is a tension between 7T
being p-adic unitary and the Silberger bound that allows us to deduce that s = f%,
a is simple, and oy is trivial on ZNL/,. Crucially, the extreme bounds s = :I:% imply
that 7, is trivial on Z N L!,. This was our guess, based on the available literature,
but Jean-Loup Waldspurger kindly provided a beautiful argument in general, see
Proposition We then deduce that o is trivial on Z N L/,.

However, the above sketch glosses over one very important point. In comparing
real and p-adic absolute values it is essential to know that the real number s is in
fact rational. For this we need to prove Corollary below.
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1.5. Harish-Chandra’s p-function and rationality of poles. The following
results in smooth representation theory over C may be of independent interest.
Harish-Chandra’s p-function (or Plancherel measure) & controls the reducibility
points of smooth parabolic inductions, as recalled in subsection |3.1

Suppose that G is any connected reductive group over F, P = LN a maximal
parabolic subgroup such that L is an inner form of a group L’ satisfying

(LY cL' cL,

where

i/ = (HRGSE}/FGLTL1> /ﬂ

i=1
for some finite extensions E;/F, integers n; > 1 and a central, induced subtorus H.

Theorem 1.7 (Theorem [3.43). Let o be a discrete series representation of L. If
pC(06%) has a pole at s = sp € R, then so € Q.

Our proof uses global intertwining operators and the global Jacquet—Langlands
correspondence [Bad08] to reduce to the case where G is quasisplit, in which case
the rationality follows from results of Shahidi [Sha90] (see Proposition [3.41]), using
that the supercuspidal support of o is automatically generic. (This generalizes an
argument of Muié¢-Savin [MS00], who used this method to compare p-functions
of G and its quasisplit inner form when G is a hermitian quaternionic group of
maximal Witt rank and P is the Siegel parabolic. See also [Chol4] for further work
in this direction.)

By the classification of almost simple rank one groups we obtain the following
corollary.

Corollary 1.8 (Corollary . Suppose that the adjoint group G* is almost
simple of rank one over F. Let o be a unitary supercuspidal representation of Z.
If u%(06%) has a pole at s = sy € R, then so € Q.

In fact, using [Sha90, Theorem 8.1] we can also bound the denominator and
obtain an explicit finite list of possible poles sg, see Remark We remark that
there are 7 families of almost simple rank one groups, and Corollary [I.8 was only
known in 4 cases previously, see Remark

We also obtain the following corollary from our argument. Here, z is an inner
form of E, naturally obtained from the inner form L of L', such that zder clLcC L

Corollary 1.9 (Corollary [3.44). Suppose that o1, oo are discrete series represen-

tations of L that are conjugate under the action of L. Then uC (010%) = p%(020%).

This verifies [Choldl Working Hypothesis 1.1] in our more general setup.

1.6. Proof of Theorems and Consider G a split group over F' and
x: Z — C* a continuous character. Let us assume for simplicity that G4 is simply
connected. By thinking of G as the Qp-points of Resp/qg, G we can work over Q,
when needed. As in we write Y = o7 with L(o}) € O% (with @ maximal)
and 7 smooth. It is not hard to see that ) = P in the notation of Theorem [1.3
We now prove the contrapositive of Theorems and By Theorem we
may reduce to the case where Q = GG, and it suffices to show that any irreducible
subrepresentation of (Ind% 7)™ is dense in (Ind$ 7). As 7 is smooth, the first

bullet in Theorem |1.3| implies that 7'5;1/ % is Weyl group regular and the second
bullet in Theorem becomes that 7'5;1/2 oaV # ||z for all positive roots a.

Work of Rodier [Rod81] then shows that (Ind$ 7)™ = (n-Ind% 76;1/2)5“‘ has an
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irreducible socle that is moreover generic. (When G = GL,,(F') we do not need the
regularity condition by Bernstein—Zelevinsky [BZ77].)
We then conclude by the following result.

Proposition 1.10. Any generic subrepresentation of (Ind$ 7)™ is dense in (Ind% 7)°.

To prove the proposition, we first show by the geometric lemma (cf. Proposi-
tion that any generic subrepresentation 7 of (Ind% 7)™ contains an element
f that is supported on the big cell B\ BwoU, where wy is the longest Weyl group
element. Then we deduce by a p-adic approximation argument (Lemma that
7 is dense in (Ind$ 7)°ts,

In fact, Proposition [1.10] generalizes to arbitrary G, where we say that a smooth
representation 7 is generic if the twisted coinvariants 7 ¢ are nonzero for some
character §: U — C* that is non-trivial on each simple root subgroup. We then
generalize Theoremto GL,, (D), where D is a finite-dimensional division algebra,
see Theorem (Note that by Theorem we may assume that the inducing
representation ¢ is smooth.) For this we generalize Bernstein—Zelevinsky’s theory
of derivatives [BZTT], cf. subsection

1.7. Proof of Theorem We recall that Orlik—Strauch [OS15], [OS14b] define
a functor F§ from (OF)°P x Rep™™ (L) to locally analytic representations of G,
where Rep®™ (L) denotes the category of admissible smooth L-representations.
This functor satisfies the following properties (see [0S14b] and subsection [2.3)):
e The functor F§ is exact in both arguments.
e Let P/ = I/N' D P be another parabolic subgroup. If M € OF and
m € Rep®™™ (L), then F§(M,7) = FG (M, (Indk,, 7)™).
e Assume that M € OF is equimaximal with maximal parabolic P and
7 € Rep™™(L). Assume that M|y, € OF is simple and 7 is irreducible.
Then F§ (M, ) is irreducible.
For W € O the generalized Verma module M (W) is defined to be U(gc) @ (pe) W
where P acts by p/(X @ w) = Ad(p") X @ p'w for p’ € P, w € W and X € g¢. Then
M(W) € OF and if moreover W € OF is simple, then M (W) has L(W) as unique
simple quotient. Then the following property of F$ holds by construction:
e Suppose that W € O and © € Rep™™(L). Then F§(M(W),x) =
(IndG W’ @ 7)2n.

We now discuss the proof of Theorem The implication (i)=-(ii) is clear by
exactness of parabolic induction, and (iii)=(iv) is obvious.

To explain why (iv)=-(i), we assume for simplicity that @ = G (the proof is a bit
more involved in general). By the density of locally analytic vectors in Banach rep-
resentations [ST02], it suffices to show that any irreducible closed subrepresentation
of (Ind$ ¢)* is dense in (Ind$ 0)°*. Note that (Ind§ o) = FS(M(c}), 7). Let
V := L(o})’, which is by assumption in O and in particular is a finite-dimensional
locally analytic representation of G. The canonical P-linear surjection V. — oq
gives rise to a commutative diagram

V ® (Ind§ 7)"C—— V @ (Ind$ 7)** —> (Ind% V @ 7)*» —— (Ind$ o)*"

| | |

V ® (Indf ) —= (Ind3 V & 1) — (Ind§ o)°**

It is not difficult to see (cf. Lemma [2.52)) that the composition of the top row is
injective with image F§ (L(a}), 7). Crucially, our generalization of a result of Breuil
[Brel6] (based on [OSI14a)]) on locally analytic socles allows us to deduce that any
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irreducible closed subrepresentation of (Ind% o) is contained in F§(L(c}), ) =
V @ (Ind$ 7). It is then of the form V ® p for some irreducible subrepresentation
p C (Ind$ 7). By (iv) we see that V @ p is dense in V @ (Ind% 7)°* and hence
by the diagram V @ p is dense in (Ind$% o)<, as desired.

It remains to explain (ii)=-(iii). We relabel @ as G and let again V := L(o{))’ €
OF. Let 7 be a nonzero closed subrepresentation of (Ind% 7). We consider a
natural sequence

Vert o Ve (ndgr)™ = (ndEV e 7)™ — (Indf o)™
of locally analytic representations and first use (ii) (comparing with a corresponding
sequence of Banach representations) and locally analytic socles to show that the
composition is surjective. Let x : Z(gc) — C denote the infinitesimal character of
(Indg 0)*". Projecting onto generalized x-eigenspaces we obtain a sequence

T (7)) < T((Ind$ 7)) — (Ind$ o)™,

whose composition is surjective, and where T is a suitable translation functor in the
sense of [BG80] (it is an equivalence by [BG80]). By showing that the second map
is an isomorphism (Proposition and applying a quasi-inverse of T" we obtain
that w2 = (IndIGg 7)2", which implies (iii), by density of locally analytic vectors.

1.8. Previous work. Theorems and were known for GL2(Q,) by Schnei-
der (and Teitelbaum) [Sch06, Proposition 2.6(i)], which was also based on locally
analytic techniques. The infinitesimal irreducibility criterion Corollary [L5|i)=>(iii)
was known for split groups over Q, due to the work of Frommer [Fro03], [Sch06,
Proposition 2.6(ii)] and in general by Orlik—Strauch [OS10] (when dime 7 =1).

In a different direction, Ban—Hundley [BH16] argue on the dual side like [ST02]
to prove the irreducibility of (Indg X)) for split G and |x|¢ lying in a certain open
cone, namely the cone where e(y) (defined in is strictly dominant. (This region
excludes the unitary locus if G is not a torus.) Ban—Strauch [BS19] characterize the
irreducibility of principal series of SL,,(F’) in terms of the irreducibility of principal
series of GL,,(F).

Finally, in the unitary case weak results can be obtained from smooth mod p
representation theory, by using that an admissible unitary Banach space represen-
tation is irreducible provided its reduction modulo a G-stable open and bounded
lattice is irreducible as smooth representation. The main results of our earlier work
[AHHV17] then show that if o is unitary and the reduction &|znz; of o|znr, is

non-trivial for all simple roots a, then (Ind$ ¢)°** is irreducible.

1.9. Notation. Let C be a finite extension of Q, with uniformizer w¢c. In this
paper, unless otherwise stated, the coefficient field of any representation is C.

Let F' be a finite extension of @, contained in C' and G a connected reductive
group over F, Z the center of G, G = G(F) is the group of rational points, g the
Lie algebra of G, g¢ := g ®r C and U(gc) the enveloping algebra of go. We use
the same notation for other groups. For simplicity we assume that G splits over
C. Moreover, starting in subsection we will assume that C' be sufficiently large,
depending only on G. Let S C G be a maximal split torus and Z the centralizer of
S in G. This is a Levi subgroup of a minimal parabolic subgroup B, which we fix
from now on, and we let U denote its unipotent radical.

We fix a special point in the apartment of S and let K be the corresponding
special parahoric subgroup.

Suppose P = LN is a parabolic subgroup of G with Levi part L and unipotent
radical N. For a smooth representation o of L = L(F), let (Ind% o) be the smooth
parabolically induced representation, namely the space of locally constant functions
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f: G = o such that f(¢ng) = o(£)f(g) for £ € L, n € N and g € G. We use this
notation even when o is defined over a field different from C (for example, over the
residue field of C or the field of complex numbers). Let dp be the modulus function
of P defined by fP f(zg)dx = dp(g) fP f(z)dzx for any integrable function f on P,

where we use a left-invariant Haar measure. Let (n-Ind$ o)™ := (Ind$ 05113/ 2)sm
be the normalized induced representation.

We say that a continuous representation of a topological group is irreducible if
it is topologically irreducible.
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sending us a proof of Proposition [3.7] and for allowing us to reproduce it here,
and to Alberto Minguez for his help with Proposition [3.22] as well as for useful
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We are thankful to Sascha Orlik and Matthias Strauch for helpful conversations
about their work and for allowing us to include our appendix. The debt this paper
owes to the work of Orlik-Strauch should be evident to the reader. We thank
Hiraku Atobe, Laurent Clozel, and Sug Woo Shin for helpful comments. Part of
this work was done during a pleasant stay of the first-named author at University
of Toronto.

2. IRREDUCIBILITY CRITERION

2.1. Banach representations. A representation 7 of G is called a Banach rep-
resentation if 7w is a Banach space and the action map G X m — 7 is continuous.
The notion of admissible Banach representations was introduced by Schneider—
Teitelbaum [ST02]. Any morphism between admissible Banach representations is
strict and, in particular, has a closed image. By [ST02, Theorem 3.5] admissible
Banach representations of G form an artinian abelian category, anti-equivalent (for
any fixed compact open subgroup H of G) to the category of O¢[[H ]][%]—modules
that have a compatible action of G. Since it is an abelian category, we have no-
tions such as finite length objects (traditionally called admissible Banach repre-
sentations that are topologically of finite length). The subobjects (resp. quotient
objects) are precisely the closed G-subrepresentations (resp. Hausdorfl quotient
representations), using for example [ST02, Proposition 1.3]. Admissible represen-
tations satisfy “Schur’s lemma”, namely if 7 is an admissible irreducible Banach
representation, then the C-algebra of continuous G-endomorphisms End%®(7) is
finite-dimensional [DS13, Theorem 1.1]. In particular, if 7 is absolutely irreducible
(i.e. irreducible after any finite extension of scalars), then End%*(7) = C and 7
therefore has a central character.

Let P be a semistandard parabolic subgroup, /N the unipotent radical of P, L
a Levi part containing S (hence P = LN and PN K = (LN K)(N N K)) and
o a Banach representation of L. Then the representation (Indg o) is defined
as the space of continuous functions f: G — o such that f(¢ng) = o(£)f(g) for
any g € G, £ € L and n € N. It is naturally a closed subspace of C°(G, o)
equipped with the compact open topology, on which G acts continuously [EmelT]
Proposition 3.1.5]. The isomorphism (Ind% o) = (Ind% ;- o) shows that it is
a Banach space. It is admissible if o is admissible [Fu21l, Lemma 3.3]. By [EmelT,
Lemma 6.5.5] the topology of o can be defined by an L N K-invariant norm |[-|.
On the right-hand side of the isomorphism (Ind$ o) 2 (Ind¥ , 0)°* we have
a K-invariant norm ||| defined by [|f|| = sup,ck,(pnx)|f(®)], which defines the
topology. Its unit ball is ((Ind% 0)*)? = {f € (Ind5.x 0)* | f(K) C 0%} =
(Ind® - 6°)¢* and ((Ind$ 0)*)° /e ((Ind$ 0)<%)0 2 (IndE - ; (00 /we0?))™ and
this is a smooth representation of K. If 7 C (Indg o)°* is a closed subspace, then
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it is a Banach space with the induced norm, and the natural map 7°/wcn® —
((Ind% o)) /e ((Ind$ 0)<*)0 is injective.

2.2. Locally analytic representations. Let m be a Banach representation of G.
We say that v € 7 is an (F-)locally analytic vector if the map G > g — gv € 7
is (F-)locally analytic. The space of locally analytic vectors in 7 is denoted by
w2, We impose a topology on 7*" as in [Emel7, Definition 3.5.3]. Then 7" is a
locally analytic representation in the sense that 7®" is a barrelled locally convex
Hausdorff vector space and the map G 3 g — gv € " is locally analytic for any
v € m®". We have a notion of admissible locally analytic representations introduced
by Schneider—Teitelbaum [ST03| page 176], and the category of such representations
is abelian [ST03, Proposition 6.4].

Theorem 2.1 ([ST03, Theorem 7.1, [Emel7, Proposition 6.2.4]). Suppose that
F = Qp. Then the functor (-)*" sends admissible Banach representations of G
to admissible locally analytic representations of G on compact type spaces. It is
moreover exact. If w is an admissible Banach representation, then m" is dense in
.

For proving density, the following criterion is sometimes useful. A more general
version can be found in [AHL E Let N denote the unipotent radical of the
opposite parabolic subgroup P = LN.

Lemma 2.2. Let o be an irreducible Banach representation of L with a central
character and 0 # f € (Ind% o). Assume that supp(f) € P\PN and there exists
v € o such that f(n) € Cv for allm € N. Then f is a topological generator of
(Ind$ o), i.e. the subspace spanned by {gf | g € G} is dense in (Ind$ o).

Here, supp(f) denotes the closure of the set P\{z € G : f(x) # 0} in P\G. In
particular, supp(f) is compact.

Proof. We choose an L N K-invariant norm |-| on o that defines its topology. We
may assume {|v'| | v/ € o} =|C*|U{0} and |v| = 1.

Let No be a compact open subgroup of N N K. Let 7 be the closure of the
subspace spanned by {gf | ¢ € G} in (Ind% 0)°*. By the action of the center of
L there exists f’ € 7 such that supp(f’) C PNy and f'(n) € Cv for any n € N.
We may scale f’ such that ||f’|| = 1. Hence there exists f' € 7 such that ||f’| = 1,
supp(f') € PNy and f'(n) € Cv for any n € N.

We will now prove that 7 = (Ind%¢)°. Let X, be the closed subspace of
h € (Ind$ 0)°* such that supp(h) € PNy and h(7) € Cv for any @ € N. Let
C°(Ny,Cv) be the Banach space of continuous functions Ny — Cuv equipped
with the supremum norm. The restriction to Ny gives an Ny-equivariant norm-
preserving isomorphism Xo = C°(Ny, Cv) of Banach spaces.

We have an embedding (XoN7)° /e (XoN7)? — X /we X and from the second
paragraph the image is nonzero. Since the image is a smooth Ng-representation, it
contains a nonzero N-fixed vector. Let 7 € 0° /oo be the image of v. The space
of Ny-fixed vectors in X /we X =2 C°°(Ny, (Oc/wcOc)v) is one-dimensional and
spanned by the constant function 1x,-

Let X be the space of h € (Ind% o) such that supp(h) € P(NNK) and h(7) €
Cv for any m € NN K. Then X°/wc X" =2 C®(N N K, (Oc/wcOc)v) is spanned
by {1, | No C NN K is an open subgroup} as N N K-representation. Since each
Iy, isin (1N X)°/we (7N X)? as we have proved, we have (1N X)?/we(rNX)°? =
X°%/weXP. In other words, for any h € X©, there exists fo € (m N X)Y such that
h — fo € wcX". By iterating this argument, for each k = 0,1,... there exists
frx € m such that h — fj, € wéXO. Then h = limg_,o fr € w. This shows that
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X% ¢ 7, hence X C 7. By the action of the center of L, for any continuous
function ¢: N — C with compact support, the function ¢ ® v: N — Cv defined
by (p ® v)(W) = (@)v is in 7. Here we regard ¢ ® v as element of (Ind$ o)<t
(supported on PN).

Let £ € L and define fp: N — C by (¢p)() = p(¢~nl). For each p: NNK — C
and ¢ € L there exists z in the center of L such that z¢~1¢ is supported on N N K.
We have ¢ ® v = wy(2)02z7 (207 p @ v), where w,, is the central character of o.
Since 271 ® v € 7 by the previous paragraph, we have ¢ ® fv € . Since o is
irreducible, we have ¢ ® v’ € 7 for any ¢ € CO(N N K,C) and v’ € o. In other
words, C/(NNK,C)® 0o C 7.

Let h: NN K — ¢° be any continuous function and for each k = 0,1, ... define

hy by NN K LN 00/wko®. Then hy is a locally constant function and
therefore by compactness has finite image in 0°/wfc®. Hence there exists h) €
C°(NNK,C)® o (which we can even take to be locally constant) such that h —
by, € whCO'(N N K,0)°. Therefore h = limj_o0 h),. Regarding h as element
of (Ind}q o)°% the previous paragraph shows that h € w. Since such h generate
(Ind$ o) as a G-representation, we get 7 = (Ind$ o)cts. O

If o is a locally analytic representation of P on a locally convex topological
vector space of compact type, we denote by (IndIGD 0)?" the space of locally analytic
functions G — o such that f(p'g) = o(p’)f(g) for all g € G, p’ € P. This is a
locally analytic representation of G of compact type, see e.g. [BH20, §2]. (Usually,
o will arise by inflation from a locally analytic representation of L.)

Lemma 2.3.

(i) If 7 is a locally analytic representation of P on a compact type space
and V' a finite-dimensional locally analytic representation of G, then V ®
(Ind$ 7)* = (IndG V @ 7)*" as locally analytic representations of G.

(ii) If T is a Banach representation of P and V a finite-dimensional continuous
representation of G, then V @ (Ind% 1) = (Ind%V ® 1) as Banach
representations of G.

(iii) If 7 is a Banach representation of P, then ((Ind$ 7)cts)an = (Ind§ ran)an
as locally analytic representations of G.

(iv) If m is an Banach representation of G and V a finite-dimensional locally
analytic representation of G, then (V @ m)** =V @ m®" as locally analytic
representations of G.

(v) If is an admissible Banach representation of G and V' a finite-dimensional
continuous representation of G, then V ® m is an admissible Banach rep-
resentation of G.

Note that the tensor products carry the projective, or equivalently inductive,
topology.

Proof. (i) We have a natural map of locally analytic representations
0:V® (Indg 7)™ - (IndG V @ 7)2"
v® [ (9= gv® f(g)).

Let (v;)™_, be a basis of V. Suppose that h € (Ind%V @ 7)* and write h(g) =
> 9vi @ fi(g) for unique P-equivariant functions f; : G — 7. It suffices to show
that the functions f; are locally analytic. Let (v})7—; denote the dual basis of V'
and let \; : G — V' denote the locally analytic function A;(g) := gv;. Then f; is
obtained from h and \; via the natural bilinear pairing (V @ 7) x V¥ — 7, so it is
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locally analytic by [FdL99, Satz 2.4.3]. (The assumption BIL there is satisfied, as
V is finite-dimensional.)

(ii) The proof is analogous but easier, using that the bilinear pairing above is
continuous.

(iii) is proved in [Fu2Il Theorem 3.6], (iv) is proved in [Emel7, Proposition
3.6.15] (more generally), and (v) is proved in [Emel7, Proposition 6.2.6]. O

Let G’ denote the smallest normal subgroup of G generated by U. It is a closed
locally analytic subgroup of G [BT73, §6].

Lemma 2.4.

(i) Any locally analytic character ¢: G — C* and any finite-dimensional
smooth representation T of G is trivial on G'.

(ii) Suppose that P = LN is a parabolic subgroup and that 7 is a finite-
dimensional continuous representation of P. Then T # 0. In particular,
if T is irreducible, then T is trivial on N.

Proof. (i) We may assume that F' = Qp, so 7 is a locally analytic representation of
P. By finite-dimensional representation theory of (a Borel subalgebra of) pe, we
have 7"¢ # 0. This is a P-subrepresentation of 7 on which N acts smoothly. By
using the S-action, we see that 7"¢ = 7V,

(i) The claim for 1 follows from (ii), as G’ is the normal subgroup generated by

U, and the argument for smooth 7 is similar to (ii) (but easier and well-known). [

2.3. The functor of Orlik—Strauch. In this section we discuss the categories
O, OF and functors ]—"g of Orlik—Strauch for general G. We also take up and
extend some general notions from [Orl18].

Let P = LN be a standard parabolic subgroup. Recall the abelian categories
OF and OF. First, OF is the full subcategory of U(gc)-modules M such that

(i) M is a finitely generated U(g¢c)-module,
(ii) M is a direct sum of absolutely simple finite-dimensional [¢-modules,
(iii) the action of pc on M is locally finite.

The objects of OF consist of pairs (M, 7), where M € OP and 7 is a locally
finite-dimensional locally analytic action of P on M whose derivative equals the
given action of pc C gc and such that go X og™! = Ad(g)(X) on M for all g € P,
X € U(ge). The morphisms consist of maps in O that are moreover P-linear.

In particular, O consists of all finite-dimensional locally analytic representa-
tions of G on which the derived action of g¢ is a direct sum of absolutely simple
go-modules. This category is stable under duality. Note that if 7 is a finite-
dimensional smooth representation of P, then 7 € OF (killed by gc). We also
remark that any object in OF, OF is of finite length [FlumO8], 1.11 Theorem)].

Let T' be a maximal split torus containing S in the split group Z. and let t/
be its Lie algebra. Let 31 denote the Lie algebra of the center Z; of L.

Lemma 2.5. Condition (ii) in the definition of category OP may be replaced by
either

(ii") M is a direct sum of 1-dimensional t' -modules; or
(ii") M is a direct sum of 1-dimensional 31, c-modules.

Proof. This is a question about gc-modules, so we may work over F' = C. In
particular, G is split and 77 = S (and we can drop all extensions of scalars to C).
Note that (ii’) implies (ii”), as 3 C ¥'. To see that (ii) implies (ii’), let W be any
absolutely simple finite-dimensional [-module. Then W* is 1-dimensional, so the
surjection U(g) @y )y W* — W shows that W is a direct sum of 1-dimensional
t’-modules.
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Finally we show that (ii”) implies (ii). We know that M is a sum of finite-
dimensional [-submodules by (iii). It suffices to show that any finite-dimensional I-
module W on which 37, acts diagonalizably is a sum of absolutely simple [-modules.
Write [ = 1" @ 3,. By the diagonalizability, W is a direct sum of 3p-isotypic
components, and this decomposition is preserved by [9°. As [9°* is a semisimple
Lie algebra we may assume that W is simple. By highest weight theory, any simple
module of [9°" @ C' may be defined over C, hence W is absolutely simple. O

Remark 2.6. Note that for any M, M’ € OF with M’ finite-dimensional the tensor
product M ® M’ lies in OF as well. (Use condition (ii’).)

Remark 2.7. Suppose that V is a finite-dimensional locally analytic representation
of a parabolic subgroup P = LN. From the locally analytic homomorphism P —
GL(V) and the functoriality of the logarithm map [Bou72l II1.7.6] we see that

=, (logn)’

(2.1) nv = v

|

— il
for all n € N near 1 and all v € V. By using the action of L we see that in fact
formula (2.1)) is valid for all n € N. We will just say that we “integrate” over N.

Lemma 2.8. Suppose P C Q.
(i) The forgetful functor OF — OF is fully faithful.
(i) If M € O and M' € OF is a subquotient, then M’ € O9.
(iii) If M € O is simple, it is simple in OF as well.

Proof. (i) Let M, My € O and we prove that any morphism ¢: M; — M, in OF
is @Q-equivariant. Since ¢ is ug N qe-equivariant and this subalgebra acts locally
nilpotently on M, Ms, by integration, ¢ is U N Q-equivariant. Since Q is generated
by P and U N Q, ¢ is Q-equivariant.

(i) We may assume M’ is a subobject of M in OF. As in (i), by integration,
M’ is U N Q-stable and hence @Q-stable. This implies (iii). O

Remark 2.9. If ¢: G; — G is a morphism such that @(Q‘fer) = Ggder, ker ¢ C ZQU
and the parabolic P, = ¢ !(P) is obtained as pre-image of P, then we obtain
functors OP — OF1 and OF — O™ by inflation, which will occasionally be useful.

Lemma 2.10. Any simple object of OP is absolutely simple. In particular, any
gc-simple object of OF is absolutely simple.

Proof. This is a question about go-modules, so we may work over FF = C. In
particular, G is split (and we can drop all extensions of scalars to C). Let W € OF
simple. As in the proof of Lemma [2.5] we can take A — W*" a 1-dimensional t-
submodule, so U(g) ®y(e) A = W. Therefore the weight space W) is 1-dimensional
and generates W, hence Endg(W) = C, i.e. W is absolutely simple. O

Let W € OL. Then on the generalized Verma module M (W) = M(W) =
U(gc) @upey W, P acts by p'(X @ w) = Ad(p')X @ p'w for p’ € P, w € W and
X € gc. We have M (W) € OF. (More generally, this construction works if W is a
finite-dimensional locally analytic representations of P on which [ is a direct sum
of absolutely simple [c-modules, but this is not traditionally called a generalized
Verma module.) If W € OF is simple, then M (W) has a unique simple quotient in
OF (by the lemma that follows), which we denote by L(W) = Ls(W).

Occasionally we will also use the generalized Verma module M (W) := U(gc)®u(pe)
W for W € O' and its simple quotient L(W) (if W is simple).
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Lemma 2.11. If M € OF is simple (resp. absolutely simple), then MN € O
is simple (resp. absolutely simple). Moreover, M(M™) has M as unique simple
quotient in OF.

Conversely, if M' € OF is simple (resp. absolutely simple), then M(M') has a
unique simple (resp. absolutely simple) quotient Q in OF, and QN = M'. Moreover,
Q is the largest semisimple quotient of M(M') in OP.

Proof. Pick any nonzero submodule M’ c MY = M"¢ in OF so M(M') =
U(gc) @upey M" — M. As M is simple, M|, is semisimple, so M|y = Py, V @
My, where V runs through isomorphism classes of simple modules in O and My
is the multiplicity space. Note that M"¢ = @, V"¢ ® My with V"¢ € O' (abso-
lutely) simple [o-modules. Moreover by highest weight theory we see that V; & V5 if
and only if V]"¢ = V;'¢ for simple modules V3, V5 € O, i.e. M"¢ = @, V"C @ My
is the decomposition into isotypic components. Since M’ is an [g-submodule of
Mre, M =@, V' @ M, for some subspaces Mj, C My . Therefore M’ = W"e,
where W := @, V ® M, (considered as gc-submodule of M). Now the image of
U(ge) ®@u(pe) M’ — M is contained in W, so W = M. Hence M' = MY ie. MY
is simple. The absolutely simple case follows.

If M’ € O is simple, then M'|, = @;_, W/ with W/ absolutely simple [c-
modules. Then M(M') = U(gc) ®u(pe) M’ has a largest semisimple quotient @ as
gc-module, and this quotient is in OF, as the go-radical is P-stable. Moreover the
composition M’ < M(M') — @ has image Q"¢, so M’ =2 Q¥ as L-representations.
Let Q' C Q denote a simple subobject. Then 0 # Q'Y c QV, so Q'Y = QN. By
construction, @ is a direct sum of absolutely simple go-modules, hence no proper
gc-submodule of ) can have the same ng-invariants as @, so Q' = Q, i.e. ) is simple
in OF. The absolutely simple case follows, as our construction of  commutes with
scalar extensions.

Going back to the first part, M (M’) surjects onto M, hence by the previous
paragraph M is its unique simple quotient. O

Corollary 2.12. Suppose that W € O is simple and that Q = Lo Ng is a parabolic
subgroup containing P. Then L(W)Ne =~ Ly ,(W) in OFLa . Moreover, we have
L(W) € O9 if and only if Ly, (W) € OLe, and in this case L(W) = L(L.,(W))
in O9.

Proof. We first note that if M € OF, then M"e.c € OP"'e. Hence if M € OF, then
MNe = Mrec ¢ OPNEe We claim that if M € OF is simple, then M?Ye is simple
in OF"e Suppose by contradiction that 0 — M’ — MNe — M” — 0 in OF"Ee
with M’, M" nonzero. Then the sequence splits as [g ¢-modules, so it remains exact
on ng Nlg c-invariants. In other words, 0 — (M")N"le — MY — (M")N"Le — 0
is exact in OF. On the other hand, (M')N"te = (M')*eNe.c £ ( and likewise for
(M")NOLa | contradicting the simplicity of M” in OF (Lemma. This proves
the claim. The isomorphism L(W)Ne = L; (W) in OF" < follows by taking
M := L(W) and applying Lemma m

In particular, if L(W) € O%, then L,,(W)e Ole. Conversely, if L,,(W)e
OFe then L(L,,(W)) € O and by taking N-invariants in stages we can identify
L(L;,(W)) with L(W) in O, and hence in 09, by Lemmam O

Lemma 2.13. Suppose that W € OF and X € OF with X = X~. Then W® X €
Ol and M(W® X) =2 M(W)® X in OF. If moreover W @ X is simple in OF and
L(W)® X is simple in OF | then LW ® X) =2 L(W) ® X in OF.

In particular, X could be a locally analytic character of G (cf. Lemma [2.4)).
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Proof. We have X = XV € OL, so W ® X € OF by Remark The natural
isomorphism U(gc) @u(pe) (W @ X) — (U(ge) @upe) W) ® X of go-modules
sending 1 ® (w® ) to (1 @ w) @ z (cf. [HumO8| §3.6]) is also P-equivariant, which
completes the proof of the first claim. The second claim follows by Lemma
(noting that W is simple, as W ® X is simple). O

Let Rep®d™ (L) be the category of admissible smooth L-representations. When
G is split, Orlik-Strauch [0S14b] define a functor F§ from (OF)°P x Rep™™ (L)
to the category of admissible locally analytic representations of G. Their functor
can be generalized to any G, see Appendix [A]

For the theory of Orlik—Strauch, we need a small assumption on p as follows
[OS14b, Assumption 4.1].

Assumption 2.14. If the absolute root system of G has irreducible components of
type B, C or Fy, we assume p > 2. If the absolute root system of G has irreducible
components of type Go, we assume p > 3.

Definition 2.15. We say that M € OF is equimazimal if for any parabolic sub-
group @ containing P we have M € O if and only if M|4, € O, In this case we
say that M has mazimal parabolic Q if Q) is largest among all parabolic subgroups
containing P such that M € O9.

Recall that we assumed in that C be sufficiently large. The reason is part
(iil) of the following theorem (see Appendix.

Theorem 2.16 (Theorem [A.1). Assume Assumption[2.14)
(i) The functor F§ is exvact in both arguments.
(i) Let @ = LoNg D P be another parabolic subgroup. If M € O% and
7 € Rep™™ (L), then F§ (M, ) = ]-—8(M, (IndIL)%LQ )™,
(iii) Assume that M € OF is equimazimal with mazimal parabolic P and 7 €
Rep™™(L). Assume that M|, € OF is simple and 7 is irreducible. Then
FS (M, ) is irreducible.

We also note two more basic properties that follow by construction. For a locally
convex space V, let V'’ be the strong dual space of V, namely V' is the space
of continuous linear maps V' — C with the topology of uniform convergence on
bounded subsets of V.

Proposition 2.17.
(i) Suppose that W is a finite-dimensional locally analytic representation of
P on which lc acts as a direct sum of absolutely simple [c-modules and
7 € Rep®™(L). Then FS(M(W),n) = (IndG W' @ 7).
(ii) If 7 is any finite-dimensional smooth representation of L, M € OF, 7 €
Rep?™ (L), then FS(M @ 7,7) = FS(M, 7 ®7').

The following corollary will be proved following Proposition (which is needed
as input).

Corollary 2.18. Assume Assumption|2.14l Let M € OF and © € Rep™ (L) such
that w is of finite length. Then fg(M, ) is strongly admissible and topologically
of finite length.

We say that a finite-dimensional representation of G (or more generally P) is
algebraic if it is obtained by restriction from an algebraic representation of the split
group G := G xp C (or Pp).

We let Oﬁg C OF be the full subcategory consisting of those objects where the
action of P is locally finite-dimensional algebraic. It is closed under subquotients.
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The composition (’)P — OF — OF is fully faithful with essential image Oalg’
consisting of those ObJGCtS where t' acts by elements of X*(T") C t* [0815 §2,
Lemma 3.2]. If W € Odlg, then M(W) € Odlg and hence L(W) € Of  (if W is
simple). We state a useful consequence.

alg

Lemma 2.19. Any M € Oﬁg s equimazimal.

2.4. Some decompositions in O. Recall that T’ is a maximal split torus con-
taining S in the split group Z¢ with Lie algebra t'. Let b’ =t & be a Borel
subalgebra of gc We write @ for the set of t-roots in gc and &+ for the set
of t-roots in w'. For A € (t')*, the Verma module U(gc) @y ey A has a unique
irreducible quotient L(\) in O

Lemma 2.20. If H is a compact abelian locally F-analytic group, then any F-
linear map A: Lie H — C' lifts to a locally analytic homomorphism H — C* (after
perhaps replacing C' by a finite extension). If H is a torus over F, then any F-
linear map \: Lie H — C lifts to a locally analytic homomorphism H(F) — C*
(after perhaps replacing C by a finite extension).

Remark 2.21. The finite extension of C' may depend on A, as one can already see
in case H = Z, over F = Q,. (Note that if x: Z, — C*, then dx(Z,) C log(Of)
is bounded.)

Proof. The given A lifts to a locally analytic homomorphism f: Hy — C* for some
open subgroup Hy of H by [Schll,ﬁProposition 18.17], so Hy is of finite index.
Using for example that Og (where C is an algebraic closure of C) is an injective

abelian group we deduce that we can extend f to a homomorphism H — C’* for
some finite extension C” of C.

For the second part, note that H(F) = H(F)' x Z% for some d > 0, where H (F)*
is the maximal compact subgroup [KP22, §2.5(b), (c)]. In particular, H(F)! is a
compact abelian locally F-analytic group and we can apply the first part. O

Lemma 2.22. Suppose that G is simply connected.

(i) If G is semisimple (simply-connected), then any simple object of O lifts
to OF (even (’)Sg). If moreover all simple factors of G are isotropic, then
os Oalg = 0%,

(ii) In general, any simple object of O lifts to OF, after perhaps replacing C
by a finite extension. Any two lifts differ by a smooth character of L.

(iii) If M is a gc-simple object in OF, then M = M, ® 1), where My is an
algebraic representation of G and v a locally analytic character of G (after
perhaps replacing C' by a finite extension).

Remark 2.23. The second claim in fails without the condition on the simple
factors. For example, let G = SL;(D), where D is a finite-dimensional non-
commutative division algebra over F. Then G admits a (finite-dimensional) irre-
ducible smooth representation of dimension greater than 1, which becomes reducible
in O8.

Part may require an extension of scalars even when G is a torus, cf. Re-
mark

We cannot drop the condition that G4 is simply connected. For parts |(i)] and
. suppose G = PGL3, FF = Q,, p =1 (mod 3). Then we have L(2/3,—-1/3,-1/3) €
0%, and we claim that it does not lift to OF. If there was a lift in O, then we can
inflate it to O%™s, so by part it is of the form L(1,0,0) ® (¢ o det), where 1
is a locally analytic character of Q.. But by considering the 3-torsion subgroup of

Q, it is easy to see that such a lift does not exist, as we cannot solve P(x)3 =1
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(r € Q). A similar example with G = PGLy can be found in [OS14b, Example
2.4]. For part |(iii)} suppose G = PGL3, F = Q,, p = 2 (mod 3), and p'/® € C.
Then there exists a continuous (hence locally Q,-analytic) character ¢: Q) — C*
such that 1 (z)® = 27!, Let V be the standard representation of GL3(Q,). Then
V ® (¢ odet) € OF but is not an algebraic representation up to twist. (The last
example is related to [STP0I) §3 Example].)

Proof. Take any M € O9 simple. Then M = L(\) for some A € (t')* with
(A, a¥) € Zxg for all a € &+, As G is semisimple simply-connected, A € X*(T") is
dominant and so M lifts to the algebraic representation L(A) of G; by restriction
to G we get our desired object of Ogg.

If moreover all simple factors of G are isotropic, then by Kneser—Tits we know
that G is generated by the unipotent radicals U and U. If My, My € O and
f: My — Ms is U(ge)-linear, then by integrating the action over unipotents we
deduce that f is U-linear and U-linear, hence G-linear. Therefore the forgetful
functor O¢ — 9 is fully faithful. By the previous paragraph the composite
(’)Sg — 0% — 09 of fully faithful embeddings is an essential surjection (as O9 is
semisimple), hence we get equivalences Oﬁg = 0% =09,

First we consider the case P = G and take W € 09 (absolutely) simple. By

the above we can lift W|g(éer to an algebraic representation of G, which extends

to an algebraic representation of G¢ (as 7" is a direct factor of T"). So there

exists an algebraic G-representation M that agrees with W on g‘é?r. The space
A := Homgaer (M, W) has a natural action of go /g™ and, since M, W are absolutely

simple g‘éer—modules, A is 1-dimensional. Hence M ® A — W is an isomorphism in

09¢. By Lemma (extending scalars if necessary) we can lift A: g/ gdcer — C to
a locally analytic character G/G4°" — C*, and this implies the claim.

Now suppose P is arbitrary standard parabolic subgroup and W € OP simple.
Then W"e € O'is simple and we can lift it to an object M’ of OF by the previous
paragraph (after a scalar extension). Then the unique simple quotient L(M’) of
M(M') in OF lifts W by Lemma

If My, My € OF are lifts of the same simple object of OP, then M{¥|,, = MY,
and we let 1) := Homy, (M{¥, M2"), a smooth character of L. Then M{ ®n= MY
in OF and hence M; ® n = M, in OF by Lemma

In the proof of part we saw that M|y, admits a lift of the form M’ =
Mag @ ¢’ in O%, where M, is algebraic and ¢’ a character of G /G, Then
n := Homg, (M’', M) is a 1-dimensional smooth representation of G and M =
M' ®n = Mug @Y. O

Proposition 2.24.

(i) If My € OF is go-simple and T is finite-dimensional irreducible (resp.
absolutely irreducible) smooth L-representation, then My ® T is a simple
(resp. absolutely simple) object of OF.

(ii) The decomposition My @ T in (i) is unique up to a smooth character of L.

(iii) If G is simply connected, then any absolutely simple object of OF can
be decomposed as in (i), after perhaps replacing C' by a finite extension.

Proof. (i) Consider M = My ® 7, where My € OF is gc-simple and 7 is a finite-
dimensional irreducible smooth L-representation. Then M lies in OF clearly. By
restricting to go we see that any subobject is of the form My® V"’ for some L-stable
subspace V' C 7, hence M is simple. If moreover 7 is absolutely irreducible, then
M is absolutely simple.
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(i) Suppose My ® 71 = My ® 75 in OF with M;,7; as in the statement of part
(i). By taking N-invariants we get M{¥ @ 7 =2 MY @ 15 in OF, where MY € OF
are [o-simple.

Restricting to I we deduce M|, = MZ|i.. Then n := Hom, (M, M)
is a smooth 1-dimensional representation of L and M{¥ @ n =2 M. By replacing
(My,71) by (M;®n, 71 @1~ 1) we may assume n = 1. From Hom, (M{¥, M]N ®1;) =
7; we then deduce 71 2 7. Finally we deduce M; = M, from M (M) = M (M)
and Lemma 2,111

(iii) We first treat the case where P = G, so suppose M € OF absolutely simple.
Pick Wy a simple subobject of M in O9. Extending scalars if necessary, we can
find My € O lifting W, by Lemma (using that G is simply connected).
We now have absolutely irreducible G-representations My, M such that

7 := Homg,, (Mo, M) # 0.

Note that G acts smoothly on 7 and that we get a nonzero G-linear map My ® 7 —
M. This is an isomorphism, as the both sides are simple. It follows that 7 is
absolutely irreducible.

Now in general, suppose that M € OF. Note that MY € OF is absolutely simple
by Lemma Write MY = My ® 7 by the previous paragraph (after perhaps
extending scalars), where My € OF is [o-simple and 7 is an absolutely irreducible
smooth L-representation. Then M = L(M") = L(M,) ® 7 by Lemma and
L(My) € OF is ge-simple. O

Corollary 2.25. Suppose that P = LN and that all simple factors of the adjoint
group L* = L/ZA are isotropic. Then every absolutely simple object of OF is

go-simple, i.e. a decomposition as in Proposition [2.24)(i) exists (with 7 =1).

Proof. Suppose that M € OF is absolutely simple. If G4 is simply connected, then
we can write M = My®T as in Proposition As LT ig simply connected and all
simple factors of LI are isotropic, by Kneser—Tits we know that L’ = L. Hence
the finite-dimensional smooth representation 7 is trivial on L9 by Lemma
Since L/L4" is abelian, we deduce that 7 is 1-dimensional and hence M is gc-
simple.

For general G, let Q — (G be a z-extension, so éder is simply connected, GG
on F-points, and gc — gc for the Lie algebras. Then the inflation M of M becomes
an absolutely simple object of OF, where P is the pre-image of P in G. By the
previous paragraph, M is gc-simple, so M is ge-simple. O

Proposition 2.26. Suppose that G is simply connected.

(i) If M is a go-simple object in OB N OP, then, perhaps after replacing C by
a finite extension, there is a smooth character n of Z such that M ®n lies
in OF. Moreover, 1 is unique up to a smooth character of L.

(ii) If M is a gco-simple object of OF, then, perhaps after replacing C by
a finite extension, there is a smooth character n of L such that M ® n
is equimaximal. Moreover, n is unique up to a smooth character of Lg,
where @ is the maximal parabolic such that M € O9.

Remark 2.27. We cannot drop the condition that G4 is simply connected in part
(i) (see the example with G = PGL3(F'), p =1 (mod 3) in Remark [2.23)).

Proof. (i) Take M a gc-simple object in OF N OP. By Lemma ii) there exists
W € OF such that W, = M|, and moreover there exists a smooth character n
of Z such that W = M ® n in OF. The uniqueness follows from the uniqueness of

Lemma [2.22[(ii).
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(ii) By part (i) there exists a smooth character 7 of Z such that M @n € O9, i.e.
M ® n is equimaximal. By the uniqueness part of (i) applied to M, M @ n € (’)P,
we see that n is in fact a smooth character of L. The uniqueness assertion follows
by the same reasoning. O

We can now prove Corollary

Proof of Corollary[2.18 The strong admissibility follows from the proof of [OST5]
Lemma 2.4(ii)]. (By Lemma any irreducible finite-dimensional locally analytic
representation of P is trivial on N.)

For the finite length claim, we first make a reduction to the case where G4 is
simply connected. We take a z-extension G — G, so G is simply connected and
G - G on F- points. By pullback to G we obtain P = LN and inflation gives
M € OF and 7 finite- length smooth of L. The construction of Orlik-Strauch is
compatible with pullback, i.e. the inflation of F§ (M, ) to G is naturally isomorphic
to fg(],\\f, 7). Thus if .7:1%;(JT4/7 7) is topologically of finite length, so is F§ (M, 7).

Suppose G is simply connected. By exactness of F§, we may assume that
M is simple. It suffices to prove the result after a finite scalar extension, and
we allow such extensions in the proof without further comment. In particular,
we may assume that M is absolutely simple. By Proposition M(iii) we can write
M = My®T with My gc-simple and 7 a finite-dimensional smooth L-representation.
Using Proposition ii) we may moreover twist by a smooth character of L and
assume that My is equimaximal. By construction, F§(M,n) = F§(My, 7 ® 7).
Moreover, m ® 7 is of finite length, since it is admissible and finitely generated.
Hence we may assume that M is ge-simple and equimaximal. By exactness of

F§ we can also assume that 7 is irreducible. Then F§ (M, ) is irreducible by
Theorem 2.16 O

Lemma 2.28. Suppose that W € O is I¢-simple. Then every subobject of M (W)
in OP is P-stable, i.e. lies in OF. In particular, every Jordan—Hélder factor of
M (W) in OF is go-simple.

Proof. Suppose first that G4°" is simply connected. It suffices to check this after a
finite scalar extension. So by Lemma we may write W = Wy ® ¢ with W,
algebraic and v a locally analytic character of L. By integration, every subobject of
M(W) in OP is N-stable. As an L-representation we have M (W) = U(gc) ®uv(pe)
W 2 U(up ) @Waig®1), and by twisting it suffices to check L-stability when ¢ = 1.

AsU(u P’C) ® Waig is a (locally finite) algebraic representation of L, it is clear that
any [c-submodule is L-stable. For general G, take a z-extension ¢ : é —- G, so
Gl is simply connected and G — G on F-points. Let P := ¢~ Y(P), L := ¢ (L)
and let W € OF be obtained by inflation (cf. Remark [2.9). Then M ~ (W) € 0P is
obtained from M (W) € OF by inflation, and the clalm follows from the previous
case. ]

Lemma 2.29. Suppose that W € OF is absolutely simple and that Q = LgNg s
any parabolic subgroup containing P.

(i) Suppose that W = Wy ® 1 in OF, where Wy is lo-simple and T is smooth.
Then L(W) € OF if and only if L(Wy) € OF and T extends to a smooth
representation of Lq.

(ii) Suppose that G s simply connected. Then L(W) € 09 if and only if
(after perhaps replacing C' by a finite extension) W = Wae @ 9|, @ T, for
some algebraic representation Waz of L, a locally analytic character ¢ of



20 NORIYUKI ABE AND FLORIAN HERZIG

Lg, and a smooth representation T of Lg such that moreover L(Walg) IS
0.

In part (ii) we could alternatively demand that W = Wy, ® ¢|p ® 7, where 7
is a smooth representation L that is trivial on L N L’Q (after perhaps replacing C
by a finite extension). (If 7 is as above, then it is trivial on L by Lemma
Conversely, 7 is a representation of L /(LN Lg) = Lo /Ly, so extends to Lg.) Also
note that the property L(Wa) € O9 is equivalent to the lowest weight of W, in
X*(I") being antidominant relative to the Levi L.

Proof. (i) Suppose that L(W) € O% and W = W, ® 7 as in the statement of the
lemma. Then L(W) = L(W;)®T in OF by Lemma Moreover L(W)Ne € Ote
is finite-dimensional and by Lemma [2.4| we have L(W)"e = L(W,)Ve @ 7. Hence
L(Wp)™Na is finite-dimensional, hence lies in O*<, so L(Wj) € O9 as it is a quotient
of M(L(Wy)Ne) € O9. Let 7 := Homg, (L(Wy),L(W)). Then 7 has a smooth
action of Lg and 7|y, = 7 by the isomorphism above.

Conversely, let 7 be the (unique) smooth extension of 7 to Lg. Then L(W) =
L(Wy) ® T € O because they are isomorphic in OF.

(ii) If G is simply connected, then we can always decompose W = Wy ® 7
as in (i) by Proposition (after perhaps extending scalars). If L(W) € 09,
then by (i) we deduce that 7 extends to a smooth representation 7 of Lg and
that L(W,) € OY. By Lemma we can write L(W)Ne = My, ® 1 in
OLe with M,y algebraic and 1 a locally analytic character of Lg (after perhaps
extending scalars). Taking N N Lg-invariants and using Lemma we get that

W = M;\{;LQ ® |, with M;\{;LQ algebraic.

Conversely, if W = W, @ ¢|r ® 7|1 as in the statement of the lemma, then
L(Waig) is equimaximal as Wy, is algebraic (Lemma , s0 L(Waig) € O€. Let
Wi := Wag ® 9|1, which is an [¢-simple object of OF and L(W;) = L(Wag) @Y1
in OF by Lemmas and shows that L(W;) = L(Wag) @ ¢ € O%. Then
W =W, ® 7| lies in OF by (i). O

2.5. The socle of locally analytic parabolic induction. The following proposi-
tion generalizes [OS14al Theorem 3.5] and [Brel6l, Proposition 2.4], which assumed
M e Oﬁg and G split.

Proposition 2.30. Suppose that P = LN and that M € OF is go-simple and
equimazximal with maximal parabolic P. Let w be an admissible smooth representa-
tion of L. Then

(2.2) HY(N,FS(M, 7)) = MN o7’
as representations of L (on nuclear Fréchet spaces).

Proof. The proof follows the same lines as [OS14al Theorem 3.5] and [Brel6, Propo-
sition 2.4]. We let P = LN denote the opposite parabolic subgroup and @ the Lie
algebra of N.

We fix some notation. Recall that we fixed a special parahoric subgroup K C G.
Let Py := PN K. For X a locally F-analytic manifold, let D(X) be the locally
convex space of locally F-analytic distributions on X with coefficients in C'. If H is
a locally F-analytic group, then D(H) is a (separately continuous) locally convex
algebra. For h € H, we have 0;, € D(H) defined by f — f(h). If H is a closed
subgroup of G, let D(g, H) be the subalgebra of D(G) generated by U(ge) and
D(H). Let ® be the root system for (G, S), ®* the set of roots in B, A the set of
simple roots and W the Weyl group.
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First assume 7 = 1. Assume r?" € p@nN (p_l,p_l/"(p_l)) for some m > 0 and
r sufficiently close to 1 (where k € {1,2} is as in §A)). Let I C A be the set of
simple roots corresponding to P and W; the subset of W generated by reflections
for elements in I. For each w € W we fix a representative w € K. Let Z be an
Iwahori subgroup fixing a facet of the apartment of S having vertex xy. Then

FEMY = @ 6,D(™" T - Py) @p(g,p) M,
weWwl

where W/ denotes the Kostant representatives of W/W;. Fix w and let H =
w1 Tw, M = D(HP,) ®p(g,p,) M (coadmissible). We now use the notation and
definitions of Appendix[A] in particular defining Gy and an open normal L-uniform
subgroup H <1 Gy that has an Iwahori decomposition H = H~ H™T with respect to
N x P. We may assume that H is contained in H. The group H is used to define
norms g, (cf. [OS10, 2.2.6]) on D(H) for any compact subgroup H of G that contains
H (and likewise H™ is used to define norms on D(ﬁ *+) for any compact subgroup
H* of N, resp. P, that contains H¥). We also have an Iwahori decomposition
H = H~H™ with respect to N x P. Let D,(H) be the completion of D(H) with
respect to g.. Let U,.(g) denote the closure of U(ge) in D,.(H) (or equivalently
in D,.(H)) and D, (g, P,) the subring of D,(K) generated by U,(g) and D,(F).
Let M, := D(HPy) @pjrp,) M = Dr(H) @py grp,y M (so M = im M, by
coadmissibility) and m, := U,(g)M C M,. As in the proof of [OS14b, Theorem
4.5] the module m, is D, (g, Py)-stable, D,.(HPy) = @ g p,  gm p, 09 Dr (8, Fo), mp =
D,(g, Py) ®p(g,py) M, and M, = @I:I—/H—vm dum,., where H™ (resp. H~"™) is the
(m 4+ 1)-st term in the lower p-series of H (resp. H~). By Lemma we get
m, = U,(g9) ®u(ge) M and Lemma applies to M C m, (by the beginning of
the proof of Theorem .

If w e WI\ {1}, then there exists a reduced root 3 € ®* \ ®; such that
w™lg e &=\ ®;. (For any w ¢ W; we can write w = wijw'wy with w; € Wy
and w’ # 1 the Kostant representative for the double coset. Then there exists
a reduced B > 0 such that w'~'8 < 0.) If moreover H(ng, 8y M,) # 0, then
H'(ng, 60, m,.) # 0 for some u € H—, so Ad(u~1)y fails to act injectively on m,
for any y € g(w-18),c C Ad(w™HneNne. Arguing as in the proof of Theorem
by equimaximality, we deduce that —w =!8 € (Iﬁr, contradiction.

Now suppose w = 1 and H(ng, d,m,) # 0 for some v € H~. Note that m, is
simple as U,(g)-module by Theorem As in Step 2 of the proof of [OSI4D]
Theorem 4.7] we can embed m,. into the formal completion M= I Aeat M), where
ap denotes the Lie algebra of the maximal split torus of the center of L, where each
A-weight space M) is finite-dimensional. The action of n exponentiates to a locally
analytic action of N and we have mo X on~ ! = Ad(m)(X) on M for all m € N,
X € gco. (Use, for example, that log(Ad(7)) = ad(log(m)) € GL(g¢) for allm € N.)
By assumption, 0 # H°(Ad(u=')ng,m,) = mTﬂu_ll/W\“C = m,Nu~ ' M"C inside Z/W\,
so M"¢ — um, as pc-modules, hence we get a surjective map U, (g) @y (po) M" —
0y *m,. of U,.(g)-modules. (Here, §, * m,. denotes the space m, equipped with the
action of U, (g) twisted by d,.) By Lemma[A.11]the left-hand side has m, as unique
simple quotient, so we get m, — &, * m,., hence u € H~"™ by Theorem

Therefore, H’(ng, M,.) = H(ng,m,) = M™, giving an isomorphism M"c =
Hng, FS(M)'). More precisely this is the image of the map i : MY = M"e
M — D(G) ®p(g,py M = FS(M)' sending x to d; ® z. Using a choice of locally
analytic section s : G/P — G of the projection G — G/P we obtain gc-linear iso-
morphisms F§ (M, ) = FS(M)&n and F§(M,n) = FS(M)' &r'. We may take
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s such that s(1) = 1. As in [OS14a, Theorem 3.5] we find that H%(nc, FS (M, 7))
is the image of the map

(2.3) iol: MN @1’ — FS§(M) &' = FS(M,r)’

whose strong dual is computed to be F§ (M, 7) < (IndG(MN) @n)* — (MN) @,
where the second map is f ~ f(1) (using s(1) = 1), which is P-linear (this is
not clear a priori). Taking N-invariants in (2.3) we finally obtain the L-linear

isomorphism (2.2]). O

The following corollary generalizes [Brel6l, Corollary 2.5], which assumed M €
(’),flg and G split.

Corollary 2.31. Suppose that P = LN and that M € OF is go-simple and
equimazimal with mazimal parabolic Q@ = LoNg. Let w be an (admissible) smooth
representation of L of finite length. Then

soce F§ (M, m) = F§(M,socg, (Indﬁ,%LQ )*™)
= socq((IndG(MN) @ 7).

Remark 2.32. We note that any finite-length smooth C-representation of G is ad-
missible. For the proof, we can use a classical argument as follows. We may assume
that the representation is irreducible. Let m be an irreducible smooth representa-
tion. Then there exists a parabolic subgroup P = LU and an irreducible cuspidal
representation o such that m < (Ind% o)™ [Vigd6} 11.2.4]. Since (Ind§ —)™ pre-
serves admissible representations, it is sufficient to prove that o is admissible. Hence
we may assume that 7 is cuspidal.

Since G is o-compact, dimg 7 is countable. Hence dime Endg () is countable.
Since C' is uncountable, the division algebra Endg(m) cannot contain a field of
rational functions. Therefore for any z € Z¢, the image of z in Endg () is algebraic
over C. Since Zg is topologically finitely generated, after tensoring with a finite
extension of C' and taking an irreducible subquotient, we may assume that 7 has
a central character. Here note that a representation 7 is admissible (resp. finite
length) if and only if 7 ®¢ C’ is admissible (resp. finite length) for a finite extension
C’'. By [Vig96l 11.2.7], 7 is Zg-compact. Let K’ be a compact open subgroup of
G and let e/ : V — VE' be the K’ -equivariant projection. Fix a nonzero vector
vemandset D:={g € G |exgv+#0} Then D/Zq is compact by [Vigd6l 1.7.3].
Therefore K'\D/Zg is finite. Since 7 is irreducible, 7 = >, Cgv. Hence oK' =
> gec Cexrgv =3 crenpyze 2azeze Cerrgzv. The representation 7 has a central
character, hence Cegrgzv = Cegrgv. Therefore e deK,\D/ZG Cegrguv is
finite-dimensional.

Proof of Corollary[2-31} The proof proceeds as in [Brel6], using Proposition m
instead of [Brel6, Proposition 2.4]. We first make a reduction to the case where
G is simply connected. We take a z-extension 1 — T — G— G- 1, where
G s simply connected and T is a central induced torus, so 1 — T — G >
G — 1. By pullback to G we obtain P = LN and Q = LgNg, and by inflation
we obtain M € OF and 7 finite- length smooth of L. Note that M is ge-simple
and equimaximal with maximal parabolic Q Moreover, the construction of Orlik—
Strauch is compatible with pullback, i.e. the inflation of fg(M, ) to G is naturally
isomorphic to }"g(M, 7) and likewise for FS(M(MN), ) = (IndG(MN) @ m)a0,
This completes the reduction.

It is clear that the functor F§ commutes with finite extensions of scalars. Also,
the functor socg (resp. socr,) commutes with finite extensions of scalars on the
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category of admissible locally analytic representations of G (resp. Lg). (This fol-
lows, upon dualizing, from the statement that for a module M over a C-algebra D
we have socp(M) ®c C' = socpg.c (M ®c C'), for any finite separable extension
C’/C. On the one hand, M is semisimple over D if and only if M ®¢ C” is semisim-
ple over D ®@¢ C’, cf. [Boul2l §12.7]. On the other hand, socpg,c/ (M ®@¢ C') is
defined over C, by Galois descent.) Therefore it is enough to prove the result after a
finite extension of scalars. So by Proposition we may assume that each simple
constituent of M(M?Y) in OF is equimaximal up to twist by a smooth character of
L. (By Lemma [2.2§ all such constituents are gc-simple.)

By the equimaximality assumption the irreducible constituents of Fg (M, ) are
precisely the .7-"3 (M, mq), where mq is an irreducible constituent of (IndILD% Lo ™™
If fg(M, 7g) injects into F§ (M, ) = .7-"G(M I) where I := (IndeL m)¥™ and
7@ an irreducible constituent of I, then from Proposition [2.30] we get an L-linear
map MNe @I — MNe ®mg which has to be nonzero by [Brel6, Lemme 2.2] (whose
proof remains unchanged if W is any finite-dimensional locally analytic represen-
tation of P). As M@ is [p-simple we can dualize and take Homy, ((MN@)’, —)
to obtain an injection mg < I of smooth Lg-representations. In fact, this gives
an injection (hence isomorphism) Homg(}g(M7 7qQ), F5 (M, 7)) — Homp, (mg, 1),
which justifies the first equality.

Suppose that ¢ is an irreducible subrepresentation of (Ind%(MN) @ m)™ =
]:P( (M™), 7). Then o is a constituent of .7:165(]&/7 ) for some simple constituent
M of M(MN) in OF. By the beginning of the proof there exists a smooth char-
acter n of L such that M 1 is equimaximal, and we denote its maximal parabolic
by Q = LsNg. We deduce that o = .7-'G(M777 g) for some irreducible smooth
representatlon 5 of Ls. Then as in [Brel6j we obtaln from Proposition a
nonzero L- equlvarlant map

MY @ ()N BBy BN, FE (M, mz)') = HON 0 Ly, (Mn)Ve @ 715)
_ (MW)N ® (,n_/@)NﬂL MN ®77( )NﬂL

In particular, MY =2 MY as [c-modules, but this implies M = M in OF (only
M? contains the highest weight for the action of t'). Therefore, o has to lie in the
image of the map F§ (M, ) < FS(M(MN), ). O

The following corollary generalizes [Brel6l, Corollary 2.7].

Corollary 2.33. Suppose Mi, M, € OF are go-simple and equimaximal. Let
P, = L;N; denote the mazximal parabolic for M; and suppose that m; is a smooth
representation of L; of finite length. Then we have ]:1(3;1 (My,m) & .FIC;; (Ms,9)
if and only if Py = P> and there is a smooth character n of L1 = Lo such that
My ®n= My and m @ n = ma.

Proof. By Proposition we have
HY(U,F§ (M;,m;)) = H(UN Li, M}¥' @ 7}) = MY @ (})V"Ee.

We deduce that M|, = MY|,., hence M;, My have the same highest weight
n (t)*. In particular, P = P, and we henceforth denote it by P = LN. The
isomorphism of L-representations M{¥ @ 7] = MY ® 7} shows that M|, =
M|, so as in the proof of Lemma M(ii) we deduce that M; ® n = M, for some
smooth character n of L. Applying Hom, ((M{)’,—) to the dual isomorphism
(MNY @m = (MY @n) @7y we get ™1 =2 mo @ L. The converse is clear. O

We also have a weak version when we drop the equimaximality condition.
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Corollary 2.34. Suppose M; € OF is go-simple and 7; is a smooth representation
of L; of finite length (i = 1,2). Let Q; D P; be maximal such that M; € O%.
Suppose that ]-'gl (My,m), f,%; (M, ma) share at least one irreducible constituent.
Then Q1 = Q2 and there exists a smooth character n: L1 N Ly — C* such that
M, @ n = My in OP\OP2 | In particular, My = My in O°.

Proof. We take a z-extension 1 — T — Q — G — 1, as in the proof of Corol-
lary 2.31] We keep the notation of that proof. By Proposition [2.26] for each i there
exists a smooth character 7; of L such that J\’Zﬁiz is equimaximal, i.e. lies in O%:.
The inflation of F§ (M;, ;) to G becomes

G (T ~ ~ G AT = E i = .. \sm
Fg (M, 7;) = FS (Ml (Indﬁfszi Tan)"™).

By assumption and Theorem We deduce from Corollary that @1 = @2
and Mlﬁlﬁg =~ Mgﬁg in 0% = 0% for some smooth character 7j3 of EQI = ZQ2.
In particular, 77 := 71737, * is trivial on T, so descends to a smooth character 7 of
Ly N Ly. It follows that M; ® n = M, in O F2, O

Recall that if W is a finite-dimensional locally analytic P-representation on which
t’ acts diagonalizably and 7 an admissible smooth representation of L, then we have
a pairing
() em@m: (U(ge) @uepe) W) x (Indg W @ )™ = C*(G, ),
which is used to define F§ (M, ) for M € OF [OS14h} §3.8] (recalled in Appen-
dix [A). Recall that F§ (U(gc) ®u(pe) Wem) = (IndE W' @ 7).

The following lemma generalizes [Brel6, Lemma 3.1].

Lemma 2.35. Suppose that P = LN, M € OF, and 7 an admissible smooth L-
representation. Suppose we are given morphisms Wi — MY «— Wy in OF so that
we have corresponding diagrams in OF | respectively locally analytic representations

of G:

U(gc) ®u(pe) Wa (Ind@ W] @ )™
x \
M FB (M, )
% . /
Ulgc) @upe) W (Indp W3 © 7)™

Let f € FS(M, ) with images h; € (IndE W/@m)* and z; € U(g9c)®u(pe) Wi such
that ¢1(z1) = d2(z2) in M. Then (x1, h1)con(G,x) = (T2, h2)can(G,x) tn C*(G, ).

Proof. By considering Wy @ Wy — MY we may reduce to the case where there
exists a map 6: Wi — Wy inducing commutative diagrams

W \ U(gc) ®u(pe) W1 (Ind% Wi @ )2

0 MN 180 \ M Py FS (M, )
/ / ) /

W2 U(gc) ®u(pe) We (Ind§ Wy @ m)an

Next note that we have
FEM, ) — F&(im(¢y), 7) = (Ind§ W/ @ m)ker(®)

by the definition of F§, i.e. h; is killed by ker(¢;) with respect to the pairing
(*,-)can(G,m)- By assumption, x5 — (1 ® 0)(21) € ker(¢z), so we may replace xz by
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(1®0)(21). But then the lemma comes down to the claim that (z1,0*(h2))cen(G,x) =
(1 ®0)(x1), ha)can(c,x), which is obvious from the definitions. O

The following proposition generalizes [Brel6, Proposition 3.2].

Proposition 2.36. Suppose that P = LN, M € OF go-simple, and 7 an (admis-
sible) smooth L-representation of finite length. Let f € (IndG(MN)Y @ 7)™ such
that the restriction f|y is locally constant. Then f € (IndG(MN) @ m)ker(®) =
FS(M, ), where ¢ is the natural map U(gc) @upey MY — M.

Proof. The proof proceeds exactly as in [Brel6], noting that by Lemma we
know that W := MY = M™¢ is in OF and [c-simple. We may assume f # 0. Note
that Ay = (-, f)cen(a,m): Ulgc) Qupey W — C**(G, 7) is also P-linear, by letting
P act on C**(G,7) by (p'f)(g9) :=p'f(p'"'g). Now ker(Ay) is (gc, P)-stable, and
hence a subobject in OF, so also im(Ay) lies in OF. As f € F§(im(Ay),7) by
construction, it suffices to show that M’ := ker(im(A) - M) € OF is zero. If not,
then V := M'N = M'"¢ is nonzero in OF (it need not be simple, but it does not
matter for the argument). Then let ¢: U(gc) ®u(pe) V — im(Ay) be the induced
map in OF. Following the proof [Brel6l Proposition 3.2], we use Lemma
instead of [Brel6l Lemma 3.1]. For the argument with weights near the end, we
may use weights of t'. O

2.6. Intertwiners. Suppose that P = LN be a parabolic subgroup and o, 7 are
continuous representations of L on Banach spaces.

cts cts

Proposition 2.37. The natural map Hom$* (o, 7) — Hom$%*((Ind$ ¢)°%, (Ind$ 7))
is an isomorphism.

When G is split, P is minimal, and dim¢c ¢ = dime 7 = 1, then it follows from
the main theorem of [BH21].

Proof. By Frobenius reciprocity
Hom*((Ind 0)°**, (Ind 7)°**) 2 Hom3*((Ind§ 0)°**, 7).

Fix a nonzero element y € Hom$¥((Ind$ o), 7).

Recall that we fixed a special point zg in the apartment of S corresponding to
K. Let I be an Iwahori subgroup fixing a facet of the apartment of S having vertex
zg. Then G = [[,ew,\w Pwl where Wy is the Weyl group Np(S)/Z. Then
(Ind% o)°* = @, (Indp*" o) and (Ind5*’ ¢)°% = CO(I Nw~'Nw, o). We first
claim that the restriction of y to (Ind5™! o) is zero for all w € W \ Wy. If
w ¢ Wi, there exists a reduced root o > 0 that appears in Lie(XN) such that wa
appears in Lie(N), so U, C N Nw™'Nw. (The argument is exactly as in the proof
of Proposition%) Note that I Nw™'Nw = [[4(I N Uy-15) in any fixed order,
with B running through the roots of IV, and we list 8 = wa first. Then Lemmam
shows that any continuous I NU,-linear map C°(INw~'Nw, o) — 7 vanishes. This
implies the claim, as INU, C INNNw ' Nw.

By the claim, the given map p factors as

(Ind$ o) — (Indb! 0)* = C%(IN'N,0) — 7,
where the first map is given by restriction. By the action of L, p also factors
through (Ind$ 0)°* — (Indh'“ o)t = CO(¢~'1¢ NN, o) for any £ € L. In other
words, p factors through C°(Ny, o) for any compact open subgroup Ng of N. Fix
now some compact open subgroup Ng of N and v € o. Write Iy, € (IndgﬁO o)cts
for the element taking constant value v on No. Then u(l,5 ,-1,,) = p(lly, ) =
tu(ly, ,) for £ € L by L-linearity. But we also have p(15, ,,) = 1(157,,-1.4,), 28
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1 only depends on the restriction to a small neighborhood of 1 € N. Defining Du:
o — 7 by ¢u(v) == pu(ly, ,), we deduce that f is L-linear. It is clearly continuous.

Moreover, u(f) = ¢,(f(1)) for all f € C>(Ny,0) and hence by continuity for all
f €C°(Ny,0). It is clear that u — ¢, is inverse to the given map. O

Lemma 2.38. Suppose that H is a compact locally analytic group with closed sub-
groups Hy, Hy such that multiplication induces a topological isomorphism Hy X
Hy, =5 H. Suppose there exist a basis of open neighborhoods of 1 consisting of
subgroups of the form HiH} with H] an open subgroup of H;. Suppose that Hy is
infinite and that Vi, Vo are Banach spaces. Then any left Hi-invariant continuous
map p: C°(H,Vy) — Va vanishes.

Proof. Suppose that p is nonzero. By density of smooth functions and by as-
sumption, p has to be nonzero on a function of the form 1y, for some open
subgroup U, some h € H, and v € V4. Without loss of generality, U = HjH}
with H] an open subgroup of H;. Then for any open subgroup H{ of H;{ we have
w(lgrmygw) = (Hy © HY) ' u(1g: myg,0) by left Hi-invariance. By assumption on
H; we deduce that the p-adic absolute value of (H} : H})~! is unbounded. (Note
that H{ is compact locally analytic, hence profinite and contains an open normal
pro-p subgroup, which is infinite by assumption.) This contradicts the continuity
of u, as the set {1 pyg.} is bounded. O

Corollary 2.39. If o is indecomposable then (Indg o) is indecomposable.

Here, we say that a Banach representation m is indecomposable if it cannot be
written as a direct sum of two closed subrepresentations. (Equivalently, the ring
End%*(7) does not contain any non-trivial idempotents.)

We say that an admissible Banach representation is semisimple if it is a direct
sum of finitely many simple subobjects (i.e. irreducible closed subrepresentations).

Lemma 2.40. Let 7 be a finite-length admissible Banach representation. Then the
following are equivalent.
(i) 7 is semisimple.
(ii) 7 is a finite sum of irreducible subrepresentations.
(iil) For any closed subrepresentation o C 7 there exists a closed subrepresen-
tation T such that m = o G 7.

In particular, any closed subrepresentation of a semisimple representation is semisim-
ple.

Proof. The proof works in any abelian category. Assume that 7 = Z?Zl m; such
that m; are simple subobjects and n is minimal. If the sum is not direct there
exists 1 < j < n such that m; N>, m # 0, ie. m; C >, m, contradicting the
minimality of n. Therefore (ii) implies (i), and the converse is obvious.

Assume 7 is semisimple and write 7 = @), m; with m; simple. Let o C 7 be
a subobject. Pick a sequence 1 < ky < ko < -+ < ks < n of minimal length such
that o + 377, m;; = m. If the sum is not direct, then m , N (0 + 3,5 mk;) # 0
for some 1 < j' < s, i.e. T, C o+ Z#j/ Tk, , which contradicts the minimality of
s. Hence we can take 7 = 377 7y, Therefore (i) implies (iii), and the converse
follows by induction on the length of .

Any subobject of a semisimple representation 7 is also a quotient of 7 by (iii)
and hence satisfies (ii). O

If C'/C is a finite extension, then admissibility and semisimplicity of Banach
representations is preserved under extension of scalars from C to C’ and under
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restriction of scalars from C’ to C. (Note that if 7 is an admissible Banach rep-
resentation over C’ and 7° denotes an O¢s-stable unit ball in 7, then 7°/we 7’
admissible smooth if and only if 7°/wc7n® admissible smooth, so 7 is admissible
over C. For semisimplicity we can argue using Lemma [2.40] picking an irreducible
subrepresentation of the extension/restriction first. In the case of extension of
scalars it helps to reduce to the case where C’/C is finite Galois, cf. also [DS13]
Lemma 3.7].)

Lemma 2.41. Suppose that G is a locally analytic group with open normal sub-
group N such that G/N is finite abelian. If V is an absolutely irreducible ad-
missible Banach representation of G and C' is sufficiently large, then there exists
an absolutely irreducible closed subrepresentation W of V|n such that, if we let
H:={g € G| gW = W} (stabilizer of the subspace), we have W o Ad(g) = W
as H-representations for g € G implies g € H. In particular, the natural map
Indg W — V is an isomorphism.

Proof. (See [Roc09, 1.6.3] in the context of smooth representations.) By Clif-
ford theory [BS19, Proposition 2.1.1], V|y is a direct sum of finitely many ir-
reducible subrepresentations. So as C is sufficiently large, we may assume that
any irreducible closed subrepresentation of V| is absolutely irreducible. Choose
now W among all irreducible closed subrepresentations of V|y such that H :=
{g € G| gW = W} is maximal. Note that H is contained in H := {g €
G | WoAd(g) =W as H-representations}, and if H = H, then we are done.
If not, pick H C Hy C H such that H,/H is cyclic. As C is sufficiently large,
W extends to an irreducible representation W of Hy. From Hompy (W, V|y) =
Homg, (Ind W,V |y, ) and Ind& W = D, 1, /0% W @ n we deduce that some

extension W @ n of W occurs as closed subrepresentation of V0g,. (Note that
the image of any morphism of admissible Banach representations is closed.) This
contradicts the maximality of H. O

Proposition 2.42. Let ¢: G, — G be a morphism such that o(G{) = G
and kerp C Zgl. Suppose that P = LN 1is a parabolic subgroup of G and let
P, = Y(P), L = ¢ Y(L), N, := o 1(IN). Suppose that o is an admissible
Banach representation of L, and write o1 for the composition of o with L1 — L.
Then we have the following.
(i) If o is irreducible or it has a central character, then o1 is admissible.
(ii) If (Indgll 01)°* s irreducible, then (Ind$ o) and oy are irreducible.
(iif) If (Ind$ o)* is irreducible, then (Indgll 71)%%® is irreducible for any irre-
ducible closed subrepresentation 71 of o7.
(iv) Assume that o is absolutely irreducible. If (Indlcjl1 71)% is absolutely ir-
reducible for one (equivalently any) absolutely irreducible closed subrepre-
sentation 7, of o1, then (Ind$ o) is absolutely irreducible.

Remark 2.43. In particular, if dime o = 1, then (Ind$ o) is irreducible if and
only if (Indl,c;vl1 1) is irreducible. A special case of this statement can be found in
[BS19l Proposition 2.3.2].

Proof. Set G} := ¢(G1), a closed locally analytic subgroup of G. (It is closed by
[BT73|, 3.19 Proposition].) We observe that ZgG) is open and normal in G with
finite abelian quotient group. (This follows from [BT73, 3.20 Corollary] applied to
the surjective homomorphism G; x Z¢ — G.)

We justify that o is admissible. We put L/ := ¢(L;). Note that o(L{") = L,
so we have a surjective homomorphism L; x Z7 — L, which is therefore surjective
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on Lie algebras and hence induces an open homomorphism on F-points. Pick any
compact open subgroups H of L; and Hyz of Z9. Then ¢(H)Hz is a compact
open subgroup of L, so there exists a o(H)Hz-stable unit ball 0% in o and its
reduction is admissible smooth as ¢(H)H z-representation (as o is admissible). If
o has a central character, then, taking Hz small enough so that it acts trivially
on o, the reduction of ¢ is admissible as p(H )-representation, i.e. o1 admissible
[Emel7, Proposition 6.5.7]. If o is irreducible, then the endomorphism algebra
End$*(o) is a finite-dimensional division algebra [DSI3|. Let C’ be the subalgebra
of End§"™ (o) generated by the image of Z,, which is a finite extension of C. Then
o is admissible as Banach representation of L over C’ and has a central character,
so o is admissible over C’, so o is admissible over C.

The group G acts on (Indgl1 1) through G7 — G and as G'j-representations
we have (Indgl1 01)°% = (Ind§ 0)°®|g. (To see this, we note that ¢ induces an iso-
morphism P;\G; — P\G because it induces an isomorphism P,\G; — P\G and
we obtain the former isomorphism by passing to F-points.) Hence if (Indgll o1)¢ts
is irreducible then (Ind$ )¢ is also irreducible. Moreover oy is clearly irreducible.
Conversely, assume that (Ind% o)< is irreducible. Then in particular o is irre-
ducible and again End$*®(o) is a finite-dimensional division algebra. Let C’ be the
subfield of End$™ (o) generated by the image of Zg. Considering o as irreducible
admissible representation of L over C’, by Clifford theory [BS19, Proposition 2.1.1]
(Ind$ o)°ts| ze@ is semisimple (as defined above) over C’. As o has a central char-

acter over C’, (Ind% o)**| is semisimple over €’ and hence semisimple over C.

In particular, by Lemma [2.40| the direct summand (IndIGDl1 )% of (Ind% o)

is semisimple over C. But it is also indecomposable by Corollary hence irre-
ducible.

Finally assume that o is absolutely irreducible. As we have seen before (for
G = L), Z; L} is open and normal in L with finite abelian quotient group. By
Lemma applied with N = Zp L) and extending scalars if necessary, we
can take an absolutely irreducible closed subrepresentation 7 of oz, 1, such that
H = {g € L | gr = 7} (stabilizer of the subspace) is equal to {g € L |
70 Ad(g) = 7 as H-representations}, so o 2 Ind¥ 7. Since o has a central charac-
ter, 7 is also absolutely irreducible as L}-representation. Let 7; be the composition
of 7 with L1 — L} C H, which is again absolutely irreducible. Then the sub-
space W := {f € (Ind§ o)™ | f(ZgG}) C 7} is G)-stable and isomorphic to
(Indgl1 7). Note that if £ € L and f € (Ind% o) such that f(ZcG}) C T,
then for g € ZgG) we have (£f)(g) = f(gl) = f(€(t"1gl)) = Lf(¢~1gl) € bry. In
particular, W is also H-stable. Moreover, together with o = @, JH {1 we deduce
that (Ind3 o) = @,y W. As H\L =5 HG{\G, it follows that the natural

continuous homomorphism Indggl1 W — (Ind$ 0)°* is an isomorphism.

We assume (Indgl1 71)°%(2 W) is absolutely irreducible. To prove (Ind$ o)< is

absolutely irreducible, by the previous paragraph it is sufficient to prove that for g €
G, if (Indgl1 71)% 0 Ad(g) = (Indﬁl1 71)°* as HG'|-representations, then g € HGY.
As G = LG, we may assume g € L. The map f — (z +— f(grg™!)) gives an HGY-
linear isomorphism (IndIGDl1 1) 0Ad(g) & (Indgl1 T10Ad(g))*. By Proposition
any Gi-linear isomorphism U: (Indgl1 71 0Ad(g)) = (Indgl1 71)°* arises from an
Ly-linear isomorphism 1 : 71 0 Ad(g) — 7. From the relations W(f)(1) = ¢(f(1))
and (hf)(1) = h- f(1) for f € (Indgl1 71)°* and h € H we deduce that 9 is even
H-linear. Therefore, g € H. O
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Remark 2.44. In this way the problem of understanding when a parabolic induction
(Ind$ o) (with o admissible) is absolutely irreducible can be reduced to the case
where G is a simply-connected group. If o is finite-dimensional we may reduce
further, see Remark below.

2.7. Translation functors. In this subsection we recall translation functors and
extend some properties to locally analytic representations. This topic is also studied
in [JLS21] for split reductive groups, from the point of view of distribution algebras.
(In particular, in [JLS2I, Theorem 4.2.12] they compute the effect of translation
functors on locally analytic principal series.) We do not refer to this paper and give
proofs for the sake of completeness.

We first recall some facts about translation functors on go-modules from [BG80].
Let Z(gc) be the center of U(ge). We say that a ge-module M is Z(ge)-finite if
the ideal Annyy M C Z(gc) has finite codimension. Let Mz be the category
of Z(gc)-finite go-modules. By the Harish-Chandra isomorphism we have an em-
bedding Z(gc) < Sym(t') whose image is the set of vectors fixed by the absolute
Weyl group. For A € (t)*, let xx: Z(gc) — C be the composition of the Harish-
Chandra isomorphism and the evaluation at \. We say that a gc-module M admits
generalized infinitesimal character X if (ker xx)"M = 0 for some n € Z>q and let
M be the full subcategory of Mz consisting of all M which admit a generalized
infinitesimal character A\. (We note that our definitions are slightly more restrictive
than the ones used in [BG8&0].)

In this subsection, we say that A € (t')* is integral if its value at any absolute
coroot is an integer. Note that this is weaker than A € X*(I"). Let A\, p € (¢)* and
assume that g — \ is integral. We define the translation functor T4 : My — M,, as
follows. Let V' be the absolutely simple finite-dimensional gc-module having g — A
as an extremal weight. By a theorem of Kostant, we have V ® Mz C My [BG8Q,
2.6 Corollary] (and its proof). Then we define 7§ (X) := pr, (V ® X), where
pr,: Mzs — M, is the projection. The properties of translation functors are
summarized as follows.

Proposition 2.45. Let A\, € (¥)* such that p — X is integral.

(i) The functor T¥ is exact.
(i) The pair (T}, Tlf‘) is an adjoint pair.
(iii) Assume that for any absolute root o we have (A, ") € Zwq if and only if
(p, ") € Zso. Then TY gives an equivalence of categories.

Proof. (i) and (ii) are easy and (iii) is [BG80l 4.1 Theorem]. O

We upgrade the above constructions to locally analytic representations. Let
MY = M3*(G) be the category of locally analytic representations m of G such
that 7|y, € M)y. Assume that there exists a finite-dimensional locally analytic
representation V' of G such that V|, is absolutely simple with extremal weight
p#— A and we fix such V. (It exists by Lemma (ii) if G is simply connected.)
Then for X € M5, V ® X is also a locally analytic representation of G. Since
pr,(V @ X) is the kernel of certain z € Z(gc), it is a closed subspace. Moreover
it is G-stable since the action of G commutes with that of Z(g¢), as Z(gc) =
Ulgo)2dse) = U(ge)A4(Ge). (Note that the action on U(ge) is locally finite-
dimensional algebraic.) Therefore we can define the functor T{(G,V): M3" —
MR by T{H(G, V)(X) == pr, (V& X).

Lemma 2.46. Suppose that w is a locally analytic representation such that g,
is Z(gc)-finite. For any p € (¥)* there exists a functorial decomposition ™ =
pr, (m) @ pr),(7) as locally analytic representations of G.
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Proof. By assumption there exists an ideal I of Z(g¢) of finite codimension such
that It = 0. Then Z(gc)/I is an artinian ring and we have a (finite) decomposi-
tion m = @, Tm, where m runs through the maximal ideals of Z(gc). We define
pry,(m) == Dy Fker x, Tm- As above, each 7y is a closed G-equivariant subspace
of m and the projection m — 7y, is continuous. We obtain continuous bijections
pr,(m) @ pry,(7) — m — pr, (m) x pr, (), which are topological isomorphisms since
the composition is one. O

Proposition 2.47. Let A\, € (Y)* such that u — X is integral.

(i) The functor T{(G,V') preserves strict ezact sequences.
(ii) The pair (T (G, V), T)(G,V")) is an adjoint pair.
(i) Assume that for any absolute root o we have (A, ) € Zsq if and only
if (1, ") € Zso. Then TY(G,V): MJ* — M gives an equivalence of
categories.

Proof. For (i), by Proposition i) it suffices to show that T} sends strict mor-
phisms to strict morphisms. In fact, the same is true for X — V ® X and
X + pr,(X). This follows from the basic fact that if f;: 7 — 7 (1 = 1,...,n)
in the category of locally convex spaces, then f; is strict for all ¢ if and only
if ®fi: @, m — D, is strict. For (ii), recall that units and counits of
(T{(G, V), TXG, V")) on My, M,, are induced by C = V' @V and V' @V — C.
Both are G-equivariant linear morphisms, so the unit and the counit are morphisms
of locally analytic representations. Part (iii) follows from (ii) and Proposition [2.45|
(ii). O

For the following result, recall that in §2.4] we fixed a system of positive roots
for (gc,t'). Let p € ()* (resp. pr € (¥)*) be the half sum of positive roots in g¢
(resp. in o).

Proposition 2.48. Let P = LN be a parabolic subgroup of G. Suppose V. € O¢
is go-stmple with lowest weight A. Let Viy denote the N-coinvariants in V', which
is a locally analytic representation of L (in OF).

(i) If o € M2(L) for some p € (Y')*, then (Indf o)™ € M22  (G).
(ii) For any smooth representation T of L, we have

T2,7(G, V) (Ind§ 7)) = (Ind§ Viy 7).

Note that A is automatically integral. Moreover, the proof shows that the iso-
morphism in (ii) is obtained by applying pr,_, to the natural surjection (Indg Ve
) = (Ind$ Vy @ 7)22.

Proof. Let v: Z(gc) < Symt and vr: Z(l¢) < Symt’ be the Harish-Chandra
isomorphisms. We also define v': Z(gc) — Z(l¢) as follows. By considering the
adjoint action of the center of l¢, we have Z(go) C U(le) ® ncU(ge)ne and let
~" be the first projection along this decomposition. It is easy to see that ' is
an [o-bimodule homomorphism, hence v (Z(gc)) € Z(l¢). For each A € (¥)*,
define ¢y: Symt — Symt by t\(H) = H + M(H) for H € t. Then we have
¥ =tp—p, 0y, 07 by the definitions. (Note that we work here with opposite Borels
because the usual Harish-Chandra map is obtained by projecting from Z(go) C
UY) & w'U(ge)w, where we recall that v’ is the unipotent radical of the Borel
subalgebra b’, and we let U’ denote its opposite.)

We prove (i). For each u € U(gc), let R, (resp. L,,) be the right translation
(resp. left translation) of u on locally analytic functions on G. Let f € (Ind$ o)*®

and z € Z(gc). Then for g € G, we have (2f)(g9) = (R.f)(9) = (Laag)=f)(9)
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and this is equal to (L.f)(g) since z € Z(gc) = U(gc)*4(Ge). As f is left N-
invariant, L,f = 0 for u € ncU(gc). Hence zf = L.f = Ly)f. We also
have (L. f)(g) = o(u)f(g) for u € U(lg). Therefore (L2 f)(g) = '(2)f(g). As
¥ =tp—p, 0yL 07, if o is killed by (ker x,)" for n € Z~q, then (Indg o) is killed
by (tp—p, (ker x,))" = (ker xu—ptp., )" Part (i) follows.

By Lemma we have V @ (Ind% 7)** = (Ind§ V @ 7)?". The P-representation
V|p has a filtration such that the successive quotients are lo-simple and N acts
trivially (apply Lemma with W = V). Let V{ be such a subquotient and let

€ (t)* be the lowest weight of V5. As Viy has the same lowest weight as V| it is
sufficient to prove that if pr/\_p((Indg Vo ® 7)) # 0 then v = \.

The representation Vj has infinitesimal character v — pz. By (i), (Ind$ Vp @ 1)
has infinitesimal character v — p. Therefore if it has infinitesimal character A — p
then A — p = w(v — p) for an element w in the absolute Weyl group. Then we
have A — w(v) = p — w(p). The weight w(v) is a weight in V' and since \ is lowest
weight of V', A—w(v) is a non-positive linear combination of positive roots. On the
other hand p — w(p) is a non-negative linear combination of positive roots. Hence
both sides are zero. From p = w(p) we have w = 1 and we get A = w(v) = v, as
desired. O

2.8. A criterion. In this section, we assume F' = Q,. Let P = LN be a para-
bolic subgroup of G and ¢ a finite-dimensional absolutely irreducible continuous
representation of L.

Lemma 2.49. We have o € O, after perhaps replacing C' by a finite extension.

Proof. By [Ser92 §V.9] (and as F' = Qp) o is in fact a locally analytic representa-
tion. If W C oy, is a simple submodule, then by irreducibility, c = Y ., W and
each W is [¢-stable, so o|i, is semisimple. After a finite scalar extension, o, is
a direct sum of absolutely simple [g-modules, i.e. ¢ € OF. (]

Therefore we may assume that ¢ is an absolutely simple object of OF.
We now confirm an expectation of [Sch06], §2] for Banach representations.

Proposition 2.50. Assume Assumption[2.1]. Suppose that o is a finite-dimensional
continuous representation of L. Then the Banach representation (Indg o) is ad-
missible and topologically of finite length.

Proof. The admissibility follows as in [Sch06l Proposition 2.4] (where dimc o = 1).
For the finite length statement, by [ST03, Theorem 7.1] (as F' = Q,) it suffices to
show that the admissible locally analytic representation (Ind$ o) = F§ (M (o), 1)
is topologically of finite length, but this is a consequence of Corollary (|

Lemma 2.51. Suppose that G is simply connected. Then, after perhaps replac-
ing C by a finite extension, we can write 0 = oq @ T, where g € OF is [g-simple
and T is an (absolutely irreducible) smooth L-representation such that moreover
L(o}) € OF is equimazimal.

Proof. By Proposition M(iii) we can write o = 0o ®7, where oy € O is [o-simple
and 7 is an absolutely irreducible smooth L-representation. By Proposition |[2.26
there exists a smooth character n of L such that L(o}) ® n € OF is equimaxi-
mal. (Both steps may require a finite scalar extension.) By replacing (og,7) by
(oom, 77~ 1) we may assume that n = 1, i.e. L(0})) is equimaximal. O

For the remainder of this subsection we will assume that o = oy ® 7, where
oo € O is [g-simple and T is an absolutely irreducible smooth L-representation
such that moreover L(o}) € OF is equimazimal with maximal parabolic Q = LgoNg
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(containing P ). This decomposition of o always exists if G is simply connected,
by Lemma but not in general. By Lemmathe decomposition is unique
up to a smooth character of Lg.

Note that

L L n
FP%?LQ(LLQ(U(/J)’T) C}—PrgLQ(MLQ(U(I))y T) = (IndeL o)™ C (IndeL o).

We say that o satisfies condition (x) if

cts

any irreducible subrepresentation of }"ﬁﬁLQ (L, (o), 7) is dense in (Indé%LQ o)

Note that this condition does not depend on the choice of factorization o = o¢ ® 7.
Note also that L, (0p) lies in OLe by Corollary and that tensoring with

Ly, (o) gives a correspondence between (closed) subrepresentations of (Indé‘% Lo TS
and (closed) subrepresentations of

]:PnLQ (LLQ (00),7) = ]:fQ (LLQ (70): (Indll;%L ™) = Ly, (00)'® (IndeL )™

(The point is that L;, (c3)" is absolutely simple as g c-module and that all repre-
sentations here carry the finest locally convex topology.)

Lemma 2.52. Assume Assumption [2.1] If any irreducible subrepresentation of
L

Fpare(1,7) = (IndIL)?]LQ 7)™ is dense in (IndILD%LQ T)%  then (*) holds.

Proof. We may simplify notation by relabeling Q as G, i.e. assume that L(o}) € OF.
Let V := L(o{)’, which is by assumption a finite-dimensional locally analytic

representation of G. Note that o), — V' as P-representations, i.e. V — o0q, giving

by Lemma a commutative diagram (where all maps are continuous):

V ® (Ind§ 7)"C— V @ (Ind$ 7)** — > (Ind% V @ 7)2» — (Ind§ o)*"

| | |

V ® (Indf ) —= (Ind3 V & 1) — (Ind§ o)°**

We first show that the composition of the top horizontal arrows is injective
with image F§(L(o}), 7). By the discussion before this lemma we know that V @
(Ind$ )gm =~ FS(L(of),7) and that its irreducible constituents are of the form
F&G(L(a}), ") for some irreducible smooth representations 7’ of G. It thus suffices
to show that every irreducible constituent of ker((Ind%V @ 7)* — (Ind$ o))
and of coker(FS (L(o}), ) < (Ind% 0)*") is not of this form. This is clear for the
cokernel (by Corollary [2.34]) because L(c{)) occurs with multiplicity one in M (cy).
For the kernel, note first that V' € O implies that it is a finite-dimensional locally
analytic representation of P on which [o acts as a direct sum of absolutely simple
[c-modules. Hence (Ind%V @ 7)* = FS(M(V'|p),7) by Proposition so by
Corollary [2.34] it suffices to show that

(2.4) [M(V'/a{) : L(o()]or = 0.
Write oy = L1 () as [¢g-module for some A € (t')*, so V' = L()) as ge-module.
Thus only weights < A occur in V' /o, which implies (2.4).

Let 7 ¢ FS(L(0})),7) C (Ind%o)* be an irreducible subrepresentation and
take an irreducible subrepresentation my of (IndIGD 7)¥™ such that 7 is the image of
V@m C V& (Ind§ 7). Then 7 is dense in (Ind$ 7)< by assumption, so also
V ® mp is dense in V ® (Indg 7)*. The above diagram then shows that 7 is dense
in (Ind$ o)cts, O
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Theorem 2.53. Assume Assumption|2.14L The Banach space representation (IndIGD o)°ts
is irreducible if and only if condition (x) above holds.

Proof. Suppose that (x) holds and that = C Indg o is a nonzero closed subrepre-
sentation. Then 7" # 0 by Theorem We have (Ind$ o)? = FS(M(o}),T).
By Corollary we have

SOCG((Indg o)) = fQ( (a3), socL, (IndeLQ 7)),

and hence 7" contains fQ( (0{), p) for some irreducible subrepresentation p of
(Indf)%LQ 7)*™. Let p:= Ly, (07)’ ® p denote the corresponding (topologically) ir-
reducible subrepresentation of FﬁﬁLQ (L, (), 7). Note that L(L,,,(c5)) = L(og)
by Corollary Therefore F§ (L(0), p) is contained in

(2.5) F&(M(Ly,(09)), p) = (Indg Ly, (0p)" © p)** = (Indg p)™
c (IndQ(IndPgLQ 0)*)an = (IndG o)2n

By Proposition (and Lemma we deduce that 72" contains all functions
in the right-hand side of that are supported on N 0Q/Q and are locally
constant on Ng o (where Ng is a fixed compact open subgroup of Ng). This
space is isomorphic to C*°(Nq,,p). By condition () we know that p is dense

(IndeL 0)°*, and hence C*°(Nq,p) is dense in C°(Ng, (IndeL ).

But C°(Ng.o, (IndeL o)) generates (Ind$ o)cts = (IndG(IndeL )t as
G-representation.
Conversely, if (Ind$ 0)°* is irreducible, then (IndPm Lo cr) is irreducible (as

follows from the exactness of Indg(f) C°(G/Q,—), cf. [EmelT, (2.1.3)] and
[BH20L Corollary 2.2]), hence condition (x) holds. O

)cts cts

Corollary 2.54. Assume Assumption[2.1] If every irreducible subrepresentation
of (IndPnL T)sm

particular, if (Indljé%LQ T

is dense in (IndIL;.%LQ )% then (Ind$ o) is irreducible. In

cts

)= is irreducible.

is irreducible, then (Ind$ o)
Proof. Note that .F{;ﬁLQ(l,T) = (Indé%LQ 7)". Hence the corollary follows from
Lemma and Theorem 2.53] The last statement follows from the fact that
(Indf;% Lo 7)™ is dense in (Ind$ 7). This follows, for example, from Lemma
L]

Corollary 2.55. Assume Assumption[2.1]} Suppose that every irreducible subrep-

resentation of (IndILD%LQ 7)™ s absolutely irreducible (as is true after some finite

extension of C). Then condition (x) implies that (Ind$ o)ct

ducible.

18 absolutely irre-

Proof. We just need to note that IndIGD and socg commute with finite scalar exten-
sions. g

Theorem 2.56. Assume Assumption[2.14] The following are equivalent:
(1) (IndG o) is irreducible;
(ii) (IndeL o) is irreducible;
(iii) (IndeL T) s irreducible.

In particular, to understand when (Indg o) is irreducible it suffices to restrict
to the case where o is smooth!
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Proof. Recall that L, (W) € OLe (ie. is equimaximal) by Corollarym7 so parts
(1) and (ii) are equivalent because condition () is literally the same in both cases.
We know that (iii) implies (i) by Lemma and Theorem [2.53] To prove that
(ii) implies (iii), we relabel Lg as G and may therefore assume that L(o}) € O
is a finite-dimensional locally analytic representation of G. Let V := L(o{,)’. Take

any nonzero closed subrepresentation m C (Indg 7). We first claim that the
composition (already considered in the proof of Lemma [2.52])

(2.6) Ver®t o Ve (dEr)™ = (IndEV @ 7)™ — (Ind$ )"

is surjective.
To prove the claim, by Lemma the maps (2.6) are obtained by applying the
functor of locally Qp-analytic vectors to the maps

~

2.7 Veor—V®(@ndEr)™ = (IndSV @ 7)Y — (Ind§ o)t
P P P

of admissible Banach space representations of G. The surjectivity of the composi-
tion is equivalent to the surjectivity of the composition . (Note that the
image of the composition is closed by admissibility and that the functor ()"
is exact.) By assumption, (Ind$ ¢)°* is irreducible, so it suffices to show that the

composition ([2.7) is nonzero or equivalently that the composition (2.6|) is nonzero.
By Corollary applied with M = 1 (the trivial representation), @ = G and

m = 7 we see that any nonzero closed subrepresentation of (Indg 7)® intersects
(Ind$ 7)™ non-trivially. But the composition

V ® (Ind§ 7)™ — V @ (Ind% 7)™ =5 (IndG V @ 7)* — (Ind$ o)

is injective by the proof of Lemma hence indeed the claim holds.
Recall that we have fixed a system of positive roots for (gc,t'), and let A be the
lowest weight of V. Applying the projection functor pry_, to (2.6), we get
(2.8)
pry_,(Ver*) < pry_, (Ve (Ind§ 7)*) = pr)_p((lndg VeT)™) - (Ind§ o).

By the definition of translation functors we have pry_,(Ve7r*") = Ti‘;p(G, V) (m®)
and pr,_,(V® (Ind% 7)) = T2 °(G, V)((Ind§ 7)*"). By Proposition ii), the
last map in (2.8)) is an isomorphism. Hence the map
A— an A— an
T (G, V) (7™) — T2, ((IndF 7)™)

is surjective. Apply T, * (G, V). By Proposition the inclusion 7" — (Ind$ 7)2"

is surjective. Therefore 7 = (IndG 7)<t (after taking closure), hence we get (iii). [

Corollary 2.57. Assume Assumption[2.1, We continue to write 0 = 0o @ T as
above, with Q@ D P denoting the mazximal parabolic of L(c{)). Each of the following
conditions implies the next:

(i) M(op) = Ulgc) u(pe) 0¢ is irreducible as U(gc)-module;

(ii) Q = P;

(i) (Ind$ o) is irreducible.
Proof. 1f (i) holds, and @ is strictly bigger than P, then L(o})"2¢ € O0'? is finite-
dimensional, so the natural map U(lg,c) ®u(penio.o) 00 — L(og)"®¢ is not an
isomorphism, so after extending scalars to U(g¢) we obtain

M(og) = Ulge) ®u(ae) L(99)" @ = L(ag),

where the first map is not an isomorphism, contradicting (i).
If (ii) holds, then we deduce (iii) from Corollary O
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Remark 2.58. Note that part (i) (when dime 7 = 1) is Orlik—Strauch’s irreducibility
criterion for the locally analytic representation (Ind%¢)*® [OSI0], which in turn
implies (iii). We remark that this criterion also follows from Theorem The
application of this criterion to the irreducibility of Banach representation was noted
in [Sch1ll, Proposition 2.6(ii)].

Proposition 2.59. Assume Assumption[2.14] Suppose that G,,G, are connected
reductive groups, P, = LiN, C G;, Py = LyN, C G5 parabolic subgroups and o1
(resp. o2) a finite-dimensional absolutely irreducible continuous representation of
Ly (resp. Ly). Then (Indgf;gf o1 X 03)° is absolutely irreducible if and only if
(Indgl1 1) and (Ind%2 72)°% are both absolutely irreducible.

Proof. We first note that (Indgll al)Ctsg(Indg; 09)°t (Indgjng o1 K a3) as
admissible Banach representations of G1 X Gs. (This follows exactly as in the proof
of [BH20, Lemma 2.8], using the isomorphism C’O(P1\G1,01)<§>C'0(P2\G2,02) o~
C°(P\G1 x P\Ga,01 ® 03), cf. the end of [Sch02] §17], instead of [BH20, (2.6)].)
The “only if” direction follows (using, for example, [BH20, Lemma 2.1(ii)]).

For the “if” direction, by a z-extension we may assume GI° G3 are sim-
ply connected. Then by Lemma after perhaps replacing C' by a finite ex-
tension, we can take a decomposition o; = 0;0 ® 7; as in this subsection, for
= 1,2. Then g1 X o9 = (0'1,0 X 0'270) ® (7’1 X 7'2), where 01,0 X 02,0 is [LC X [2,0—
simple and L(o} g M 05 ) = L(o} o) X L(03 o) equimaximal with maximal par-
abolic @1 X Q2. Let P(Q;) := P, N Lg, for i = 1,2. By Corollary it

suffices to show that every irreducible subrepresentation of (Indi?é?)i%(%) 1 X

79)®™ is dense in (IndILD?éIX)LX%‘(QQ) 71 W 713)%. An irreducible subrepresentation of
Lg, XL am o L am L om
(Indp?él)x%@?) 71 K )5 & (Indp?él) 71)" K (Indp?@) T9)®™ is of the form m Ko

where m; C (Ind P?é,_) 7;)¥™ is an irreducible subrepresentation for ¢ = 1,2. By as-

sumption and Theorem m; is dense in (IndlL)?éi) )t

L = I Lo, XL :
m My C (Indpgs ) 1) *R(Ind 53, ) 7) = (Indpfélx) <D0y T B 72)°" is dense,

as required. O

for ¢ = 1,2. Hence
)cts

Remark 2.60. The problem of understanding when a parabolic induction (Indg o)cts
(with o finite-dimensional) is absolutely irreducible can be reduced to the case
where G is an absolutely almost simple simply-connected group. (First apply Re-
mark to reduce to the simply-connected cover of G*. Then use Proposi-
tion [2:59] to reduce to an almost simple simply-connected group. Then observe
that G = Resg,p H with H absolutely almost simple simply-connected.) We may
moreover assume that G is isotropic, as otherwise G is the only parabolic subgroup.

2.9. Genericity. Recall that B = ZU is a minimal parabolic subgroup. We as-
sume that we are in the setting of with P = B, ie. F = Q, and 0 =
00 @ T, where oy € O is 3c-simple and 7 is an absolutely irreducible smooth
Z-representation such that moreover L(oj) € OF is equimaximal with maximal
parabolic @@ = Lo Ng.

A smooth character 8: U — C* is called non-degenerate if the restriction of 6
to each simple root subgroup is non-trivial. For a smooth representation 7 of U,
let 7y g = w/(m(uw)v — O(u)v | w € U) be the space of twisted coinvariants. We
say that a representation m of G is generic if Ty # 0 for some non-degenerate 6.
When G is quasisplit, this is the familiar notion.

Proposition 2.61. Assume Assumption[2.14. If any irreducible subrepresentation
of (IndLB%LQ 7)™ is generic, then (Ind$ 0)°* is irreducible.
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Proof. To simplify notation, we relabel Lo as G. Let W be the Weyl group of
G and wg € W the longest element. Then we have the Bruhat decomposition
G = [l,ew BwB and (Ind§ 7)™ has a B-stable filtration F,, with graded pieces
(c-IndB¥E 7)™ for w € W, and F,,, C Fy, if w; > wy with respect to the Bruhat
order.

Letm C (Indg 7)®™ be an irreducible subrepresentation and take a non-degenerate
character 8: U — C* such that 79 # 0. From an argument in [CS80, p. 211] or the
proof of the geometric lemma [BZ77, 5.2 Theorem] we have ((c-Ind5“ 7)), 5 = 0
if w # wo.

By above, and as (—)ye is an exact functor on the category of smooth U-
representations, we have an exact sequence of smooth B-representations

0 — (c-IndBwoB 7ysm s (IndG 7)™ — 75 — 0
with (mo)y,¢ = 0, which induces an exact sequence
(2.9) 0— 7N (c-IndB“°P 7)™ & 1 — 7 — 0

with (m1)ye = 0. By assumption we have my g # 0 and hence by we have
(m N (c-Ind5*° P 7)sm); 4 £ 0. Note that the map (c-Ind5“°P 7)™ — 7 f s
Jo F(wou)0~! (u)du identifies 7 with the twisted coinvariants of (c-IndBwoB 7ysm
We can thus take f € N (c-Ind5*°? 7)™ such that v := Jor f(wou)0~* (u)du # 0.
Suppose that supp(f) C B\BwyUy for some compact open subgroup Uy of U. Then

li= on (uof) - 0~ (uo)duo € 7N (c-Ind5*°F 7)™ is supported on B\ BwoUpy and
I (woug) = O(up)v € Cv. By Lemma [2.2) we see that 7 is dense in (Ind% 7)°* and
we get the proposition by Corollary [2.54] O

3. APPLICATIONS

In this section, we give applications of our irreducibility criterion.

Recall that we have fixed a maximal split torus S of G and a minimal parabolic
subgroup B = ZU such that S C Z. Let P = LN be a parabolic subgroup,
P = LN the opposite parabolic subgroup. Let A Ap C L be the maximal split torus
in the center of L and ®(G,A) the set of roots of A;. We have A C A, and

O(G,AL) ={ala, |a€ ®(G,A,)}\{0}. Let (P, A.) be the set of ac (I)(Q’AL)
that appear in Lie?(ﬂ). For a € ®(G, A;), let L, be the centralizer of the connected
component of kera C A; in G. It is a Levi subgroup containing L and P N L,
is a maximal parabolic subgroup of L. Let ®.q(P, Ap) (resp. ®rea(G,AL)) b
the set of reduced elements in ®(P, A;) (resp. ®(G,Ar)) and A(P, Ap) the set of
simple roots in ®(P, A;). When P is a minimal parabolic subgroup B = ZU, we
put ¢ := (I)(Q7AZ)7 Dpeq = q)red(Q7AZ)7 q):‘;d = (I)red(ﬁa AZ); A= A(ﬁ; AZ) If
P is standard, then A(P, Ap) = {a|ALT o € A}\{0}. In general, let X*(H) (resp.
X, (H)) be the rational character (resp. cocharacter) group of an algebraic group
H. For K € {Q,R,C} we let a}  := X*(A,) ® K = X*(L) ® K and denote by
ar,x its dual vector space.

If L, C L, are semistandard Levi subgroups we have Ay C Aj and hence get
canonical maps aj o — a7, g and a7, o <> a7, o giving a bphttlng ar7,0="09,09
(aLhQ)* (and similarly over R and C). We note that if P = LN is semistandard,
then A(P, A;) is a Q-basis of (ag)(@)*.

Given a € ®,0q(G, A;) we define the coroot o € ay, g as follows. The subspace
(affg@)* is one-dimensional with basis @ and we let oV be the unique element of
aéfﬁ@ such that (@, a¥) = 2. Note that if L = Z, then this coincides with the usual
notion of relative coroot (a¥ € X, (4,) C azg)-
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It is convenient to fix a W-invariant positive definite inner product on a7 .
Then any decomposition aj p = a5 @ (agR)* is orthogonal (checking first for
the pairs (Z,G) and (Z, L)). Hence the isomorphism azr — ay g defined by the
inner product identifies ar, g with aj p and af z with (af z)*. In particular, taking
G = L, we see that " € ap, g is identified with 2a/(a, @) € a] .

Lemma 3.1. Suppose L, C L are semistandard Levi subgroups.
(i) Take o € Preq (G, ALl) such that oy, = O“AA # 0. Then the image of o
under ar,, @ — arg lies in Qsoay.
(ii) Ifou,...,cp € ®rea(G, Ay) are linearly independent in ar, r» then ay,...,q)
are linearly independent in ar, r.

Proof. (i) The chosen inner product identifies the projection ar, g — ar g with the

projection aj p —» af p. Hence the projection of a" equals (OE(LX’Z§)O[\L/'

(ii) This is obvious by identifying ay, r and ay, g via the chosen inner product.
O

Lemma 3.2. Let P = LN be a standard parabolic subgroup. Write Ay, := A(B N
(i) Ifa € A\ Ap, then @ € Qsoay ® Q<oAY, where oy, == a|AA £ 0.
(ii) Suppose that x € ayp. Write v = xp + 2], with 1, € a] p and 77, €
(a%R)*. If x is dominant, then x1 is dominant.

Here, 2, € aj p is dominant if (xp,ay) > 0 for all a;, € ®(P,Ay), or equiva-
lently for all i, € A(P, Ap). By Lemmathis is equivalent to 2, being dominant
as an element in a})R.

Proof. (i) Write o = z +y with 2 € apg and y = Y 5., AsBY € aj g with
Ag € Q. By Lemma (1) we have z = Aa} with A € Q0. On the other hand, for
all vy € Ap we get 0> (y,a”) =3 5.5, As(7,8"). The fundamental coweight s
of d € A in (aZ )" is contained in > e, R>0v, whence 0 > A for all § € Ay
(ii) If a € A, then oV € AY C afp, so (27,a") = (z,a") > 0. fa € A\ Ap,
write oV = Aaf + > 504, AgBY by (i), with A > 0 and Ag < 0. Then Nz, af) =
(z,@") =3 gen, Asl@r, 8Y) >0, 50 (zr,a)) > 0. O

3.1. On reducibility points of parabolic induction. Let P = LN be a para-
bolic subgroup. By Corollarym to prove (Indg )% is irreducible, it is sufficient
to prove that (IndILﬁ| Lo 7)*™ is irreducible for a certain parabolic subgroup @ con-
taining P, at least whenever o can be decomposed as tensor product op ® 7 as
in subsection (for example, when G is simply connected). We collect some
known facts about the reducibility of smooth parabolic inductions over C.

Let oy be an irreducible smooth complex representation of L and O¢ be the set
of isomorphism classes of oy ® x, where x: L — C* is an unramified character. We
have Harish-Chandra’s homomorphism Hp: L — ay g normalized by q<X7HL 0) =
Ix(€)|F for all x € X*(L) and £ € L. Then for v € a}  we define the unramified
character x,: L — C* by x,(£) := ¢H®)  Then the map v — Y, identifies
the group of unramified characters Xy, (L) with the quotient of aj ¢ by a lattice
n ia7 g (a complex torus with character group L/ker Hy). In this way O¢ has
the structure of an algebraic variety over C (a homogeneous space for X, (L) with
finite stabilizer subgroups).

Let @ = LN be a semistandard parabolic subgroup which has the same Levi

part as P. For o € Oc, we have an intertwining operator Jg|p(0): (n-Ind§ o)™ —
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Ind€ o)™ defi
(n-Indg 0)*™ defined by

(JQP(U)f>(g):/(NnN X f(ng)dn.

It converges if (the unramified part of) o is sufficiently dominant, and has mero-
morphic continuation to O¢. In fact it is a rational function on Oc, see [Wal03|
Théoreme IV.1.1].

The definition of Jgp depends on a choice of Haar measure. Here we fix a

measure as follows: we have a bijective map Haeéred(Q,AL)\éred(P,AL) (NoNLy) —

(N N Ng)\Ng, where we fix an order of ®,eq(Q, A;) \ Prea(P, Ar). For cach a €
Drea(@,Ap) \ Prea(P, Ap) we fix a Haar measure OITNQ N L, and take the product
measure on (N N Ng)\Ng. We will fix more specific measures on Ng N L, later.

The most important case is when og is a discrete series and @ = P. The set of
o € Oc such that (n-Ind% o)™ is irreducible is open and non-empty [Wal03, Propo-
sition IV.2.2]. Hence there exists a rational function j(o) such that Jp5(0)J5 p(0) =
j(o). Note that j(o) does not depend on P [Wal03, IV.3(1)]. We define Harish-
Chandra’s rational function u%(o) by the same formula as in [Wal03, V.2]. (In
[Wal03, V.2], o is assumed to be unitary, however the definition works for any o
and gives a rational function on Oc.) We have u%(0) € RZ, - j(o)~!, where the
implied constant only depends on (G, L). We also have % (o) > 0 for all unitary
o € O¢ by [Wal03|, Lemme V.2.1]. Finally, it is clear that 4 is a rational function
on the quotient X,,,(G)\O¢. The function j(o) depends on the choice of measure,
but (o) does not depend on it. The function u& gives very precise information
about the reducibility points of (n—Indg o)*™ for o supercuspidal.

Remark 3.3. We normalize u© differently compared to [Sil79]. However, the nor-
malizations agree up to a factor in RZ. This follows from the comparison of [Sil79,
Theorem 5.2.4.4] (noting that p(w) = p(w : 0) in that reference) and [Wal03|
Lemme V.2.2].

Proposition 3.4 (Harish-Chandra’s product formula). If o is a discrete series we

have
po)y=" I w0
a€Dreq (gvéé)

Proof. This is true for o € O¢ unitary [Wal03, Lemme V.2.1] and hence for all
o € O¢ since both sides are rational functions. O

Suppose that P is maximal and ¢ is a unitary supercuspidal representation of L.
Note that the group Ng(L)/L has at most two elements, and let Wg(o) := {g €
Ng(L)/L : 00Ad(g) = o}. Also note that X,,,(G)\Oc is a torus of rank 1 (without
fixed base point). Define 2pp € X*(A;) (as sum of the roots in ®(P, A;), with

multiplicities) such that dp = x2,,-

Proposition 3.5. Keep the above notation.

(i) If Wg(o) = 1, then (n-Ind$ ox)™™ is irreducible for all unramified x: L —
RZ,-

(ii) Otherwise, there exists a unique 0 < so < 1/2 such that (n-Ind$ o6%)"™
(s € R) is reducible if and only if s € {£so}.

(iii) In case (i) and case (ii) when sq = 0, the function u® is holomorphic and
non-vanishing at all ox with x: L — RZ, unramified.

(iv) In case (i) when sy > 0, the function u®(cd%) has a double zero at s = 0,

stmple poles at s = £5sg, and is holomorphic and non-vanishing at all other
seR.
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Proof. First suppose that Wg(o) = 1. Then (iii) follows from [Sil79, Corollary
5.4.2.2] and [Sil80bl, Lemma 1.3]. Then (i) follows from [Sil79, Lemma 5.4.2.4] for
x that do not extend to G. If x extends to GG, by twisting we may suppose x = 1
and we may suppose that Ng(L)/L has order 2 by [Sil79, Theorem 5.4.4.1]. Then
(i) follows by combining Lemmas 5.4.5.2, 5.4.1.5 of [Sil79]. (A different proof of (i)
can be found in [Ber92, Theorem 28].)

Now suppose that Wg (o) has order 2. If u“(o) > 0, then & is holomorphic
and non-vanishing at all oy with y: L — RZ, unramified by [Sil80b, Lemma 1.3].
Otherwise, 4% (o) = 0. We have a commutative square

(ag,c)*—— (arc)*

C

)(Ill“(G)CH Xl’lr(L)

where the vertical maps are given by v — x,. Hence the kernel of the map
(af 0)* = Xu(G)\Oc, v = o, is alattice L* (o) (of rank 1) in \/—;l(agR)*. There
is a unique element a(o) € af,R such that ¢*(®)) = 1 if and only if v € L*(0)
and (pp,a(c)) > 0. We let z := ¢**(?)) (a generator of the character lattice of the
torus Xp:(G)\Oc). Then a(o) and z agree with the ones defined in [Sil80Db], except
that our v becomes v/—1v in [Sil80b]. From [Sil80D, Theorem 1.6] and 8% = x2sp,
we deduce that u(o) = 0 implies that u“(06%) is as described in part (iv), for
some 0 < so < 1/2.

Finally, part (ii) follows from parts (iii) and (iv) using [Sil79, Lemma 5.4.2.3]
(when s = 0) and [Sil79, Lemma 5.4.2.4] (when s # 0). O

The following comparison of p-functions will often be useful, especially in com-
bination with Proposition |3.5)

Proposition 3.6 ([Sol21, Proposition 2.2]). Let ¢: G; — G be a morphism such
that w(chier) = G and kerp C ZGI' Let o be a unitary supercuspidal repre-
sentation of L and o1 an irreducible “constituent of the inflation ¢*(0), a unitary
supercuspidal representation of Ly := o~ Y (L). Then u*(ox) and u*(o19*(x))
agree up to nonzero constant as rational functions of x € X, (L).

The following result is crucial to us. Its proof was provided to us by J.-L.
Waldspurger.

Proposition 3.7 (Waldspurger). Assume that P is a mazimal parabolic subgroup,
P = LN the parabolic subgroup opposite to P and (N, N) the group generated by
N and N. Let o be a unitary supercuspidal representation of L and assume that
(n-Ind$ 0(5;/2)5“‘ is reducible. Then o is trivial on L N (N, N).

The final statement implies that o extends to a smooth representation of G that
is trivial on N by [AHHVI17, II.7 Proposition]. (To see this, choose a minimal
parabolic B = ZU C P and note then that Z N L% is contained in L N (N, N) for

all B € A that do not occur in L.) In that case (n-Ind% 06;1/2)5“‘ = (Ind§ o)™ is
obviously reducible. So by Proposition [3.5] the converse of the proposition is true
as well.

Proof. By Proposition [3.5| there exists s € Ng(L) \ L and o 0 Ad(s) = 0. Let a be

the unique element of A(P,A;). Let rp(m) := 7rN51_)1/2 be the normalized Jacquet

module. Then by the geometric lemma, rp((n-Ind$ 05;/2)5““) & 05;1/2 & 05113/2.

m

Since the supercuspidal support of any subquotient of (n—Indg 0(5113/ 2)S is L, any
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subquotient has a nonzero Jacquet module. Hence (n—Indg 06113/ Q)Sm has length two

and the normalized Jacquet modules of the irreducible subquotients are 06;1/ 2

and 06113/ 2, respectively. By Casselman’s criterion of square-integrability [Casl, The-
orem 4.4.6], one of them is square-integrable and let m be the other irreducible
subquotient. Then rp(7) is isomorphic to 06;1/2. Let 6: m — 7wy & o be the
natural projection.

Let Ky C G be a compact open subgroup which has Iwahori decomposition
Ko = (Ko N N)(Ko N L)(Ko N N) and o%"E £ 0. Normalize Haar measure on
Ky such that the volume of Ky is 1 and set e, := fKo w(k)dk. For ¢ > 0 put
A77 :=={a € Ar | |a(a)|r < ¢}. Then by a result of Casselman there exists ¢ < 1
such that

(i) for any a € A7~ the space eg,(m(a)w’°) does not depend on a [Cas,
Proposition 4.1.6]; we denote it by Wi(f,,;
Ko 7L ~, ~KoNL [
AT
(iii) for a € A7, ek, o m(a) preserves nfg, and for v € 7
O(ek, o m(a)v) = o(a)f(v) [Cas, Lemma f1.1.1].
Let w be the central character of 0. Then w is unitary and the conclusion in (iii)
can also be written as 0(ek, o m(a)v) = w(a)f(v) for any a € A7 .
By a result of Tadié¢ [Tad88], m is unitary. Fix a nonzero G-invariant inner

product (-,-) on w. Let v € Wfﬁ, be a nonzero element and a € A7~. Then by

(ii) the map 6 gives an isomorphism Casl, Proposition 4.1.4];

Ko

O . we have
AT

(ex, o m(a)v,v) = w(a)(v,v), we have
/ (7(ka)v,v)w(a) ™ (v,v) " dk = 1.
Ko

By the Cauchy—Schwarz inequality and since m,w are unitary, we have
|(m(ka)v, v)w(a) ™ (v,0) 7 < 1.

Hence (7(ka)v,v)w(a)~t(v,v)"! = 1 for any k € Ky. In particular (7(a)v,v) =
w(a)(v,v). Again by the Cauchy—Schwarz inequality, we get w(a)v = w(a)v for any
a € A7™. The subset A7~ generates Ay, as a group. Hence 7(a)v = w(a)v for any
acAyr.

Let n € N. Then there exists a € Ay, such that ana™" fixes v. As 7(a)v = w(a)v,
we have m(n)v = v. By the same argument 7(7)v = v for any m € N. Therefore
7NN} =£ 0. Since (N, N) is normalized by L, it is also normalized by G = (N, L, N).
Hence 7 is trivial on (N, N) by irreducibility of 7. Since o = 7y, o is trivial on
LN (N,N). O

Finally, the following criterion will be useful. We say that o is G-regular if for
g € Ng(L) \ L, we have o o Ad(g) # o.

Proposition 3.8 ([Sil79, Theorem 5.4.3.7]). If o is supercuspidal and G-regular,
then (n—Indg o)™ is reducible if and only if u has a pole at o.

3.2. Split groups. We now prove Theorems [I.2] and

Theorem 3.9. Let G = GL,(F), B the upper-triangular Borel subgroup, and Z
the diagonal mazimal torus. Let x = x1 ® -+ @ Xn: Z = (F*)" = C* be a
continuous (hence locally Qp-analytic) character. We have dxy € Homg,(3,C) =
D... rcHome(3 ®p, C,C) and let Ay = (As,1,-. ., Aen) be the k-component of
dx, where A\, € Home(C,C) = C. Assume that there exists no 1 <i < j <mn
such that

® Mk — Aokl €Z<o foranyk=14,....j—1and k: F = C;
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o Xix; ' (8) = [th T L. o (D A9 for all t € FX.
Then (Ind$, x)°** is absolutely irreducible.

Proof. We have G = Resp/q, GL;, and the subgroup S is the diagonal split torus
of rank n over Q,. Let e;: S — G,, be the character projecting to the i-th entry.
Then the set of simple roots is {e; —e;4+1 | 1 <i<n—1}. Set I :={e; —e;41 |
Akyi — Anjit1 € Z<o for all k: F — C} and @ the standard parabolic subgroup cor-
responding to I. Then @ is maximal subject to L(—dy) € O% Take a locally
Qp-analytic character g = 091 ® -+ ® 0p,n: Z — C* and a smooth character
7: Z — C* such that x = og7 andlfl <i<n-—1ande —e4; €I then
(007i0()_’2»1+1)(t) =[1.. p_c k() =i"*=i+1 Then L(o})) € O by using Lemma
Namely, x = o7 is the decomposition given in section 2.8 By our hypothesis,
TiTj*l # |-]57"" whenever i < j and —(e; — ¢;) is a root of Q.

We now check the assumption of Proposition By writing Lg as a product
of general linear groups, we may assume [ = {e;—e;41 | 1 <i<n—1} (i.e. Q = G).
Then it follows from [BZ77), 4.11 Theorem] that every nonzero subrepresentation of
(Ind$ 7)™ is generic. O

Theorem 3.10. Assume Assumption . Let G be split. Let x: Z — C* be a
continuous (hence locally Qp-analytic) character. We have dxy € Homg,(3,C) =
D... r.c Home (3 ®F,, C,C) and let dx, € X*(Z) ® C be the k-component of dx.
Let P = LN be the largest standard parabolic subgroup such that (dx,,a") € Z<o
for all positive roots a of L and all k: F — C. Assume that for allw € Np(Z)\ Z
there exists a root o of L such that

(3.1) (Xégl ow taY) - (xdg 12, V)~ is non-algebraic
and that there exists mo positive root o of L such that
(32) e i ROt

k: F—=C

Then (Ind$ x)°** is absolutely irreducible.

Proof Assume first that G4 is snnply connected. We will work over Q,, by letting
G Resp/q, G, and likewise for B etc. Then P is the maximal standard parabolic
subgroup of G such that L(—dy) € OF. By Lemma we write Y = o7 with
L(oy) € OF and 7 smooth. By Lemma we have 09 = 0a1g(¥|z) with cag: Z —
C* algebraic and ¢: L — C* locally analytic.

Fix « a positive root (of Z = S) in L. We claim that equation is equivalent
to
(3.3) 7'53;/5 oaY = |z
Note that poa¥ = 1 by Lemma- In particular, oag0a” is an algebraic character
of F* with derivative doag 0 ¥ = dy oo, so oag o’ =1T].. pc /<;(~)<de°‘V>.
Finally note that g = dpnrd0n and oy o a¥ = 1. We deduce the claim. Likewise

fix w € NL(Z). Then wy = ¢ and wéy = Iy for all w € N(Z), so for w ¢ Z
equation (3.1]) becomes

(3.4) 75337/5 ow taV =+ 7'53%/5 oaV

for some root o of L, which implies that w(T(SBm/Lz) # (53%/5

Using equations (3.3), (3.4) we deduce that (Indk, 7)™ = (n-Ind%, ;. 75;%/5)5“’
has an irreducible socle that is generic by [Rod81l Proposition 1, Proposition 4].
(Alternatively we could argue using Propositionsu ﬂ an I! using the known
reducibility points for SLy(F).) We conclude by Proposition [2.61]
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For general G, let ¢: G*° — G be the simply-connected cover of the derived
subgroup. Let Z°¢ := ¢p~1(Z) and x*¢ := x o ¢. As ¢ is compatible with corootb of
G®° and G we deduce that dy®° determmes the parabolic subgroup <p “L(P) of G*°
by the recipe in the statement of the theorem. Moreover, condltlons and
are the same for G°° and G. We conclude by Proposition (see Remark éE
and by what we already established for G*°.

Remark 3.11. This theorem generalizes to all quasisplit groups, by using Propo-
sitions and the known reducibility points for SLy(F') and SU3(F).
However, it can no longer be stated in terms of relative coroots. For general G one
can at least formulate a weaker version in the same way, using Remark instead
of Proposition [3.22] as well as Remark for the possible location of reducibility
points.

3.3. Classical quasisplit groups. We will now give some irreducibility theorems
for all quasisplit classical groups. For simplicity we will state them for a smooth
inducing character only, which is enough in light of Theorem (at least for all
but the orthogonal groups). We use standard conventions for classical groups, as
for example in [Gol94], [Gol95], [CGI16].

Theorem 3.12. Let G = Sp,,,(F) (split), B the upper-triangular Borel, and Z the
diagonal mazimal torus. Let x = x1 ® -+ ® Xn: £ — C* be a smooth character.
Assume p > 2 and the following:

o Xix; " # 5" for alli < j;

o xi # |7 for alli;

o the set {x; : X7 has order two} is linearly independent over Z/27.
Then (Ind$ X(Y]lg/2)°ts is absolutely irreducible.

Note that the last condition is equivalent to saying that there do not exist (at
least two) distinct y; of order 2 whose product is trivial.

Theorem 3.13. Let G = SOq,1(F) (split), B the upper-triangular Borel, and Z
the diagonal mazimal torus. Let x = x1®---QXn: Z — C* be a smooth character.
Assume p > 2 and the following:

o Xix;' # |g" foralli < j.
Then (Ind Xég/Q)Cts is absolutely irreducible.

Theorem 3.14. Let G = SO, (F) (split), B the upper-triangular Borel, and Z
the diagonal maximal torus. Let x = x1®---QXn: Z — C* be a smooth character.
Assume the following:
o Xix; ' # 'p for alli < j;
e there does not exist a subset of {x; : X? has order two} of even size whose
product is 1.

Then (Ind% X51/2)°ts is absolutely irreducible.
Note that the last condition allows many x? to equal 1. (Similarly below.)

Theorem 3.15. Let G = SO3,,(F) (non-split quasisplit) splitting over a quadratic
extension E/F, B the upper-triangular Borel, and Z the diagonal mazimal torus.
Let x=X1® @ Xn: Z = (F*)"" 1 x (EX)Ne/r=1 — C* be a smooth character.
Assume the following:
o XiX; ' # p! foralli < j<n;
o (XioNg/p)Xs ' # |5 forallz<nzfxn— ;
e there does not exist a subset Yof{xi: x?=1,(xi oNg/r)Xs: 1 £ 1} such
that [[.ex Xi © Ngjp = Xy, © (resp. 1) if [X] is odd (resp. |E| is even,).



ON THE IRREDUCIBILITY OF p-ADIC BANACH PRINCIPAL SERIES 43

Then (Ind§ X(S}Bﬂ)“s is absolutely irreducible.
Here, x*~ () := x(zz~1!) for z € E*.

Theorem 3.16. Let G = Us, (F) (quasisplit) splitting over a quadratic extension
E/F, B the upper-triangular Borel subgroup, and Z the diagonal mazimal torus.
Let x = x1 Q- ®xn: Z = (EX)" — C* be a smooth character. Assume the
following:

o XiX; #|g foralli<j;

° XiX? #+ ||}_31 for alli < j;

o \; # 77|-|}_31/2 with n|px =1 for all i;

e the set {X; : Xilpx = wg/r} has at most one element.
Then (Ind$, X(S}B/Q)Cts is absolutely irreducible.

Here, x(z) := x(T) for x € E*, and wg,/r denotes the non-trivial character of
F*/Ng r(E*).

Theorem 3.17. Let G = Us, 11 (F) (quasisplit) splitting over a quadratic extension
E/F, B the upper-triangular Borel subgroup, and Z the diagonal mazimal torus.
Let x=X1® @ Xny1: Z = (BX)" x (EX)Ne/r=1 — O be a smooth character.
Assume the following:

Xin_1 #|-5" foralli < j<mn;

XiX§ # 5" for alli < j <n;

Xinl:_ll #|-|5" for alli < n;

o xiXiih Z bl with nlpx = wpyp for all i <n;

Xixf;ll =1 or Xixf;rlﬂpx %1 for alli <n.

Then (Indg X(SJIB/Q)“S 15 absolutely irreducible.

To prepare for the proofs, we first prove some lemmas about even orthogonal
groups.

Lemma 3.18. Suppose G = SO} (F) with diagonal mazimal torus Z = GL1(F) x
SO5(F) =2 F* x (EX)Ne/r=t and x = x1 @ x2 : Z — C*. Write x1 = 1|3 with
Y1 unitary and s € R. Then the principal series (n—Indg X)™ is reducible if and
only if ¥? = x3 =1 and either

° @bloNE/szé_ and s = +1, or
e Y10Ng/p #xa ¢ and s = 0.

C

Proof. The simply-connected cover of G is G= Spiny = Resg/p SLy. Note that the
non-trivial Weyl group element fixes ¢ ® x» if and only if ¢? = x3 = 1. Using a
root datum calculation we verify that x pulls back to the character diag(z,z~!)
X1(2T)x2(z71Z) of the diagonal maximal torus of SLy(E). We conclude by com-

parison with SLo(E) using Propositions O

Lemma 3.19. Suppose G = GSO}(F) with diagonal mazimal torus Z = GL1(F) x
GSO3(F)=F* xE* and x = x1 ® X2 : Z = C*. Write x1 = ¥1|-|3, X2 = a|-| 3
with ; unitary and s; € R. Then the principal series (n—Indg X)™ is reducible if
and only if 3 =1, i oNg/p = ¥a~¢, and s; = £1.

Proof. The non-trivial Weyl group element fixes ¢; ® 1), if and only if ¥? = 1 and
10 Ng/p = w%_c. In his case we determine the reducibility point by restriction

to SO (F') (using Propositions and Lemma |3.18]). O
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Lemma 3.20. Suppose G = GSOg,(F). Let x = x1 ® - @ xn ® p: Z — C*
be a unitary smooth character. Then the R-group R(x) is isomorphic to (Z/27)",
where 2" is the number of subsets ¥ C {x; : x? = 1} such that || is even and

HXiEZ Xl = 1‘

Proof. Keys’ argument still applies as in [Gol94], Lemma 6.7] to show that any
element of R(y) is a product of (an even number of) sign changes. We may use
the Weyl group to assume that there exist 71 < ro < --- < 74 such that x? = 1
if and only if i < 7%, xi = Xsy1 for all @ < 74 such that i ¢ {ry,...,r}, and x,,
(1 € j < k) are pairwise distinct. Let ¢; be the element in the Weyl group which
changes the i-th sign. Then it is straightforward to show that R(x) consists of all
elements [,y ¢, where ¥/ C {ry,..., 7}, |¥'] is even, and [[,cy xis = 1. This
implies the result. O

Lemma 3.21. Suppose G = GSO3,(F). Let x =x1 ® - @ xn: Z = (F*)"7 1 x
E* — C* be a unitary smooth character. Then the R-group R(x) is isomorphic to
(Z)2Z)", where 2" is the number of subsets ¥ of {x; : x7 = 1, (xioNg/r)x5 ' # 1}
such that [[, . cx Xio Np/r = XE=¢ (resp. [ ,es XioNg/r = 1) if |E] is odd (resp.
|Z| is even).

Proof. By Lemma we see that the set A’ in the definition of the R-group
[Gol94, §1] consists of all positive roots e; —e; if x; = x; (¢ < j < n), e; +¢;
if x; = X;l (i <j<mn),eif x? =1and (x; ONE/F)Xffl =1 (i < n). Keys’
argument still applies as in [CG16, Lemma A.2] to show that any element of R(y)
is a product of sign changes. We may use the Weyl group to assume that there
exist r; < 13 < --- < rp such that x? = 1 and (y; o NE/F)Xffl # 1 if and only
if i <rp, xi = Xip1 for all i < 7 such that @ & {ry,..., 7}, and x,; (1 <j < k)
are pairwise distinct. Then it is straightforward to show that R(y) consists of all
elements [ [, ¢;, where X' C {r1,..., 7}, and [[,cy xi 0 Ng/p = 1 if [¥'] is even
(resp. [T;esy Xi © Ngyp = x5 ¢ if [¥'] is odd). This implies the result. O

Proposition 3.22. Suppose G is quasisplit and x: Z — C* a smooth character.
Write x = ¥x, with ¢ unitary and v € ay . Let L be the mazimal semistandard
Levi subgroup such that v € a, z. Then the following two conditions are equivalent:

(i) the socle of (n-Ind$ x)*™ is of the same length as (the semisimple rep-
resentation) (n—IndémL X)™™, and every irreducible subrepresentation of
(n-Ind$ x)*™ is generic;

(ii) (a) for all « € @, such that (n—Indé"mLa X)*™ is reducible we have

(v,aV) > 0;

(b) every irreducible subrepresentation of (n-Indk.; x)*™

18 generic.

Proof. (We thank Alberto Minguez for providing the key ideas for this argument.)
First assume that (i) holds. Note first that by [Rod73l Theorem 2] in the split
case and by the geometric lemma [BZTT, 5.2 Theorem] in general, for each non-
degenerate character 6 of U there is a unique 6-generic irreducible constituent of
(n-Ind$ x)*™. Suppose first that there is a parabolic subgroup P’ = L'N’ such
that 0 — 7 — (n—IndgmL, X)™ — 75 — 0 with 71 # 0 non-generic. Then every
irreducible submodule of (n-Ind$%, 71)*™ is non-generic (as the generic constituents
have to lie in (n-Ind$, 75)™™), contradiction. Therefore, every irreducible subrep-
resentation of (n—Indgm 1 X)®™ is generic. In particular this applies to L' = L.
Consider now all L' = L, for a € & ; such that (n-Indj2, x)™ is reducible and
(v,a¥) < 0. Then (n—Indé‘gLa X)®™ is of length 2 and has an irreducible socle (by
considering the Jacquet module). We claim that the socle is non-generic. We get
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the same length 2 reducibility after restriction to the simply-connected cover of the
derived subgroup of L, which is one of SLy(E), SU3(E) for some finite extension
E/F. In case of SLy(E) we are done because the subrepresentation is trivial by
the condition (v,") < 0. In the other case we lift to U3(E) and still obtain re-
ducibility (e.g. by Proposition . Relabeling F as F, we reduce to G = Us(F)
and (v,a") < 0 for the unique simple root a. Then the socle is non-generic, e.g.
by (the contragredient of) [CS98, Theorem 1]. (Note that there is only one orbit
of non-degenerate characters of Us.) Thus we deduce (ii).

Conversely, suppose that (ii) holds. We first show that the socle of (n-Ind$ y)*™
is of the same length as (n-Ind%; x)*™. If v is not dominant, then there is an o € A
such that (v,a¥) < 0. By the first assumption, (n—Indé‘r’gLa X)®™ is irreducible,
so we deduce that (n-Ind$ x)™ = (n-Ind$ s,(x))™™ by transitivity of parabolic
induction. Since s, permutes the set @, \ {a}, our condition on x above also
holds for sq(x) = Sa(1)Xs.(»)- But in this way we reduce the number of o € @,
such that (v,a") < 0 by one, and we can reduce to v dominant in finitely many
steps.

Suppose now that v is dominant, as we may. Then L is standard and the standard
parabolic subgroup P containing L as a Levi part is associated to the subset {« €
A (v,a¥) =0} of A. As v lies in aj , X, extends to an unramified character of
L. Let ¢ be any irreducible constituent of (n-Ind%; )™ = (n-Indk; )™ ® .,
which is a semisimple representation (as it is unitary up to twist). Then o is generic
by our second assumption, and we now show that (n-Ind% o)™ has an irreducible
socle. By the geometric lemma, rp((n-Ind$ o)) has a filtration with graded pieces
0w = (n-Ind¥ 1, pu—1 WrLAw-1puwo)™, where rp denotes the normalized Jacquet
module and w runs through Kostant representatives of W, \W/W,. Note that the
supercuspidal support of o (resp. of any irreducible constituent of o) is (Z, x)
(resp. (Z,ww'x) for some w’ € W), up to L-conjugacy. But wy = x implies that
wx, = Xy, hence wv = v, i.e. w € Wy, by definition of L. We see that o occurs
with multiplicity one in rp((n-Ind$ )*) and hence by exactness of 7p deduce
that (n-Ind$ o)™ has an irreducible socle. (If 7 C (n-Ind$ o)™ is irreducible, then
rpT —>» 0.)

It remains to show that every irreducible subrepresentation of (n—Indg x)=™
is generic. Continue to assume, as we may, that v is dominant. Taking o to
be any irreducible constituent of the semisimple representation (n-Ind%; x)*™ =
(n-Ind5; )™ ® y,, it suffices to show that the irreducible socle 7, of (n-Ind$ o)™
is generic. Fix a non-degenerate character 6 such that (n—Indg o)™ contains a
O-generic constituent mp. We claim that there exists a (nonzero) intertwining
morphism 7': (n—Ind% o)™ — (n-Ind$ o)™ whose kernel does not contain my as
constituent. Assuming the claim we are done: by second adjointness and the
previous paragraph we know that (n-Ind%a)S"‘ has irreducible cosocle w,. (If
(n—Ind% o)™ — 7' irreducible, then o < rpn’, so ' has to be the unique con-
stituent with o contributing to rpa’. In fact, we see that o is a direct summand of
rp7,.) Then the image of T has 7, both as its socle and its cosocle, so the image
of T equals 7, since 7, occurs only once in (n—Indg o). The claim implies that
Ty =2 Ty 1S generic.

To prove the final claim, it suffices to construct a morphism 7": (n—Ind% X)"™ —
(n-Ind$ x)*™ that does not kill any generic constituents, because we can decom-
pose (n—Ind%)g)Sm = @U(n—lnd%a)sm and (n-Ind§ )™ = @U(n—lndg o)™ (by
semisimplicity) and consider where 7, is sent. By writing wy as a reduced product of

simple reflections, it suffices to construct (n—Indg,1 )™ = (0-Ind% . 5, )™

sngsgw
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that does not kill any generic constituents, for any w € W and simple reflec-
tion sz with ¢(sgw) > f(w) (i.e. w™(B) > 0) where ¢ is the length function

71L3w

on W. By parabolic induction, it suffices to construct (n—IndZ X)5 —

*1sngst

-1
(n-IndZ,lgfu “X)*™ that does not kill any generic constituents. We can write this

morphism as T}, : (n—Ind%%La X)) — (n—IndéﬁLa X)*™, where a:= w~1(B) € .
If (v, V) = O orif (n—Indé‘% 1., X)°™ isirreducible, these representations are semisim-
ple and we take T/, to be any isomorphism. Otherwise, by (a) we know that
(v,a¥) > 0. We also know that (n—Ind%‘;‘_1 L. X)®™ has an irreducible cosocle which

is the same as the socle of (n—IndLB"mLa X)*™, and we take T to be the unique (up
to scalar) nonzero map possible. By the condition that (v,a") > 0 we know that

the kernel of T, is the unique non-generic constituent of (n—Ind%r‘T ;. X)™™ (see the

first paragraph of this proof). This completes the proof. O

Remark 3.23. We have a similar criterion for irreducibility, for any connected re-
ductive group G. Suppose that o is a (finite-dimensional) irreducible smooth rep-
resentation of the minimal Levi subgroup Z. Write ¢ = 0, X, with o, unitary and
v € ay g, and let L be the maximal semistandard Levi subgroup such that v € aj, .
Then (n-Ind$ o)™ is irreducible if and only if (n—Indg‘r’;La o)™ is irreducible for
all o € @;d and (n—IndémL o)™ is irreducible. For the “if” direction, the first con-
dition shows that (n-Ind$ o) 2 (n-Ind$, w(o))*™ for any w € W (by induction on

sm o

¢(w)). In particular, (n—Ind% o)™ = (n-Ind% o)™ and we may also assume that v
is dominant. Let 7 := (n—IndLBmL o)™, Then (n—Ind% T)sm (n—IndIG3 7)"™, where
P = LN is the standard parabolic with Levi subgroup L. By the same argument
as in the proof of Proposition we see that (n-Ind% 7)™ has an irreducible socle
which is also the cosocle of (n—Ind% 7)™ and occurs in these representations with
multiplicity one. This implies irreducibility. (If G is split, this can also be deduced
from [Mul79, Proposition 4.2], and in general from the main theorem of [Luol9].)

Proof of Theorems[3.12{3.17. By Proposition [2.61] it suffices to verify that both

assumptions in Proposition [3.22(ii) hold. (To apply this proposition we work with
G obtained by restriction of scalars from F' to Qp, and take g = 1, 7 = X5]13/2,
Q = G. We also embed C in C and replace C by a finite extension so that all
1B/2)sm

irreducible constituents of (Ind$ xé are absolutely irreducible.) Note that

(Ind% X5119/ 2)Sm = (n-Ind§ x)¥™. The first assumption is easy to verify by the ir-
reducibility criteria for smooth principal series of Sp,(F) = SLa(F'), SO3(F) =
PGLy(F), GL2(E), SO, (F), Ua(F) and Uz(F), using all but the last hypothesis
in each theorem. (In this proof we consider Theorem to have a vacuous last
hypothesis. For the last three irreducibility criteria, see Lemma [3.18] respectively
[Rog90l §11.1, §12.2].)

We now verify the second assumption of Proposition using the last hypoth-
esis in each theorem. Write L = [], GL,,,(E) x G’, where E = F' in all but the
unitary cases and G’ is a classical group of the same type as G. (Note that G’ may
be trivial, except when the type is SO*.) As unitary principal series of GL,,(E) are
irreducible and generic, we may reduce to the case where G' = G, i.e. L = G. By
a twist we may assume that y is unitary, i.e. v = 0. In case G = SOq,,11(F') (resp.
G = Ugp11(F)) we apply [Gol94, Theorem 6.5(1)] (resp. [Gol95, Theorem 3.4]) to
see that (n—Indg X)®™ is irreducible and hence generic.

In case G = Sp,,,(F) we lift x to the character ¥ := x1 ® -+ ® xn ® p of the
diagonal maximal torus Z of GSps,, (F'), where p : F* — C* is an arbitrary unitary
character. The unitary principal series of GSp,,, (F') obtained from ¥ is irreducible
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and hence generic by [Gol97, Theorem 2.6]. (Note that d; = 0 and d,, < 1 for all
X # 1 in the notation of that paper.) By restriction to Sp,,, (F) it follows that all
irreducible constituents of (n-Ind$ )™ are generic.

In case G = Usg,(F) we lift x to the character ¥ := x1 ® -+ ® xn ® p of
the diagonal maximal torus Z of GUs,(F), where p : F* — C* is an arbitrary
unitary character. The unitary principal series of GSp,,,(F') obtained from Y is
irreducible and hence generic by [Gol97, Theorem 2.6]. (Note that d; = 0 and
A(o) = A(o) = @ in the notation of that paper. Here we use that by comparison
with SLy(F), using Proposition all unitary principal series of GUy(F) are
irreducible.) By restriction to Us, (F) it follows that all irreducible constituents of
(n-Ind$ x)*™ are generic.

In case G = SOq2,(F) (resp. G = SO3,,(F)) we likewise lift to a character of the
diagonal maximal torus Z of GSOs,, (F) and apply Lemma (resp. Lemma.

O

Remark 3.24. The conditions in Theorems|3.12| are optimal in the sense that if
every irreducible subrepresentation of (Indg X5113 2)Sm is generic, then the conditions
in the theorems hold. (The analogue of course holds for GL, (F') as well, by the
same argument.)

To justify this, suppose that every irreducible subrepresentation of (n—Indg x)™™
is generic. Then by Proposition (item (a)) we get all but the last condition in
each theorem.

It remains to discuss the symplectic, even orthogonal, and unitary groups. Ob-
serve that there is a unique orbit of non-degenerate characters of U for the groups
GSps, (F), GSO2,(F), GSO3,, (F), GUa,(F), and Usg,11(F) under the action of
the diagonal maximal torus Z. If G = Us,41(F) we let L be the maximal semi-
standard Levi subgroup such that v € a} z. Then the semisimple representation
(n-Ind%; x)®™ has to be irreducible by (b) (as it contains a unique generic con-
stituent), which implies the last condition in this case by the R-group result we
already used. If G is one the groups Sps,, (F'), SOz, (F), SO3, (F), U, (F) we lift
to the similitude group GSp,,, (F), GSO2,(F), GSO3,, (F), GUsy,(F) as in the proof
above and then apply the same reasoning. (Note that the lifted principal series still
has the property that every irreducible subrepresentation is generic.)

For completeness, we also state the irreducibility criteria we get from Remark
for classical groups, using the same notation as in Theorems [3.12 For the
group Sp,,, (F'), see also [Tad94, Theorem 7.1].

Theorem 3.25.
(i) If G = Spy,(F) (split), x = x1 ® - ® xn: Z — C* smooth, then
(Ind$ X5119/2)sm is trreducible if and only if
o Xix; " # 5" foralli < j;
o xi # || for all i;
e x; is not of order 2 for all i.
(ii) If G = SOg9p11(F) (split), x = x1 ® -+ ® Xxn: Z — C* smooth, then
(Ind$ xéjlg/?)sm is irreducible if and only if
° Xinil # || for alli < j.
(iii) If G = SOq9,(F) (split), x = x1 ® - ® xn: £ — C* smooth, then
(Indg x5}3/2)sm 1s irreducible if and only if
o XixX; " # 5" foralli < j;
e the set {x;: x? =1} has at most one element.
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(iv) If G =S8035, (F) (non-split quasisplit) splitting over a quadratic extension
E/F, X=X1® - ®@Xn: Z = (F*)"" 1 x (EX)Ne/r=1 — C* smooth, then
(Ind X5]13/2)5m is irreducible if and only if

o Xix; ' #I|F" foralli <j<n;
® (xio NE/F)Xffl #+ ||§1 for alli <n if \2 =1;
e the set {x; :i <n and x? = 1} has at most one element if X2 # 1;

(X #1or(xioNg/p)xs ' =1) foralli <n if x2 =1.
(v) If G = U, (F) (quasisplit) splitting over a quadratic extension E/F, x =

X1®- - ®Xn: Z = (EX)" = C* smooth, then (Ind% X(S}B/Q)Sm is irreducible
if and only if

o Xix; ' # |5 for alli < j;

o XiX§ # |5 for alli < j;

o \; # 77|~|§1/2 with |px =1 for all i;

® Xi|px # wg/p for alli.

(vi) If G = Ugpy1(F) (quasisplit) splitting over a quadratic extension E/F,
X =X1® @ Xng1: Z = (EX)" x (EX)Ne/r=1 — O smooth, then
(Ind$ X513/2)51n is irreducible if and only if

o XiX; ' # " foralli<j<n;

XiX§ # ||§1 foralli< j<mn;

NXCT # [ for all i < n;

o XXt # nll5? with nlpe = wpyp for alli <n;
. Xin;ﬁ =1 or XZ-X;;HFX # 1 for all i < n.

Proof. This follows as in the proof of Theorems If G = Sp,,(F') (resp.

SO2, (F), resp. SO3,,(F), resp. G = Uy, (F)), the relevant R-group result can be

found in [Gol94, Theorem 6.4] (resp. [Gol94, Theorem 6.8], resp. [CG16, Theorem

A 4], resp. [Gol95 Theorem 3.4]). O

3.4. The group GL, (D). Let D be a central division F-algebra of dimension d?
and G,, = GL,(D), B = B,, the minimal parabolic subgroup of upper-triangular
matrices, U = U, the unipotent radical of B,,, and Z = Z,, the diagonal minimal
Levi subgroup. The mirabolic subgroup P, of GL,, (D) is defined by P, := {(g;;) €
G| g =190 =0 (1 <i<n-—1)}. We say that a representation = of P, is
generic if Ty, g # 0 for an (equivalently any) non-degenerate character 6 of U,,. Let
Nrd: D* — F*, det: G,, — F* be the reduced norm. For an absolutely irreducible
smooth representation o of D* | let v, = |Nrd|;(0) be the character of D* of [Tad90,
Section 2|. Here, s(o) is a positive integer dividing d. It is characterized by the
fact that for ¢’ another absolutely irreducible smooth representation of D* the
induction (n—Indgi o X o')*™ is reducible if and only if ¢/ = ovF! [Tad90, 2.5
Lemma, 4.2 Lemma). (Note that ¢’ does not denote the strong dual of ¢ in this
subsection.)

Theorem 3.26. Let 0 = 01 X --- Ko, be an absolutely irreducible smooth repre-
sentation of Z = (D*)™ over C. Assume the following condition.

There exists no sequence 1 < ig < iy < -+ <1, <n such that

3.5 .
(3.5) oy, Joral0<j<eandvy = INrd|%.

O',L'j

)Sm

Then any nonzero P,-subrepresentation of (n—Indg o s generic. In particular,

(Ind% 05113/2)“5 is irreducible.

The last part follows from Proposition for the group Resp/q, GL,(D) (and
oco=1,171=0,Q=0G).
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We fix an absolutely irreducible smooth Z-representation ¢ = o1 X --- X oy,
satisfying . We first claim that (n-Ind$ )™ = (n-Ind$ 7)™ for some 7 = 71 X
-+ K7, in the Weyl group orbit of o such that 7; % 7;®|Nrd|z for any i < j. Letting
~ be the equivalence relation on absolutely irreducible smooth representations of
D* induced by ¢ ~ Cv¢. As (n—IndCBE oMoy )™ X (n—Indg; 0i+1X0;)*™ whenever
o; % 0;41, by repeated transposition of consecutive, inequivalent representations
we may assume that whenever o; ~ o; for some ¢ < j, then o; ~ gj41 ~ -+ ~ 0y,
while preserving condition . In this way we reduce to the case where all o;
(1 <4 < n) lie in the same equivalence class, i.e. o; & Cy?(l) for some k(i) € Z. Let
e be the divisor of d such that v¢ = INrd|¢. Condition says that there exists
no sequence 1 <ig < iy < --- < i, < nsuch that k(i;) —k(ip) = j forall 0 < j <e.
If there exists any 0 < ¢ < n such that k(¢ + 1) — k(¢) > 2, then we can transpose
o¢ and o441, while keeping condition satisfied. (Subsequences ig < --- < i,
as in containing at most one of ¢, £ 4+ 1 are unaffected by the transposition.
Subsequences containing both will no longer satisfy after transposition because
the function k(i;) has to be increasing.) Each such transposition decreases the sum
> v—1 Ck(£), so after finitely many steps we may assume that k(¢ + 1) — k(¢) < 1
for all 0 < ¢ < n and that condition still holds. Suppose there exist ¢ < j
such that o; = o; ® [Nrd|?, i.e. k(j) — k(i) = e. We have e > 1 by condition
(3.5). More generally, suppose that for some i < j we have k(j) — k(i) = ¢ > 1.
Pick ¢ < ¢’ < j maximal such that k(i) — k(i) < 1, so k(i + 1) — k(i) > 2.
Then 1 > k(i' + 1) — k(i) > 2 — 1 = 1, whence equality holds and in particular
k(i') — k(i) = 1. Hence, taking again ¢’ = e, then by induction there exists a
sequence ¢ = iy < i1 < --- < %, = j such that k(i;) — k(i;_1) =1forall 1 <j <e,
contradiction.

Therefore, we may assume that o; 2 0; ® |Nrd|;,d forany i < j. If D = F
then the theorem is proved in [BZ77, 4.11 Theorem] and in general we follow their
argument.

For a locally profinite topological group H, let Rep®™(H) be the category of
smooth H-representations over C. If H’' is a closed subgroup of H and 7 €
Rep™(H), we put (n-Ind%, 7)™ := (Ind%, 7'(51}1/2(5}{/,2)5“‘. Let N,, be the unipo-
tent radical of P,,. We fix a non-degenerate character 6 of U, and let 7, be the
restriction of 6 to IN,,. We define exact functors as follows:

®~: Rep™(P,) = Rep™(P—1) 7 |d¢s‘c|;d/2 TN,

nsTn?

&+ Rep™(Poo1) = Rep™(P,) 7+ (n-Indfy 7)™,

n

®*: Rep™(P,_1) — Rep™(P,) 7+ (nc—IndIP;Z_an T)*

where nc-Ind denotes normalized compact induction. (We keep the notation of
[BZ77], but caution that ®* should not be confused with the set of positive roots.
Also note that [BZT7] uses a different definition of normalized induction.) In

the definition of ®+ and ®+ we extend 7 to P,_1N, by letting N,, act via 7,,.

We remark that 6p, ,n, = |det|?! and 6p, = |det|%, so (n—Ind?ZﬁlN" T =

(Indbr T\det|(é/2)sm. In particular, the functors ®~, ®+  ®* coincide with the
n—14Vn

ones in [BZ77) when D = F.

Lemma 3.27. The functor ®= is right adjoint to ®+ and left adjoint to ®+. We
have @~ (m) = 0 if and only if N,, acts trivially on .

Proof. By Frobenius reciprocity, ®+ is the right adjoint of ®~. For ®T, the proof
of [BZTT, 3.2 Proposition (b)] applies. The last claim follows from [BZ77, 3.2
Proposition (e)] when D = F and the same proof applies. O
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For a smooth representation 7, let 7V be the smooth dual of 7.
Lemma 3.28. We have ®~(nV) 2 &~ (7)Y for m € Rep™(P,).

Proof. Let 7 € Rep™(P,_1). We have ®*+(7)¥ = &+(7V), by our normalization of
induction. Then we have

Homp, ,(r,® (7¥)) = Homp, (®*(7),7")

n

The lemma follows. O

Let @, be the standard parabolic subgroup of G,, = GL,,(D) corresponding to
the partition n =1+ (n —1). Then @Q,—1N,, = (G1 x P,_1)N/,, where the normal
subgroup N, denotes the unipotent radical of @,,. To keep notation short we write
Qn—1N,, below, even though we think of it as (G1 X P,,_1)N/,.

Lemma 3.29. Let o1 be a smooth representation of G1 and o’ a smooth representa-
tion of P,_1. Suppose that my C (n—Indg’;_an 01X’ )™ is a P, -subrepresentation,

where we let N}, act trivially on oy K o’.
(i) If n > 3 we have an embedding @~ (mg) — (n—Indg’:’L__;Nn_l o1 XD~ (o))
(i) If (mo)N, ., = 0 and n > 2, then mo|q
two representations:

(n—Indg::i o1 Xr(e")™ ® |det\%/2,

is embedded into the following

n—1

(n-IndGy =} oy B r((0))Y)")™ @ [det| /%
Here r(c’) = (0')n,_, ® |det|1;d/2 is the normalized Jacquet module of o’
with respect to the parabolic subgroup corresponding to (n—1) = (n—2)+1.

Proof. For simplicity we put II := (n—Indg*;_an o1 Ko’y
For (i), we apply the geometric lemma to calculate the P,_;-representation
Iy, 1y, We have

Qn—an\Pn/Pn—lN = Qn—l\Gn—l/Pn—l
> Aut({2,...,n — 1}P)\Sn—1/ Aut({L,...,n —2})

and it has two elements, represented by the identity element and (1 n — 1) (trans-
position). The orbit corresponding to (1 n — 1) does not contribute. Hence we
have
O~(I) = (n-Indy "y 01 ® @7 (o)™,
We get (i).
Assume that (mg) N

nMn

= 0. Then N,, acts trivially on 7y by Lemma Hence

n—1

mola,_, < I, . Applying the geometric lemma, we have Iy, 2 (n-Indg"~ o1 X

r(o))*® |det|;l,/2 as Gip_1-representations. (The character \det\%/z comes from the
normalization of coinvariants.)
We also have 7|, _, = ((ITV)V)N» =2 (TI1V)y, )V. We calculate

(M)n,)" = (n-Ind oy B (0)V)"™)n, )"
(-Ind§ ! oy Br((0)"))™ @ |det|#/?)
(n_Indgn,i o1 < r((o_/)\/)V)sm ® |det|;d/2,

n—

Il

1
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Part (ii) follows. U

For m € Rep™(P,), we define the k-th derivative 7(¥) € Rep™(G,,_x) of 7 by
7k = \det|;d/2 ® (@) Ym)n, 4., for k = 1,....,n. We put 7®) := 0 for
k>nand 79 := 7. For ny,...,n, > 1, m,, € Rep™(G,,) (i = 1,...,7), we put
ML X oo X Ty 1= (n—IndIGD"1+"'+"T m K- -R7,.)%, where P is the standard parabolic
subgroup corresponding to ny + - - - + n,..

Lemma 3.30. Let m € Rep™(G,,) and 1o € Rep™(Gy,). Then (my x m9)*) has
a filtration whose successive quotients are ng) X ﬂ'ékfl) with 1 =0,...,k.

Proof. The geometric lemma implies the lemma, see the proof of [BZ77, 4.5 Lemma).
O

Lemma 3.31. Let my € Rep™(P,) and k € Z>o the mazimal integer such that
W(()k) #0. Assume that k <n. Then (®7)!(mo) =0 fori > k.

Proof. We prove the lemma by backward induction on i. We have ()" (mg) = 0.
Assume k < i < n. By the inductive hypothesis we have ®~((®~)%(m)) = 0 and by
7T = 0 we have (®7)i(mo)n,_, = 0. Hence (®~)i(mo) = 0 by Lemma O

Lemma 3.32. Assume that 01 # 0; ® |Nrd|;d fori=2,...,n. Then any nonzero
P, -subrepresentation wy of (n—Indg’;ian 01 X (09 X -+ X 0,))"™ is generic.

Here, inside the induction, o9 X --- X o, is restricted from G,,_1 to P,_1.

Proof. Set o/ := 09 X -++ X 0. Assume that 7y is not generic. Take the maximal
k such that 7rk) # 0. Since 7 is not generic, we have k < n. Since (®7)*(m) =
0 by Lemma wék) is a subrepresentation of (n—Inng:’; o1 B (o) (F))sm by
Lemma Note that (¢/)*) is of finite length by Lemma ﬁl Hence W(()k) is also

of finite length. Take an irreducible subrepresentation w of ﬂ(()k). By Lemma
the cuspidal support of w is (Z,_, 01 Xo;, K- Ko, _, ) forsome 2 <4 <--- <
in—k—l <n.

On the other hand, again by Lemma w(()k) is also embedded into

(n-Tnd gy} o1 W r(((27) " (0'))")"™ @ [det|
= (n-Indg ) o1 B (((0')) ) )™ @ |det] 7,
where we use Lemma Therefore the cuspidal support of w is (Z,—k, (01 ®
|Nrd|;‘d)®(aj1®|Nrd|;‘)®' ’ ~®(0’j7hk71®‘Nrd‘;d)), where 2 < 1< <Jp-k-1<

n. Hence {o1,04,,...,0i, .} = {01®|Nrd|;d, a]»1®|Nrd|I;d7 . ,ajn7k71®|Nrd|;d}.
By our assumption, o7 is not contained in the right-hand side. Hence we have a

contradiction. Il
Proof of Therorem[3.26. We prove the theorem by induction on n. For n = 1
there is nothing to prove, so we assume that n > 2. Set ¢’ := 09 X -+ X 0y,.

We apply the geometric lemma to (n—Inng o1 X o’ )™ |p . We have Q,\G,/P, =
Aut({2,...,nP)\Sn/Aut({1,...,n —1}) = {1,(1 2 --- n)} and therefore we have
an exact sequence

0— (nc—Indg:_1 o'Moq )™ — (n—Indg: o1Xa’ )™ | p, — (n—Indg“'_an 1o’ )™ — 0.

n

We now prove that any nonzero subrepresentation my C (n—Indg: o1 K o' )*™|p, is

generic. Assume that 7m0 (nc—Indg”;_1 o' Royp)™™ # {0}. By replacing mo with this

intersection, we may assume my C (nc—Indg’;% o'Xoq)™. As an N,-representation,
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we have (nc—Indg’;i1 o' Rop)s™ =2 CP(N,) ® (¢! ® 01). Hence there are no N,,-

# 0 by Lemma We
~ (o' ® 1) @ |det|¥?,
where P,_q acts trivially on 1. Hence by the inductive hypothesis, (mo)v, 0 =

((m0) Ny )U, 1,010, _, 7 0. Therefore mo is generic.

invariants. Therefore )" = {0} and this implies (7o) 5

nMn

also have a P,,_1-isomorphism ((nc—IndgjL_1 o' Xop)™) N,

nsMn

Next assume that m N (nc—Indg:_1 o' W o)™ = {0}. In this case we have
7o C (n—Imdgjli1 ~, 01 ®0’)*™ and the theorem follows from Lemma@ O

3.5. Unitary case. We now state one of our main results. We need some prepara-
tions for the proof, which will be completed in subsection For a € (I)j;d’ let L.,
be the (closed) subgroup generated by UN L, and U N L, where U is the unipotent
radical of the parabolic subgroup opposite to B. It has a concrete description, cf.
[AHHVI7, I1.4].

For a character w: G — C* we define e(w) = eg(w) € ag g by |wlc = Xe(w)s
where the absolute value |-|c on C' is normalized such that |p|c = p~!. (Recall
that the unramified character x, for v € ag; o was defined in §3.1 ) In particular,

it follows that e(w) = [F: Q)] 'w if w € X*(G) C a5, as \-\[g:(@p restricts to |-|p
on FFCC.

Theorem 3.33. Assume Assumption[2.1] Let o be a finite-dimensional absolutely
irreducible continuous representation of L and w, the central character of o.

(i) The action of Z on the coinvariants oynr is absolutely irreducible, so it
has a central character Wy, -

(ii) If e(wy|a,) is dominant, then (Ind$ o) is reducible if and only if, after
perhaps replacing C by a finite extension, L(c') € oh for a parabolic
subgroup P, 2 P. Here, E := Resr/q, Py

(iii) If e(wWoy o, |s) is dominant, then (Ind% o) is reducible if and only if there
exists o € A\ A, such that o|znr:, is trivial.

Recall that o’ € OF after perhaps replacing C by a finite extension (Lemma,
where L := Resp)q, L. Note that e(ws|a,) = €(Woy 4, ) is dominant if e(wey,,, |s)
is dominant by Lemma ii). By [AHHVI7, II.7 Proposition] and Lemma
o|znrr, is trivial for some o € A\ Ap if and only if o extends to a continuous

representation of a larger Levi subgroup. The condition L(c’) € OPr in (ii) is made
more explicit in Lemma [2.29

Remark 3.34. We say that a Banach representation o of L is unitarizable if it admits
an L-invariant defining norm or equivalently an L-invariant open and bounded
Oc-lattice. Suppose now that ¢ has a central character w, (for example, if it
is admissible and absolutely irreducible). Then o unitarizable implies that w, is
unitary, or equivalently e(w,|4,) = 0. If L = Z, then the converse is true too. (To
see that if w, is unitary then o is unitarizable, note that ZyS is of finite index in
Z, where Zj is the unique maximal compact subgroup of Z. By [Emel7, Lemma
6.5.5] there exists a bounded open Zp-invariant lattice A in o, so ZZEZ/ZOS zA
is a bounded open Z-invariant lattice.) If o is unitarizable then opyny is also
unitarizable. Hence the hypotheses on central characters in parts (ii) and (iii) of
Theorem |3.33| hold for any unitarizable o.

Remark 3.35. Schneider [Sch06l Conjecture 2.5] stated a conjecture concerning the
irreducibility of Banach principal series of a split simply-connected group over a p-
adic field, under an antidominance condition on the inducing character, as discussed
in the introduction. Theorem [3.33|resolves this completely for unitarizable inducing
representations, for an essentially arbitrary connected reductive group.
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Remark 3.36. When G is split, P = B and e(w,|g) is strictly dominant, i.e.
(e(ws]s),a”) > 0 for any positive root «, Theorem was proved by Ban—
Hundley [BHI16] (at least when the derived subgroup is simply connected). Note
that in this case there are no reducibilities, as 0|z, trivial implies (e(ws|s), ) =

0.

Remark 3.37. We note that irreducible admissible Banach representations of Z do
not have to be finite-dimensional, even though Z is anisotropic modulo its center.
For example, when Z = D* with D a central division algebra, [Pas22] shows the
existence of an irreducible admissible representation of §-dimension 1 (in particular,
of infinite dimension).

3.6. Rationality: the quasisplit case. To prove Theorem we require the
rationality of reducibility points of certain smooth parabolic inductions over C. We
will finish the proof of the necessary property in subsection In subsections[3.6-
[5-8 all representations are smooth and over C.

Suppose now that G is quasisplit, so that Z is a maximal torus. For v € a7 ¢ and
a € ®(G, Ay) we can define (v, a¥)aps == (i(v),a"), where i: a o = X*(Z)®C —
X*(Z x F) ® C is the natural map and & € X*(Z x F) is any absolute root
lifting . Note that this is well defined because the lifts & form a Gal(F'/F)-orbit.
Note that (o, a")aps € Qs¢. (In fact, if d denotes the number of lifts & of o we
have (v, a")aps = 55 (v, ") if 2a is a root and (v, a¥)aps = 4(v,a") otherwise, cf.
[AHV22, Lemma A.9].)

Lemma 3.38. Suppose that G is quasisplit, P = LN maximal and semistandard, o
a generic supercuspidal representation of L. If u®(ox,) has a pole at v = vy € ay g
then vy € (af’(@)* © ag - Equivalently, if p(06%) has a pole at s = so € R,
then so € Q. More precisely, there exists v € ®(G,A,) occurring in N such that
(v, 7Y )abs € {£3, £1}.

Proof. First note that y, extends to an unramified character of G if and only
if v € af,p, SO we may assume v € (ag’R)*. As P is maximal we can write
A(P,A;) = {a}, so 2pp € ca for some ¢ € Z~g, i.e. dp = Xea- Moreover, « is a
basis of (ug’Q)*, which explains the equivalence of the two statements. Choose a
Borel subgroup B contained in P. Then there is a unique simple root v € A(B, A,)
that occurs in N, and [Sha90, Theorem 8.1] implies that (v, vY).ps € {i%, +1}. As
(a, @) aps € Qs0, we deduce the second statement. O

Proposition 3.39. Suppose that G is quasisplit, T a discrete series representation
of G whose supercuspidal support is generic. Then there exists a standard parabolic
subgroup P = LN, a unitary (generic) supercuspidal representation o of L and
v E (ag@)* C aj g such that T is a quotient of (n—Indg oxv)™. More precisely,
V= EaGA(B,AL) Cca, where cq € Q<o for all a.

Proof. All except the rationality of v, or equivalently of the ¢, follows from [Sil80b,
p. 582] or [Wal03, Proposition IIL.1.1]. (The parabolic subgroup there may be
conjugated to be standard.) In particular, v € (ag,R)*. By [SiI80Dbl p. 582] there
exists a linearly independent set of reduced roots ay,...,ay € Preq(P, AL) with
¢ = |A(P,Ap)| such that plei(ax, ) has a pole at v/ = v for 1 < i < {. By
Lemma we deduce that the projection of v under the projection (agR)* —
(aijéﬁ)* lies in (ai‘f@)* for all i. It therefore suffices to show that the natural map
(af’R)* — @le(aifﬂiﬁ)* is an isomorphism, or equivalently injective, or equivalently
that N, a;. R =GR
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. . « . o Vo
By dimension reasons we see that ar, R 18 the annihilator of @ in a} 5. By

Lemma the coroots o, ..., a) are linearly independent in a, g, hence a basis
G . * *
of a7 g, so indeed [; a7, = C A5G R O

Remark 3.40. Continue to suppose the hypotheses in Proposition If G is
a subgroup of G’ := (I[;_; Resg,/r GLy,)/H containing (G'), for some finite
extensions E;/F, integers n; > 1 and a central subtorus H of HZ:1 Resg, /r GL,,
that is moreover induced, then (v, &")ans € Z for all « € ®(G, A,). (First reduce to
G'; then reduce to H = 1; finally check it in the case of Resp,r GL,, using [Zel80,
Theorem 9.3].)

Proposition 3.41. Suppose that G is quasisplit, Q = Lo N a standard parabolic
subgroup, and T a discrete series representation of Lq whose supercuspidal support
is generic. If MG(N%) has a pole at s = sg € R, then so € Q.

Proof. By Proposition [3.39| we can write 7 as quotient of (n-IndILD%LQ oxy)™ for
some standard parabolic 2 = LN contained in @, some unitary supercuspidal

representation o of L, and some v € (uif@)*. Write 6g = x, for v/ = 2pg €
a¢ ,)*. Hence (n-Ind2 OXv+sp )™ surjects onto 76%,. By [Sil80a, Theorem 1
Lo.Q PNLg + Q

and Proposition [3.4] we have

G
1 (o Xv+sv)
W0 = aloxonin) = 11 2 (O Xps)-
HEERIXvts0') e, ea(PAAL ) \Brea(PNLy AL

If uG(Téé) has a pole at s = sg € R, then by Lemma we deduce that there
exists § € ®rea(P,Ayp) \ @red(ﬂﬁLig, Ap) such that v + sov’ € (uéﬁ(@)* Gaj, g or

equivalently sov’ € (aéﬁ@)* @ aj g (by rationality of v).

We claim that v/ ¢ a7, m» Le (V',8Y)r, # 0, where (-,-); denotes the pairing
ay g X ar,r — R. Note that Bg = 6|ALQ #1,ie Bg € (b(Q’ALQ)' (If not, then
A L, is contained in ker(8) and so A L, centralizes the unipotent suggroup Ug CcP

whose Lie algebra consists of positive integer multiples of 3, i.e. U ) C Lo, which is

a contradiction.) Hence (v, 8Y)r = (', 8))L, # 0 by Lemma i), as V' = 2pg

in (a(L;Q’Q)*7 proving the claim. Therefore, the image of v/ under the projection

ay o — (aéﬁQ)* has to be nonzero, and hence sy € Q. O

Remark 3.42. More precisely, the above proof shows that (in the notation of
the proof) there exists a root v € ®(G,A,) that occurs in N such that (v +

2500, 7" Yabs € {j:%, +1}. In particular, in case the Levi subgroup L, satisfies the
assumption of Remark we deduce that s(2pg, 7" )abs € %Z.

3.7. Rationality: inner forms. In this subsection we prove the rationality of
the reducibility points of (n—Indg 00%)™ for some inner forms G, which include all
simply-connected almost simple groups of rank one (cf. subsection below). For
hermitian quaternionic groups of maximal Witt rank Muié-Savin [MS00, §2] proved
that the p-function of a discrete series representation on a Siegel Levi coincides with
the p-function of its Jacquet—Langlands transfer by using a global argument. This
method was used in some further cases in [Kon03] and [Chol4]. We will prove
a similar result in greater generality, though we do not determine the p-function
completely. We remind the reader that in this subsection all representations are
smooth and complex.
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Our setting is the following: G is any connected reductive group, P = LN is a
maximal parabolic subgroup such that L is an inner form of a group L’ satisfying

(z/)der c LI c z/’

where

= (H Resg,/r GLm> JH

i=1
for some finite extensions F;/F, integers n; > 1 and a central subtorus H of
H:Zl Resg, /r GL,,. We moreover assume that H is an induced torus. Then we
prove the following.

Theorem 3.43. Let o be a discrete series representation of L. If u®(a6%) has a
pole at s = sg € R, then so € Q.

We obtain the following corollary from our argument. The inner form L of
L' gives rise to an inner form L of L’ such that Lde’r CcLc L as we NOw ex-
plain. We have Z;, = L' N Z;, and hence a map L'/Z;, — r /Z3z: that induces

HYF,L'/Z;) — H'(F, L’/gz,). The inner form L of L' corresponds to an ele-
ment of H'(F,L'/Z;/) and by the above map we get the desired inner form L of
L.

Corollary 3.44. Suppose that o1 , 02 are discrete series representations of L that
are conjugate under the action of L. Then p%(010%) = p%(020%).

This verifies [Chol4, Working Hypothesis 1.1] (in our more general setting). See
also Remark [3.54

We use a global method, and we start by giving some notation for real and
global groups. Bold letters will be used for global objects: for example, F' will be
a number field and G will be a connected reductive group over F. For each place
v of F, F, denotes the completion of F' at v. If v is an infinite place of F, a
representation of G(F,) means a (Lie(G(F,)) ®r C, K, )-module, where K, is a
fixed maximal compact subgroup of G(F,). If P = LN is a parabolic subgroup

of G and o a representation of G(F,), let (n—Indggzg 0)®™ be the normalized

parabolic induction in the context of (Lie(G(F',)) ®r C, K, )-modules. Let A = Ap
be the adele ring of F'. Let (n- IndGEAg 0)"™ be the normalized parabolic induction

for a cuspidal automorphic representation o of L(A) (cf. [MW95, IL.1]).

Lemma 3.45. There exists a number field F, a place vo of F, and finite ex-
tensions E/F,E,/F,... E./F such that E/F is Galois, F,, = F, vy does not
decompose in E, G splits over E,,, E D E;, and (E;)y, = E;. In particular we
have Gal(E,,/F) = Gal(E/F).

Proof. Take a finite Galois extension E/F such that G splits over E and E D F;
for each ¢ = 1,...,r. Then by [GLI8, Lemma 3.1] there exists a Galois extension
E/F of number fields and a place vg of F' such that vy does not decompose in
E E, = E F, = F. The subfield E; C E corresponds to a subgroup H; C

Gal(E/F) = Gal(E/F) and let E; be the subfield of E corresponding to H;. Then
this gives the desired properties. O

Let G’ be the quasisplit inner form of G, and fix an inner twist {: G — G/— over
F. After conjugating by G’(F) we may assume that the parabolic subgroup & ( =)
and its Levi (L) are defined over F' ([Sol20, Lemma 3]), and we let P’ = L' N’ the
parabolic subgroup of G’ obtained in this way, i.e. {(Py) = P% and &(Lyp) = L.
Then ¢ induces an inner twist Lz — L% ([Sol20, Lemma 3]) and so L' is the
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unique quasisplit inner form, consistent with our notation above. In particular, £
induces F-isomorphisms ZL & ZL/ and AL &~ AL" We note that G’ splits over
E,,, because L' splits over E,,. (Note that (L)% = (L')d* splits over E,, and
similarly for the radical Zgw noting that ZL’ =I'nNn ZE")

The quasisplit group G’ is classified by the action of Gal(E,,/F) on the root
datum of G'. Since Gal(E,,/F) = Gal(E/F), it also determines a quasisplit group
G’ over F. The parabolic subgroup P’ corresponds to a set of simple roots and
let PP = L'N’ C G’ be the corresponding parabolic subgroup. Then we have
(G,,. L,,.N,,) = (G,L',N'), where G, := G’ xp F,, (and this notation is used
for other groups as well).

Lemma 3.46. There exists an inner form (G,P,L) of (G',P' L") such that
(Gyys Poyy L) = (G, P, L) and (G, Py, L,) = (G, P., L) for any infinite place
.

Proof. This follows like in the proof of [GLI8, Lemma 3.2]. Let V., be the set of
infinite places. Inner forms of (G', P',L’) are classified by H'(F,I(G’, P',L")),
where I(G', P',L') is the group of inner automorphisms of the triple (G, P’, L’).
Since the normalizer of P’ in G’ is P’ and the normalizer of L’ in P’ is L', we have
I(G',P' L")~ L'/ Z g, where Zg is the center of G'. Therefore it is sufficient to
prove that the map

(3.6) H'(F,L'/Ze)— [ H'(F..L'/Ze)
vEVoo U{vo }

is surjective. By replacing G’ with G'/Z g, we assume that Z g is trivial. Hence
it is sufficient to prove that H'(F,L") — [oeviugooy HY(F,,L') is surjective.
First we observe that Zp. is an induced torus. Indeed, let F' be an algebraic
closure of F'. Since Zg- is trivial, Z/ is a torus and the fundamental coweights
form a basis of the cocharacter lattice X, (T’ xr F), where T' C L' is a minimal
Levi subgroup (a torus). Then a Galois-stable subset of fundamental coweights is
a basis of X,(Zy xp F), i.e. Zy/ is an induced torus. Hence there exist finite
extensions E1, ..., E, such that Zp, = [], Resg,/p Gm. Let v’ # vg be a finite
place of F' which does not decompose in E; for i = 1,...,r and we regard v’ also as
a place of E;. Let V(F) (resp. V(E;)) be the set of places of F' (resp. E;). Then

Hz(Fa ZL/) — @’UEV(F)\{’U/} HQ(FIMZL')

| !

@1:1 Hz(Eia GI‘H) — @;:1 @’UEV(Ei)\{’U’} Hz((Ei)’Ua Gm)

By the local-global principle for Brauer groups we see as in [PR06, Lemma 3] that
the bottom horizontal map is an isomorphism.

Set V' := V(F)\ {v}. As Zp/, is an induced torus, for any v € V(F),
HY(F,,Zy) is trivial by Hilbert 90. Hence H(F,,L') — HY(F,,L'/Z /) is in-
jective [Ser02] 1.5.7 Proposition 42]. We have the commutative diagram of pointed
sets with exact rows:

HYF,L') ——— HY(F,L'/Zy) —— H*(F,Zy/)

| | |

Doy H(Fo, L) —— @,y HA(Fy, L'/ Z1)) — Byors HA(Fy, Z1).
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Since Z is an induced torus, the right vertical map is an isomorphism [PROG
Lemma 3]. We also have that the middle map is surjective [PR06, Proposition 1].
Therefore the left vertical map is surjective and hence (3.6)) is surjective. O

Take G and P = LN as in the lemma. We fix an inner twist £: G — G/F
sending (P, L) to (P4, L) such that &, is equivalent to £ and £, is trivial for
all infinite places v. As above, £ induces an isomorphism Ay = Ay, which becomes
the above isomorphism A; = A;, after base change to F,, = F.

Recall that we have E C ﬁ;l Respg, /F GL;. Such a subtorus is classified
by a Gal(E.,,/F)-stable saturated subgroup of X*([];_; Resg, /p GL1 xrE,,) and
therefore by Lemma we have a subtorus H C H2:1 Resg,/r GL1 such that
H,, = H. As H is an induced torus, sois H. We put L' := (T]/_, Resg, /r GLy,)/H.
The subgroups (L')%" ¢ L” c L’ are in bijection with subgroups (L')% ¢ L" c L’
upon completion at vy (since L' /(L')%" is a torus that splits over E), and any such
L" is quasisplit and splits over E. In particular, we get (f/)der cL'clL.

Let Zp/ (vesp. Z3,) be the center of L' (resp. L'). As explained before Corol-
lary m the inner form L of L' gives rise to an inner form L of L’ such that
L% c L ¢ L. We remark that L,, = L and that Z; = Zj, (a torus).

Recall that we have a discrete series representation o of L & L(F,,). Take an
irreducible discrete representation ¢ of E(FUO) whose restriction to L contains o.
(See for example [Tad92] §2].)

Recall that A = A is the adele ring of F'.

Lemma 3.47. There exists a unitary character Z3,(F)\Z3.(A) — C* whose vo-
component is the central character of 7.

Proof. First we remark that the F-rational rank of Z;, is equal to the F-rational
rank of Zz, by Lemma

Let ws be the central character of ¢ and V°° be the set of finite places of F.
For each v € V°, let Z%’w be the maximal compact subgroup of Zf/,v (which
veV e Z%',v is
a compact subgroup of Zj3,(A). Note that Z; (F) N K is trivial since there is
an infinite place. Hence K — Zj3,(F)\Zj;/(A) is a closed subgroup. Consider
the character of K defined by (ky)yeve +— wz(ky,) and extend it to a unitary
character w’ of the locally compact abelian group Z,(F)\Z3/(A). Let w;, be the
vo-component of w’. Then o.)g(w;o)_l is a unitary unramified character. Hence
wz(w,, )" = xu for some v € \/—7111*217 R Since the F-rational rank of Zj,

is the unique parahoric subgroup for almost all v). Then K := []

is equal to the F-rational rank of Zj3, vr V can be seen in \/—1a*Zi”R, where
ay_ g = X' (Zg) @z R. Then w: Z3,(F)\Zz/(A) — C* defined by w(a) :=
w'(a)q (@) gives the desired character, where H: Z3,(F)\Zz.(A) — az;, R is
the global Harish-Chandra homomorphism. O

As H is an induced torus, we have
L'(F) = ([[(Resp,/r GL,)(F)) /H(F)
i=1

and similarly for L'(F,) and L'(A). (In the adelic case, this follows for example
from the argument in [Oes84) §I11.2.3].) The representation o is a discrete series
of an inner form of [];_, (Resg, /r GLy,)(Fy,). Let ¢’ be the Jacquet-Langlands
transfer of o to the quasisplit form. Since the Jacquet-Langlands correspondence
preserves central characters, o’ is a representation of L'(F,,).
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Let Vj be a finite set of finite places containing vy and all (finite) places v such
that G, is not quasisplit. Let vs ¢ Vo be any finite place.

Lemma 3.48. There exists a unitary cuspidal automorphic representation Ir of
L'(A) such that 1T, = &', 1, is a discrete series for each v € Vy, and 1L, is
supercuspidal.

Proof. By Lemma there is a unitary character w: Z3,(F)\Z;/(A) — C*
whose vo-component is the central character of o, . Then the lemma follows by
applying the trace formula with central character w. See the argument in the proof
of [F1i87, IT1.3 Proposition]. O

Let II be the global Jacquet—Langlands transfer of I’ to E(A) [Bad08, Theo-
rem 5.1]. This is again unitary and exists because ﬁ;j is a discrete series for each
v € Vy. (We use again that the Jacquet—Langlands correspondence preserves cen-
tral characters.) By construction, ﬁvo =g, I:LJ is a discrete series for each v € 1,
ﬁv = ﬁ; for all v ¢ Vj, and II is cuspidal, as it is supercuspidal at vs.

From now on we fix compatible collections of hyperspecial subgroups K, C
G(F,) and K! C G'(F,) for all finite places v ¢ V; (arising from some integral
models of G and G'). Recall that we have fixed an inner twist £: (Gg, P, Ly) —
(Gl Pl L),

Lemma 3.49. We may increase Vo such that for all finite places v ¢ Vi the iso-
morphism &, is defined over F.,, and moreover &,(K,) = K.

Proof. By spreading out and increasing Vj we obtain connected reductive Op y,-
group scheme models of G, P, L and G’, P', L’ (for some finite set of places Vp),
which we denote by the same letters. (Here, Op,y, denotes the localization of
OF away from Vp.) By increasing Vp we may assume that G(Of,) = K, and
G'(OF.,) = K/ for finite v ¢ V;. Increasing V; further, the class of € in HY(F, L'/ Z g/)
spreads out to an étale L'/ Z g-torsor over O F.,v,y» Which has to become trivial over
OF,, for any finite v ¢ Vo by Lang’s theorem and the smoothness of L'/Zg.
This proves that £, is defined over F,. On the other hand, pick a finite exten-
sion E'/F such that & descends to E’. We increase Vj such that & spreads out
to an isomorphism over Og v, and such that Op v, — Ogr vy, is étale. Complet-
ing at any finite place v ¢ Vo we obtain an isomorphism (G, P) X0, Or' v =
(G', P Xop v, OF v that arises from an isomorphism over OF,, by étale descent
(since we already know the cocycle condition holds on the generic fiber). This
completes the proof. O

In particular, for finite places v ¢ V, we may identify G(F,) with G'(F,) (and
likewise for P, L, N) and K, with K.

Lemma 3.50. There exists a (unitary) cuspidal automorphic representation II of
L(A) which is a quotient ofﬁ\L(A), a (unitary) cuspidal automorphic representation
I of L'(A) which is a quotient of ﬁ’|L/(A), and a finite set Vi of places containing
Vo and the set of infinite places such that

o II,, =0,

o forveVi\Vy, II, 211 ;

o forv ¢ Vi, Il, = II, is unramified.

Proof. We fix a maximal compact subgroup K, C INJ(FU) for infinite v (the sub-
group used implicitly in defining automorphic representations on L) and a compact
open subgroup K, C L(F,) for finite v such that ]_[Ufoo K, is compact open in
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L(A™) where A™ is the finite part of A. Let H be the cuspidal L2-automorphic
representation of L(A) whose subspace of IL K,-finite vectors is. II. By [LSI9,

Theorem 1. 1] we have an L2-automorphic subrepresentatlon HO of H| L(A)- For each
place v, let II, (resp. Hoﬂ)) be the v-component of II (resp. Ho). Then Hv is the

(unique) unitary completion of II, and ﬁO,v is a subrepresentation of ﬁv| L(F,)-
Likewise we have a compact subgroup [], IN({, C f/(A) and an L2-automorphic
subrepresentation I’ of ﬁl| L/(A)

Let V7 be a finite set of places containing Vj and the set of infinite places such that
for any v ¢ V4, G, is unramified (in particular isomorphic to G}) and II, = ﬁ;
is unramified. Let ,, be the (unique) unitary completion of o, so in particular

Oy C ﬁvo‘L(Fvo) (it is the closure of o). Let 7, := ﬁ; for v € V1 \ Vo, and note

that II, = ﬁ; for such v. Put V{ := (V1 \ Vo) U {vo} and for each v € V{ define
X, :={gy € E(Fv) | ﬁO,u o Ad(g,) = EU} Note that HOU and o, are extended
to L(F,)Z;(F,), as subrepresentations of HU|L (F.)Z; (F,), and L(F,)Z3(F,) C
i(FU) is open and of finite index. Hence by Clifford theory, X, is non-empty
[LS19, Proposition 4.1.3] and also open as it is L(F',) Z 7 (F',)-stable. Since L(F) C

Hvevl’ L(F,) is dense, there exists g € L(F) N IL, cv; Xv. Then = Ho o Ad(g)

is a cuspidal L2-automorphic representation, a subrepresentation of H| L(s) and
I, = &, for any v € V/. As ﬁ|L(A) is unitary, Il is also a quotient of ﬁ|L(A). Let II
be the subspace of [ [, (K, N L(F,))-finite vectors in II. Then this is an irreducible
automorphic representation of L(A). The surjective map H| L(A) — IT is non-zero
on II since II C ﬁ is dense and the image is contained in IIL Therefore we get a
non-zero homomorphism IT|,4) — II, and it is surjective by irreducibility. Likewise
we define IT" and get a surjection IT'| 5y — II". O

Take IT and V; as in the lemma. Let V be a finite set of places containing V;
such that for all v ¢ V' the subgroup K, N L(F,) of L(F,) is hyperspecial and II,
and II/, have nonzero K, N L(F,)-fixed vectors. (Such a set exists by a spreading
out argument.) Then we have

IL,, = o;

for v € V, I1,, and I/, are discrete series;

forve Vi \ Vo, G, 2 G, and 11, 2 1T

for v e V\ Vi, Gy, & G and I, IT/, are quotients of ﬁU|L(FU) and I, is
an unramified L(F,,)-representation;

o forvé¢V,G, =G, and II, = IT, have nonzero K, N L(F,)-fixed vectors.

By above, our inner twist £ gives us natural identifications between ®(P, A;),
(P, Ay), ®(P,Ar), and ®(P', Ap). -

Let P = LN be the parabolic subgroup of G opposite to P. For each a €
®(P, Ar) and each place v, we fix Haar measures on N (F,)NL,(F,) and N (F,)N
L,(F,) such that

o if v ¢ Vq, then N(F,)N L,(F,)NK, and N(F,)N L,(F,)N K, have
volume 1;

e for the product measure, (IN(F)N Ly (F))\(IN(A)NLy(A)) and (IN(F)N
L,(F)\(N(A)N L,(A)) have volume 1.
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We also choose measures on N'(F,)NL. (F,) and N/(Fv) NL! (F,) which satisfy
the analogous conditions. Note that if v ¢ V; then the measure on N(F,) N
L,(F,) (resp. N(F,)N L,(F,)) is the same as that on N'(F,) N L (F,) (resp.
W/(Fv) NL! (F,)) under our identification of (G(F,), P(F,),L(F,), N(F,), K,)
with (G'(F,), P'(F,),L'(F,),N'(F,),K)).

Lemma 3.51. Forv € V\ Vi, j(llupp,)) = j(IL,0p (p,)) for s € C.

Proof. Let i C iv be a minimal Levi subgroup (a torus). Take a Borel subgroup

Qi of iv containing i and a character x of T such that (n—Indg(iF”) X)5 — ﬁv.

Set T := T'N L, and let y be the restriction of ¥ to 7. Let Q (resp. Q) be the Borel

subgroup of G, containing IN,, (resp. IN,,) and such that QNL, = Qﬂ L, = Qi N
Fv u \sm T

L,. Then we have (n- IndQ%L(F ) X)*™ = (n- Ind ) X)L,y = Wolor,) — Iy

and a commutative diagram

J510(X0p(r,))

(n—IndG(F“ 5;(Fv) (n—Indf X(;P(Fv))

} }

G(F.,) m TPEHPE,) WipE,)) G(F.)) v+ ss
(n- Indp ") Ludp g, ) (n-In dP(F )H Sp(r,)

)sm

)sm

There is a rational function c(s) such that Jo,5(x0pp,)) © Jg10(X0p(r,)) = c(s)
and from the above diagram we get c(s) = j(Il,dpp, ) The above dlagram also
holds when we replace II, by IT/. Hence c(s) = ](H 0p (P, )) and we get the
lemma. O

Let s € C and for v ¢ V let fyu € (n- Indgg?’)ﬂ Op(r,))™" (resp. Four €

(n—Indgg:; IL,0pp,))"™") be a Ky-fixed vector. We assume fy,u:r(1) = o) #0
and for almost all v, this is the vector in II, used to define the restricted tensor

product IT = ®; IT,. Then there exists a rational function ¢, (s, P,II,) such that

T P, Todp(e,) four = co(s, PIL) fy -

for each s € C. An explicit formula of ¢, (s, P,II,) can be found in [Cas80, 3.1 The-
orem]. (Use the diagram in the proof of Lemma the product in the cited
theorem is then taken over all roots of IN,,.) From the formula, the infinite product
(s, P,II) = vav co(s, P,I1,) is identified with a ratio of products of certain
partial L-functions that occur in the Langlands—Shahidi method, cf. [Sha88, (2.7)].
For us, it suffices to know that ¢V (s, P, II) converges if Re(s) is sufficiently large
and gives a meromorphic function on C. This holds also for P. (In this case it
converges if —Re(s) is sufficiently large.)

We have a global intertwining operator Jg p(Ildp,)): (n- Indp(ﬁg I6p )" —

(n- Ind&™) 16 5))*™ that converges if Re(s) is sufficiently large. Put

P(A)
/ G(F, s m
V= @ four € Q) (-Ind G0 L85 e, ) )™,
vgV vgV

— i F sm
=R Fomwe X (n-IndFEF 65, )

vgV vgV
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Take 0 # fv = Qey fo € Qe (0-IndfiE") 1,05 5 )™, Then if Re(s) is
sufficiently large,

Jp1p(0p)) (Y @ fv)
= J5r. e WLobpir,)) foar © Q) To(e, (e, Mobp(r,)) fo

vgV veV
_®CUSPH fvur®®‘] H(SP(F))f
vgV veV
v o
=c(s, P, ® ® J5r, ) 1pF,) WdpF,)) fo-
veV

Both sides are meromorphic in s, hence this equality holds as meromorphic func-
tions. The same calculation gives

P\P(H(SP(A)) P\P(Héé A))(fv ® fv)

=c"(s, P, )" (s, P,I) ¥ @ Q) Tp ()55, o655 TB(r, ) pr,) Mo e, fo
veV

- (cv<s, P, (s, P,10) || j(Hvé;W)) Ve fv.

veV
On the other hand, the composition of intertwining operators Jp|ﬁ(H5;(A))Jﬁ|P(H5fv(A))
is the identity [MW95, Theorem IV.1.10]. Hence we get

(s, P, I1)cY (s, P,TI) H] (L0pp,)) =1
veV

and thus

[T xCF (65, ~ ¢V (s, P, )Y (s, P,T0),

veV
where ~ denotes equality up to some factor in RZ, that only depends on (G, L)
(or (G', L") below). Notice that if v ¢ V then G, & G, and II, = IT/. Hence, by
the same argument for II’, we have

H MG,(Fv)(H;(SfD/(Fv)) ~ CV(S7P7H)CV(S7ﬁ’ H)

veV

Hence we get
[T 6 Mdpe,)) ~ T 1w (055, )-
veV veV

By Lemma and II, 2 1T, for v € V1 \ Vp, we have
[T #F (Wbpe,) ~ TT 1 F 05 ()
veVh IS %

Since G, is quasisplit and IT) is a discrete series for v € Vp, if the right-hand
side has a pole at s € R, then s € Q by Proposition (Note that the super-
cuspidal support of IT/ is generic by Lemma below.) On the other hand, if
pGEF(1, Opr,)) =0 for v € Vo \ {vo} and s € R, then s = 0 by Proposition
Hence if s is a pole of u&Fv0) (11, 5P(F ) = u%(06%), then s € Q. This concludes
the proof of Theorem

Remark 3.52. With more work it might be possible to show that u®(cé%) =
uS' (0'6%,) for all constituents o of &, as in [MS00], [Chold].

Lemma 3.53. Any supercuspidal representation of any Levi subgroup of L' is
generic.
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Proof. Suppose that 7 is a supercuspidal representation of a Levi subgroup L of L.
Then L” = E’ﬂg for some Levi subgroup E’ of E and 7 occurs in the restriction of
a supercuspidal representation 7 of E/ [Tad92] §2]. In this way we may assume that
L' = L (perhaps by varying the nondegenerate character). By a similar (but easier)
argument we consider the surjective homomorphism [];_, Resg, sr GLy, — L to
reduce to the case when H = 1. Finally the claim for the group [];_, Resg, /7 GLy,
follows from [BZ77, 4.4 Theorem]. O

Proof of Corollary . As the discrete series o1, 09 are z—conjugate, there exists
a discrete series o of L such that o1, 09 are irreducible constituents of &|,. We then
keep the setup and notation of the proof of Theorem above. In particular, Il is
a cuspidal automorphic representation of L such that ﬁvo = 5. Then by the proof
of Lemmawe have a cuspidal automorphic representation II; of L(A) which is
a quotient of I (4) such that II; ,, = 0. Hence again by the proof of Lemma
there exists a cuspidal automorphic representation IIy of L(A) which is a quotient
of ﬁ|L(A) such that

[ H27Uo = 025

o II; , & 1Iy, for any v € V1 \ {vo};

o forv € V\W;, 11 , and Il , are quotients of ﬁU|L(FU) and II, is unramified;

o forvé¢V,G, =G, and II, = IT, have nonzero K, N L(F,)-fixed vectors.

Then the argument above gives u%(010%) = p%(020%). O

Remark 3.54. We can extend Corollary showing that Jp|g(0i0%) 0 Jgp(0:dP)
is independent of i € {1,2}, where Q is an arbitrary parabolic subgroup with Levi
subgroup L, not just Q = P, as in the statement of [Chol4, Working Hypothesis
1.1]. (The above argument still works because of the natural identifications be-
tween ®(P, A;), ®(P',A;/), ®(P,AL), and ®(P’', Ar/). Alternatively, we can use
formulas (12) and (14) in [Wal03} IV.1] to reduce to the case where P is a maximal
parabolic and @ its opposite.)

3.8. Rationality: rank one groups. Suppose that G is simply connected and
almost simple of rank one over F'. We first recall the classification of such groups,
cf. [Tit66, Table II] or [BT84, §4]. First, G = Resp,p G’ for some finite extension
E/F and absolutely almost simple group G’ of rank one, so we may assume that G
is absolutely almost simple. Let D denote the nonsplit quaternion algebra over F,
considered with its canonical involution (fixing precisely F'). All (skew-)hermitian
forms we consider are non-degenerate.

Proposition 3.55 (Tits). If G is simply connected and absolutely almost simple
of rank one over F, then G is isomorphic to one of the following:
(i) SLo(D’), where D' is a finite-dimensional central division algebra of di-
mension d? over F;
(ii) SU(h), where E/F is a quadratic extension, h is a hermitian form over
E of rank 3 or 4 and Witt index 1 (the groups are quasisplit SUs and
non-quasisplit SUy, respectively);
(iil) SU(h), where h is a hermitian form over D of rank 1 or 2 and Witt index
1 (the groups are inner forms of Sp, and Spg, respectively);
(iv) SU(h), where h is a skew-hermitian form over D of rank 4 or 5 and Witt
index 1 (the groups are an inner form of quasisplit Sping defined by a
quadratic extension E/F and an inner form of split Spin,,, respectively).

Here, ﬁJ(h) denotes the simply-connected cover of SU(h) (in case the Dynkin
diagram has type D).
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(i) d—1 d—1 1Agfi)—1,1

(ia) } 2 4(1)

(iia) } 248
(iiiy) *——® o)

(iiz)

0—@:.
(ivg) ’—@< } 2Dfi
(ivs) M ‘D

F1Gure 1. Tits indices for the groups in Proposition [3.55] with
the case number on the left and the Tits label on the right.

We will write case (ii,.), (ili,), (iv,) with r € {1,2,3,4,5} to refer to the subcase
of Proposition where the (skew-)hermitian form h has rank r. See Figure
for the Tits index in each case. Note that case (iis) can alternatively be described
by @(h) with h skew-hermitian form over D of rank 2 and Witt index 1, and case
(iii;) can alternatively be described by Spin(h) with h a quadratic form over F of
rank 5 and Witt index 1. Note also that the isomorphism class of G is determined
by the isomorphism class of {D’, (D')°P} in case (i), by E/F and 7 in case (ii,), by
r in case (iii,), by E/F in case (iv4), and is unique in case (ivs).

Let G’ denote the quasisplit inner form of G. Let L’ be the Levi subgroup of G’
that corresponds to the minimal Levi Z of G.

Proposition 3.56. Keep the above notation. According to the cases of Proposi-
tion [3.58 we have:

(i) We have SLg x SLy C L' € GL4 x GL4.
) We have L' = Resg/p GL;1.
) We have SLQCL’CResE/FGleUQ.
iiiy) We have L' = GL,.
i) We have L' = GLjy x SLs.
) We have SLQXRCSE/FSLQCL/CGLQXRGSE/FGL2.
) We have SLy x SLy C L' € GL; x GLy x GLy.

Here, Uy denotes the quasisplit unitary group defined by any (skew-)hermitian
form of rank 2 over FE.

Proof. This is clear in all but the last two cases.

Case (ivs): we consider the split group GSpin,, whose derived subgroup is
G’ and show that the corresponding Levi is contained between SLo x SL4 and
GL; x GLs x GL4, which implies the claim by intersecting with the derived sub-
group. The Levi subgroup in question is GLy x GSping [Asg02, Theorem 2.7] and
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GSping = {(g1,92) € GL1 x GL4 : g7 = det(g2)} by [ACIT, Proposition 2.1], so we
are done.

Case (iv4): as in the previous case we consider instead the quasisplit group
GSping defined by the quadratic extension E/F. (We note that the group of au-
tomorphisms of the root datum of GSpin,, is Z/2 x Z/2, unlike some claims in
the literature, but we use the unique non-trivial automorphism that is trivial on
the center.) Explicitly, it interchanges ey with ey + e, e, with —e,, and fixes

€1,...,€n—1 (in the description of [Asg02, Proposition 2.4]). It follows immedi-
ately from the description of the root datum that the Levi subgroup in question is
GL2 x GSpiny. We conclude by Lemma below. O

Lemma 3.57. We have

U, ~ GLQ X ResE/F GL1 N=1
2 = GL1 )

where GL1 is embedded antidiagonally and N is the product of the determinant on
GL2 and the norm map Resg/p GL; — GL;.

Proof. Tt suffices to show that
GL2 X ResE/F GLl
GIL;

such that the multiplier on the left corresponds to N on the right. It is convenient to
work with the skew-hermitian form defined by the matrix J := (_; 1). Then over E
the group GUy becomes identified with GLy x GL1, with the nontrivial element 7 €
Gal(E/F) acting by the automorphism (g, A) — (A-J~1-fg71. J \). Similarly the

right-hand side of (3.7) becomes identified with SL2*EL1XCGE1 with GL; embedded

via © — (z71,z,2) and 7 acting by (g,2,y) — (g,y,2). It is then easily verified
that the maps (g, ) — (g,1, A(det g)~1') and (g,z,y) — (gz, (det g)xy) are inverse
isomorphisms that commute with the action of 7. O

(3.7) GU, =

Lemma 3.58. The quasisplit group GSpin} defined by the quadratic extension E/F
is isomorphic to {g € Resg,/p GL3 : det(g9) € GL1 C Resg/p GL1}.

Proof. We consider a variant of the argument in [ACIT, Proposition 2.1]. We
work over an algebraic closure of F' that contains F and identify GSpin, with
H := {(g1,92) € GL : det(g1) = det(g2)} by identifying the root data as follows.
Consider the maximal torus T := {t = ((*,),(¢4)) € GL3 : ab = cd} of H and
define the basis ¢; € X*(T) (0 < i < 2) by eg(t) := d, e1(t) := ad™t = b1,
ea(t) := bd~1 = ca!. Tt is straightforward to verify that this identifies the root
datum of (H,T) with that of GSpin, as given in [Asg02, Proposition 2.4] and that
it identifies the action of Gal(E/F') on the former root datum (interchanging (a, b)
with (¢, d)) with the action on the latter (exchanging ey with eg + ea, eo with —eq
and fixing e;). This completes the proof. O

Corollary 3.59. Suppose that the adjoint group G* s almost simple of rank one
over F. Let o be a unitary supercuspidal smooth representation of Z over C. If
uC(06%) has a pole at s = so € R, then so € Q.

Proof. Let G*° be the simply-connected cover of G4°*. By Proposition (and re-
placing o by an irreducible constituent of o|gsc ) we may assume that G is semisimple
and simply connected. As mentioned above, by replacing F' by a finite extension we
may assume that G is moreover absolutely almost simple. Then the result follows

by combining Theorem with Propositions and U
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Remark 3.60. This result was previously known in case (i) by [Tad90] (cf. §3.4)), in
case (iig) by [Key84} §7], in case (iiy) by [Kon03, §3.1], and in case (iii;) by [MS00,
§3]. As far as we know, it is new in cases (iiiz), (iv4), and (ivs).

Remark 3.61. Suppose that G*? is almost simple of rank one over F. In the setting
of Corollary we can moreover bound the denominator of sy, and hence narrow
down the set of possible sy to an explicit finite set by Proposition ii), as follows:

e in case (iiiy) and (ivy), so € 357%;

e in case (ivs), so € 3%Z.
(We recall that s € {£4- | e | d} in case (i) [Tad90], so € 17 in case (ii3) [Key84],
s0 € +Z in case (iis) [Kon03], and so € {0,+%, 43} in case (iii;) [MS00].) To see
this, we may again reduce to the case where G is simply connected and absolutely
almost simple. By the proof of Theorem [3.43] it suffices to consider the quasisplit
inner form G’ with parabolic subgroup P’ = L' N’, where L' is described in Propo-
sition m By Remark it suffices to show that (2pp/,7")aps is an integer
dividing 10 (resp. 14) for v a root of A, in N'. This is an explicit computation.
(In fact, with more work we can show that sy € {57 in cases (iiiz) and (iv4) and
S0 € 157 in case (ivs) using Remark [3.40})

3.9. Proof of Theorem Now we prove Theorem [3.33] We always assume
Assumption [2.14] in this subsection.

Suppose G is an arbitrary connected reductive group, B = ZU a choice of
minimal parabolic subgroup, S the maximal split subtorus of Z. We first reduce to
the case where F' = Q,, so we can apply the results of section

Lemma 3.62. Theorem [3.33 holds over arbitrary F if and only if it holds over

F=Q,.
Proof. It suffices to show that Theorem holds for (G, B, o) if and only if it holds
for (ResG,Res B,o), where Res := Resp/g, denotes Weil restriction of scalars.

First note that Res B is a minimal parabolic subgroup of Res G with Levi subgroup
Res Z. (This can be verified by extending scalars to an algebraic closure.) The
split torus S is obtained by base change from a unique split torus S, over Q,,
hence the adjunction gives a homomorphism S, — Res G, which identifies S, with
a maximal split torus of Res G (see, e.g. [HR20] §4.2]) that is moreover contained in
the minimal Levi subgroup Res Z. Noting that Lie(Res G) equals Lie G considered
as Lie algebra over Q,, we see that ®(G, S) is identified with ®(Res G, S,)) via the
map sending p : S — G,, to the restriction of Resp to S, (noting that Resp
factors through the maximal split torus G,, <— ResG,,); equivalently, roots are
identified in X*(S,) = X*(S) (under extension of scalars). The same is true for
positive and simple roots. By comparing roots, we see that we have an equality of
Levi subgroups Res L, = LResa\go for any a € ®(G, S). Therefore, the condition
that o|zng, is trivial for some simple root o is the same for both G and ResG.
On the other hand, using that the coroot o is uniquely determined by having
image in Lier and satisfying (a, @) = 2, we deduce that coroots are identified in
X (Sy) =2 X.(S). We claim that e(x|s) = [F : Qple(x) in X*(S)r = X*(Sy)r for
any x : S — C* (and likewise for characters of Ar). It suffices to check this when
Ixlc = |v|F for some v € X*(S), in which case it follows from |-|p = \-\g;:@”
Q, - Therefore, e(x|s) is dominant if and only if e(x|s,) is dominant. O

]on

From now on we assume that F' = Q.
Let p := %Eae@+d noe € X*(S), where ng 1= dimU(q) + dimUzq) € Zso.
Note that n, only depends on the Weyl group orbit of a.
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Lemma 3.63. For any o € (I>red we have {(p,a") > ng, with equality if and only if
« is simple.

Proof. If « is simple, then s,(®1,) = (@1, \ {a}) U {—a} and the proof follows
from

—(p,a") = (p,5a(a)) = (sa(p),a”) = % Y. nplBaY)=(p,a”) - 2n,.
BEsa(®,)

For general a, we will work in the reduced root system ®..q, so we can write
aY =37 | af with o; simple and therefore (p,a") = >"'_, n,, by the previous
paragraph. To show (p, @) > n, it thus suffices to show that at least one a; is in
the same Weyl group orbit as a, as this implies that n,, = n,. Note also that once
we have shown this, equality can only hold if » = 1, i.e. a simple.

By dualizing it suffices to show the following. Suppose that ¢ is a reduced root
system. Then for any o € ®* with a = Z%A cyy there is a v € A with ¢y > 0
and +y is in the same Weyl group orbit as o. Let I := {y € A : ¢, # 0} and let
®; :=ZI N ® denote the sub-root system generated by I. Since a € ®; lies in the
Weyl group orbit of a simple root v of <I>}r (i.e. v € I), we are done. O

Recall that 7" denotes a maximal split torus of (the spht group) G containing
S and recall that & denotes the roots of (Ge, T ). Let A C ® denote a choice of
simple roots so that A C A|5 CAU{0}. Let Ag:={F€A: Y|ls =1}. For a € A
let O(a) := {7 € A:7|g = a}.

Lemma 3.64. Suppose o € A and write oV = Zieﬁ c57" with ¢5 € Z. Then
cy > 0 and c5 # 0 if and only if ¥ lies in the smallest union of connected components
of Ao U O(a) that contain O(a).

Note that oV can be expressed in the above form because we can pass to_the
simply-connected cover of the derived subgroup of G (in which case X, (T') = ZAV).

Proof. By passing to the Levi subgroup L, we may assume that G has semisimple

rank 1 (i.e. A = Ap U O(a)). By comparing with the simply-connected cover

of the derived subgroup we may assume that G is simply connected. Factoring

G = G® x G*™ with G* almost simple and isotropic and G*" anisotropic, we may

assume that G is almost simple, and we need to show that c5 # 0 for all ¥ € A.
Note that the c5 are determined by the formulas

By = 3 ex(B.AY) = {2 e ol

— 0 otherwise.
FeA

In other words, oV = 2 EEeO( wg, where w denotes the fundamental coweight

corresponding to E

Dually, it suffices to show that if we express a fundamental weight wg Z% cx 457
in terms of simple roots, then ds > 0 for all ¥ and d5 > 0 if ¥ lies in the connected
component of A that contains 8. The first claim is true since fundamental weights
form acute or right angles with each other. If the second claim is false, we can
pick (adjacent) 71,7, € A such that dy, = 0, d5, > 0 and (J2,7;’) < 0. Then
(@5 %) = 25ea d5(7,77) <0, contradiction. O

Recall that L', is the group generated by U N L, and U N L.

Lemma 3.65. Suppose that V is an irreducible algebraic representation of G over
C, so that VY is an irreducible algebraic representation of Z. Let wyuv: S — C*
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denote the central character of VU and let P = LN be a standard parabolic subgroup.
Then the following are equivalent:
(i) VN is trivial on L';
(ii) VY is trivial on Z N L';
(ili) wyvoaY =1 for all o € Ap.

Here, A, denotes the simple roots of L.

Proof. Tt is clear that (i)=-(ii)=-(iii). To show (iii)=-(i), by taking (G,V) to be
(L,VN), we may assume that L = G. As in [AHHVI7, 11.4] let G* denote the
simply-connected cover of the derived subgroup of G, which is a direct product
of almost simple groups, precisely one of which is isotropic (of rank 1). Let G™
denote the unique isotropic almost simple factor of G*¢. Then G’ is the image of
G = (G™)" under the natural morphism ¢: G** — G (by Kneser-Tits, cf. [AHHVIT,
I1.4]). As ¢ is an isomorphism U® — U and HZ) = Z% is a minimal Levi
subgroup, we reduce to the case where G is a product of isotropic simply-connected
groups.

Let 1 € X*(T") denote the highest weight of V/ (or VY), so that wy v is given by
pls. In particular, (s, AVYy>0forall ¥y € A. By our “assumption on G no connected
component of A is contained in AO, so for each v € Ao there exists a € A\Ao such
that ¥, & lie in the same connected component of Ag LI O(alg). By Lemma We

deduce that wyv o ¥ =1 for all @ € A if and only if (u,7") = 0 for all ¥ € A if
and only if 4 = 0 if and only if V is trivial on G = G’. ]

Remark 3.66. Note that in the setting of Lemma we have wyv ooV = (-)™Me
for some my, € Z>q for any a € A.

Proof of Theorem[3.33 We first prove that the conditions in (ii) and (iii) are nec-
essary. Assume that L( "y € Ot for a parabolic subgroup P; 2 P with Levi sub-
group Ly O Z. Then oy := Ly (0’)" is finite-dimensional by Corollary [2.12) n and we
have (01)NnL, = 0. By Frobenius reciprocity we have o1 — (IndILDmL )" which

is closed as o7 is finite-dimensional. Then by applying the functor (IndG1 ) we

get (Ind$ P, 01) — (Ind$ o)<, so (Ind% o) is reducible. The proof of the “if”
part of (111) is similar (see the introduction).

In the remaining proof we may freely replace C' by a finite extension because
this preserves the reducibility, and we will do so without further comment.

Recall that we may assume that F' = Q,. Recall that we have defined e(x) =
es(x) € ayp for a character x: S — C*, and also that if x € X*(S) is algebraic,
thought of as x : § — Q0 C C*, then e(x) = x. It follows that e(|x|g,) = —x for
X € X*(S). In this proof we write e(-) for e(:|s).

We may assume that Qder is simply connected, by taking a z-extension. By
Lemma we can write o 2 09 ® 7 with 09 € OF and 7 a smooth representation
of L such that L(o)) € OF is equimaximal. Let Q = LoNg denote the maximal

parabolic subgroup for L(c{)). By Corollary we deduce that (Ind PALG 7)™ ig
reducible. We may relabel Ly as G and assume w1th0ut loss of generality that Q=
G. In particular, by Lemma'm L(o}) € OY is algebraic up to twist by a locally
analytic character ¢: G — C*. Twisting o by ¢ and using Lemma without loss
of generality, L(o}) € O is algebralc Then (0)V"E = L(a})Y is an irreducible
algebraic representation of Z. Let wg: S — C* denote its central character, which
is algebraic (factoring through QX C C*) and dominant by Remark |3.66} - So if we
write wg = =\ € X*(S), then (A, ") <0 for all @ € A.

Note that 7 is trivial on L’ by Lemma Let £ := 7|z, which is absolutely
irreducible as ZL' = L.
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Taking coinvariants, we see that oynr = (00)ynr ® €. As (00)ynrL 18 3¢-simple
and ¢ is absolutely irreducible smooth Z-module, we see that oy is absolutely
irreducible by Proposition Let we, Woyny, 1 S = C* denote the central char-
acters of &, wynr, respectively. By applying e(-) to central characters we obtain
that

(3.8) A+ e(we) = e(Woyny)-

For B € Ay, we have (e(wg), ) = eg,, (we 0 8Y) =0 (as & is trivial on Z N L').

We claim that e(wg,,,) — A is dominant. Assume that e(w,|4,) is dominant
(which is implied by e(ws,,) being dominant, as remarked above). For o € Ap,
as (e(we),a”) = 0, we have (e(wyy,.,) — A, @¥) = 0. On the other hand, let
a € A\ Ap and take a € arg, b € aZp = RAY such that o¥ = a +b. By
Lemma [3.2(i), we have b € R<oAy. Therefore (X\,a) = (X, a” —b) < 0 since
A is antidominant. Since (e(Wepn, ) — A b0) = (e(we),b) = 0 and (e(wopng ), @) =
(e(wolar ), a) = (e(wsla,), a”) = 0, we have (e(woy,) = A ) = (e(Woyn, ), @) —
(A, a) > 0. Therefore e(wy,,, ) — A is dominant.

We embed (Ind$ 7)™ as subrepresentation of (Ind% €)™ = (n-Ind% 55;1/2)5“1.
We can write dp(x) = [(2p)(2)|g, for © € S and so dpnL, () = |a(z)[g; for
a € ®f . (Here p € X*(S) and n, € Zs are as in Lemma M)

Then
(3.9) e(wedp*) = (e(woyn) = 1)+,
as e(dg) = —2p.

If w € Ng(Z) satisfies 5651/2 &= w(§§§1/2), then by we deduce that
(e(Wopn,) — A) + p is fixed by w (here we regard w as an element of the Weyl
group), which implies w € Z, as e(wy,,~,) — A is dominant and p is strictly dom-
inant. Hence 56];1/2 is G-regular, so u“ has a pole at 56];1/2 by Proposition
and therefore p“= has a pole at 5551/2 for some «a € @;d by the product formula
(Proposition [3.4)).

We will now work over C' 22 C (fixing a field isomorphism arbitrarily) and extend
the absolute value |-|c uniquely to C. Write 55;1/ ? o ¢,y with &, unitary over C
and X a positive real unramified character of Z. We can write x = 03, n with
s € R and 7 a positive real unramified character of L, (as a5 = a*LmR@(aé‘fR)* and
« spans (aéﬁR)*). By Proposition [3.5| we have &, & s,(&,) where s, € N (Z)/Z
is the non-trivial element. Thus (we, oa¥)? = 1, where wg, : S — C* is the central
character of &,. In particular, (e(we, ), @") = eg,, (we, oa") = 0. By Proposition [3.5]
we know that —1/2 < s < 1/2. By Corollary (applied to L) we know that
s € Q, s0 03, () = |a(z)|g" (taking values in p% C RZ,). Hence e(65n,. ) =

—snqa. By applying e(-) to the central character of 56;/2

= Lux = gu(s%m[,an7
pairing with —a", and using (3.9)) we deduce

A =p—e(Wopn,),a’) = 2sn4.
As e(wyyn,, ) — A is dominant, and by Lemma we get
0> —(e(Woyns) = A a’) = (p,a") +2sn4 > (25 +1).

Since s > —1/2, we get {e(wyyn,) — A aY) =0, (p,a¥) = n, and s = —1/2. By
Lemmas [3.63] and Proposition [3.7] we deduce that « is simple and &, is trivial on
ZNL.,. Since 6p = dpnr., (0p, |7z) we get that & = &,n(5p, |2)"/? is trivial on ZNL.,.

Case 1: a« ¢ Ay. Let L; be the smallest Levi subgroup containing L and L, , and
let L; N; be the standard parabolic subgroup with Levi subgroup L;. Then since
& = 7|z is trivial on ZN LY, 7 has an extension 7y to Ly [AHHV1T, I1.7 Proposition]
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with N N Ly acting trivially. Then L(co’) = L(o}) ® 7" in OF by Lemma By
Lemma and as L(o})) € O we have L(o’) 2 L(o}) ® 7{ lies in OF1.

Assume moreover e(wy,, ) is dominant. Since A is antidominant, (e(wy,n, ) —
A, V) = 0 implies (e(wyyn, ), ") = (A, ") = 0. By pairing with 8¥ € AY
and using (e(wg), ") = 0, that A is antidominant and e(wy,,, ) is dominant we
obtain that (A, 8V) =0 for all 8 € Ar, and also (\,a") =0 by above. This implies
that L(o))™ is trivial on L} by Lemma m Hence o} = L(a})"N (an L-stable
subspace of L(o})™) is trivial on LN L}. As moreover 7|z = £ is trivial on Z N L,
we deduce that o = 0¢g ® 7 is trivial on Z N L, as desired.

Case 2: ps has a pole at 55];1/2 only if 5 € Ap. From the embedding
(n-Ind$ 76;1/2)5“‘ — (Ind§ fégl/z)sm we obtain (as in the proof of Lemma D
that Jp5(r05""%) J5 p(r0p"%) = Jpp(€05"%) Jp (€65"%), where B’ is the
Borel subgroup of G such that B > N and B'N L = BN L. By [Wal03], IV.3(4)]
we get Jp|p/ (55;1/2)J31|B(£5§1/2) equals []5 uke (55;1/2)*1 (up to nonzero con-
stant), where the product runs through ®,eq(B,A;) \ Prea(B N L, A5), which
has no zeros by assumption. By [Wal03, IV.1(13)] and the Weyl group regular-
ity of w55§1/2 established above we deduce that Jpp/ and Jp/p are regular at
55;1/2. Therefore, JP|F’ JF\P are regular at 7'5;1/2 and induce an isomorphism
(n-Ind% 7(571/2)5"1 = (n—Ind% 76;1/2)5“1. Analogously to Remark we deduce
that (n-Ind% 705 1/2)Sm is irreducible. (The Jacquet module of (Ind$ 55;1/2)5‘“
for B is multiplicity-free, as {6];1/ % s G-regular. Hence the Jacquet module of
(n-Ind$ 7'(5;1/ %)sm for P is multiplicity-free. It follows that (n-Ind$ 7'(5;1/ %)sm hag
an irreducible socle that is also its irreducible cosocle by the given isomorphism.) O

Remark 3.67. We know that, by Remark [3.61] there exists an explicit k € 279
such that (n- IndBmL &udpnr,, )™ reducible for s € R implies that s € - L7, where
we use the notation of the proof. Therefore we can strengthen Theorem B33 in
part (ii) (resp. (iii)) it suffices to assume that (e(wy|a,), @) > —2n4/k, for any
a € A\ AL (resp. (e(Woynrls), @Yy > —2n4/ke for any o € A). (Either of these
assumptions implies that (e(wyy -, |s) — A, @¥) > —2n4/k, for any a € A and hence
that e(wyy . ls) — A+ p is strictly dominant in the proof. Here we assumed F = Q,
for the argument, but we remark that the condition {(e(wy|a, ),a¥) > —2n4/kq is
equivalent for G and Resg /Qp G.)

3.10. Groups of semisimple rank one. In this subsection we establish a more
precise irreducibility result when G is semisimple of rank 1. Without loss of gener-
ality (replacing G by Resp/q, G) we may and will assume that ' = Q.

Theorem 3.68. Assume Assumption [2.1]} Suppose that G is of semisimple of
rank 1 over F' = Q,. Let o be a finite-dimensional absolutely irreducible continuous
representation of Z. Suppose that either o is 3o-simple or that U is abelian. Then
(Indg )" is absolutely reducible if and only if, after perhaps replacing C with a
finite extension, L(o') € OY.

We remark that o € OZ, after perhaps replacing C' by a finite extension, by
Lemma Also note that the condition L(c’) € O is made more explicit in
Lemma [2.29]

Proof. Let w, denote the central character of o. Suppose that (Ind$ o)™ is re-
ducible. Assume first that G4 is simply connected. Then, after perhaps replacing
C by a finite extension, we can write 0 = g ® 7 as in §2.8] In particular, o¢ is
3c-simple and L(o() is equimaximal with maximal parabolic Q. Then Q # B by
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Corollary n, ie. Q = G and L(o)) € OF. By Lemma [2.52| there exists an irre-
ducible subrepresentation 7 of (Ind% 7)™ that is not dense in (Ind$ 7)¢*. Pick any
nonzero element f € 7. If f(1) = 0 and o is 3¢-simple, then by smoothness of f and
the Bruhat decomposition we get a contradiction from Lemmal[2.2] (as dim¢e 7 = 1).
If f(1) = 0 and U is abelian, then pick a compact open subgroup Uy of U such
that supp(f) C B\BwoUy and any Uy-eigenvector [’ € (Uy - f) (which exists as Uy
is abelian, after perhaps replacing C by a finite extension). Then f’ takes values
in a 1-dimensional subspace of 7 and we get a contradiction from Lemma So
f(1) # 0 and then for any z € S we see that zf — w,(2)f € 7 vanishes at 1, so
again by Lemma we deduce that zf = w,(z)f for all z € S. By smoothness of
f we deduce that f is fixed by U and U, hence by G’. Therefore, for z € Z N G’
we have zf(1) = f(z) = f(1), ie. f(1) € 727¢". As ZN G’ is normal in Z and
f(1) #£ 0 we get that Z NG’ acts trivially on 7. Therefore, 7 extends to a smooth
representation of G, so L(0”) = L(o}) @ 7/ € OF.

For general G, as in the proof of Corollary [2.31] we take a z-extension 1 —
T—>G—>G—>1 Wherchr1ssnnplyconnectedand1—>T—>G—>G—>1
on F-points. By pullback to G we obtain B = ZU and by inflation we obtain
g€ 0% As (Indg )" is reducible, L(d') € OC by above. As L(o') € OF arises
by inflation from L(c’) € OF (in particular T acts trivially on L(¢")), we deduce
that L(o’) € 0.

Conversely, suppose that L(o’) € O (so finite-dimensional). Then we obtain
continuous maps as follows:

L(o') = FE(L(0'),1) < FE(L(o"), IndF 1)*™) = Fg§ (L(c"), 1)
— FS(M(0'),1) = (Ind$ 0)™ — (Ind$ 0)°*,

which proves the reducibility. O

Remark 3.69. If G is one of the groups SLy(D), quasisplit SUs, or the rank 1 inner
form of Sp, (see , then the assumption that o is jo-simple or that U is abelian
is satisfied: in the first and third cases U is abelian, and in the second case Z is
abelian (so dimg 7 =1, i.e. o is 3¢-simple).

In the following corollary we allow arbitrary F/Q,.

Corollary 3.70. Assume Assumption[2.1]} Suppose that G is split of semisimple
rank 1 over F, with unique simple root o. Let x: Z — C* be a continuous char-
acter. Then (Indg X)¥ is absolutely reducible if and only if x o @V is non-positive
algebraic.

Proof. We first use a z-extension to reduce to the case where G s simply con-
nected. Moreover, by Proposition we may assume G = Gder( SL3). Then
aV: G, — Z is an isomorphism. Note that either condition in the corollary
is unchanged if we replace C' by a finite extension, and we will assume for the
rest of the proof that C is sufficiently large without further comment. We set
é = Resp/g, G- If x o oV is non-positive algebraic, then x is algebraic and
L(x™') € OY by Lemma M Hence (Ind$ x)°** is reducible by Theorem m
Conversely, if Indg X)* is reducible, then L(x~') € OF by Theorem m Hence
by Lemmawe know that L(x~!) is algebraic. Therefore xy~! = L(x 1)V is
algebraic, and from L(—dy) € 09 we deduce that the algebraic character x o aV i
non-positive. O
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APPENDIX A. ORLIK-STRAUCH: THE GENERAL CASE

The goal of this appendix is to generalize the main results of [OS15], [OS14b)]
to a general connected reductive group. As much as possible we keep the notation
of [OS15], [OS14b]. In particular, L (not F') denotes the ground field and K (not
(') denotes the coefficient field. Let G be a connected reductive group over L. Fix
a minimal parabolic subgroup B and let P = LpU p denote a standard parabolic
subgroup. Recall the abelian categories O and OF defined in

Just as in [OS14b)], for M € OF and V an admissible smooth representation
of Lp we can then define FS(M,V) as follows. Pick any finite-dimensional (lo-
cally analytic) P-subrepresentation W C M that generates M as U(g)-module.
(We use the convention of [OS15], [OS14b] to write U(g) for U(g ®1 K).) Then
FS(M,V) is the closed subrepresentation of (Ind% W’ @ V))* that is annihilated
by ker(U(g) ®u )y W — M), cf. [OS14bl, §3.8].

Theorem A.l. Suppose that K is sufficiently large (depending only on G), and
keep the notation above. The main results of [OS14b] hold for G. This means:

(1) F§ is functorial and exact in both arguments.

(i) If Q = LoUg D P, M € O%, V an admissible smooth representation of
Lp, then F§(M,V) = F§(M, (Indp2 V™).

(iii) Suppose that M € OF such that
(a) P is mazimal among parabolic subgroups of G such that M € OF,
(b) M is simple as U(g)-module,
and suppose that V' is an irreducible (admissible) smooth representation of
Lp. Then FS(M,V) is topologically irreducible.

Remark A.2. Assumption (a) is weaker than saying px := p®p K is maximal for M
because gx can have more parabolic subalgebras than those coming from G when
G is nonsplit.

Parts (i) and (ii) follow exactly as in [OS15], [OS14b] and the remainder of
this appendix will focus on proving part (iii). The basic idea is to deduce (iii) by
comparison with the split case, by considering G x , L’ for a carefully chosen finite
extension L'/L, like in [Brel6l Appendice| in the case of restrictions of scalars of
split groups. (We will need that L’ embeds in K, which is why we demand that K
be sufficiently large.)

Fix a maximal split torus S of G over L. Let ® denote the possibly non-reduced
root system of (G,S) and W its Weyl group. Choose any special point « of G in
the apartment of S.

Let ®T C ® denote the set of positive roots corresponding to B, with simple
roots A. Choose a “special” subtorus T’y of G over L containing S, i.e. T, becomes
a maximal split torus after base change to the maximal unramified extension of
L. Let T denote the centraliser of T, in G, which is a maximal torus of G (as G
becomes quasisplit over the maximal unramified extension of L).

Proposition A.3. There exists a finite Galois extension L' /L splitting G such that
x remains special in the building of the split group G’ :== G x, L.

Proof. Assume that the valuation w of L satisfies w(L*) C Q and extend w uniquely
to an algebraic closure L. All extensions of L below will be taken inside L. Let
Prcq C ® be the subset of reduced roots. B B

We first suppose G quasisplit, with splitting field L. Let ® denote the absolute
roots. Let ¢ be the valuation defined by a Chevalley—Steinberg system as in [BT84,
§4], so the hyperplanes in the apartment of S are given by {a(z —¢)+r =0 (r €
Ty,a € Preq)}. From [BT84L 4.2.21] we get that T, is an infinite cyclic subgroup
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of Q for all a € P4, and from [BT84l 4.2.1] that I'; is an infinite cyclic subgroup
of Q for all @ € ®. Hence there exists e € Z~q such that T, C %I‘a whenever
als = a € Ppeq and 2T', C éI‘E whenever E|§ =2a € ® and a € D,q. Letting L’/z
denote any finite extension of ramification index a multiple of e, we get that = is
still special over L’ (cf. [BT84l 4.2.24]). (In fact, e = 2 works always and e = 1
works if ® is reduced.) The same argument shows that if 2’ lies in the apartment
of S such that a(z’ — ¢) € Q for all a € Pyeq, then 2’ becomes special after base
change to a suitably ramified extension of L.

For G general, let Lo/L be a finite unramified extension with Galois group I"
such that T, becomes split over Lg; in particular, G x Lo becomes quasisplit.
We consider the embedding of buildings B, (G) < Br,(G x 1, Ly) (unramified base
change). Then the vertex x lies in a unique I'-invariant facet F' in the apartment
of T, (inside Br,(G xr Lo)), so x equals the average of the vertices of F. By
above it then suffices to show that any vertex z’ of the apartment of T, satisfies
a(x’ —p) € Q for all a € Ppoq (Where ®,oq denotes the reduced roots of G X, Lg).
This is clear: as ' is a vertex we have a(2’ — ¢) € T, C Q for a € X C Ppoq for
some maximal linearly independent subset X, which implies a(a’ — ) € Q for all
a € Byoq (as ZX C Z®P,eq has finite index). O

Let L'/L be a finite Galois extension splitting G such that the image 2’ of the
special point z in the building of G’ := G x, L' is still special. We assume that K
is large enough to contain an embedding L' < K and we fix such an embedding,
extending the given embedding L < K. Let ky, (resp. k1/) denote the residue field
of L (resp. L').

Let P be a (standard) parabolic subgroup of G containing S with Lie algebra p.
Let Up be the unipotent radical of the opposite parabolic P~ (with respect to S)
with Lie algebra up.

Let S’ := S xp L' and T/ := T x, L', so that by construction z’ is contained
in the apartment of 7. Let G’, denote the connected reductive model of G’ over
Oy defined by 2/, and let S’, denote the scheme-theoretic closure of S’ in G, (a
split torus extending S’) and similarly define the split torus T%,. We define the
parabolic subgroup P’ := P x L' of G’ and its unipotent radical Up =UpXxr L.
Let also G, denote the connected reductive model of G over O, defined by x.

Let G := G(L), G' := G'(L'), etc., so G is a closed L-analytic subgroup of G’.
Let G} := G',(Or/) and Gy := G N Gj; these are compact open in G’ and G,
respectively. Let P} := P'NGj, Upr o =Up NGy, Py := PNGy, Upo = Up NGo.

By construction G contains G, (Or), so that G = GoP. (Any compact subgroup
of G’ that fixes z’ has to be contained in G, as G’ is split.)

Let g{, := LieG’,, which is an Op/-Lie lattice inside g’ := LieG' = g ®, L’ that
is stable by the adjoint action of Gf,. Let gy := g N g, which is an Op-Lie lattice
inside g that is stable by the action of G, and moreover go ®p, Or is of finite
index in g,. By the algebraic action of S!, on gf, = Lie G.,, we see that

(A1) do = (8o Nup) @ (9o Np')

as Op/-modules.
By Lemma (applied with Sj = 5%, V =g, Vi =up, Vo =p, M' = g) we
also have

(A.2) go = (go Nup) @ (go Np)

as Or-modules; we even see that go Nuy = ®a€<b—\<l>; (go Nug).

Lemma A.4. Suppose A C B are integral domains with fields of fractions E C F.
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(i) Suppose S is a split torus over E, S; a split torus over B, and we are
given an isomorphism S x g F = §6 x g F. Then there exists a unique split
torus S, over A together with isomorphisms Sy xa E = S, Sy xa B = §6
compatible with the isomorphism above after base change to F'.

(ii) Keep the notation as in (i). Suppose V. = Vi @ Va is an isomorphism
of finite-dimensional S-modules and suppose that M’ is an Sy-module to-
gether with an isomorphism M' @ g F =2V Qg F that is compatible with
the actions of Sy xp F =2 SxgF. Let M :== M'NV. If for all x € X*(S)
we have (V1)y, =0 or (Va),, =0, then M = (M NVy) & (M NVa).

Proof. (i) We recall from [Jan03| §1.2.5] that over an integral domain A we have an
(anti-)equivalence of categories between abelian groups and diagonalizable group
schemes over A, and this equivalence is moreover compatible with base change
A — B. Thus the claim becomes obvious.

(ii) Let X = X*(S,), so that we may identify S, x4 C with the spectrum of
the Hopf algebra C[X] for any map of integral domains A — C. Let Ay: V —
V ® g E[X] denote the comodule corresponding to V and Ay : M — M’ @ B[X]
the comodule corresponding to M’, so that Ay and Ay become identified after
base change to F'. It follows that Ay sends M to (V®g E[X])N(M'®pB[X]) inside
Vg F[X]. Hence Ay (M) C M ®4 A[X], i.e. M becomes an S-module whose base
change to B (resp. E) is identified with M’ (resp. V). Therefore, M = €D, c x My
[Jan03| §1.2.11]. For any x € X we have M, C V, = (V1)y @& (V2), = (Vi)y for
some %, by assumption, so M, C M NV; and we are done. O

Recall the equivalence between uniform pro-p groups H and powerful Z,-Lie alge-
bras h [DASMS99, Theorem 9.10]. If § is a powerful Z,-Lie algebra, then the corre-
sponding uniform pro-p group is defined by the convergence of the Baker—Campbell—
Hausdorff formula [DdSMS99, Theorem 9.8], and we denote it by BCH(h). It is
locally Qp-analytic group with Lie algebra h ®z, Q,. If " C b is a saturated sub-
Z,-Lie algebra of h, then b’ is also powerful and BCH(h') € BCH(b) is a closed
subgroup [DASMS99, Scholium to Theorem 9.10]. Conversely, if H is a uniform
pro-p group, then it is (uniquely) a locally Q,-analytic group and the Z,-lattice
log(H) C Lie(H) is the corresponding powerful Z,-Lie algebra. (Here, log denotes
the functorial logarithm map of a locally analytic group, which is defined on the
union of all compact subgroups [Bou72, I111.7.6].) An L-uniform group is a uniform
pro-p group H together with an Op-Lie algebra structure on log(H) that extends
the given Z,-Lie algebra structure.

Lemma A.5. Any L-uniform group H is (uniquely) a locally L-analytic group.

Proof. The Baker—Campbell-Hausdorff formula does not depend on the base field,
so it converges on the Op-Lie algebra log(H), making it into a locally L-analytic
group with Lie algebra Lie(H) [Schlll §17]. The uniqueness follows exactly as in
the proof of [Sch1ll Theorem 29.8]. O

This lemma implies that our definition agrees with the one in [OS10, Remark
2.2.5]. (If H is an open uniform subgroup of a locally L-analytic group G such that
log(H) C Lie(G) is Op-stable, then we give log(H) the induced Op-Lie algebra
structure. Conversely, if H is L-uniform in our sense, then we take G := H by
Lemma [A.5]) We get an equivalence between L-uniform groups (with locally L-
analytic morphisms) and powerful Op-Lie algebras (meaning that the underlying
Zy-Lie algebra is powerful).

If b is a powerful Z,-Lie lattice in g, then so is p"h for any n > 0. For n
sufficiently large there exists a (non-canonicall) open embedding i: BCH(p"h) —
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G of locally analytic groups whose associated map on Lie algebras is the identity
[Sch1ll Proposition 18.17].

Lemma A.6. If ¢ > k, then G/(e) := ker (G, (Op/) - Go/ (O /p")) is a uniform
pro-p group, and we have log(GE@) = p'g) inside g'.

Proof. For any smooth group scheme H over Op: let H) := ker (Q(OL/) —»
H(Op /p*)). Let @ denote the roots of (G',1") and fix some subset of positive
roots ®*. Then G’( 0= G, (¢) is contained in the Iwahori subgroup defined by the
Borel subgroup of Q;, Xo,, kr that contains I;, Xo,, kr, and corresponds to o't
hence
J:(K)C H U OL’ ' OL/ . H U OL/
acd’- acd'+

where U :M, is the scheme-theoretic closure of the root subgroup U, inside G’,, and
we fixed some ordering of the roots. As [],cq- Ul X Lo X [Tocaom Qﬁw, — G,
is an open immersion, it follows that

r’ ,(£) H Ua ', (0) ;/,(E) ’ H UE/L,z’,(Z)'

aEP’~ acd+
By explicit calculation for Uy, ,» = G, and T, = G}, we see that log(U, _, ) =

p'LieU!, .o and log(T7 (z)) p’LieT!
To justify that G’ 2, (0) is uniform, it suffices to show it is a standard Q,-analytic
group [DASMS99, Theorem 8.31]. Fix any Z-basis A1, ..., A\, of X.(T",). By [BT84,
§3.2.13, §4.6.15] there exist Op/-isomorphisms zq: G, — U, .. (a € <I> ) defining a
Chevalley system as in [BT84, §3.2.2]. Then we get an topological isomorphism

0: (p'OL)™ x (PO =5 Gl

(Uq, t;) — HmauaH (1+1¢) Hxaua

acd’'— i=1 acd’+
By the commutation relations in [BT84) §3.2.3], the relation z,(u)x_4(v) = 2_4(—v(1—
w) " HaY (1 — uv)z, (u(l — uv)~t) (which follows from [BT84, §3.2.1]), as well as
Ni(T+1)2q(u) = 24 ((141) @2 u)\;(141) it follows that @ is a global chart making
G;,’(Z) into a standard group and hence G;:’,(Z) is uniform.

Za,x’"

By using this as well as [DASMS99, Theorem 4.17] with a minimal topological
generating set contained in (J,cq U, ./ (© uty, (¢) We deduce log(G", (4)) = p'g), as
required. (Note that [DdSMS99, Theorem 4. 17] shows that if g1, ..., g, is a minimal
topological generating set of a uniform group H, then log(H) = @, Z, log(g;), and
note also that log is functorial.) ]

Let k:=1if p > 2 and k := 2 if p = 2. For my > & the Op.-Lie lattice p™°g(, in
¢’ is powerful. Define L’-uniform groups H' := BCH(p™°g), H'~ := BCH(p"°gy N
up,), H'*t := BCH(p™g, N p’). By Lemma and the equivalence between
uniform groups and powerful Z,-Lie algebras we get a unique open embedding
H' := BCH(p™°g,) — G} whose image is G’(mo) and whose derivative is the identity.
For any v € Gy, the conjugation action of v on G{ induces the adjoint action of
v on p™og. Note that H'~, H'" are closed subgroups of H'. For my sufficiently
large we have H'™ C Up, , and H'" C P because this true on the level of Lie
algebras. (Actually, mg > & suffices, by a variant of Lemmam ) By (A.1l) and
[DASMS99, Theorem 9.8] we see that the multiplication map H'™ x H'"T — H’ is
a topological isomorphism and hence that H'~ = H' N Up,, H'" = H' N P'. From
H' <1 Gy it then follows that H'™ < Up, , and H'* < Py,
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The closed subgroup H := BCH(p™0gg) of H' is contained in G for m sufficiently
large, because this is true on the level of Lie algebras. As Gy = G'N G{, normalizes
g0 = g N g, it follows that H < Go. Letting H~ := BCH(p™go Nup), H" =
BCH(p™0gg N p) we see that H~ < Upo» H* 1 Py. By , the multiplication
map H- x HT — H is a topological isomorphism and hence H~ = H N Up,
H* = HNP. By construction, H, H~, H' are L-uniform groups.

For m > 0 let H™ := P,,41(H) = BCH(p™"™0g4) <1 Gy (where (P, (H))m>1
is the lower p-series, cf. [DASMS99 Definition 1.15]) and likewise H ™ < Up.os
H™ Q Py, H™ <Gy, H' ™™ <Up, . These are all L- (resp. L'-)uniform groups.
Note that by construction go is an Op-direct summand of gj,. In particular, H™ is
a closed subgroup of H™ which is topologically a direct factor (an ordered basis of
H™ as a uniform group can be extended to an ordered basis of H'™).

For any r € p%N(p~!, 1) we recall that we have a continuous algebra (semi)norm
|| on the locally analytic distribution algebra D(H ), defined by the uniform struc-
ture of H [OS10, 2.2.6]. Its completion D, (H) (or more precisely DM (H)) is a
noetherian Banach algebra. Let U,.(g) = U.(g, H) denote the closure of U(g) in
D7(«L)(H) and U,(¢') = U,(¢’, H') the closure of U(g’) in D,(nL/)(H’). Then D, (H)
is free as left and right U,(g)-module, admitting a basis in K[H], and U,(g) is
noetherian [Koh07, Theorem 1.4.2].

Corollary A.7. Suppose r?" € p2 N (p~t,p~/*P=1) for some m > 0. Then we
have a commutative diagram

where the bottom map is a morphism of Banach algebras. Moreover, all maps are
equivariant for the adjoint action of Gy C GY.

Proof. Let s := r?". By density the bottom map is unique, if it exists, and it is
automatically an algebra homomorphism and Gy-equivariant. It thus suffices to
consider the underlying Banach spaces of the bottom row.

Note that p™0go ®0, Or is powerful and we let H” := BCH(p"™°gy ®0, Or/) C
H' (another L’-uniform group, open inside H'). Then U,(g,H) = U,(¢', H")
by [Sch08, §5, §6] (taking the closure of U(g) in DM (H™) C DfnL)(H), resp. of
U(¢g') in Dng)(H”pm) C DﬁL/)(H”)). We may thus work over L’ and it suffices to
show that if HM) ¢ H®) are L/-uniform open subgroups of G’ with corresponding
powerful Oy -Lie lattices hél) C h(()g) in g’, we get a morphism of Banach spaces
U(g', HV) — U,(g/, H?) (compatible with maps from U(g')).

Pick (X;)%_, an ordered O -basis of p™h{? such that (Y; := @b X;)%_, is an
ordered Oy -basis of pmh(()l) (with ¢; € Z>¢). By [Sch08, §5, §6] we have

Un(g', H?) = { > deXPidg € K, |dg|s™P — 0}7
pezd,

U (¢, HY) = { Z esYP ieg € K, |egls™?l — 0}
Bezgo
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and the topology can be defined by norms
| > ax

pezd,
Taking the inclusion, we get a norm-decreasing map of Banach spaces U,.(g/, H") —
U,(g', H®) that is compatible with maps from U(g’), as required. O

Z ngﬁ Sl

pezd,

= sup|d5\8 ’ = sup |eg|s
B

S S

Let D(g, Py) be the subring of D(Gy) generated by U(g) and D(Fy). Then any
object of (’)P becomes a D(g, Py)-module. We define a continuous algebra norm
|| on D(H H) for any subgroup H < H < Gy by using ||, on D(H) [0S15, (5.5.5)].
Let D,(H) denote its completion. Likewise we define |-|, on D(Py) by using [,
on D(HT), and let D,(P) denote its completion, which is a closed subring of
D, (Gp). Let D,(g, Py) be the subring of D, (Gg) generated by U,(g) and D, (P).
Then D,(g,Py) is a finitely generated U,.(g)-module, hence a closed subring and
noetherian. Let U, (up) := U, (up, H™) and U,(p) := U, (p, HT).

Lemma A.8. We have canonical isomorphisms of Banach spaces:

(A.3) D.(H) = D,(H)®D,(H"),
(A4) Ur(9) = U (up)@Ux(p),
(A.5) D,(HPy) = D,(H)®D,(Py),
(A.6) D,(g, Po) = U, (up) @D, (Py).

Proof. As H <G is open we have HPy = H™ P, with open subgroup H = H-H™*
(i.e. both having Iwahori decomposition with respect to Uy x P < G). The proof
of and is exactly as in [OS10, Proposition 3.3.4], with H playing the
role of Iy and H Py the role of I. We note that these isomorphisms are induced by
convolution, as follows by comparison with [ST05, Remark A.4]. Then follows
from . For , note using that the right-hand side is contained in the
left-hand side, as D,.(g, Py) is a closed subring of D,.(H Fy) (in turn a closed subring
of D,.(Gy)). As D,(Py) = U,.(p)K[Py] we have D,(g, Py) = U,(g)K[Pp], which is
contained in the right-hand side by . O

Lemma A.9. Suppose that W is a finite-dimensional px-module. If r?" € p@nN
(p=, p~ /5= for some m > 0 and 7 is sufficiently close to 1, then we have
Ur(p)@umW = W.

Proof. By |Schlll, Proposition 18.17] there exists a compact open subgroup Py of
P such that W lifts to a locally analytic representation of Pyy. Take r sufficiently
close to 1 so that H™™ C Pyy. Note that U,(p) = Ds(H"™) C D,.(H") and that
W is a coadmissible D(H*™)-module, where s := 7P . We have

W — Ur(p)@@U(p)W — DS(H+’m)®D(H+)m,)W

whose composition is an isomorphism for all r sufficiently close to 1, by coadmissi-
bility of W. But the first map has dense image, hence is surjective (as the image is
finite-dimensional, hence complete), so both maps are bijective. O

Fix again r?" € p2 N (p~', p~V/*=1) for some m > 0 and r sufficiently close
to 1. Recall that m, is defined to be the U, (g)-submodule of D,.(H Fy) ®p(q,p,) M
generated by M. It is finitely generated and hence carries a canonical topology
such that the image of M in m, is dense. As in [OST5, Sublemma 5.6] it follows
that m, = Dr(g7P0) ®D(Q,Po) M.
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Lemma A.10. Assume r?" € p2 N (p~t,p~/*®=1) for some m > 0 and r suffi-
ciently close to 1. Then m, = U,(g) Qug) M = U, (up) Dyuny M (with canonical
topologies).

Proof. We prove this more generally for any M € OF, where we define m, to be
D, (g, Po) ®p(g,p,) M. Then m, is a finitely generated D, (g, Py)-module (hence also

a finitely generated U,.(g)-module) and we endow it with its canonical topology.
To show that the natural maps U, (up) Quupy M — Ur(9) Quig) M — m, are
isomorphisms, we use a finite presentation @;_, U(g) @y Wi = U(g) Qu(p)
W — M — 0in OF, where W and W; are finite-dimensional locally analytic
representations of P that are direct sums of absolutely simple [p x-modules, to

reduce to the case where M = U(g) ®@y(p) W. Then, using (A.4) of Lemma
(and canonical U, (g)-topologies) as well as Lemma we get

Ur(g) ®U(g) M= Ur(g) ®U(p) 8= Ur(g)®U(p)W
= Ur(u;)@)(Ur(p)@U(p)W)'
=2 Up(up) @ W.
By comparing this with

m, = Dy (g, Po) @p(g,p) U(8) Rupy W = Dr(9, Po) @p(py) W
=D, (g, Po)®ppy W
= (Ur<u};>®DT(PO))®D(PO)W
= Ur(up)@(Dr(Po)®p(py W)

= Ur (u;) ® W
(using (A.6]) of Lemma [A.8) we deduce the claim. d

Lemma A.11. Suppose V is a Banach space over K, H a finitely generated com-
mutative subalgebra of Endcs(V'), such that everyv € V' can be written as a conver-
gent series v =Y, vx of A-eigenvectors (with respect to the filter of cofinal subsets
of Homaie(H, K)). If M C 'V is a dense H-stable subspace such that M = €, My
and M) s finite-dimensional for all \, then we have an order-preserving bijection

{H-invariant closed subspaces of V'} «— {H-invariant subspaces of M}
given by intersecting with M, respectively taking closure in V.

Remark A.12. In particular, M, = V) for all A. Also, if W is an H-invariant
closed subspace of V', then M NW C W and M/(M NW) C V/W also satisfy the
conditions in the lemma. (Note that if ) , vy € W, then vy € W for any A, by
[EdL99 Kor. 1.3.8].)

Proof. By the assumptions on V', [FdL99, Kor. 1.3.12] gives uniqueness of the
representation v = ZA vy and continuous projection maps my : V — V), v — vj.
As M = @, M, is dense in V' and M) is finite-dimensional, 7y (M) = 7\ (M) has
to equal Vy, i.e. My = V). Therefore, the last claim follows from the last item of
[FdL99, Kor. 1.3.12]. O

Theorem A.13. Assume [OS14bl Assumption 4.1] for the absolute root system.
Let M € OF be such that

(i) P is mazimal among parabolic subgroups of G such that M € O, and
(il) M is simple as U(g)-module.



78 NORIYUKI ABE AND FLORIAN HERZIG

Assume ?" € p@nN (p_l,p_l/”(p_l)) for some m > 0 and r sufficiently close to
1, so in particular m, # 0. Then for every g € Gy the U,.(g)-module 5, * m,
is simple, and if 6g, x My = &g, x m, as U.(g)-modules for some g; € Gg, then
G H™Py = goH ™ F.

This generalizes [0S14bl Theorem 4.7].

Proof. We first show that m, is simple (which implies that 64 * m, is simple),
following the proof in [OS14b, Theorem 4.5]. For this it will suffice to show that
the map M — m, = U,(g) ®u(g) M is injective and satisfies the hypotheses of
Lemma E with V' := m, and H := U(ap), where Ap is the maximal split
subtorus of the center of Lp (because then every (closed) U, (g)-submodule of m,.
corresponds to a U(g)-submodule of M). We will show this claim is true more
generally for any M € OP.

Suppose first that M = U(g) @y W € O for some W, a finite-dimensional
pr-module that is a direct sum of absolutely simple [p x-modules. As in the proof
of Lemma m, = U, (up) ® W as U,(up)-module (with canonical Banach
topology), so M — m,. is identified with the injection U(up) @ W — U, (up) @ W.
Note that U(ap) acts by continuous endomorphisms on m, and that the U(ap)-
eigenspaces of M are finite-dimensional (as the roots ®~ \ ® of u, remain non-
trivial on ap). On the other hand, U,.(up) = Ds(H ™) (s = r?"") has the descrip-
tion

U (up) = { > dsXPids € K, |dpg|s™P — 0}
pezd,

by [Scho8|, §5], where X7, ..., X is an ordered Op-basis of log(H ™) = p™ ™0 gqN
up = @aecbf\@; (p"t™mogo N, ) consisting of ap-eigenvectors. Moreover the norm

P

Bezgo

is given by

= sup |dg|s"!°!.
s B
By Lemma[2.5] ap acts diagonalizably on W, hence every vector of m, is a conver-
gent sum of ap-eigenvectors.
For general M € OP take a finite-dimensional p x-submodule W C M giving an
exact sequence 0 — 0 — U(g) ®ypy W — M — 0 in OF. Tensoring with U, (g)
gives a commutative diagram

0 0 U(g) @upy W ——= M ——0

]

0 ——U(g)0 —=U,(9) @upy W ——=m, ——=0

where the middle vertical arrow is injective by above, and the left square is Cartesian
by Lemma (noting that U,(g)0 is the closure of ), hence the right vertical
arrow is injective. By Remark [A712) we see that Lemma [A-T1] applies to M < m,..

Now assume that dg, x M, = 64, x m,. as U,.(g)-modules for some g; € Gp. Fol-
lowing the beginning of the proof of [OS14bl Theorem 4.7] we will first reduce to
the case where g1 = 1, go € Up,. Let Ip be the Iwahori that is the inverse im-
age under G, (Or) — G*% (k) of B,, where B, is the minimal parabolic defined
by ®T in the reductive quotient Qfd of G, Xp, k. Then we get an Iwahori-
Bruhat decomposition G, (Or) = [[,,cw w, low(P N G,(OL)) using the argument
of [AHHVI17, §IV.5], where I C A is the subset corresponding to P, W; is the

subgroup of W generated by reflections s, for a € I, and where w denotes a choice
of representative in G_(Op) N Ng(S). From G,(Or) C Go and G = G,(Or)P
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we have Gy = G,(Or) Py, so Gy = ]_[wGW/WI IpwPy. As in the proof of [0S14D]
Theorem 4.7] we reduce to g1 = w and go = u for some w € W, u € Up NIy C Upo-

Let now Q’ (containing P’) denote the parabolic subgroup of G’ that is maximal
subject to M € ©%. Choose a set of simple roots A’ of ® such that A C Allg C
AU {0} and let Aj C A’ be the subset of simple roots restricting trivially to S.
Recall that A’ is endowed with the *-action of T" := Gal(L'/L). Let J' (resp. I')
denote the subset of A’ corresponding to @’ (resp. P’). The maximality conditions
on P (resp. @) imply that I = v(J'). Then I = (I'|s) \ {0} as subset of A.

Assuming w ¢ Wy, by Step 1 of [OS14b] Theorem 4.7] there exists a reduced
relative root 8 € @+ \ @} such that v := Ad(u=1)(y) € up g fails to be injective
on m, for any y € gp),x \ {0} (where g(_g) := g_g © g_25). Take any lift
B e @\ O of fand y € ¢ 5  \ {0} Writing ¢/ = Zy'e<1>'+\<1>’j Y with
Yy € g’ the argument in [OSI4b, Theorem 4.7] shows that 7" € @' for the
minimal element /" of {7 : y,» # 0} for a certain lexicographic order on Z>oA'.
(By [OS14b, Corollary 5.5] any nonzero element of Ug i acts injectively on M 2
As y = Ad(u!)(y) with u € Up we have yg = y # 0, and y,» # 0 implies
v € B+ Zso(A'\ I'). By minimality of v+ we deduce v/* = g', so ' € ®'}}.
Applying the same argument to the lift y(8’) of 8 for v € T', we deduce that
B e ﬂ,yer 'y*l(@f]f) = <I>’IJ,F, contradiction. Hence w € W and so we may assume
that g1 = 1.

By Lemma we have m, = U,.(g) ®y(g) M. By Corollary we have

m;. .= U,(g') ®u(gy M = Ur(g") Qu,(g) Mrs

and moreover m, 2 §,xm, as U, (g)-modules implies m/. 2 ¢, xm.. as U,.(g’)-modules
(as u € Up, C Go). Note that m; # 0 because the map M — mj is injective by
the first part of the proof (applied to G").

Recall that v € U1§70 C U_,,O. Write u = ujug with vy € Uq_z/,oa Uy € U_,70 N
Lg. We now show that d,, x m,. = m/ as U,(g')-modules, which implies that
m, = §,, »m). as U,(g')-modules. Exactly as in Step 2 of [OS14b, Theorem 4.7]
(as M € O7) we can integrate the locally finite action of up, Nlg on M to a
locally finite locally analytic action of the unipotent group Uy, N L. Moreover,
wo X out = Ad(u)(X) on M for all u € Up, N Lo/, X € g'. (Use, for example,
that log(Ad(u)) = ad(log(u)) € GL(g') for all u € Up, N Lg:.) Then we have an
isomorphism &, x M —» M, x + ug - z as U(g')-modules, which extends to an
isomorphism &,,, xm;. — m;. as the map U(g') — U,(¢') is Up, ;N Lg-equivariant.

We now have m] = §,, xm. as U,(g')-modules. Applying [OSI4b, Theorem
4.7] for the split group G’ (note that since we are now reduced to g; = 1 and
ge =uj € U§,70 the proof there only uses that @)’ is maximal for M € 09 and that
m;. = U.(g') Qugy M # 0, i.e. the Q'-action on M is not used!) we deduce that
u; € H™Q} and hence g7 'g2 = u1 € H™QLNG.

We next show that g7 'gs € H™Q) NG = H'™P,NG. Consider the reduction
map 7: G, (Or) — G, (O, /p™ ™), which has kernel H'™ by Lemma For
each subset K’ C A’ we get a parabolic subgroup P, of G’ that contains 1",
and its schematic closure of P, in G’ is a smooth Op-group scheme E/K’,r’ with
generic fiber P, [KP22, §2.9]. We note that BIK{J’ Xgr, Bl[(éw’ = —IK{ﬂKéJ’ for
Ki{,K, c A’. (By [KP22, Proposition 2.9.1(4), Proposition 2.9.2] the left-hand
side is Op/-smooth, hence Oy -flat, and we can verify the equality on the geometric
generic fiber, where it is clear.) For any 7 € I' we get a morphism of buildings
v: Br(G') — Br/(G'), commuting with the embedding Br,(G) < Br(G'), hence
stabilizing 2’. Therefore the 7-linear isomorphism G’ — G’ over L’ extends to a
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~-linear isomorphism G’,, — G, over O, [KP22, Corollary 2.8.10], and it identifies
Q P, with P/ ;). Tt follows that (97 g2) € MNyer Pl o (Ops [pmimo) =

P!, (O /p™t™o) (where the equality holds by the fiber product computation above,
and recall P’ = P%,), 50 g7 'go € H™P,NG.

We now know that gflgg € H™PING. AsUp x P — G is an open immersion of
schemes over L, we finally deduce that g; 'g. € (H'™™ NUp)(PyNP) = H-™P,.
For the equality H'—™ NUp = H™ we used that the logarithm map is bijective
(even a locally analytic isomorphism) between Up, and up, (as Up, is unipotent)
and that (p™+™ogl Nup,) Nup = pmH™ogo Nup. O

Remark A.14. The result is true even if we only assume that M € OF (satisfying
(i) and (ii)) and if we define m, := U,(g) ®u(g) M. The simplicity proof goes
through as before. Now suppose that dg, * m, = §,, * m, as U, (g)-modules for
some g; € Go. By Corollary we have 04, *m,. = §g, * m, as U,(g')-modules,
where m; := U,.(¢') @ugy M = U,(g') ®u,(g) mp. If G is simply connected,
then M € 09 lifts to an object of (’)Ql, after perhaps replacing C' by a finite
extension, by Lemma m By [OS14b, Theorem 4.7] for the split group G’ we
deduce gl_ g2 € H™Q{ NG, and the final part of the above proof shows that
H'™Q{NG = H—™Py. For general G, let 7 : G’ — G’ be a z-extension, so (G)%" is
simply connected and 7 : G -G surjects on L'-points. We may and will suppose
that G’ and the torus ker(w) are split as well. By [KPIR, Proposition 1.1.4], =
extends to a surjective map é’z, —» G', of (connected reductive) parahoric group
schemes over Oy, with kernel a split torus. In particular, by checking on special
fibers, the map on @y -Lie algebras g — g) is surjective, where g}, := Lie G,. (Lie
algebras of smooth group schemes commute with base change.) Also, by taking
fppf-cohomology we obtain W(GO) = Go Following our construction above, we
have H' := BCH( m“go) <Gy and 7(H') = H'. Letting Q' be the pre-image of Q'
under 7 and Q) := Q' N G} we have 7(Q)) = Q). As the map gy — g} splits as
Zy-modules, there exists a minimal set z, (1 <14 < d’) of topological generators of
ﬁ’ such that z := 7(Z) (1 < i < d) is a minimal set of topological generators of

H' and 7(7}) =1 for d < i < d’ (for some d’ > d > 0). The construction in [OS10,
§2.2.6] then shows that the natural map DX (H') — DE)(H') is continuous with
respect to |-|,-norms, so induces a map D (H') — D,(,L)(H’) (in fact, both maps
are strict surjections). By taking the closures of enveloping algebras we obtain a
commutative square

U(g')

|

U@, H) - ->U (¢, H)

U(g)
l

where the bottom map is a morphism of Banach algebras and g’ := Lie G By
density of the enveloplng algebras, all maps are equivariant for the adjoint actlon
of Gy - G,. Pick §, € G}, for i = 1,2 such that =(g ) = g; in G{). From §,4, xm.
dg, *m,. as U,(g')-modules we deduce that dz xm) = 0z «m;. as Ur(ﬁ/)—modules.
Hence, as (él)der is simply connected, we deduce (§,)~'g, € H'™Q). Applying 7
we obtain g; 'g2 € H'™Q) N G and we conclude as before.

We can now complete the proof of Theorem [AT]

Proof of Theorem [A.]](iii). In the proof of [OS14b) Proposition 3.7] an Iwahori-
Bruhat decomposition is used. Here we temporarily forget our choice of Gy and P
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above and can use any special point = (e.g. the one above). Let G, over Oy, denote
the (connected smooth) parahoric group scheme of [BT84], with generic fiber G.
Let Iy be the Iwahori that is the inverse image under Gg := G,(Or) — G=(kz) of
B, where B, is the minimal parabolic defined by ® in the reductive quotient Qfd
of G, X, kr. (By [BT84], S extends to Or, S, x kr, is a maximal split torus of
G and the root system of (G**%, S x kr) is naturally a subset of that of (G, S).)
Then we get an Iwahori-Bruhat decomposition Gy = HweW/WI Iyw (P NGyp) using
the argument of [AHHV1T, §IV.5].

For the proof of [OS14b, Theorem 4.5] we define Gy, Py, H= H H*, H™ =
H—™H™™ as in the proof of Theorem The proof of [OS14b, Theorem 4.5]
(and [OS15, Theorem 5.8]) then proceeds just as before, except that we apply

Theorem instead of [OS14b, Theorem 4.7]. O
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