
Appendix A
Commutative Rings and Ideals

By a ring we will always mean a commutative ring with a multiplicative identity 1.
An ideal in a ring R is an additive subgroup I ⊂ R such that

ra ∈ I ∀r ∈ R, a ∈ I.

Considering R and I as additive groups we form the factor group R/I which is
actually a ring: There is an obvious way to define multiplication, and the resulting
structure is a ring. (Verify this. Particularly note how the fact that I is an ideal makes
the multiplication well-defined. What would go wrong if I were just an additive
subgroup, not an ideal?) The elements of R/I can be regarded as equivalence classes
for the congruence relation on R defined by

a ≡ b (mod I ) iff a − b ∈ I.

What are the ideals in the ring Z? What are the factor rings?

Definition. An ideal of the form (a) = aR = {ar : r ∈ R} is called a principal ideal.
An ideal �= R which is not contained in any other ideal �= R is called amaximal ideal.
An ideal �= R with the property

rs ∈ I ⇒ r or s ∈ I ∀r, s ∈ R

is called a prime ideal.

What are the maximal ideals in Z? What are the prime ideals? Find a prime ideal
which is not maximal.

Define addition of ideals in the obvious way:

I + J = {a + b : a ∈ I, b ∈ J }.

(Show that this is an ideal.)
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180 Appendix A: Commutative Rings and Ideals

It is easy to show that every maximal ideal is a prime ideal: If r, s /∈ I , I maximal,
then the ideals I + r R and I + sR are both strictly larger than I , hence both must
be R. In particular both contain 1. Write 1 = a + rb and 1 = c + sd with a, c ∈
I and b, d ∈ R and multiply the two equations together. If rs ∈ I , we obtain the
contradiction 1 ∈ I . (Note that for an ideal I , I �= R iff 1 /∈ I .)

Each ideal I �= R is contained in some maximal ideal. The proof requires Zorn’s
lemma, one version of which says that if a family of sets is closed under taking nested
unions, then each member of that family is contained in some maximal member.
Applying this to the family of ideals �= R, we find that all we have to show is that a
nested union of ideals �= R is another ideal �= R. It is easy to see that it is an ideal,
and it must be �= R because none of the ideals contain 1.

An ideal I is maximal iff R/I has no ideals other than the whole ring and the zero
ideal. The latter condition implies that R/I is a field since each nonzero element
generates a nonzero principal ideal which necessarily must be the whole ring. Since
it contains 1, the element has an inverse. Conversely, if R/I is a field then it has no
nontrivial ideals. Thus we have proved that I is maximal iff R/I is a field.

An integral domain is a ring with no zero divisors: If rs = 0 then r or s = 0. We
leave it to the reader to show that I is a prime ideal iff R/I is an integral domain.
(Note that this gives another way of seeing that maximal ideals are prime.)

Two ideals I and J are called relatively prime iff I + J = R. If I is relatively
prime te each of J1, . . . , Jn then I is relatively prime to the intersection J of the Ji :
For each i we can write ai + bi = 1 with ai ∈ I and bi ∈ Ji . Multiplying all of these
equations together gives a + (b1b2 · · · bn) = 1 for some a ∈ I ; the result follows
since the product is in J .

Note that twomembers ofZ are relatively prime in the usual sense iff they generate
relatively prime ideals.

Chinese Remainder Theorem. Let I1, . . . , In be pairwise relatively prime ideals
in a ring R. Then the obvious mapping

R/

n⋂

i=1

Ii → R/I1 × · · · × R/In

is an isomorphism.

Proof. We will prove this for the case n = 2. The general case will then follow by
induction since I1 is relatively prime to I2 ∩ · · · ∩ In . (Fill in the details.)

Thus assume n = 2. The kernel of the mapping is obviously trivial. To show that
the mapping is onto, fix any r1 and r2 ∈ R: we must show that there exists r ∈ R
such that

r ≡ r1 (mod I1)

r ≡ r2 (mod I2).
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This is easy: Write a1 + a2 = 1 with a1 ∈ I1 and a2 ∈ I2, then set r = a1r2 + a2r1.
It works. �

The product of two ideals I and J consists of all finite sums of products ab, a ∈ I ,
b ∈ J . This is the smallest ideal containing all products ab. We leave it to the reader
to prove that the product of two relatively prime ideals is just their intersection. By
induction this is true for any finite number of pairwise relatively prime ideals. Thus
the Chinese Remainder Theorem could have been stated with the product of the Ii
rather than the intersection.

An integral domain in which every ideal is principal is called a principal ideal
domain (PID). Thus Z is a PID. So is the polynomial ring F[x] over any field F .
(Prove this by considering a polynomial of minimal degree in a given ideal.)

In a PID, every nonzero prime ideal is maximal. Let I ⊂ J ⊂ R, I prime, and
write I = (a), J = (b). Then a = bc for some c ∈ R, and hence by primeness I
must contain either b or c. If b ∈ I then J = I . If c ∈ I then c = ad for some d ∈ R
and then by cancellation (valid in any integral domain) bd = 1. Then b is a unit and
J = R. This shows that I is maximal.

Ifα is algebraic (a root of some nonzero polynomial) over F , then the polynomials
over F having α as a root form a nonzero ideal I in F[x]. It is easy to see that I is a
prime ideal, hence I is in fact maximal (because F[x] is a PID). Also, I is principal;
a generator f is a polynomial of smallest degree having α as a root. Necessarily f
is an irreducible polynomial.

Now map
F[x] → F[α]

in the obvious way, where F[α] is the ring consisting of all polynomial expressions
in α. The mapping sends a polynomial to its value at α. The kernel of this mapping
is the ideal I discussed above, hence F[α] is isomorphic to the factor ring F[x]/I .
Since I is maximal we conclude that F[α] is a field whenever α is algebraic over F.
Thus we employ the notation F[α] for the field generated by an algebraic element
α over F , rather than the more common F(α). Note that F[α] consists of all linear
combinations of the powers

1, α, α2, . . . , αn−1

with coefficients in F , where n is the degree of f . These powers are linearly inde-
pendent over F (why?), hence F[α] is a vector space of dimension n over F .

A unique factorization domain (UFD) is an integral domain inwhich each nonzero
element factors into a product of irreducible elements (which we define to be those
elements p such that if p = ab then either a or b is a unit) and the factorization is
unique up to unit multiples and the order of the factors.

It can be shown that if R is a UFD then so is the polynomial ring R[x]. Then by
induction so is the polynomial ring in any finite number of commuting variables. We
will not need this result.

We claim that every PID is a UFD. To show that each nonzero element can be
factored into irreducible elements it is sufficient to show that there cannot be an
infinite sequence
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a1, a2, a3, . . .

such that each ai is divisible by ai+1 but does not differ from it by a unit factor. (Keep
factoring a given element until all factors are irreducible; if this does not happen
after finitely many steps then such a sequence would result.) Thus assume such a
sequence exists. Then the ai generate infinitely many distinct principal ideals (ai ),
which are nested upward:

(a1) ⊂ (a2) ⊂ . . . .

The union of these ideals is again a principal ideal, say (a). But the element amust be
in some (an), implying that in fact all (ai ) = (an) for i ≥ n. This is a contradiction.

It remains for us to prove uniqueness. Each irreducible element p generates a
maximal ideal (p): If (p) ⊂ (a) ⊂ R then p = ab for some b ∈ R, hence either a
or b is a unit, hence either (a) = (p) or (a) = R. Thus R/(p) is a field.

Now suppose a member of R has two factorizations into irreducible elements

p1 · · · pr = q1 · · · qs .

Considering the principal ideals (pi ) and (qi ), select one which is minimal (does not
properly contain any other). This is clearly possible since we are considering only
finitely many ideals. Without loss of generality, assume (p1) is minimal among the
(pi ) and (qi ).

We claim that (p1)must be equal to some (qi ): If not, then (p1)would not contain
any qi , hence all qi would be in nonzero congruence classes mod (pi ). But then
reducing mod (pi ) would yield a contradiction.

Thus without loss of generality we can assume (p1) = (q1). Then p1 = uq1 for
some unit u. Cancelling q1, we get

up2 · · · pr = q2 · · · qs .

Notice that up2 is irreducible. Continuing in this way (or by just applying induction)
we conclude that the two factorizations are essentially the same. �

Thus in particular if F is a field then F[x] is a UFD since it is a PID. This result
has the following important application.

Eisenstein’s Criterion. Let M be a maximal ideal in a ring R and let

f (x) = anx
n + · · · + a0 (n ≥ 1)

be a polynomial over R such that an /∈ M , ai ∈ M for all i < n, and a0 /∈ M2. Then
f is irreducible over R.

Proof. Suppose f = ghwhere g and h are non-constant polynomials over R. Reduc-
ing all coefficients mod M and denoting the corresponding polynomials over R/M
by f , g and h, we have f = gh. R/M is a field, so (R/M)[x] is a UFD. f is just
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axn where a is a nonzero member of R/M , so by unique factorization in (R/M)[x]
we conclude that g and h are also monomials:

g = bxm, h = cxn−m

where b and c are nonzero members of R/M and 1 ≤ m < n. (Note that nonzero
members of R/M are units in the UFD (R/M)[x], while x is an irreducible element.)
This implies that g and h both have constant terms in M . But that is a contradiction
since a0 /∈ M2. �

In particular we can apply this result with R = Z and M = (p), p a prime in Z,
to prove that certain polynomials are irreducible over Z. Together with exercise 8(c),
chapter 3, this provides a sufficient condition for irreducibility over Q.



Appendix B
Galois Theory for Subfields of C

Throughout this section K and L are assumed to be subfields of C with K ⊂ L .
Moreover we assume that the degree [L : K ] of L over K is finite. (This is the
dimension of L as vector space over K .) All results can be generalized to arbitrary
finite separable field extensions; the interested reader is invited to do this.

A polynomial f over K is called irreducible (over K ) iff whenever f = gh for
some g, h ∈ K [x], either g or h is constant. Every α ∈ L is a root of some irreducible
polynomial f over K ; moreover f can be taken to be monic (leading coefficient
= 1). Then f is uniquely determined. The ring K [α] consisting of all polynomial
expressions in α over K is a field and its degree over K is equal to the degree of f .
(See Appendix A.) The roots of f are called the conjugates of α over K . The number
of these roots is the same as the degree of f , as we show below.

A monic irreducible polynomial f of degree n over K splits into n monic linear
factors over C. We claim that these factors are distinct: Any repeated factor would
also be a factor of the derivative f ′ (prove this). But this is impossible because f
and f ′ generate all of K [x] as an ideal (why? See Appendix A) hence 1 is a linear
combination of f and f ′ with coefficients in K [x]. (Why is that a contradiction?) It
follows from this that f has n distinct roots in C.

We are interested in embeddings of L in C which fix K pointwise. Clearly such
an embedding sends each α ∈ L to one of its conjugates over K .

Theorem 50. Every embedding of K in C extends to exactly [L : K ] embeddings
of L in C.

Proof. (Induction on [L : K ]) This is trivial if L = K , so assume otherwise. Let σ

be an embedding of K in C. Take any α ∈ L − K and let f be the monic irreducible
polynomial for α over K . Let g be the polynomial obtained fom f by applying σ to
all coefficients. Then g is irreducible over the field σK . For every root β of g, there
is an isomorphism

K [α] → σK [β]

which restricts to σ on K and which sends α to β. (Supply the details. Note that
K [α] is isomorphic to the factor ring K [x]/( f ).) Hence σ can be extended to an
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186 Appendix B: Galois Theory for Subfields of C

embedding of K [α] in C sending α to β. There are n choices for β, where n is the
degree of f ; so σ has n extensions to K [α]. (Clearly there are no more than this
since an embedding of K [α] is completely determined by its values on K and at α.)
By inductive hypothesis each of these n embeddings of K [α] extends to [L : K [α]]
embeddings of L in C. This gives

[L : K [α]]n = [L : K [α]][K [α] : K ] = [L : K ]

distinct embeddings of L inC extending σ . Moreover every extension of σ to L must
be one of these. (Why?) �

Corollary. There are exactly [L : K ] embeddings of L in C which fix K pointwise.
�

Theorem 51. L = K [α] for some α.

Proof. (Induction on [L : K ]) This is trivial if L = K so assume otherwise. Fix any
α ∈ L − K . Then by inductive hypothesis L = K [α, β] for some β. We will show
that in fact L = K [α + aβ] for all but finitely many elements a ∈ K .

Suppose a ∈ K , K [α + aβ] �= L . Then α + aβ has fewer than n = [L : K ] con-
jugates over K . We know that L has n embeddings in C fixing K pointwise, so two
of these must send α + aβ to the same conjugate. Call them σ and τ ; then

a = σ(α) − τ(α)

τ(β) − σ(β)
.

(Verify this. Show that the denominator is nonzero.) Finally, this restricts a to a finite
set because there are only finitely many possibilities for σ(α), τ(α), σ(β) and τ(β).

�

Definition. L is normal over K iff L is closed under taking conjugates over K .

Theorem 52. L is normal over K iff every embedding of L in C fixing K pointwise
is actually an automorphism; equivalently, L has exactly [L : K ] automorphisms
fixing K pointwise.

Proof. If L is normal over K then every such embedding sends L into itself since
it sends each element to one of its conjugates. L must in fact be mapped onto itself
because the image has the same degree over K . (Convince yourself.) So every such
embedding is an automorphism.

Conversely, if every such embedding is an automorphism, fix α ∈ L and let β be
a conjugate of α over K . As in the proof of Theorem 50 there is an embedding σ of L
in C fixing K pointwise and sending α to β; then β ∈ L since σ is an automorphism.
Thus L is normal over K .

The equivalence of the condition on the number of automorphisms follows im-
mediately from the corollary to Theorem 50. �
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Theorem 53. If L = K [α1, . . . , αn] and L contains the conjugates of all of the αi ,
then L is normal over K .

Proof. Let σ be an embedding of L in C fixing K pointwise. L consists of all
polynomial expressions

α = f (α1, . . . , αn)

in the αi with coefficients in K , and it is clear that σ sends α to

f (σα1, . . . , σαn).

The σαi are conjugates of the αi , so σα ∈ L . This shows that σ sends L into itself,
hence onto itself as in the proof of Theorem 52. Thus σ is an automorphism of L
and we are finished. �

Corollary. If L is any finite extension of K (finite degree over K ) then there is a
finite extension M of L which is normal over K . Any such M is also normal over L.

Proof. By Theorem 51, L = K [α]; let α1, . . . , αn be the conjugates of α and set

M = K [α1, . . . , αn].

Then M is normal over K by Theorem 53.
The second part is trivial since every embedding of M in C fixing L pointwise

also fixes K pointwise and hence is an automorphism of M . �

Galois Groups and Fixed Fields

Wedefine theGalois groupGal(L/K ) of L over K to be the group of automorphisms
of L which fix K pointwise. The group operation is composition. Thus L is normal
over K iff Gal(L/K ) has order [L : K ]. If H is any subgroup of Gal(L/K ), define
the fixed field of H to be

{α ∈ L : σ(α) = α ∀σ ∈ H}.

(Verify that this is actually a field.)

Theorem 54. Suppose L is normal over K and let G = Gal(L/K ). Then K is the
fixed field of G, and K is not the fixed field of any proper subgroup of G.

Proof. Set n = [L : K ] = |G|. Let F be the fixed field of G. If K �= F then L has
too many automorphisms fixing F pointwise.

Now let H be any subgroup of G and suppose that K is the fixed field of H . Let
α ∈ L be such that L = K [α] and consider the polynomial
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f (x) =
∏

σ∈H
(x − σα).

It is easy to see that the coefficients of f are fixed by H , hence f has coefficients in
K . Moreover α is a root of f . If H �= G then the degree of f is too small. �

The Galois Correspondence

Let L be normal over K and set G = Gal(L/K ). Define mappings

{
fields F,

K ⊂ F ⊂ L

}
⇔

{
groups H,

H ⊂ G

}

by sending each field F to Gal(L/F) and each group H to its fixed field.

Theorem 55. (Fundamental Theorem of Galois Theory) The mappings above are
inverses of each other; thus they provide a one-to-one correspondence between the
two sets. Moreover if F ↔ H under this correspondence then F is normal over K
iff H is a normal subgroup of G. In this case there is an isomorphism

G/H → Gal(F/K )

obtained by restricting automorphisms to F.

Proof. For each F , let F ′ be the fixed field of Gal(L/F). Applying Theorem 54 in
the right way, we obtain F ′ = F . (How do we know that L is normal over F?)

Now let H be a subgroup of G and let F be the fixed field of H .
Setting H ′ = Gal(L/F), we claim that H = H ′: Clearly H ⊂ H ′, and by

Theorem 54, F is not the fixed field of a proper subgroup of H ′.
This shows that the two mappings are inverses of each other, establishing a one-

to-one correspondence between fields F and groups H .
To prove the normality assertion, let F correspond to H and notice that for each

σ ∈ G the fieldσ F corresponds to the groupσHσ−1. F is normal over K iffσ F = F
for each embedding of F in C fixing K pointwise, and since each such embedding
extends to an embedding of L which is necessarily a member of G, the condition for
normality is equivalent to

σ F = F ∀σ ∈ G.

Since σ F corresponds to σHσ−1, this condition is equivalent to

σHσ−1 = H ∀σ ∈ G;

in other words, H is a normal subgroup of G.
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Finally, assuming the normal case, we have a homomorphism

G → Gal(F/K )

whose kernel is H . This gives an embedding

G/H → Gal(F/K )

which must be onto since both groups have the same order. (Fill in the details.) �

Theorem 56. Let L be normal over K and let E be any extension of K in C. Then
the composite field EL is normal over E andGal(EL/E) is embedded inGal(L/K )

by restricting automorphisms to L. Moreover the embedding is an isomorphism iff
E ∩ L = K.

Proof. Let L = K [α]. Then
EL = E[α]

which is normal over E because the conjugates of α over E are among the conjugates
of α over K (why?), all of which are in L .

There is a homomorphism

Gal(EL/E) → Gal(L/K )

obtained by restricting automorphisms to L , and the kernel is easily seen to be trivial.
(If σ fixes both E and L pointwise then it fixes EL pointwise.) Finally consider the
image H of Gal(EL/E) in Gal(L/K ): Its fixed field is E ∩ L (because the fixed field
of Gal(EL/E) is E), so by the Galois correspondence H must be Gal(L/E ∩ L)).
Thus H = Gal(L/K ) iff E ∩ L = K . �



Appendix C
Finite Fields and Rings

Let F be a finite field. The additive subgroup generated by the multiplicative identity
1 is in fact a subring isomorphic to Zm , the ring of integers mod m, for some m.
Moreover m must be a prime because F contains no zero divisors. Thus F contains
Zp for some prime p. Then F contains pn elements, where n = [F : Zp].

The multiplicative group F∗ = F − {0} must be cyclic because if we represent it
as a direct product of cyclic groups

Zd1 × Zd2 × · · · × Zdr

with d1 | d2 | · · · | dr (every finite abelian group can be represented this way), then
each member of F∗ satisfies xd = 1 where d = dr . Then the polynomial xd − 1 has
pn − 1 roots in F , implying d ≥ pn − 1 = |F∗|. This shows that F∗ is just Zd .

F has an automorphism σ which sends eachmember of F to its pth power. (Verify
that this is really an automorphism. Use the binomial theorem to show that it is an
additive homomorphism. Show that it is onto by first showing that it is one-to-one.)
From the fact that F∗ is cyclic of order pn − 1 we find that σ n is the identity mapping
but no lower power of σ is; in other words σ generates a cyclic group of order n.

Taking α to be a generator of F∗ we can write F = Zp[α]. This shows that α is a
root of an nth degree irreducible polynomial over Zp. Moreover an automorphism of
F is completely determined by its value at α, which is necessarily a conjugate of α

over Zp. This shows that there are at most n such automorphisms, hence the group
generated by σ is the full Galois group of F over Zp. All results from Appendix B
are still true in this situation; in particular subgroups of the Galois group correspond
to intermediate fields. Thus there is a unique intermediate field of degree d over Zp

for each divisor d of n.
Every member of F is a root of the polynomial x pn − x . This shows that x pn − x

splits into linear factors over F . Then so does each of its irreducible factors over Zp.
The degree of such a factor must be a divisor of n because if one of its roots α is
adjoined to Zp then the resulting field Zp[α] is a subfield of F . Conversely, if f is an
irreducible polynomial over Zp of degree d dividing n, then f divides x pn − x . To
see this, consider the field Zp[x]/( f ). This has degree d over Zp and contains a root
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α of f . By the previous argument every member of this field is a root of x pd − x , so
f divides x pd − x . Finally, x pd − x divides x pn − x .
The above shows that x pn − x is the product of all monic irreducible polynomials

over Zp having degree dividing n.
This result can be used to prove the irreducibility of certain polynomials. For

example to prove that x5 + x2 + 1 is irreducible over Z2 it is enough to show that
it has no irreducible factors of degree 1 or 2; such a factor would also be a divisor
of x4 − x , so it is enough to show that x5 + x2 + 1 and x4 − x are relatively prime.
Reducingmod x4 − x we have x4 ≡ x , hence x5 ≡ x2, hence x5 + x2 + 1 ≡ 1. That
proves it.

As another example we prove that x5 − x − 1 is irreducible over Z3. It is
enough to show that it is relatively prime to x9 − x . Reducing mod x5 − x − 1 we
have x5 ≡ x + 1, hence x9 ≡ x5 + x4 ≡ x4 + x + 1, hence x9 − x ≡ x4 + 1. The
greatest common divisor of x9 − x and x5 − x − 1 is the same as that of x4 + 1
and x5 − x − 1. Reducing mod x4 + 1 we have x4 ≡ −1, hence x5 ≡ −x , hence
x5 − x − 1 ≡ x − 1. Finally it is obvious that x − 1 is relatively prime to x4 + 1
because 1 is not a root of x4 + 1.

The Ring Zm

Consider the ringZm of integers mod m form ≥ 2. TheChineseRemainder Theorem
shows thatZm is isomorphic to the direct product of the ringsZpr for all prime powers
pr exactly dividingm (which means that pr+1

� m). Thus it is enough to examine the
structure of the Zpr . In particular we are interested in the multiplicative group Z

∗
pr .

We will show that Z
∗
pr is cyclic if p is odd (we already knew this for r = 1) and

that Z
∗
2r is almost cyclic when r ≥ 3, in the sense that it has a cyclic subgroup of

index 2.
More specifically, Z

∗
2r is the direct product

{±1} × {1, 5, 9, . . . , 2r − 3}.

We claim that the group on the right is cyclic, generated by 5. Since this group has
order 2r−2, it is enough to show that 5 has the same order.

Lemma. For each d ≥ 0, 52
d − 1 is exactly divisible by 2d+2.

Proof. This is obvious for d = 0. For d > 0, write

52
d − 1 = (52

d−1 − 1)(52
d−1 + 1)

and apply the inductive hypothesis. Note that the second factor is ≡ 2 (mod 4). �



Appendix C: Finite Fields and Rings 193

Apply the lemma with 2d equal to the order of 5. (It is clear that this order is a
power of 2 since the order of the group is a power of 2.) We have 52

d ≡ 1 (mod 2r ),
so the lemma shows that r ≤ d + 2. Equivalently, the order of 5 is at least 2r−2. That
completes the proof. �

Now let p be an odd prime and r ≥ 1. We claim first that if g ∈ Z is any generator
for Z

∗
p then either g or g + p is a generator for Z

∗
p2 . To see why this is true, note that

Z
∗
p2 has order (p − 1)p and both g and g + p have orders divisible by p − 1 in Z

∗
p2 .

(This is because both have order p − 1 in Z
∗
p.) Thus, to show that at least one of g

and g + p is a generator forZ
∗
p2 , it is sufficient to show that gp−1 and (g + p)p−1 are

not both congruent to 1 (mod p2). We do this by showing that they are not congruent
to each other. From the binomial theorem we get

(g + p)p−1 ≡ gp−1 + (p − 1)gp−2 p (mod p2),

which proves what we want. �
Finally we claim that any g ∈ Z which generates Z

∗
p2 also generates Z

∗
pr for all

r ≥ 1.

Lemma. Let p be an odd prime and suppose that a − 1 is exactly divisible by p.
Then for each d ≥ 0, a pd − 1 is exactly divisible by pd+1.

Proof. This holds by assumption for d = 0. For d = 1 write

a p − 1 = (a − 1)(1 + a + a2 + · · · + a p−1)

= (a − 1)(p + (a − 1) + (a2 − 1) + · · · + (a p−1 − 1))

= (a − 1)(p + (a − 1)s)

where s is the sum

1 + (a + 1) + (a2 + a + 1) + · · · + (a p−2 + · · · + 1).

Since a ≡ 1 (mod p) we have s ≡ p(p − 1)/2 ≡ 0 (mod p). From this we obtain
the fact that a p − 1 is exactly divisible by p2.

Now let d ≥ 2 and assume that a pd−1 − 1 is exactly divisible by pd . Writing

a pd − 1 = (a pd−1 − 1)(1 + a pd−1 + (a pd−1
)2 + · · · + (a pd−1

)p−1)

we find that it is enough to show that the factor on the right is exactly divisible by
p. But this is obvious: a pd−1 ≡ 1 (mod pd), hence the factor on the right is ≡ p
(mod pd). Since d ≥ 2, we are finished. �

Now assume g ∈ Z generates Z
∗
p2 and let r ≥ 2. The order of g in Z

∗
pr is divisible

by p(p − 1) (because g has order p(p − 1) in Z
∗
p2 ) and is a divisor of p

r−1(p − 1),

which is the order ofZ
∗
pr . Thus the order of g has the form pd(p − 1) for some d ≥ 1.
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Set a = gp−1 and note that a − 1 is exactly divisible by p (why?). Moreover a pd ≡ 1
(mod pr ). Applying the lemma, we obtain r ≤ d + 1; equivalently, the order of g in
Z

∗
pr is at least p

r−1(p − 1), which is the order of the whole group. That completes
the proof. �



Appendix D
Two Pages of Primes

2 127 283 467 661 877 1087 1297 1523
3 131 293 479 673 881 1091 1301 1531
5 137 307 487 677 883 1093 1303 1543
7 139 311 491 683 887 1097 1307 1549
11 149 313 499 691 907 1103 1319 1553
13 151 317 503 701 911 1109 1321 1559
17 157 331 509 709 919 1117 1327 1567
19 163 337 521 719 929 1123 1361 1571
23 167 347 523 727 937 1129 1367 1579
29 173 349 541 733 941 1151 1373 1583
31 179 353 547 739 947 1153 1381 1597
37 181 359 557 743 953 1163 1399 1601
41 191 367 563 751 967 1171 1409 1607
43 193 373 569 757 971 1181 1423 1609
47 197 379 571 761 977 1187 1427 1613
53 199 383 577 769 983 1193 1429 1619
59 211 389 587 773 991 1201 1433 1621
61 223 397 593 787 997 1213 1439 1627
67 227 401 599 797 1009 1217 1447 1637
71 229 409 601 809 1013 1223 1451 1657
73 233 419 607 811 1019 1229 1453 1663
79 239 421 613 821 1021 1231 1459 1667
83 241 431 617 823 1031 1237 1471 1669
89 251 433 619 827 1033 1249 1481 1693
97 257 439 631 829 1039 1259 1483 1697

101 263 443 641 839 1049 1277 1487 1699
103 269 449 643 853 1051 1279 1489 1709
107 271 457 647 857 1061 1283 1493 1721
109 277 461 653 859 1063 1289 1499 1723
113 281 463 659 863 1069 1291 1511 1733
1741 2089 2437 2791 3187 3541 3911 4271 4663
1747 2099 2441 2797 3191 3547 3917 4273 4673
1753 2111 2447 2801 3203 3557 3919 4283 4679
1759 2113 2459 2803 3209 3559 3923 4289 4691
1777 2129 2467 2819 3217 3571 3929 4297 4703
1783 2131 2473 2833 3221 3581 3931 4327 4721
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1787 2137 2477 2837 3229 3583 3943 4337 4723
1789 2141 2503 2843 3251 3593 3947 4339 4729
1801 2143 2521 2851 3253 3607 3967 4349 4733
1811 2153 2531 2857 3257 3613 3989 4357 4751
1823 2161 2539 2861 3259 3617 4001 4363 4759
1831 2179 2543 2879 3271 3623 4003 4373 4783
1847 2203 2549 2887 3299 3631 4007 4391 4787
1861 2207 2551 2897 3301 3637 4013 4397 4789
1867 2213 2557 2903 3307 3643 4019 4409 4793
1871 2221 2579 2909 3313 3659 4021 4421 4799
1873 2237 2591 2917 3319 3671 4027 4423 4801
1877 2239 2593 2927 3323 3673 4049 4441 4813
1879 2243 2609 2939 3329 3677 4051 4447 4817
1889 2251 2617 2953 3331 3691 4057 4451 4831
1901 2267 2621 2957 3343 3697 4073 4457 4861
1907 2269 2633 2963 3347 3701 4079 4463 4871
1913 2273 2647 2969 3359 3709 4091 4481 4877
1931 2281 2657 2971 3361 3719 4093 4483 4889
1933 2287 2659 2999 3371 3727 4099 4493 4903
1949 2293 2663 3001 3373 3733 4111 4507 4909
1951 2297 2671 3011 3389 3739 4127 4513 4919
1973 2309 2677 3019 3391 3761 4129 4517 4931
1979 2311 2683 3023 3407 3767 4133 4519 4933
1987 2333 2687 3037 3413 3769 4139 4523 4937
1993 2339 2689 3041 3433 3779 4153 4547 4943
1997 2341 2693 3049 3449 3793 4157 4549 4951
1999 2347 2699 3061 3457 3797 4159 4561 4957
2003 2351 2707 3067 3461 3803 4177 4567 4967
2011 2357 2711 3079 3463 3821 4201 4583 4969
2017 2371 2713 3083 3467 3823 4211 4591 4973
2027 2377 2719 3089 3469 3833 4217 4597 4987
2029 2381 2729 3109 3491 3847 4219 4603 4993
2039 2383 2731 3119 3499 3851 4229 4621 4999
2053 2389 2741 3121 3511 3853 4231 4637 5003
2063 2393 2749 3137 3517 3863 4241 4639 5009
2069 2399 2753 3163 3527 3877 4243 4643 5011
2081 2411 2767 3167 3529 3881 4253 4649 5021
2083 2417 2777 3169 3533 3889 4259 4651 5023
2087 2423 2789 3181 3539 3907 4261 4657 5039
5051 5179 5309 5437 5531 5659 5791 5879 6043
5059 5189 5323 5441 5557 5669 5801 5881 6047
5077 5197 5333 5443 5563 5683 5807 5897 6053
5081 5209 5347 5449 5569 5689 5813 5903 6067
5087 5227 5351 5471 5573 5693 5821 5923 6073
5099 5231 5381 5477 5581 5701 5827 5927 6079
5101 5233 5387 5479 5591 5711 5839 5939 6089
5107 5237 5393 5483 5623 5717 5843 5953 6091
5113 5261 5399 5501 5639 5737 5849 5981 6101
5119 5273 5407 5503 5641 5741 5851 5987 6113
5147 5279 5413 5507 5647 5743 5857 6007
5153 5281 5417 5519 5651 5749 5861 6011
5167 5297 5419 5521 5653 5779 5867 6029
5171 5303 5431 5527 5657 5783 5869 6037
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A
Abelian extension, 29
Absolute different, 66
Algebraic element, 181
Algebraic integer, 10
Analytic function, 129
Artin kernel, 166
Artin map, 160

B
Biquadratic field, 33

C
Character mod m, 137
Character of a group, 138
Chinese Remainder Theorem, 180
Class number, 4
Class number formula, 136
Closed semigroup, 167
Composite field, 24
Conjugate elements, 185
Cyclotomic field, 9

D
Decomposition field, 70
Decomposition group, 69
Dedekind, 3
Dedekind domain, 39
Dedekind zeta function, 130
Degree of an extension, 9
Different, 51, 64
Dirichlet density, 146, 161
Dirichlet series, 129
Dirichlet’s Theorem, 159, 164

Discriminant of an element, 20
Discriminant of an n-tuple, 18
Dual basis, 65

E
Eisenstein’s criterion, 182
Even character, 142

F
Factor ring, 179
Fermat, 2
Field of fractions, 39
Finite fields, 45, 173, 191
Fixed field, 187
Fractional ideal, 63
Free abelian group, 20
Free abelian semigroup, 64, 160
Frobenius automorphism, 76
Frobenius Density Theorem, 148
Fundamental domain, 114
Fundamental parallelotope, 94
Fundamental system of units, 100
Fundamental unit, 99

G
Galois correspondence, 188
Galois group, 187
Gauss, 53
Gaussian integers, 1, 5
Gaussian sum, 139
Gauss’ Lemma, 58
Gcd of ideals, 43
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H
Hilbert, 29
Hilbert class field, 159, 166
Hilbert+ class field, 167
Hilbert’s formula, 87, 89
Homogeneous, 116

I
Ideal, 179
Ideal class, 4
Ideal class group, 4, 91
Independence mod P , 61
Induced character, 141
Inert, 72
Inertia field, 70
Inertia group, 69
Inertial degree, 45
Integral basis, 22
Integral domain, 8, 180
Integrally closed, 39
Irreducible element, 3
Irreducible polynomial, 185

J
Jacobian determinant, 122
Jacobi symbol, 81

K
Klein four group, 82
Kronecker-Weber Theorem, 87
Kummer, 3

L
Lattice, 94, 101
Lcm of ideals, 43
Legendre symbol, 74
Lies over (or under), 44
Lipschitz function, 117
Lipschitz parametrizable, 117
Logarithmic space, 101
Log mapping, 100
L-series, 137, 161

M
Maximal ideal, 179
Minkowski, 96
Minkowski’s constant, 95
Monic polynomial, 185

N
Noetherian ring, 39
Norm alclosure, 76
Normal extension, 186
Norm of an element, 15, 16
Norm of an ideal, 59
Number field, 1, 9
Number ring, 12

O
Odd character, 142

P
Polar density, 134
Prime ideal, 179
Primitive character, 141
Primitive Pythagorean triples, 1
Principal ideal, 179
Principal Ideal Domain (PID), 181
Product of ideals, 181
Pure cubic field, 28

Q
Quadratic fields, 9
Quadratic Reciprocity Law, 75

R
Ramachandra, 158
Ramification groups, 85
Ramification index, 45
Ramified prime, 50
Ray class, 126
Ray class field, 169
Ray class group, 126
Regular prime, 4
Regulator, 123
Relative discriminant, 31
Relatively prime ideals, 180
Relative norm, 16
Relative trace, 16
Residue field, 45
Riemann zeta function, 130
Ring, 179

S
Simple pole, 131
Simple zero, 131
Splits completely, 63
Stark, 104
Stickelberger’s criterion, 31
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T

Tchebotarev Density Theorem, 148

Totally positive, 125

Totally ramified, 61

Trace, 15, 16

T -ramified extension, 169

Transitivity, 17

U
Unique Factorization Domain (UFD), 3, 181
Unit group, 99
Unramified extension, 166
Unramified ideal, 160

V
Vandermonde determinant, 19, 30


	A Commutative Rings and Ideals
	Appendix B Galois Theory for Subfields of mathbbC
	Appendix C Finite Fields and Rings
	Appendix D Two Pages of Primes
	Appendix  Further Reading
	Appendix  Index of Theorems
	Index



