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Abstract We give simple proofs of the Davenport–Heilbronn theorems,
which provide the main terms in the asymptotics for the number of cubic
fields having bounded discriminant and for the number of 3-torsion elements
in the class groups of quadratic fields having bounded discriminant. We also
establish second main terms for these theorems, thus proving a conjecture of
Roberts. Our arguments provide natural interpretations for the various con-
stants appearing in these theorems in terms of local masses of cubic rings.

1 Introduction

The classical theorems of Davenport and Heilbronn [15] provide asymptotic
formulae for the number of cubic fields having bounded discriminant and for
the total number of 3-torsion elements in the class groups of quadratic fields
having bounded discriminant. Specifically, the theorems state:
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Theorem 1 (Davenport–Heilbronn) Let N3(ξ, η) denote the number of cubic
fields K , up to isomorphism, that satisfy ξ < Disc(K) < η. Then

N3(0,X) = 1

12ζ(3)
X + o(X);

N3(−X,0) = 1

4ζ(3)
X + o(X).

(1)

Theorem 2 (Davenport–Heilbronn) Let D denote the discriminant of a
quadratic field and let Cl3(D) denote the 3-torsion subgroup of the ideal
class group Cl(D) of D. Then

∑

0<D<X

#Cl3(D) = 4

3
·
∑

0<D<X

1 + o(X);
∑

−X<D<0

#Cl3(D) = 2 ·
∑

−X<D<0

1 + o(X).

(2)

The Davenport–Heilbronn theorems, and the methods underlying their
proofs, have seen applications in numerous works (see, e.g., [1, 3, 5, 10, 18,
19, 32, 33]).

Subsequent to their 1971 paper, extensive computations were under-
taken by a number of authors (see, e.g., Llorente–Quer [25] and Fung–
Williams [20]) in an attempt to numerically verify the Davenport–Heilbronn
theorems. However, computations up to discriminants even as large as 107

were found to agree quite poorly with these theorems. This in turn led to
questions about the magnitude of the error term in these theorems, and the
problem of determining precise second order terms.

In a related work, Belabas [1] developed a very fast method for enumerat-
ing cubic fields—indeed, in essentially linear time with the discriminant—
allowing him to make tables of cubic fields up to absolute discriminant
1011. These computations still seemed to agree rather poorly with the first
Davenport–Heilbronn theorem, and led Belabas to guess only the existence
of error terms smaller than O(X/(logX)a) for any a. However, Belabas [2]
later obtained the first subexponential error terms for these theorems of the
form O(X exp(−√

logX log logX)).
In 2000, Roberts [26] conducted a remarkable study of these latter compu-

tations in conjunction with certain theoretical considerations, which led him
to conjecture a precise second main term for Theorem 1. This conjectural sec-
ond main term took the form of a certain explicit constant times X5/6. Further
computations carried out in the last few years have revealed Roberts’ conjec-
ture to agree extremely well with the data. Meanwhile, on the theoretical side,
power-saving error terms for Theorems 1 and 2 were obtained by Belabas, the
first author, and Pomerance [4], who showed error terms of O(X7/8+ε).
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The purpose of the current article is to prove the above conjecture of
Roberts. More precisely, we prove the following theorem.

Theorem 3 Let N3(ξ, η) denote the number of cubic fields K , up to isomor-
phism, that satisfy ξ < Disc(K) < η. Then

N3(0,X) = 1

12ζ(3)
X + 4ζ(1/3)

5Γ (2/3)3ζ(5/3)
X5/6 + Oε

(
X5/6−1/48+ε

);

N3(−X,0) = 1

4ζ(3)
X +

√
3 · 4ζ(1/3)

5Γ (2/3)3ζ(5/3)
X5/6 + Oε

(
X5/6−1/48+ε

)
.

(3)

Davenport and Heilbronn also proved a refined version of Theorem 1,
where they give the asymptotics for the number of cubic fields K having
bounded discriminant satisfying any specified set of splitting conditions at
finitely many primes. Roberts also conjectures a precise second main term
for the number of such fields K having discriminant bounded by X (see [26,
Sect. 5]). We also prove Roberts’ refined conjecture in Sect. 9.

By essentially identical methods, we also prove the analogue of Roberts’
conjecture for the second Davenport–Heilbronn theorem, i.e., a precise sec-
ond order term in Theorem 2. Specifically, we prove:

Theorem 4 Let D denote the discriminant of a quadratic field and let Cl3(D)

denote the 3-torsion subgroup of the ideal class group Cl(D) of D. Then

∑

0<D<X

#Cl3(D) = 4

3
·
∑

0<D<X

1 + 8ζ(1/3)

5Γ (2/3)3

∏

p

(
1 − p1/3 + 1

p(p + 1)

)
X5/6

+ Oε

(
X5/6−1/48+ε

);
∑

−X<D<0

#Cl3(D) = 2 ·
∑

−X<D<0

1 +
√

3 · 8ζ(1/3)

5Γ (2/3)3

∏

p

(
1 − p1/3 + 1

p(p + 1)

)
X5/6

+ Oε

(
X5/6−1/48+ε

)
.

(4)

In the process, we present a simpler approach to proving the original
Davenport–Heilbronn theorems, and also a simpler approach to establishing
the theorem of Davenport [13] on the density of discriminants of binary cubic
forms. The second main term of the latter theorem of Davenport (who ob-
tained only a second term of O(X15/16)) was first discovered by Shintani [30]
using Sato and Shintani’s theory of zeta functions for prehomogeneous vec-
tor spaces [27]. In this article, we also give an elementary derivation of this
second main term of Shintani. More precisely, we prove:
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Theorem 5 (Davenport–Shintani) Let N(ξ, η) denote the number of GL2(Z)-
equivalence classes of irreducible integer-coefficient binary cubic forms f

satisfying ξ < Disc(f ) < η. Then

N(0,X) = π2

72
X +

√
3ζ(2/3)Γ (1/3)(2π)1/3

30Γ (2/3)
X5/6 + Oε

(
X3/4+ε

);

N(−X,0) = π2

24
X + ζ(2/3)Γ (1/3)(2π)1/3

10Γ (2/3)
X5/6 + Oε

(
X3/4+ε

)
.

(5)

In order to prove Theorems 3 and 4, we need (in particular) to apply
a new, stronger version of Theorem 5 where we count equivalence classes
of binary cubic forms satisfying any finite or other suitable set of congru-
ence conditions. Such a theorem was obtained by Davenport–Heilbronn but
their method does not yield second main terms. Meanwhile, Shintani’s zeta
function method does not immediately apply to cubic forms satisfying given
congruence conditions. We prove this congruence version of Theorem 5 in
Sect. 6.

In fact, we use this more general version of Theorem 5 to prove a gen-
eralization of Theorems 3 and 4 that also allows us to count cubic orders
satisfying certain specified sets of local conditions. To state this more general
theorem, we first restate Theorem 5 as:

Theorem 6 Let M3(ξ, η) denote the number of isomorphism classes of orders
R in cubic fields that satisfy ξ < Disc(R) < η. Then

M3(0,X) = π2

72
X +

√
3ζ(2/3)Γ (1/3)(2π)1/3

30Γ (2/3)
X5/6 + Oε(X

3/4+ε);

M3(−X,0) = π2

24
X + ζ(2/3)Γ (1/3)(2π)1/3

10Γ (2/3)
X5/6 + Oε(X

3/4+ε).

(6)

The proof of Theorem 6 is relatively straightforward, given Theorem 5 and
the “Delone–Faddeev bijection” between isomorphism classes of cubic orders
and GL2(Z)-equivalence classes of irreducible binary cubic forms (which we
describe in more detail in Sect. 2).

The generalization of Theorems 3 and 4 (which will also then include The-
orem 6) that we will prove allows one to count cubic orders of bounded dis-
criminant satisfying any desired finite (or, in many natural cases, infinite) sets
of local conditions. To state the theorem, for each prime p let Σp be any set
of isomorphism classes of orders in étale cubic algebras over Qp; also, let
Σ∞ denote any set of isomorphism classes of étale cubic algebras over R

(i.e., Σ∞ ⊆ {R3,R ⊕ C}). We say that the collection (Σp) ∪ Σ∞ is accept-
able if, for all sufficiently large primes p, the set Σp contains all maximal
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cubic orders over Zp that are not totally ramified. We say that the collection
(Σp) ∪ Σ∞ is strongly acceptable if, for all sufficiently large primes p, the
set Σp consists of the set of all cubic orders over Zp , the set of all maximal
cubic orders over Zp , or the set of all maximal cubic orders over Zp that are
not totally ramified.

We wish to asymptotically count the total number of cubic orders R of
absolute discriminant less than X that agree with such local specifications,
i.e., R ⊗ Zp ∈ Σp for all p and R ⊗ R ∈ Σ∞. This asymptotic count—with
the first two main terms—is contained in the following theorem:

Theorem 7 Let (Σp)∪Σ∞ be a strongly acceptable collection of local spec-
ifications, and let Σ denote the set of all isomorphism classes of orders R in
cubic fields for which R ⊗ Zp ∈ Σp for all p and R ⊗ R ∈ Σ∞. For a free
Zp-module M , define MPrim ⊂ M by MPrim := M\{p · M}. Let N3(Σ;X)

denote the number of cubic orders R ∈ Σ that satisfy |Disc(R)| < X. Then

N3(Σ;X)

=
(

1

2

∑

R∈Σ∞

1

|Aut(R)|
)

·
∏

p

(
p − 1

p
·
∑

R∈Σp

1

Discp(R)
· 1

|Aut(R)|
)

· X

+ 1

ζ(2)

( ∑

R∈Σ∞
c2(R)

)
·
∏

p

((
1 − p−1/3)

·
∑

R∈Σp

1

Discp(R)
· 1

|Aut(R)|
∫

(R/Zp)Prim
i(x)2/3dx

)
· X5/6

+ Oε

(
X5/6−1/48+ε

)
, (7)

where Discp(R) denotes the discriminant of R over Zp as a power of p, i(x)

denotes the index of Zp[x] in R, dx assigns measure 1 to (R/Zp)Prim, and

c2(R) =
⎧
⎨

⎩

√
3ζ(2/3)Γ (1/3)(2π)1/3

30Γ (2/3)
if R ∼= R ⊕ R ⊕ R

ζ(2/3)Γ (1/3)(2π)1/3

10Γ (2/3)
if R ∼= R ⊕ C.

Note that the case where Σp consists of the maximal cubic orders over Zp

for all p yields Theorem 3, and also yields a corresponding interpretation of
the asymptotic constants in Theorem 3 as a product of local Euler factors.
Indeed, these Euler factors correspond to local weighted counts of the pos-
sible cubic algebras that can arise over Qp and over Q∞ = R. Theorem 4 is
deduced by letting Σp consist of all maximal cubic orders over Zp that are
not totally ramified at p, and then applying class field theory (see Sect. 8.1
and Sect. 8.5).
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Meanwhile, the case where Σp consists of all orders in étale cubic algebras
over Qp yields Theorem 6, and again also yields the analogous interpretation
of the constants in Theorem 6. Theorem 7 thus simultaneously generalizes
Theorems 3, 4, 5, and 6 in a natural way, and moreover, it yields a natural
interpretation of the various constants π2

72 , π2

24 , 1
12ζ(3)

, 1
4ζ(3)

, 4/3, 2, etc. that
appear in the asymptotics of these theorems.

If we are only interested in the first main term, then we have the following
stronger result:

Theorem 8 Let (Σp) ∪ Σ∞ be an acceptable collection of local specifica-
tions, and let Σ denote the set of all isomorphism classes of orders R in cubic
fields for which R ⊗ Qp ∈ Σp for all p and R ⊗ R ∈ Σ∞. Let N3(Σ;X) de-
note the number of cubic orders R ∈ Σ that satisfy |Disc(R)| < X. Then

N3(Σ;X) =
(

1

2

∑

R∈Σ∞

1

|Aut(R)|
)

·
∏

p

(
p − 1

p
·
∑

R∈Σp

1

Discp(R)
· 1

|Aut(R)|
)

· X + o(X). (8)

The case where, for all p, the set Σp consists of all maximal cubic rings is
Theorem 1, while the case where it consists of all maximal cubic rings that
are not totally ramified at p yields Theorem 2.

Our proofs of Theorems 1–8 and particularly Theorem 7, though perhaps
similar in spirit to the original arguments of Davenport and Heilbronn, involve
a number of new ideas and refinements both on the algebraic and the analytic
side. First, we begin in Sects. 2 and 3 by giving a much shorter and more el-
ementary derivation of the “Davenport–Heilbronn correspondence” between
maximal cubic orders and appropriate sets of binary cubic forms.

Second, we obtain the main term of the asymptotics of Theorem 5 in Sect. 5
by counting points not in a single fundamental domain, but on average in
a continuum of fundamental domains, using a technique of [7]. This leads,
in particular, to a uniform treatment of the cases of positive and negative
discriminants. It also leads directly to stronger error terms; most notably, we
obtain immediately an error term of O(X5/6) for the number of GL2(Z)-
equivalence classes of integral binary cubic forms of discriminant less than
X, improving on Davenport’s original O(X15/16). The O(X5/6) term is seen
to come from the “cusps” or “tentacles” of the fundamental regions.

Third, to more efficiently count points in the cusps of these fundamental
regions, we introduce a “slicing and smoothing” technique in Sect. 6, which
then allows us to keep track of precise second order terms and thus also prove
the second main term of Theorem 5. The technique works equally well when
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counting points satisfying any finite set of congruence conditions (see Theo-
rem 27).

Fourth, our use of the Delone–Faddeev correspondence (cf. Sect. 2) allows
us to give an elementary treatment of the analogue of Theorem 3 for orders,
rather than just fields, as in Theorem 6 and the cases of Theorem 7 where
only finitely many local conditions are involved. We prove the main terms of
Theorems 1–8 in Sect. 8, using a simplified computation of p-adic densities
that is carried out in Sect. 4.

Finally—in order to treat the second term in cases where infinitely many
local conditions are involved—we introduce a sieving method that allows one
to preserve the second main terms even when certain natural infinite sets of
congruence conditions are applied. This is accomplished in Sect. 9, using a
computation of “second order p-adic densities” that is carried out in Sect. 7.

Remark 1 We note that an alternative proof of Theorems 3 and 4 has recently
been obtained by Taniguchi and Thorne [31], using quite different methods.
Although our proof here is more elementary, the work of Taniguchi–Thorne
connects with the theory of Shintani zeta functions, and may thus have further
interesting consequences in that realm. In fact, it seems clear that the methods
here in conjunction with those of [31] should together yield even stronger
results, e.g., better error terms, than either method alone! We hope to pursue
this in future work.

Remark 2 Readers interested mainly in our new simpler proofs of the main
terms of the Davenport–Heilbronn theorems may safely skip Sects. 6, 7 and 9,
which constitute about a half of this paper. On the other hand, those interested
in the new results on second main terms may wish to concentrate primarily
on these sections.

2 The Delone–Faddeev correspondence

A cubic ring is any commutative ring with unit that is free of rank 3 as a Z-
module. We begin with a theorem of Delone–Faddeev [17] (as refined by
Gan–Gross–Savin [21]) parametrizing cubic rings by GL2(Z)-equivalence
classes of integral binary cubic forms.1 Throughout this paper, we always
use the “twisted” action of GL2(Z) on binary cubic forms, i.e., an element
γ ∈ GL2(Z) acts on a binary cubic form f (x, y) by

(γf )(x, y) = 1

det(γ )
f
(
(x, y)γ

)
. (9)

1We thank Franz Lemmermeyer for pointing out to us that the basic ideas of this correspon-
dence were already essentially contained in the work of Levi [24] in 1914! See also the 1926
work of Delone [16].
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Theorem 9 [17, 21] There is a natural bijection between the set of GL2(Z)-
equivalence classes of integral binary cubic forms and the set of isomorphism
classes of cubic rings.

Proof Given a cubic ring R, let 〈1,ω, θ〉 be a Z-basis for R. Translating ω

and θ by the appropriate elements of Z, we may assume that ωθ ∈ Z. In the
terminology of [17], a basis satisfying the latter condition is called normal.
If 〈1,ω, θ〉 is a normal basis, then there exist constants a, b, c, d, �,m,n ∈ Z

such that

ωθ = n

ω2 = m − bω + aθ

θ2 = � − dω + cθ.

(10)

To the cubic ring R, we associate the binary cubic form f (x, y) = ax3 +
bx2y + cxy2 + dy3.

In more coordinate-free terms, the form f (x, y) represents the cubic map
R/Z →∧2

(R/Z) ∼= Z given by r �→ r ∧ r2. To see this, set r = xω + yθ ;
then

r ∧ r2 = (xω + yθ) ∧ [x2(bω − aθ) + y2(dω − cθ)
]= f (x, y)(ω ∧ θ)

as elements of
∧2

(R/Z). In particular, changing the Z-basis 〈ω, θ〉 of R/Z

by an element γ ∈ GL2(Z), and then renormalizing the basis in R, trans-
forms the corresponding binary cubic form f (x, y) by that same element of
GL2(Z).

Conversely, given a binary cubic form f (x, y) = ax3 +bx2y+cxy2 +dy3,
form a potential cubic ring having multiplication laws (10). The values
of �,m,n are subject to the associative law relations (ωθ)θ = ω(θ2) and
(ω2)θ = ω(ωθ), which when multiplied out using (10), yield a system of
equations which possesses a unique solution for n,m,�, namely

n = −ad

m = −ac

� = −bd.

(11)

If follows that any binary cubic form f (x, y) = ax3 + bx2y + cxy2 + dy3,
via the recipe (10) and (11), leads to a unique cubic ring R = R(f ). This is
the desired conclusion. �

The map f �→ R(f ) has many desirable properties. First, it is discriminant-
preserving. More precisely, if R is a cubic ring, then we may define the
trace Tr(α) ∈ Z of an element α ∈ R as the trace of the Z-linear mapping
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×α : R → R. The discriminant Disc(R) of a cubic ring R is then the deter-
minant of the bilinear pairing Tr(αβ)α,β∈R on R. It turns out that this dis-
criminant coincides with the discriminant of the corresponding binary cubic
form:

Proposition 10 The discriminant of an integral binary cubic form f is equal
to the discriminant of the corresponding cubic ring R(f ).

Proof An explicit calculation using (10) and (11) easily verifies Proposi-
tion 10. The proposition can also be deduced more conceptually as fol-
lows. We observe that the discriminant of R(f ) must be an SL2(Z)-invariant
polynomial in a, b, c, d of degree 4. It is well-known (see, e.g., [22]) that
a binary cubic form f possesses, up to scaling, only one SL2(Z)-invariant
polynomial of degree 4, namely the discriminant Disc(f ). We conclude
that Disc(R(f )) = c · Disc(f ) for some constant c. To determine c, let
f (x, y) = xy(x − y). Then by (10), we have R(f ) ∼= Z

3 (with the identifi-
cation ω �→ (−1,0,0) and θ �→ (0,−1,0)). Since Disc(xy(x − y)) = 1 with
the usual normalization of the discriminant, and Disc(R(f )) = Disc(Z3) = 1,
we conclude that c = 1. �

Explicitly, the discriminant of the binary cubic form f (and thus of the
corresponding cubic ring R(f )) is given by

Disc
(
R(f )

)= Disc(f ) = b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd. (12)

Next, we may determine whether R(f ) is an integral domain simply by
checking the reducibility/irreducibility of f over Q:

Proposition 11 For an integral binary cubic form f , the cubic ring R(f ) is
an integral domain if and only if f is irreducible as a polynomial over Q.

Proof If f (x, y) = ax3 +bx2y + cxy2 +dy3 is reducible, then it has a linear
factor, which (by a change of variable in GL2(Z)) we may assume is y; i.e.,
a = 0. In this case, (10) and (11) show that ωθ = 0, so R(f ) has zero divisors.

Conversely, if a cubic ring R has zero divisors, then there exists some el-
ement ω ∈ R such that 〈1,ω〉 spans a quadratic subring of R. Such an ω can
be constructed as follows. Let α and β be two nonzero elements of R with
αβ = 0, and let α3 + c1α

2 + c2α + c3 = 0 be the characteristic equation of
the Z-linear mapping ×α : R → R. Multiplying both sides by β , we see that
c3 = 0, so that α(α2 + c1α + c2) = 0. If α2 + c1α + c2 = 0, then we may let
ω = α. Otherwise, note that (α2 + c1α + c2)

2 = c2(α
2 + c1α + c2), so in that

case we may set ω = α2 + c1α + c2, and ω2 = c2ω. Either way, we see that
〈1,ω〉 spans a quadratic subring of R.
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Scaling ω by an integer if necessary, we may assume that ω is a primitive
vector in the lattice R ∼= Z

3, and then extend 〈1,ω〉 to a basis 〈1,ω, θ〉 of R.
Normalizing this basis if needed, we then see in (10) that we must have a = 0,
implying that the associated binary cubic form is reducible. We conclude that,
under the Delone–Faddeev correspondence, integral domains correspond to
irreducible binary cubic forms. �

Other important properties of the cubic ring R(f ) can also be read off
easily from the binary cubic form f . For example, we have

Proposition 12 For an integral binary cubic form f , the group of ring auto-
morphisms of R(f ) is naturally isomorphic to the stabilizer of f in GL2(Z).

Proof This follows directly from the proof of Theorem 9: any automorphism
of R(f ) results in a GL2(Z)-transformation on the chosen normal basis ω, θ

of R/Z (which is then automatically still normal), thus giving an element of
the stabilizer of the binary cubic form f in GL2(Z); the converse is similarly
trivial. �

Finally, we note that the correspondence of Theorem 9, and the analogues
of Propositions 10–12, also hold for cubic algebras and binary cubic forms
over other base rings such as C, R, Q, Qp , Zp , and Fp . Indeed, let T denote
any one of these rings. Then a cubic ring over T can be defined analogously
as any ring with unit that is free of rank 3 as a T -module. Similarly, a binary
cubic form over T is any binary cubic form with coefficients in T . Again,
GL2(T ) acts on the space of binary cubic forms over T via (9). With these
definitions, Theorem 9 and Propositions 10–12 all hold when “GL2(Z)” is
replaced by “GL2(T )”, “integral binary cubic form” is replaced by “binary
cubic form over T ”, and “cubic ring” is replaced by “cubic ring over T ”; the
proofs are identical. This observation will also be very useful to us in later
sections.

3 The Davenport–Heilbronn correspondence

A cubic ring is said to be maximal if it is not a subring of any other cu-
bic ring. The first part of the Davenport–Heilbronn theorem [15] describes
a bijection (known as the “Davenport–Heilbronn correspondence”) between
maximal cubic rings and certain special classes of binary cubic forms. In this
section, we give a simple derivation of this bijection.

By the work of the previous section, in order to obtain the Davenport–
Heilbronn correspondence we must simply determine which binary cubic
forms f yield maximal rings R(f ) in the bijection given by (10) and (11).
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Now a cubic ring R is maximal if and only if the cubic Zp-algebra Rp =
R ⊗ Zp is maximal for every p (this is because R is a maximal ring if and
only if it is isomorphic to a product of rings of integers in number fields). The
condition on R that R ⊗ Zp be a maximal cubic algebra over Zp is called
“maximality at p”. The following lemma illustrates the ways in which a ring
R can fail to be maximal at p:

Lemma 13 Suppose R is not maximal at p. Then there is a Z-basis 〈1,ω, θ〉
of R such that at least one of the following is true:

• Z + Z · (ω/p) + Z · θ forms a ring
• Z + Z · (ω/p) + Z · (θ/p) forms a ring.

Proof Let R′ ⊃ R be any ring strictly containing R such that the index of R

in R′ is a multiple of p, and let R1 = R′ ∩ (R ⊗Z Z[ 1
p
]). Then the ring R1

also strictly contains R, and the index of R in R1 is a power of p. By the
theory of elementary divisors, there exist nonnegative integers i ≥ j and a
basis 〈1,ω, θ〉 of R such that

R1 = Z + Z
(
ω/pi

)+ Z
(
θ/pj

)
. (13)

If i = 1, we are done. Hence we assume i > 1.
We normalize the basis 〈1,ω, θ〉 if necessary; this does not affect the

truth of (13). Now suppose the multiplicative structure of R is given by (10)
and (11). That the right side of (13) is a ring translates into the following
congruence conditions on a, b, c, d:2

a ≡ 0 (mod p2i−j ), b ≡ 0 (mod pi),

c ≡ 0 (mod pj ), d ≡ 0 (mod p2j−i ).
(14)

If j = 0, then replacing (i, j) by (i − 1, j) maintains the truth of the above
congruences, and R1 as defined by (13) remains a ring. If j > 0, then we
may replace (i, j) instead by (i − 1, j − 1). Thus in a finite sequence of such
moves, we arrive at i = 1, as desired. �

The lemma implies that a cubic ring R(f ) can fail to be maximal at p

in two ways: either (i) f is a multiple of p, or (ii) there is some GL2(Z)-
transformation of f (x, y) = ax3 + bx2y + cxy2 + dy3 such that a is a mul-
tiple of p2 and b is a multiple of p.

Let Up be the set of all binary cubic forms f not satisfying either of the
latter two conditions. Then we have proven

2We follow here the convention that, for e ≤ 0, we have a ≡ 0 (mod pe) for any integer a.
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Theorem 14 (Davenport–Heilbronn [15]) The cubic ring R(f ) is maximal
at p if and only if f ∈ Up . The cubic ring R(f ) is maximal if and only if
f ∈ Up for all p.

Note that our definition of Up is somewhat simpler than that used by
Davenport–Heilbronn (but is easily seen to be equivalent).

The discussion above can also be used to deduce a number of other con-
sequences. For example, we may use it to determine the number of index p

subrings of a given cubic ring R(f ) as well as the number of cubic rings
containing a given cubic ring R(f ) with index p:

Proposition 15 For an integral binary cubic form f , the number of index p

subrings of R(f ) is equal to ωp(f ), the number of zeroes in P
1(Fp) of f

modulo p.

Proposition 16 For an integral binary cubic form f , the number of cubic
rings in R(f ) ⊗ Q containing R(f ) with index p is equal to the number of
double zeroes α ∈ P

1(Fp) of f modulo p such that f (α′) ≡ 0 (mod p2) for
all α′ ≡ α mod p.

Proof If R ⊂ R′ with [R′ : R] = p, then we may write R = Z + pR′ + Zθ ,
where θ is a well-defined element of (R′/Z)/p(R′/Z). Extending θ to a Z-
basis 1,ω, θ of R′, and renormalizing if necessary, we see that 1,ω, θ is a
Z-basis for R′ and 1,pω, θ is a Z-basis for R. Regardless of these choices,
note that θ is well-defined in (R′/Z)/p(R′/Z), while pω is well-defined in
(R/Z)/p(R/Z).

Now if f ′(x, y) = a′x3 + b′x2y + c′xy2 + d ′y3 is the binary cubic form
corresponding to the normal basis 1,ω, θ of the ring R′, then by (10) we see
that R = Z + pR′ + Zθ is also a ring if and only if d ′ ≡ 0 (mod p), i.e., the
image of θ in R′/Z is a root of f ′ (mod p), when f ′ is viewed as a cubic
map R′/Z →∧2

(R′/Z) ∼= Z given by r �→ r ∧ r2. In that case, f (x, y) =
a′p2x3 + b′px2y + c′xy2 + (d ′/p)y3 is the binary cubic form corresponding
to the basis 1,pω, θ of R, and this gives the desired bijection between roots
of f ′ (mod p) and subrings of R′ of index p, as stated in Proposition 15.

Similarly, if f (x, y) = ax3 + bx2y + cxy2 + dy3 is the binary cubic form
corresponding to the normal basis 1,pω, θ of the ring R, then by (10) we
see that the Z-module R′ spanned by 1,ω, θ is also a ring if and only if
a ≡ 0 (mod p2) and b ≡ 0 (mod p), i.e., the image of pω in R/Z is a double
root of f (mod p) and f takes a value at pω that is a multiple of p2, when
f is viewed as a cubic map R/Z → ∧2

(R/Z) ∼= Z given by r �→ r ∧ r2.
In that case, f ′(x, y) = (a/p2)x3 + (b/p)x2y + cxy2 + dpy3 is the binary
cubic form corresponding to the basis 1,ω, θ of R′, and this gives the desired
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bijection between roots α of f (mod p) such that f (α) ≡ 0 (mod p2), and
rings R′ containing R with index p, as stated in Proposition 16. �

4 Local behavior and p-adic densities

In this section, we consider elements f in the spaces of binary cubic forms
over the integers Z, the p-adic ring Zp , and the residue field Z/pZ. We denote
these spaces by VZ, VZp

, and VFp
respectively. The results in this section are

also contained in [15]; however, we give here slightly simpler and more direct
proofs.

Aside from the degenerate case f ≡ 0 (mod p), any form f ∈ VZ (resp.
VZp

, VFp
) determines exactly three points in P

1
F̄p

, obtained by taking the roots

of f reduced modulo p. For such a form f , define the symbol (f,p) by
setting

(f,p) = (f e1
1 f

e2
2 · · · ),

where the fi ’s indicate the degrees of the fields of definition over Fp of the
roots of f , and the ei’s indicate the respective multiplicities of these roots.
There are thus five possible values of the symbol (f,p), namely, (111), (12),
(3), (121), and (13). Furthermore, it is clear that if two binary cubic forms
f1, f2 over Z (resp. Zp , Fp) are equivalent under a transformation in GL2(Z)

(resp. GL2(Zp), GL2(Fp)), then (f1,p) = (f2,p). By Tp(111), Tp(12), etc.,
let us denote the set of f such that (f,p) = (111), (f,p) = (12), etc.

By the definition of R(f ), the ring structure of the quotient ring R(f )/(p)

depends only on the GL2(Fp)-orbit of f modulo p; hence the symbol (f,p)

indicates something about the structure of the ring R(f ) when reduced mod-
ulo p. In fact, writing down the multiplication laws at one point of each of
the five aforementioned GL2(Fp)-orbits demonstrates that

(f,p) = (f e1
1 f

e2
2 · · · )

⇐⇒ R(f )/(p) ∼= Fpf1 [t1]/
(
t
e1
1

)⊕ Fpf2 [t2]/
(
t
e2
2

)⊕ · · · .

In particular, it follows that for f ∈ Up , the symbol (f,p) conveys precisely
the splitting behavior of R(f ) at p. For example, if (f,p) = (13) for f ∈ Up ,
then this means the maximal cubic ring R(f ) is totally ramified at p.

Now, for any set S in VZ (resp. VZp
, VFp

) that is definable by congruence
conditions, let us denote by μ(S) = μp(S) the p-adic density of the p-adic
closure of S in VZp

, where we normalize the additive measure μ on VZp
= Z

4
p

so that μ(VZp
) = 1 (i.e., we have taken the product of the usual additive mea-

sures on Zp). The following lemma determines the p-adic densities of the
sets Tp(·).
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Lemma 17 We have

μ
(
Tp(111)

)= 1

6
(p − 1)2p(p + 1)/p4

μ
(
Tp(12)

)= 1

2
(p − 1)2p(p + 1)/p4

μ
(
Tp(3)

)= 1

3
(p − 1)2p(p + 1)/p4

μ
(
Tp

(
121
))= (p − 1)p(p + 1)/p4

μ
(
Tp

(
13))= (p − 1)(p + 1)/p4.

Proof Since the criteria for membership of f in a Tp(·) depend only on the
residue class of f modulo p, it suffices to consider the situation over Fp . We
examine first μ(Tp(111)). The number of unordered triples of distinct points
in P

1
Fp

is 1
6(p + 1)p(p − 1). Furthermore, given such a triple of points, there

is a unique binary cubic form, up to scaling, having this triple of points as its
roots. Since the total number of binary cubic forms over Fp is p4, it follows
that μ(Tp(111)) = 1

6 [(p + 1)p(p − 1)](p − 1)/p4, as given by the lemma.
Similarly, the number of unordered triples of points, one member of which

is in P
1
Fp

while the other two are Fp-conjugate in P
1
F

p2
, is given by 1

2(p +
1)(p2 −p). We thus have μ(Tp(12)) = 1

2 [(p +1)(p2 −p)](p −1)/p4. Also,
the number of unordered Fp-conjugate triples of distinct points in P

1
F

p3
is

(p3 − p)/3, and hence μ(Tp(3)) = 1
3 [(p3 − p)](p − 1)/p4.

Meanwhile, the number of pairs (x, y) of distinct points in P
1
Fp

is given by
(p + 1)p, so that the number of binary cubic forms over Fp having a double
root at some point x and a single root at another point y is [(p + 1)p](p − 1).
Thus μ(Tp(121)) = [(p + 1)p](p − 1)]/p4. Finally, the number of binary
cubic forms over Fp having a triple root in P

1
Fp

is (p + 1)(p − 1), yielding

μ(Tp(13)) = (p + 1)(p − 1)/p4 as desired. �

We next wish to determine the p-adic densities of the sets Up . Let Up(·)
denote the subset of elements f ∈ Tp(·) such that R(f ) is maximal at p. If
f is an element of Tp(111), Tp(12), or Tp(3), then R(f ) is clearly maximal
at p, as its discriminant is coprime to p. Thus Up(111) = Tp(111), Up(12) =
Tp(12), and Up(3) = Tp(3). If a binary cubic form f is in Tp(121) or Tp(13),
then it can clearly be brought into the form f (x, y) = ax3 + bx2y + cxy2 +
dy3 with a ≡ b ≡ 0 (mod p), namely, by sending the unique multiple root
of f in P

1
Fp

to the point (1,0) via a transformation in GL2(Z). Of all f ∈
Tp(121) or Tp(13) that have been rendered in such a form, a proportion of
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1/p actually satisfy the congruence a ≡ 0 (mod p2) of condition (ii). Thus
a proportion of (p − 1)/p of forms in Tp(121) and in Tp(13) correspond to
cubic rings maximal at p. We have proven:

Lemma 18 We have

μ
(

Up(111)
)= 1

6
(p − 1)2p(p + 1)/p4

μ
(

Up(12)
)= 1

2
(p − 1)2p(p + 1)/p4

μ
(

Up(3)
)= 1

3
(p − 1)2p(p + 1)/p4

μ
(

Up

(
121
))= (p − 1)2(p + 1)/p4

μ
(

Up

(
13))= (p − 1)2(p + 1)/p5.

Following [15] let Vp denote the set of elements f ∈ Up such that
(f,p) �= (13). Then it is clear from the above arguments that the elements
of Vp correspond to orders in étale cubic algebras over Q that are maximal
at p and in which p does not totally ramify. The set Vp plays an important
role in understanding the 3-torsion in the class groups of cubic fields (see
Sect. 8).

Using the fact that Up is simply the union of the Up(σ )’s, while Vp is the
union of the Up(σ )’s where σ �= (13), we obtain from Lemma 18:

Lemma 19 We have

μ(Up) = (p3 − 1
)(

p2 − 1
)
/p5

μ(Vp) = (p2 − 1
)2

/p4.

5 The number of binary cubic forms of bounded discriminant

Let VR denote the vector space of binary cubic forms over R. Then the action
of GL2(R) on VR has two nondegenerate orbits, namely the orbit V

(0)
R

con-

sisting of elements having positive discriminant, and V
(1)
R

consisting of those
having negative discriminant. In this section we wish to understand the num-
ber N(V

(i)
Z

;X) of irreducible GL2(Z)-orbits on V
(i)
Z

:= VZ ∩V
(i)
R

having ab-
solute discriminant less than X (i = 0,1), where we say that a GL2(Z)-orbit
on VZ is irreducible if it consists of binary cubic forms that are irreducible
over Q. In particular, we prove the following strengthening of Davenport’s
theorem on the number of GL2(Z)-equivalence classes of irreducible binary
cubic forms having bounded discriminant:
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Theorem 20 We have

N
(
V

(0)
Z

;X)= π2

72
· X + O

(
X5/6);

N
(
V

(1)
Z

;X)= π2

24
· X + O

(
X5/6).

In [13] and [14], Davenport had obtained the main terms of the above the-
orem with an error bound of O(X15/16).

5.1 Reduction theory

Define the usual subgroups K1,A+,N , and Λ of GL2(R) as follows:

K1 = {orthogonal transformations in GL2(R)};
A+ = {a(t) : t ∈ R+}, where a(t) =

(
t−1

t

)
;

N = {n(u) : u ∈ R
}
, where n(u) =

(
1
u 1

)
;

Λ =
{(

λ

λ

)}
where λ > 0.

It is well-known (see [23, Theorem 6.46]) that the natural product map
K1 × A+ × N → GL2(R) is an analytic diffeomorphism. In fact, for any
g ∈ GL2(R), there exist unique k ∈ K1, a = a(t) ∈ A+, n = n(u) ∈ N , and
λ ∈ Λ such that g = k a nλ; this is the Iwasawa decomposition of GL2(R).

Let F denote Gauss’s usual fundamental domain for GL2(Z)\GL2(R) in
GL2(R). Then F may be expressed in the form F = {nakλ : n ∈ N ′(a),

a ∈ A′, k ∈ K,λ ∈ Λ}, where

N ′(a) =
{(

1
n 1

)
: n ∈ ν(a)

}
,

A′ =
{(

t−1

t

)
: t ≥ 4

√
3/

√
2

}
,

Λ =
{(

λ

λ

)
: λ > 0

}
,

(15)

and K is as usual the (compact) real special orthogonal group SO2(R); here
ν(a) is the union of either one or two subintervals of [−1

2 , 1
2 ] depending only

on the value of a ∈ A′. Furthermore, if a is such that t ≥ 1, then ν(a) =
[−1

2 , 1
2 ]. (See, e.g., [28, Ch. 7, Th. 1].)
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For i ∈ {0,1}, let ni denote the cardinality of the stabilizer in GL2(R) of
any element v ∈ V

(i)
R

(by the correspondence of Theorems 9 and 12 over
R, we have n1 = AutR(R3) = 6 and n2 = AutR(R ⊕ C) = 2). Then for any
v ∈ V

(i)
R

, F v will be the union of ni fundamental domains for the action

of GL2(Z) on V
(i)
R

. Since this union is not necessarily disjoint, F v is best
viewed as a multiset, where the multiplicity of a point x in F v is given by the
cardinality of the set {g ∈ F |gv = x}. Evidently, this multiplicity is a number
between 1 and ni .

Even though the multiset F v is the union of ni fundamental domains for
the action of GL2(Z) on V

(i)
R

, not all elements in GL2(Z)\VZ will be repre-
sented in F v exactly ni times. In general, the number of times the GL2(Z)-
equivalence class of an element x ∈ VZ will occur in the multiset F v is given
by ni/m(x), where m(x) denotes the size of the stabilizer of x in GL2(Z).
Now the stabilizer in GL2(Z) of an irreducible element x ∈ VZ is the group
of ring automorphisms of the order corresponding to x under the Delone–
Faddeev correspondence (see Sect. 2), and is thus either trivial or C3. We
conclude that, for any v ∈ V

(i)
R

, the product ni ·N(V
(i)
Z

;X) is exactly equal to
the number of irreducible integer points in F v having absolute discriminant
less than X, with the slight caveat that the (relatively rare—see Lemma 22)
C3-points are to be counted with weight 1/3

Now the number of such integer points can be difficult to count in a single
such fundamental domain. The main technical obstacle is that the fundamen-
tal region F v is not bounded, but rather has a cusp going off to infinity which
in fact contains infinitely many integer points, including many irreducible
points. We simplify the counting of such points by “thickening” the cusp;
more precisely, we compute the number of points in the fundamental region
F v by averaging over lots of such fundamental domains, i.e., by averaging
over points v lying in a certain compact subset B of VR.

5.2 Estimates on reducibility

We first consider the reducible elements in the multiset

RX(v) := {w ∈ F v : |Disc(w)| < X
}
,

where v is any vector in a fixed compact subset B of VR. Note that if a binary
cubic form ax3 + bx2y + cxy2 + dy3 satisfies a = 0, then it is reducible over
Q, since y is a factor. The following lemma, proved in [13, Lem. 3] and [14,
Lem. 2], shows that for binary cubic forms in RX(v), reducibility with a �= 0
does not occur very often.

Lemma 21 Let v ∈ B be any point of nonzero discriminant, where B is any
fixed compact subset of VR containing only elements having discriminant



456 M. Bhargava et al.

greater than 1. Then the number of integral binary cubic forms ax3 +bx2y +
cxy2 + dy3 ∈ RX(v) that are reducible with a �= 0 is O(X3/4+ε), where the
implied constant depends only on B .

Proof For an element f (x, y) = ax3 +bx2y +cxy2 +dy3 ∈ RX(v), we have
f ∈ N ′A′KΛv where 0 < λ < X1/4, since Disc(λ ·v) = λ4Disc(v). It follows
that a = O(λ/t3) = O(X1/4), ab = O(λ2/t4) = O(X1/2), ac = O(λ2/t2) =
O(X1/2), ad = O(λ2) = O(X1/2), abc = O(λ3/t3) = O(X3/4), and abd =
O(λ3/t) = O(X3/4). In particular, the latter estimates clearly imply that the
total number of forms f ∈ RX(v) with a �= 0 and d = 0 is O(X3/4+ε).

Let us now assume a �= 0 and d �= 0. Then the above estimates show that
the total number of possibilities for the triple (a, b, d) is O(X3/4+ε). Suppose
the values a, b, d (d �= 0) are now fixed, and consider the possible number of
values of c such that the resulting form f (x, y) is reducible. For f (x, y) to
be reducible, it must have some linear factor rx + sy, where r, s ∈ Z are rela-
tively prime. Then r must be a factor of a, while s must be a factor of d; they
are thus both determined up to O(Xε) possibilities. Once r and s are deter-
mined, computing f (−s, r) and setting it equal to zero then uniquely deter-
mines c (if it is an integer at all) in terms of a, b, d, r, s. Thus the total number
of reducible forms f ∈ RX(v) with a �= 0 is O(X3/4+ε), as desired. �

We shall need the following lemma, which also follows from [13,
Lemma 2], bounding the number of integral points in RX(v) that have sta-
bilizer C3 in GL2(Z), when v has positive discriminant. No integral binary
cubic form having negative discriminant has stabilizer C3 in GL2(Z).

Lemma 22 Let v ∈ VR be any point of positive discriminant. Then the num-
ber of points in VZ ∩ RX(v) having stabilizer C3 in GL2(Z) is O(X3/4+ε),
where the implied constant is independent of v.

Proof The number of integral points in RX(v) having stabilizer C3 in
GL2(Z) is equal to the number of isomorphism classes of cubic rings hav-
ing automorphism group C3 and discriminant less than X. This number is
thus independent of v, and so it suffices to prove the lemma for any single v.

We choose v to be the binary cubic form x3 − 3xy2. The reason for this
choice is as follows. Every binary cubic form f (x, y) = ax3 +bx2y +cxy2 +
dy3 has a naturally associated binary quadratic form, namely, the “Hessian
covariant” Hf (x, y) = (b2 −3ac)x2 +(bc−9ad)xy+(c2 −3bd)y2. It is easy
to see that if a binary cubic form f is acted upon by an element γ ∈ SL2(Z),
then Hf is also acted upon by the same transformation. Now Hv(x, y) =
9(x2 + y2), and so F Hv consists of the usual reduced (positive-definite) bi-
nary quadratic forms A1x

2 +A2xy +A3y
2, where |A2| ≤ A1 ≤ A3. Thus F v

consists of binary cubic forms satisfying |bc − 9ad| ≤ b2 − 3ac ≤ c2 − 3bd .
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Now if a binary cubic form f in F v has a nontrivial stabilizing element
γ of order 3 in SL2(Z), then γ will also stabilize its Hessian Hf . But the
only reduced binary quadratic form, up to multiplication by scalars, having a
nontrivial stabilizing element of order 3 is x2 + xy + y2. Therefore, any such
C3-type binary cubic form f (x, y) = ax3 + bx2y + cxy2 + dy3 in F v must
satisfy

b2 − 3ac = bc − 9ad = c2 − 3bd.

From this we see that, if a, b, d are fixed, then there is at most one solution
for c. As in the proof of Lemma 21, the total number of possibilities for the
triple (a, b, d) in F v is O(X3/4+ε), and the lemma follows. �

In fact, by refining the proof of Lemma 22, it can be shown that the number
of C3-points in RX(v) of discriminant less than X is asymptotic to cX1/2,
where c = π

√
3/18; see [8].

Thus, as far as Theorem 20 is concerned, the C3-points in VZ are negligible
in number and are absorbed in the error term.

5.3 Averaging

Let dv denote the usual Euclidean measure on VR (normalized so that VZ has
co-volume 1) and let dg = t−2dnd×t dk d×λ be the Haar measure of GL2(R)

obtained from its Iwasawa decomposition (see the beginning of Sect. 5.1),
where dk is normalized to have measure 1 on SO2(R). We start with a propo-
sition implying that |Disc(v)|−1dv is a GL2(R)-invariant measure on VR.

Proposition 23 For i = 0 or 1, let f ∈ C0(V
(i)
R

) and let vi be any element

of V
(i)
R

. Then

∫

g∈GL2(R)

f (g · vi) dg = 1

2π

∫

v∈GL2(R)·vi

f (v)
∣∣Disc(v)

∣∣−1
dv

= ni

2π

∫

v∈V
(i)
R

f (v)
∣∣Disc(v)

∣∣−1
dv.

The first equality in Proposition 23 is simply a Jacobian calculation for
the change of variable for the map which sends g ∈ GL2(R) to v = g · vi

in VR, where the coordinates for g are (k, t, n, λ), while for v they are the
usual Euclidean coordinates (a, b, c, d) with dv = da db dc dd . The second
follows from the fact that the multiset GL2(R) · vi is an ni-fold cover of the
set V

(i)
R

.

For a constant C ≥ 1, let B = B(C) = {w = (a, b, c, d) ∈ VR : 3a2 + b2 +
c2 + 3d2 ≤ C, |Disc(w)| ≥ 1}; then one easily checks that B is K-invariant.
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Let V irr
Z

denote the subset of irreducible points of VZ. It then follows from the
discussion in Sect. 5.1 that

N
(
V

(i)
Z

;X)=
∫
v∈B∩V

(i)
R

#{x ∈ F v ∩ V irr
Z

: |Disc(x)| < X}|Disc(v)|−1dv

ni · ∫
v∈B∩V

(i)
R

|Disc(v)|−1dv
,

(16)
where points x ∈ F v ∩ V irr

Z
whose stabilizer in GL2(Z) is C3 are counted

with multiplicity 1/3. The denominator of the latter expression is, by con-
struction, a finite absolute constant greater than zero. We have chosen the
measure |Disc(v)|−1 dv because it is a GL2(R)-invariant measure.

More generally, for any GL2(Z)-invariant subset S ⊂ V
(i)
Z

, let N(S;X)

denote the number of irreducible GL2(Z)-orbits on S having discriminant less
than X. Let Sirr denote the subset of irreducible points of S. Then N(S;X)

can be expressed as

N(S;X) =
∫
v∈B∩V

(i)
R

#{x ∈ F v ∩ Sirr : |Disc(x)| < X}|Disc(v)|−1dv

ni · ∫
v∈B∩V

(i)
R

|Disc(v)|−1dv
, (17)

where, as before, points x ∈ F v ∩ Sirr whose stabilizer in GL2(Z) is C3 are
counted with multiplicity 1/3. We shall use this as a definition of N(S;X) for
any S ⊂ VZ, even if S is not GL2(Z)-invariant. Note that for disjoint S1, S2 ⊂
VZ, we have N(S1 ∪ S2;X) = N(S1;X) + N(S2;X).

Fix vi ∈ V
(i)
R

and maximal subsets H(i) ⊂ GL2(R) such that H(i) · vi =
B ∩ V

(i)
R

. Thus, the multiset H(i) · vi is an ni-fold cover of B ∩ V
(i)
R

. The
numerator of the right hand side of (17) is equal to

∑

x∈Sirr

|Disc(x)|<X

∫

v∈B∩V
(i)
R

#{g ∈ F : x = gv}|Disc(v)|−1dv

= 2π

ni

∑

x∈Sirr

|Disc(x)|<X

∫

h∈H(i)

#{g ∈ F : x = ghvi}dh, (18)

where the equality in (18) follows from Proposition 23. The right hand side
of (18) is equal to

2π

ni

∑

x∈Sirr

|Disc(x)|<X

∫

g∈F
#{h ∈ H(i) : x = ghvi}dg

= 2π

ni

∫

g∈F
#{x ∈ Sirr ∩ gH(i)vi : |Disc(x)| < X}dg. (19)
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Therefore, we have

N(S;X)

= 1

Mi

∫

g∈F
#
{
x ∈ Sirr ∩ gB ∩ V

(i)
R

: |Disc(x)| < X
}
dg (20)

= 1

Mi

∫

g∈N ′(a)A′ΛK

#
{
x ∈ Sirr ∩ n

(
t−1

t

)
λkB ∩ V

(i)
R

: |Disc(x)| < X
}

× t−2dnd×t d×λdk. (21)

where

Mi = ni

2π
·
∫

v∈B∩V
(i)
R

|Disc(v)|−1dv. (22)

Let us write B(n, t, λ,X) = n
(

t−1

t

)
λB ∩ {v ∈ V

(i)
R

: |Disc(v)| < X}. As
KB = B and

∫
K

dk = 1, we have

N(S;X) = 1

Mi

∫

g∈N ′(a)A′Λ
#
{
x ∈ Sirr ∩B(n, t, λ,X)

}
t−2dnd×t d×λ. (23)

To estimate the number of lattice points in B(n, t, λ,X), we have the fol-
lowing elementary proposition from the geometry-of-numbers. The form we
state is essentially due to Davenport [12]. To state the proposition, we require
the following simple definitions. A multiset R ⊂ R

n is said to be measurable
if Rk is measurable for all k, where Rk denotes the set of those points in R
having a fixed multiplicity k. Given a measurable multiset R ⊂ R

n, we de-
fine its volume in the natural way, that is, Vol(R) =∑

k k · Vol(Rk), where
Vol(Rk) denotes the usual Euclidean volume of Rk .

Proposition 24 Let R be a bounded, semi-algebraic multiset in R
n having

maximum multiplicity m, and which is defined by at most k polynomial in-
equalities each having degree at most �. Let R′ denote the image of R under
any (upper or lower) triangular, unipotent transformation of R

n. Then the
number of integer lattice points (counted with multiplicity) contained in the
region R′ is

Vol(R) + O
(
max

{
Vol(R̄),1

})
,

where Vol(R̄) denotes the greatest d-dimensional volume of any projection
of R onto a coordinate subspace obtained by equating n − d coordinates to
zero, where d takes all values from 1 to n − 1. The implied constant in the
second summand depends only on n, m, k, and �.
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Although Davenport states the above lemma only for compact semi-
algebraic sets R ⊂ R

n, his proof adapts without essential change to the more
general case of a bounded semi-algebraic multiset R ⊂ R

n, with the same
estimate applying also to any image R′ of R under a unipotent triangular
transformation.

We now have the following lemma on the number of lattice points in
B(n, t, λ,X) with a �= 0:

Lemma 25 The number of lattice points (a, b, c, d) in B(n, t, λ,X) with
a �= 0 is

{
0 if Cλ

t3 < 1;
Vol(B(n, t, λ,X)) + O(max{C3t3λ3,1}) otherwise.

Proof From our description of B , it follows that the x3-coefficient of any
binary cubic form in B is bounded by C. Thus, if Cλ/t3 < 1, then a = 0 is
the only possibility for an integral binary cubic form ax3 +bx2y + cy2 +dy3

in B(n, t, λ,X). If Cλ/t3 ≥ 1, then λ and t are positive numbers bounded
from below by (

4
√

3/
√

2)3/C and 4
√

3/
√

2 respectively. In this case, one sees
that the projection of B(n, t, λ,X) onto a = 0 has volume O(C3t3λ3), while
all other projections are also bounded by a constant times this. The lemma
now follows from Proposition 24. �

In (23), observe that the integrand will be nonzero only if t3 ≤ Cλ and
λ ≤ X1/4, since B consists only of points having discriminant at least 1. Thus
we may write, up to an error of O(X3/4+ε) due to Lemma 21, that

N
(
V

(i)
R

;X)= 1

Mi

∫ X1/4

λ=(
4√3/

√
2)3/C

∫ C1/3λ1/3

t= 4√3/
√

2

∫

N ′(t)

(
Vol
(
B(n, t, λ,X)

)

+ O
(
max

{
C3t3λ3,1

}))
t−2dnd×t d×λ. (24)

The integral of the first summand is

1

2πMi

∫

v∈B∩V
(i)
R

Vol
(

RX(v)
)|Disc(v)|−1dv

− 1

Mi

∫ X1/4

λ=(
4√3/

√
2)3/C

∫ ∞

C1/3λ1/3

∫

N ′(t)
Vol
(
B(n, t, λ,X)

)
t−2dnd×td×λ.

(25)

Since Vol(RX(v)) does not depend on the choice of v ∈ V
(i)
R

(by Proposi-
tion 23), the first term of (25) is simply Vol(RX(v))/ni ; meanwhile, the in-
tegral of the second term is easily evaluated to be O(C10/3X5/6/Mi(C)),
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since Vol(B(n, t, λ,X)) � C4λ4. On the other hand, since C3t3λ3 � 1 one
immediately computes the integral of the second summand in (24) to be
O(C10/3X5/6/Mi(C)). We thus obtain, for any v ∈ V

(i)
R

, that

N
(
V

(i)
Z

;X)= 1

ni

· Vol
(

RX(v)
)+ O

(
C10/3X5/6/Mi(C)

)
. (26)

To prove Theorem 20, it remains to compute the fundamental volume
Vol(RX(v)) for v ∈ V

(i)
R

.

5.4 Computation of the fundamental volume

Let GL±1
2 (R) denote the subgroup of elements in GL2(R) having determinant

±1. It is known [23] (or readily computed using Gauss’s explicit fundamental
domain for SL2(Z)\SL2(R)) that Vol(GL±1

2 (Z)\GL±1
2 (R)) = ζ(2)/π , where

this volume is computed with respect to the measure dh obtained from the
Iwasawa decomposition of GL±1

2 (R). Then we obtain using Proposition 23
that

1

ni

· Vol
(

RX(vi)
)= 2π

ni

∫ X1/4

0
λ4d×λ

∫

GL2(Z)\GL±1
2 (R)

dh

= 2π

ni

· X

4
· ζ(2)

π
= π2

12ni

X.

This proves Theorem 20, and thus the main term of Theorem 5. Together
with the Delone-Faddeev correspondence, this also proves the main term of
Theorem 6.

5.5 Congruence conditions

We may prove a version of Theorem 20 for a set in V
(i)
Z

defined by a finite
number of congruence conditions.

Theorem 26 Suppose S is a subset of V
(i)
Z

defined by finitely many congru-
ence conditions modulo prime powers. Then we have

lim
X→∞

N(S ∩ V
(i)
Z

;X)

X
= π2

12ni

∏

p

μp(S), (27)

where μp(S) denotes the p-adic density of S in VZ, and ni = 6 or 2 for i = 0
or 1, respectively.
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To obtain Theorem 26, suppose S ⊂ V
(i)
Z

is defined by congruence condi-
tions modulo some integer m. Then S may be viewed as the intersection of
V

(i)
Z

with the union U of (say) k translates L1, . . . ,Lk of the lattice m ·VZ. For
each such lattice translate Lj , we may use formula (23) and the discussion fol-

lowing that formula to compute N(Lj ∩ V
(i)
Z

;X), where each d-dimensional
volume is scaled by a factor of 1/md to reflect the fact that our new lattice
has been scaled by a factor of m. With these scalings, the volumes of the d-
dimensional projections of B(n, t, λ,X), for d = 3, 2, and 1 are seen to be at
most O(m−3C3t3λ3), O(m−2C2t4λ2), and O(m−1Ct3λ), respectively. Let
a ≥ 1 be the smallest nonzero first coordinate of any point in Lj . Then, anal-
ogous to Lemma 25, the number of lattice points in B(n, t, λ,X) ∩ Lj with
first coordinate nonzero is

⎧
⎨

⎩
0 if Cλ

t3 < a;
Vol(B(n,t,λ,X))

m4 + O(C3t3λ3

m3 + C2t4λ2

m2 + Ct3λ
m

+ 1) otherwise.
(28)

Carrying out the integral for N(Lj ;X) as in (24), we obtain, up to an error of
O(X3/4+ε) corresponding to the reducible points in Lemma 21, that

N
(
Lj ∩ V

(i)
Z

;X)

= Vol(RX(v))

m4
+ O

(
1

Mi(C)

[
C10/3X5/6

a1/3m3
+ C8/3X2/3

a2/3m2

+ C4/3X1/3

a1/3m
+ logX

])
. (29)

Assuming m = O(X1/6), this gives (up to the O(X3/4+ε) reducible points of
Lemma 21):

N(Lj ;X) = m−4Vol
(

RX(v)
)+ O

(
m−3X5/6), (30)

where the implied constant is again independent of m. Summing over j , we
thus obtain

N(S;X) = km−4Vol
(

RX(v)
)+ O

(
km−3X5/6)+ O

(
X3/4). (31)

Finally, the identities km−4 =∏
p μp(S) and Vol(RX(v)) = π2/(12ni) · X

yield (27).
Note that (29)–(31) also give some information on the rate of convergence

of (27) for various S, which will indeed be of use when studying second order
terms.
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6 Slicing and second order terms

In Sect. 5, we proved that N(V
(i)
Z

;X) = c
(i)
1 X + O(X5/6), where c

(0)
1 =

π2/72 and c
(1)
1 = π2/24. Let c

(0)
2 = √

3r/30 and c
(1)
2 = r/10 where r =

ζ(2/3)Γ (1/3)(2π)1/3

Γ (2/3)
. In this section, we prove that

N
(
V

(i)
Z

;X)= c
(i)
1 X + c

(i)
2 X5/6 + O

(
X3/4),

thereby proving Theorems 5 and 6.

6.1 Proofs of Theorems 5 and 6

In (20) of the previous section (with S = V
(i)
Z

), we obtained a formula for

the number N(V
(i)
Z

;X) in terms of an integral over a chosen fundamental
domain F for the left action of GL2(Z) on GL2(R). Evaluating this integral
required us to evaluate the number of integral points in B(n, t, λ,X) for vari-
ous n, t , λ, X. Using Proposition 24, we concluded that the number of integral
points in B(n, t, λ,X) is equal to the volume of B(n, t, λ,X) with an error of
O(t3λ3).

In this section, we count points in dyadic ranges of the discriminant. Let
B(n, t, λ,X/2,X) be the subset of B(n, t, λ,X) that contains points hav-
ing discriminant greater than X/2 in absolute value. We again estimate the
number of integer points in B(n, t, λ,X/2,X) to be equal to its volume,
again with an error of O(t3λ3). To obtain a more precise count for the num-
ber of lattice points in B(n, t, λ,X/2,X) when t is large, we slice the set
B(n, t, λ,X/2,X) by the coefficient of x3. More precisely, for a ∈ Z, let
Ba(n, t, λ,X/2,X) denote the set of binary cubic forms in B(n, t, λ,X/2,X)

whose x3-coefficient is equal to a. Then we have:

#
{
x ∈ V irr

Z
∩ B(n, t, λ,X/2,X)

}=
∑

a∈Z
a �=0

#
{
x ∈ V irr

Z
∩ Ba(n, t, λ,X/2,X)

}
.

(32)
We then again use Proposition 24 to estimate the right hand side of (32). We
shall slice the set B(n, t, λ,X/2,X) when t is “large”. We separate the large
t from the small as follows.

Let Ψ be a smooth function on R≥0 such that Ψ (x) = 1 for x ≤ 2 and
Ψ (x) = 0 for x ≥ 3. Let Ψ0 denote the function 1 − Ψ . Let N(V

(i)
Z

;X/2,X)

denote the number of GL2(Z)-orbits on V
(i),irr
Z

having discriminant between
X/2 and X in absolute value. Then for any κ > 0, we have just as in (23) that
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N
(
V

(i)
Z

;X/2,X
)

= 1

Mi

∫

N ′(a)A′Λ
Ψ

(
tκ

λ1/3

)
#
{
x ∈ V

(i),irr
Z

∩ B(n, t, λ,X/2,X)
}

× t−2dnd×t d×λ

+ 1

Mi

∫

N ′(a)A′Λ
Ψ0

(
tκ

λ1/3

)
#
{
x ∈ V

(i),irr
Z

∩ B(n, t, λ,X/2,X)
}

× t−2dnd×t d×λ. (33)

Note that the first summand of the right hand side of (33) is non-zero only
when t < 3λ1/3/κ , while the second summand is non-zero only when t >

2λ1/3/κ . We will choose κ later to minimize our error term. For now, we
merely insist limX→∞ κ = ∞ and κ < X3/4.

Let D0 be a constant that bounds the discriminant of every point in B .
Since the absolute value of the discriminant of every point in B is bounded
below by 1 and above by D0, we see that B(n, t, λ,X/2,X) is empty unless
( X
D0

)1/4 < λ < X1/4. Also, note that Ψ ( tκ

λ1/3 ) vanishes whenever λ < 27t3κ3.
Thus, by Proposition 24, we see that the first summand of the right hand side
of (33) is

1

Mi

∫ X1/4

λ=( X
D0

)1/4

∫ 3λ1/3/κ

t= 4√3/
√

2

∫

N ′(t)
Ψ

(
tκ

λ1/3

)(
Vol
(
B(n, t, λ,X/2,X)

)

+ O
(
max

{
t3λ3,1

}))
t−2dnd×t d×λ. (34)

The integral of the error term in (34) is easily seen to be

O

(∫ X1/4

( X
D0

)1/4

∫ λ1/3/κ

t= 4√3/
√

2
λ3t d×t d×λ

)
= O

(
X5/6

κ

)
.

Therefore, the first summand of the right hand side of (33) is equal to

1

Mi

∫ X1/4

λ=( X
D0

)1/4

∫ ∞

t= 4√3/
√

2

∫

N ′(t)
Ψ

(
tκ

λ1/3

)
λ4

× Vol
(
B
(
X/
(
2λ4),X/λ4))t−2dnd×t d×λ + O

(
X5/6

κ

)
,

(35)

where B(d1, d2) denotes the set of all points in B with discriminant between
d1 and d2.
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To evaluate the second summand on the right hand side of (33), we break
up the integrand into a sum over points with fixed x3-coefficient. Indeed, we
see that it is equal to

1

Mi

∑

a∈Z
a �=0

∫

g∈F
Ψ0

(
tκ

λ1/3

)
#
{
x ∈ V

(i),irr
Z

∩ Ba(n, t, λ,X/2,X)
}
dg. (36)

Since B is K-invariant, the number of points in Ba(n, t, λ,X/2,X) is equal to
the number of points in B−a(n, t, λ,X/2,X). Note that the integrand vanishes
for a > O(κ3) where the implied constant depends only on B . We again use
Proposition 24 to see that (36) is equal to

2

Mi

O(κ3)∑

a=1

∫ X1/4

λ=( X
D0

)1/4

∫ ∞

t= 4√3/
√

2

∫

N ′(t)
Ψ0

(
tκ

λ1/3

)(
Vol
(
Ba(n, t, λ,X/2,X)

)

+ O
(
max

{
λ2t4,1

}))
t−2dnd×td×λ. (37)

Again, we can estimate the integral of the error in (37) to be on the order of

O(κ3)∑

a=1

∫ X1/4

λ=( X
D0

)1/4

∫ λ1/3/a1/3

t= 4√3/
√

2
λ2t4t−2d×t d×λ

= X2/3
O(κ3)∑

a=1

O
(
a−2/3)= O

(
κX2/3). (38)

We assume from now on that κ ≤ 1
3X1/12. For sufficiently large values of X, it

follows that if Ψ0(tκ/λ1/3) is nonzero, then t > 2λ1/3

κ
> 1 since λ > ( X

D0
)1/4.

Thus, the integral over N ′ in (37) always goes between −1/2 and 1/2. The
integral of the main term in (37) is now computed to be

2

Mi

∞∑

a=1

∫ X1/4

λ=( X
D0

)1/4

∫

t>0
Ψ0

(
tκ

λ1/3

)(
Vol
(
Ba(0, t, λ,X/2,X)

))
t−2d×td×λ

= 2

Mi

∞∑

a=1

∫ X1/4

λ=( X
D0

)1/4

∫

t>0
Ψ0

(
tκ

λ1/3

)
λ3t3

× Vol
(
Bat3

λ

(
X/
(
2λ4),X/λ4))t−2d×td×λ, (39)

where Ba(d1, d2) denotes the set of forms in B having x3-coordinate equal to
a and discriminant between d1 and d2 in absolute value. We change variables



466 M. Bhargava et al.

to compute the right hand side of (39); let u = t3a/λ so that d×u = 3d×t .
The main term in (37) is therefore equal to

2

3Mi

∞∑

a=1

∫ X1/4

λ=( X
D0

)1/4

∫

u>0
Ψ0

(
u1/3κ

a1/3

)
λ10/3u1/3

a1/3

× Vol
(
Bu

(
X/
(
2λ4),X/λ4))d×ud×λ. (40)

To compute the expression above, we first sum over a. Let Φ(z) be equal

to Ψ0(u
1/3/z1/3). For a function F defined on the positive reals, let F̃ (s)

denote the Mellin transforms of F . Since the first derivative Ψ ′
0 is smooth

and Schwartz class, the Mellin transform Ψ̃ ′
0(s) is holomorphic, entire, and

rapidly decaying on any vertical line σ + it as |t | → ∞. Moreover, by stan-
dard properties of the Mellin transform, we have the equality Ψ̃ ′

0(s + 1) =
sΨ̃0(s). Thus the functions Ψ̃0(s) and Φ̃(s) are entire except for a possi-
ble simple pole at 0 and rapidly decreasing on vertical lines. Moreover, the
residue at 0 of Ψ̃0(s) is equal to

Ψ̃ ′
0(1) =

∫ ∞

0
Ψ ′

0(y)dy = 1.

Therefore,

∞∑

a=1

a− 1
3 Ψ0

(
u1/3κ

a1/3

)

=
∫

Re s=2
ζ(s + 1/3)Φ̃(s)κ3sds

= 3
∫

Re s=2
ζ(s + 1/3)Ψ̃0(−3s)

(
κ3u

)s
ds

= ζ(1/3) + 3Ψ̃0(−2)
(
κ3u

)2/3 + OM

(
min

{(
κ3u

)−M
,1
})

(41)

for any integer M , where we obtain the last equality by moving the line of
integration to Re s = −M and computing the residues at s = 0 and s = 2

3 .
Therefore, (40) is equal to

2

3Mi

∫ X1/4

λ=( X
D0

)1/4

∫

u>0

[
ζ(1/3) + 3Ψ̃0(−2)

(
κ3u

)2/3]

× λ10/3u1/3Vol
(
Bu

(
X/
(
2λ4),X/λ4))d×ud×λ, (42)
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with an error of

O

(∫ X1/4

λ=( X
D0

)1/4

∫

u>0
min

{(
κ3u

)−1
,1
}
λ10/3u1/3

× Vol
(
Bu

(
X/
(
2λ4),X/λ4))d×ud×λ

)
. (43)

We shall eventually choose κ to be equal to 1
3X1/12. Therefore, (43) can be

bounded above by

O

(∫ X1/4

λ=( X
D0

)1/4

∫ κ−3

u=0
λ10/3u1/3d×ud×λ

)
= O

(
X5/6

κ

)
. (44)

We now evaluate the integral of the two summands in the integrand of (42)
separately. Evaluating the integral of the second summand, we obtain

2

Mi

∫ X1/4

λ=( X
D0

)1/4

∫

u>0
Ψ̃0(−2)κ2λ10/3uVol

(
Bu

(
X/
(
2λ4),X/λ4))d×ud×λ

= 1

Mi

∫ X1/4

λ=( X
D0

)1/4
Ψ̃0(−2)κ2λ10/3Vol

(
B
(
X/
(
2λ4),X/λ4))d×λ,

which is simply equal to

1

Mi

∫ X1/4

λ=( X
D0

)1/4

∫ ∞

t=0
Ψ0

(
tκ

λ1/3

)
λ

10
3 + 2

3 Vol
(
B
(
X/
(
2λ4),X/λ4))t−2d×td×λ.

(45)
Adding (45) to the main term of (35) gives us the following.

1

Mi

∫ X1/4

λ=( X
D0

)1/4

∫ ∞

t= 4√3/
√

2

∫

N ′(t)

(
Ψ

(
tκ

λ1/3

)
+ Ψ0

(
tκ

λ1/3

))

× λ4Vol
(
B
(
X/
(
2λ4),X/λ4))t−2dnd×td×λ

= 1

Mi

∫ X1/4

λ=( X
D0

)1/4

∫ ∞

t= 4√3/
√

2

∫

N ′(t)

(
Vol
(
B(n, t, λ,X/2,X)

))
t−2dnd×td×λ,

which can be evaluated, as in Sect. 5, to be equal to c
(i)
1 X/2.
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Now the integral of the first summand in (42) is

2

3Mi

∫ X1/4

λ=( X
D0

)1/4

∫

u>0
ζ(1/3)λ10/3u1/3Vol

(
Bu

(
X/
(
2λ4),X/λ4))d×ud×λ.

(46)
Let a(v), b(v), c(v), and d(v) denote the four coordinates of points v ∈ B .
Then (46) is equal to

1

3Mi

ζ(1/3)

∫ X1/4

λ=( X
D0

)1/4

∫

B(X/(2λ4),X/λ4)

λ10/3a(v)1/3 dv

a(v)
d×λ

= 1

3Mi

ζ(1/3)

∫ X1/4

λ=( X
D0

)1/4

∫

B(X/(2λ4),X/λ4)

λ10/3a(v)−2/3dvd×λ.

Carrying out the integral over λ, we see that (46) is equal to

1

10Mi

ζ(1/3)
(
1 − 2−5/6)X5/6

∫

B

|Disc(v)|−5/6a(v)−2/3dv. (47)

Recalling the definition of Mi in (22), we then see that (46) is equal to

2π

10ni

ζ(1/3)
(
1 − 2−5/6)X5/6

∫
B

|Disc(v)|−5/6a(v)−2/3dv∫
B

|Disc(v)|−1dv
.

We now evaluate the ratio

∫
B

|Disc(v)|−5/6a(v)−2/3dv∫
B

|Disc(v)|−1dv
. (48)

The ratio in (48) is independent of the K-invariant set B . Thus, for any
f ∈ V

(i)
R

, (48) is equal to

|Disc(f )|1/6
∫

K

a(γ · f )−2/3dγ

= |Disc(f )|1/6
∫

K

f
(
(1,0) · γ )−2/3

dγ

= |Disc(f )|
2π

1/6 ∫ 2π

0
f
(
cos(θ), sin(θ)

)−2/3
dθ.
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We now choose convenient points f ∈ V
(i)
R

for i = 0,1. For i = 1 we choose
f (x, y) = x3 + xy2 which has discriminant −4. Then

|Disc(f )|
2π

1/6 ∫ 2π

0
f
(
cos(θ), sin(θ)

)−2/3
dθ

= 21/3

2π

∫ 2π

0
cos(θ)−2/3dθ = 24/3

π

∫ π/2

0
cos(θ)−2/3dθ.

The substitution y = cos(θ) yields

24/3

π

∫ π/2

0
cos(θ)−2/3dθ = 24/3

π

∫ 1

0
y−2/3(1 − y2)−1/2dy.

The substitution z = y2 then gives

24/3

π

∫ 1

0
y−2/3(1 − y2)−1/2

dy = 21/3

π

∫ 1

0
z−5/6(1 − z)−1/2dz

= 21/3Γ (1/6)Γ (1/2)

πΓ (2/3)
,

where the final equality follows from evaluating the beta function B(1
2 , 1

6).
Using the standard identities

Γ (1/6) = 25/33−1/2π3/2/Γ (2/3)2,

Γ (2/3) = 3−1/22π/Γ (1/3),

ζ(1/3) = (2π)−2/3Γ (2/3)ζ(2/3),

(49)

we finally see that (47) is equal to (1 − 2−5/6)c
(1)
2 X5/6.

Similarly, for i = 0 we choose the form f (x, y) = x3 −3xy2 ∈ V
(0)
R

. Using
the identity cos(3θ) = cos3(θ) − 3 cos(θ) sin2(θ) we see, exactly as above,
that (47) is equal to (1 − 2−5/6)c

(0)
2 X5/6. Therefore,

N
(
V

(i)
Z

;X/2,X
)= c

(i)
1 X/2 + c

(i)
2

(
1 − 2−5/6)X5/6 + O

(
X2/3κ

)

+ O
(
X5/6/κ

)
,

and choosing κ to be equal to 1
3X1/12 proves Theorems 5 and 6.

6.2 Congruence conditions

Let S ⊂ V
(i)
Z

be a GL2(Z)-invariant set. We define N(S;X/2,X) to be the
number of irreducible GL2(Z)-orbits on S having discriminant between X/2
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and X in absolute value. Identically as in (33), we then have

N(S;X/2,X)

= 1

Mi

∫

N ′(a)A′Λ
Ψ

(
tκ

λ1/3

)
#
{
x ∈ Sirr ∩ B(n, t, λ,X/2,X)

}

× t−2dnd×t d×λ

+ 1

Mi

∫

N ′(a)A′Λ
Ψ0

(
tκ

λ1/3

)
#
{
x ∈ Sirr ∩ B(n, t, λ,X/2,X)

}

× t−2dnd×t d×λ.

We use this as a definition of N(S;X/2,X) even when the set S ⊂ V
(i)
Z

is not
GL2(Z)-invariant.

Suppose L ⊂ VZ is any sublattice of index T in VZ that is defined by con-
gruence conditions modulo m, so that mVZ ⊂ L. In what follows, we compute
N(L ∩ V

(i)
Z

;X/2,X) and N(L ∩ V
(i)
Z

;X), for i = 0,1. The computation is

very similar to that of N(V
(i)
Z

;X/2,X) and N(V
(i)
Z

;X), and we highlight the
differences that occur.

We have

N
(

L ∩ V
(i)
Z

;X/2,X
)

= 1

Mi

∫

N ′(a)A′Λ
Ψ

(
tκ

λ1/3

)
#
{
x ∈ L ∩ V

(i),irr
Z

∩ B(n, t, λ,X/2,X)
}

× t−2dnd×t d×λ

+ 1

Mi

∫

N ′(a)A′Λ
Ψ0

(
tκ

λ1/3

)
#
{
x ∈ L ∩ V

(i),irr
Z

∩ B(n, t, λ,X/2,X)
}

× t−2dnd×t d×λ.

(50)

Analogously to (28), we see that the first summand of the right hand side
of (50) is equal to

1

T Mi

∫ X1/4

λ=( X
D0

)1/4

∫ ∞

t= 4√3/
√

2

∫

N ′(t)
Ψ

(
tκ

λ1/3

)
λ4Vol

(
B
(
X/
(
2λ4),X/λ4))

× t−2dnd×td×λ

+ m4

T Mi

∫ X1/4

λ=( X
D0

)1/4

∫ ∞

t= 4√3/
√

2

∫

N ′(t)
Ψ

(
tκ

λ1/3

)
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× O

(
t3λ3

m3
+ t4λ2

m2
+ t3λ

m
+ 1

)
t−2dnd×td×λ.

We evaluate the second term above to be

O

(
mX5/6

T κ
+ m2X2/3

T κ2
+ m2X1/3

T κ
+ m4

T

)
. (51)

As in (36), we see that the second summand of the right hand side of (50) is
equal to

1

Mi

∑

a∈Z
a �=0

∫

F
Ψ0

(
tκ

λ1/3

)
#
{
x ∈ Lirr ∩ V

(i)
Z

∩ Ba(n, t, λ,X/2,X)
}
dg. (52)

We write T = T1T2, where the x3-coefficient of every element in L is a
multiple of T1 and the index of La in Va is equal to T2; here La (resp. Va)
denotes the set of all forms in L (resp. VZ) whose x3-coefficient is equal to a.
As in (36)–(40), we estimate (52) to be

2

3T2Mi

∞∑

a=1
T1|a

∫ X1/4

λ=( X
D0

)1/4

∫

u>0
Ψ0

(
u1/3κ

a1/3

)
λ10/3u1/3

a1/3

× Vol
(
Bu

(
X/
(
2λ4),X/λ4))d×ud×λ

+
O(κ3)∑

a=1
T1|a

∫ X1/4

λ=( X
D0

)1/4

∫ λ1/3/a1/3

t=λ1/3/κ

m3

T2
· O
(

λ2t4

m2
+ λt2

m
+ 1

)
t−2d×t d×λ.

The error term is easily integrated to give

O

(
mκX2/3

T
+ m2X1/4κ

T
+ m3X1/4

T

)
. (53)

Analogously to the computations in (41) and (42), we have

∞∑

a=1
T1|a

a− 1
3 Ψ0

(
u1/3κ

a1/3

)
= T

−1/3
1

∫

Re s=2
ζ(s + 1/3)Φ̃(s)

(
T

−1/3
1 κ

)3s
ds

= 3T
−1/3
1

∫

Re s=2
ζ(s + 1/3)Ψ̃0(−3s)

((
T

−1/3
1 κ

)3
u
)s

ds

= T
−1/3
1 ζ(1/3) + 3Ψ̃0(−2)T −1

1

(
κ3u

)2/3
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+ OM

(
T

−1/3
1 min

{(
T −1

1 κ3u
)−M

,1
})

for any integer M . Identically as in (44), the error coming from the term
OM(T

−1/3
1 min{(T −1

1 κ3u)−M,1}) is equal to O(X5/6/(κT2)). The total error
is thus

O

(
mκX2/3

T
+ m2X1/4κ

T
+ m3X1/4

T
+ mX5/6

T κ
+ m2X2/3

T κ2
+ m2X1/3

T κ
+ m4

T

)
.

We will only be interested in the range where m ≤ X1/4. In this range, we
optimize the above by taking κ = X1/12 to get an error of

O

(
mX3/4

T
+ m2X1/2

T
+ m3X1/4

T

)
= O

(
mX3/4

T

)
.

We thus have the following theorem:

Theorem 27 Let L ⊂ VZ be a sublattice of index T in VZ, containing mVZ.
Write T = T1T2, where the x3-coefficient of each element in L is a multiple
of T1 and the corresponding index of La in Va is equal to T2. Assume further
that m4 ≤ X. Then

N
(

L ∩ V
(i)
Z

;X/2,X
)= c

(i)
1

T

X

2
+ (1 − 2−5/6) c

(i)
2

T
1/3
1 T2

X5/6 + O

(
m

T
X3/4

)
.

(54)

Summing over dyadic ranges of the discriminant, we also then obtain

N
(

L ∩ V
(i)
Z

;X)= c
(i)
1

T
X + c

(i)
2

T
1/3
1 T2

X5/6 + O

(
m

T
X3/4

)
. (55)

Remark 3 Note that our proof shows that the analogue of Theorem 27 also

holds for translates of the lattice L, although the constant
c
(i)
2

T
1/3
1 T2

would get

replaced with something rather more complicated. However, the error term
would remain the same.

7 p-Adic densities for the second term

Let p be a fixed prime and σ be the splitting type (f,p) at p of an integral bi-
nary cubic form f . The methods of the previous section allow us to count the
asymptotic number of GL2(Z)-orbits on Up(σ ) having bounded discriminant.
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More precisely, let us define μ1(σ,p), μ2(σ,p), μ1(p), and μ2(p) so that

N
(

Up(σ ) ∩ V
(i)
Z

;X)= μ1(σ,p)c
(i)
1 X + μ2(σ,p)c

(i)
2 X5/6 + Oε

(
X3/4+ε

)
,

N(Up;X) = μ1(p)c
(i)
1 X + μ2(p)c

(i)
2 X5/6 + Oε

(
X3/4+ε

)
.

We similarly define μ′
1(p) and μ′

2(p) so that

N(Vp;X) = μ′
1(p)c

(i)
1 X + μ′

2(p)c
(i)
2 X5/6 + Oε

(
X3/4+ε

)
.

The values of μ1(σ,p), μ1(p) and μ′
1(p) were computed in Sect. 4 to be

equal to μ(Up(σ )), μ(Up), and μ(Vp), respectively. In this section we com-
pute the values of μ2(σ,p), μ2(p) and μ′

2(p) for all splitting types σ and all
primes p. We will require these results to prove Theorems 3 and 4.

From the results of Sect. 4, we see that Up(111) = Tp(111), Up(12) =
Tp(12), and Up(3) = Tp(3). For σ = (111), (12), (3), we write Tp(σ ) as a
union of lattices in the following way. For α,β, γ ∈ P

1
Fp

, let Tp(α,β, γ ) be

the set of all elements f ∈ VZ such that the reduction of f modulo p has roots
α,β , and γ in P

1
Fp

. Then

Tp(111) =
⋃

α,β,γ∈P
1
Fp

(
Tp(α,β, γ ) \ p · VZ

)
,

Tp(12) =
⋃

α∈P
1
Fp

,β1,β2∈P
1
F
p2

\P
1
Fp

(
Tp(α,β1, β2) \ p · VZ

)
,

Tp(3) =
⋃

γ1,γ2,γ3∈P
1
F
p3

\P
1
Fp

(
Tp(γ1, γ2, γ3) \ p · VZ

)
,

where α,β, γ are distinct points in P
1
Fp

, while β1, β2 are Fp-conjugate points

in P
1(Fp2) and γ1, γ2, γ3 are Fp-conjugate points in P

1(Fp3).
Similarly, the set Tp(121) (resp. Tp(13)) can be written as the union

over pairs of distinct points α,β ∈ P
1
Fp

(resp. points α ∈ P
1
Fp

) of the sets
Tp(α,α,β) (resp. Tp(α,α,α)) which consist of elements f ∈ VZ whose re-
duction modulo p has a double root at α and a single root at β (resp. a
triple root at α). Furthermore, the results of Sect. 4 imply that elements f

in Tp(α,α,β) or Tp(α,α,α) correspond to rings that are non-maximal at p

if and only if f (α̃) is a multiple of p2, where α̃ is any element in Z whose
reduction modulo p is equal to α.

We can now compute the values of μ2(σ,p) from Theorem 27. Let
σ = (111). We apply Theorem 27 to the lattices Tp(α,β, γ ) and p · VZ. For
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the lattice Tp([1 : 0], β, γ ) we have T1 = p and T2 = p2 in the notation of
Theorem 27. Therefore

N
(
Tp

([1 : 0], β, γ
);X)= c

(i)
1

p3
X + c

(i)
2

p7/3
X5/6 + Oε

(
X3/4+ε

)
.

For the lattice Tp(α,β, γ ), where none of α,β , and γ are equal to [1 : 0] ∈
P

1
Fp

, we have T1 = 1 and T2 = p3. Therefore

N
(
Tp(α,β, γ );X)= c

(i)
1

p3
X + c

(i)
2

p3
X5/6 + Oε

(
X3/4+ε

)
.

Finally for the lattice p · VZ we have T1 = p and T2 = p3. Therefore,

N(p · VZ;X) = c
(i)
1

p4
X + c

(i)
2

p10/3
X5/6 + Oε(X

3/4+ε).

There are
(
p
2

)
lattices Tp([1 : 0], β, γ ) and

(
p
3

)
lattices Tp(α,β, γ ) where none

of α,β , and γ are equal to [1 : 0]. Thus we have

μ2
(
(111),p

)=
(

p

2

)(
p−7/3 − p−10/3)+

(
p

3

)(
p−3 − p−10/3).

Consider now the splitting type σ = (12). Following the above notation,
we have (T1, T2) = (p,p2) for the lattice Tp([1 : 0], β1, β2) and (T1, T2) =
(1,p3) for Tp(α,β1, β2) when α �= [1 : 0]. Since we have (p2 −p)/2 choices
for the Fp-conjugate points β1 and β2, we have

μ2
(
(12),p

)= p2 − p

2

(
p
(
p−3 − p−10/3)+ (p−7/3 − p−10/3)).

For Fp-conjugate points γ1, γ2, γ3 ∈ P
1(Fp3), the lattice Tp(γ1, γ2, γ3) has

(T1, T2) = (1,p3). Since there are (p3 −p)/3 such triples (γ1, γ2, γ3), we see
that

μ2
(
(3),p

)= p3 − p

3

(
p−3 − p−10/3).

When σ = (121), the situation is slightly more complicated. The lat-
tice Tp(α,α,β) has (T1, T2) = (p,p2) when α or β equals [1 : 0], and has
(T1, T2) = (1,p3) otherwise. To account for the fact that an element f in
Tp(α,α,β) corresponds to a ring that is maximal at p if and only if f (α̃)

(where α̃ is an integer whose reduction modulo p is α) is not a multiple of
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Table 1 Values of p-adic densities for splitting types

σ μ1(σ,p) μ2(σ,p)

(111) 1
6 (p − 1)2p(p + 1)/p4 p−3(

(p
3

)
(1 − p−1/3) + p(p−1)

2 (p − 1)p−1/3)

(12) 1
2 (p − 1)2p(p + 1)/p4 p−3(p(

p2−p
2 )(1 − p−1/3) + p2−p

2 (p − 1)p−1/3)

(3) 1
3 (p − 1)2p(p + 1)/p4 p−3((

p3−p
3 )(1 − p−1/3))

(121) (p − 1)2(p + 1)/p4 p−3(p(p − 1)(1 − p−1) + p(p − 1)(1 − p−1/3)p−1/3)

(13) (p − 1)2(p + 1)/p5 p−3(p(1 − p−1/3)(1 − p−1) + (p − 1)(1 − p−1/3)p−1/3)

p2, we must multiply the density of each lattice Tp(α,α,β) by 1 − p−1/3 if
α = [1 : 0] and by 1 − p−1 if α �= [1 : 0]. Therefore,

μ2
((

121
)
,p
)= p

(
p−7/3 − p−10/3)(1 − p−1/3)+ (p(p−7/3 − p−10/3)

+ p(p − 1)
(
p−3 − p−10/3))(1 − p−1).

Finally, let σ equal (13). The lattice Tp(α,α,α) has (T1, T2) = (p,p2)

when α = [1 : 0] and (T1, T2) = (1,p3) otherwise. Therefore, as before,

μ2
((

13),p
)= (p−7/3 − p−10/3)(1 − p−1/3)+ p

(
p−3 − p−10/3)(1 − p−1).

We list the values of μ1(σ,p) and μ2(σ,p) in Table 1.
Adding up the values of the μ1(σ,p) and the μ2(σ,p), both over all σ and

over all σ �= (13), we obtain the following lemma.

Lemma 28 We have:

μ1(p) =
(

1 − 1

p2

)(
1 − 1

p3

)
,

μ′
1(p) =

(
1 − 1

p2

)2

,

μ2(p) =
(

1 − 1

p2

)(
1 − 1

p5/3

)
,

μ′
2(p) =

(
1 − 1

p2

)(
1 − p1/3 + 1

p(p + 1)

)
.

(56)

8 Proofs of the main terms of Theorems 1–8

In this section, we use the results of Sects. 1–5 to complete the proofs of the
main terms of Theorems 1–8.
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We have already proven the main term (indeed even the second main term)
of Theorems 5 and 6, which give counts for the number of isomorphism
classes of integral binary cubic forms and cubic orders, respectively, having
bounded discriminant. In fact, Theorem 26 gives the main term for the count
of integral binary cubic forms satisfying any specified finite set of congruence
conditions.

We recall from Sect. 3, however, that the set of elements in VZ correspond-
ing to maximal orders is defined by infinitely many congruence conditions.
Similarly, we show in Sect. 8.1 that the count in Theorem 2 of 3-torsion ele-
ments in class groups of quadratic fields is equal to the count of integer binary
cubic forms in another set that too is defined by infinitely many congruence
conditions. To prove that (27) still holds for such sets, we require a uniform
estimate on the error term when only finitely many factors are taken in (27).
This uniformity estimate is proven in Sect. 8.2.

In Sects. 8.3, 8.4, and 8.5, we then carry out a sieve, using this uniformity
estimate, to prove Theorems 1, 8, and 2 which imply the first main terms of
Theorems 3, 7, and 4, respectively.

8.1 Cubic fields with no totally ramified primes

To prove Theorem 2, we consider those cubic fields in which no prime is
totally ramified. The significance of being “nowhere totally ramified” is as
follows. Given an S3-cubic field K3, let K6 denote its Galois closure. Let K2
denote the quadratic field contained in K6 (the “quadratic resolvent field”).
Then one checks that the Galois cubic extension K6/K2 is unramified pre-
cisely when the cubic field K3 is nowhere totally ramified. Conversely, if K2
is a quadratic field, and K6 is any unramified cubic extension of K2, then as
an extension of the base field Q, the field K6 is Galois with Galois group S3,
and any cubic subfield K3 of K6 is then nowhere totally ramified.

8.2 A uniformity estimate

As in Sect. 4, let us denote by Vp the set of all f ∈ VZ corresponding to
cubic rings R that are maximal at p and in which p is not totally ramified.
Furthermore, let Zp = VZ − Vp (thus Zp consists of those binary cubic forms
whose discriminants are not fundamental). In order to apply a simple sieve to
obtain Theorems 1, 2, and 8, we require the following proposition:

Proposition 29 N(Zp;X) = O(X/p2), where the implied constant is inde-
pendent of p.

Proof The set Zp may be naturally partitioned into two subsets: Wp , the set
of forms f ∈ VZ corresponding to cubic rings not maximal at p; and Yp , the
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set of forms f ∈ VZ corresponding to cubic rings that are maximal at p but
also totally ramified at p.

We first treat Wp . Recall that the content ct(R) of a cubic ring R is defined
as the maximal integer n such that R = Z + nR′ for some cubic ring R′. It
follows from (10) that the content of R is simply the content (i.e., the great-
est common divisor of the coefficients) of the corresponding binary cubic
form f . We say R is primitive if ct(R) = 1, and R is primitive at p if ct(R) is
not a multiple of p. The following lemma follows immediately from Propo-
sition 15. �

Lemma 30 Suppose R is a cubic ring that is primitive at p. Then the number
of subrings of index p in R is at most 3.

To prove the proposition, suppose R is a cubic ring of absolute discriminant
less than X that is not maximal at p. By Lemma 13, the cubic ring R has a
Z-basis 〈1,ω, θ〉 such that either (i) R′ = Z + Z · (ω/p)+ Z · θ forms a cubic
ring, or (ii) R′′ = Z + Z · (ω/p) + Z · (θ/p) forms a cubic ring.

Assume we are in case (i), i.e., R′ is a ring. If R′ is primitive at p, then we
have that Disc(R′) = Disc(R)/p2 < X/p2; thus the total number of possible
rings R′ that can arise is O(X/p2) by Theorem 6. By Lemma 30, the number
of R that can correspond to such R′ is at most three times that, which is
also O(X/p2). On the other hand, if R′ is not primitive at p, then let S be
the ring such that R′ = Z + pS. Then Disc(S) = Disc(R)/p6 < X/p6, so
the number of possibilities for S is O(X/p6), which is thus the number of
possibilities for R′ (since R′ = Z + pS). The number of possibilities for R

is then p + 1 (the number of index p submodules of a free Z-module of
rank 2) times the number of possibilities for R′, yielding O((p + 1)X/p6)

possibilities. We conclude that in case (i), the number of possibilities for R is
O(X/p2) + O((p + 1)X/p6) = O(X/p2).

Assume we are now in case (ii), i.e., R′′ is a ring. Then R = Z+pR′′ where
Disc(R′′) = Disc(R)/p4 < X/p4. The number of possible R′′ in this case
is O(X/p4) by Theorem 6, and so the number of possible cubic rings R =
Z+pR′′ arising from case (ii) is O(X/p4). Thus the total number N(Wp;X)

of cubic rings R that are not maximal at p and have absolute discriminant less
than X is O(X/p2) + O(X/p4) = O(X/p2), as desired.

Finally, that N(Yp;X) = O(X/p2) follows easily from class field theory.
A nice, short exposition of this may be found in, e.g., [11, p. 15].

8.3 Density of discriminants of cubic fields (Proof of Theorem 1)

We may now prove Theorem 1. Let U =⋂p Up . Then U is the set of v ∈ VZ

corresponding to maximal cubic rings R. By Lemma 19, the p-adic density
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of Up is given by μ(Up) = (1 − p−2)(1 − p−3). Suppose Y is any positive
integer. It follows from (27) that

lim
X→∞

N(
⋂

p<Y Up ∩ V
(i)
Z

;X)

X
= π2

12ni

∏

p<Y

[(
1 − p−2)(1 − p−3)].

Letting Y tend to ∞, we obtain immediately that

lim sup
X→∞

N(U ∩ V
(i)
Z

;X)

X
≤ π2

12ni

∏

p

[(
1 − p−2)(1 − p−3)]= 1

2niζ(3)
.

To obtain a lower bound for N(U ∩ V
(i)
Z

;X), we note that

⋂

p<Y

Up ⊂
(

U ∪
⋃

p≥Y

Wp

)
.

Hence by Proposition 29,

lim
X→∞

N(U ∩ V
(i)
Z

;X)

X
≥ π2

12ni

∏

p<Y

[(
1 − p−2)(1 − p−3)]− O

(∑

p≥Y

p−2
)

.

Letting Y tend to infinity completes the proof.
We note that the same arguments also apply when counting cubic fields

with specified local behavior at finitely many primes.

8.4 A simultaneous generalization (Proof of Theorem 8)

We now prove Theorem 8, which gives the density of discriminants of cubic
orders or fields satisfying any finite number (or in many natural cases, an
infinite number) of local conditions. To this end, for each prime p let Σp

be a set of isomorphism classes of nondegenerate cubic rings over Zp . (By
nondegenerate, we mean having nonzero discriminant over Zp , so that it can
arise as R ⊗ Zp for some cubic order R over Z.) We denote the collection
(Σp) of these local specifications over all primes p by Σ . We say that the
collection Σ = (Σp) is acceptable if, for all sufficiently large p, the set Σp

contains at least the maximal cubic rings over Zp that are not totally ramified
at p.

For a cubic order R over Z, we write “R ∈ Σ” (or say that “R is a Σ-
order”) if R ⊗ Zp ∈ Σp for all p. We wish to determine the number of Σ-
orders R of bounded discriminant, for any acceptable collection Σ of local
specifications.
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To this end, fix an acceptable Σ = (Σp) of local specifications, and also fix

any i ∈ {0,1}. Let S = S(Σ, i) denote the set of all irreducible f ∈ V
(i)
Z

such
that the corresponding cubic ring R(f ) ∈ Σ . Then the number of Σ-orders
with discriminant at most X is given by N(S;X). We prove the following
asymptotics for N(S;X).

Theorem 31 We have

lim
X→∞

N(S(Σ, i);X)

X
= 1

2ni

∏

p

(
p − 1

p
·
∑

R∈Σp

1

Discp(R)
· 1

|Aut(R)|
)

.

Although S = S(Σ, i) might again be defined by infinitely many congru-
ence conditions, the estimate provided in Proposition 29 (and the fact that Σ

is acceptable) shows that (27) continues to hold for the set S; the argument is
identical to that in the proof of Theorem 1.

We now evaluate μp(S) in terms of the cubic rings lying in Σp .

Lemma 32 We have

μp

(
S(Σ, i)

)= #GL2(Fp)

p4
·
∑

R∈Σp

1

Discp(R)
· 1

|Aut(R)| .

Proof The proof of Theorem 9, with Zp in place of Z, shows that for any
cubic Zp-algebra R there is a unique element v ∈ VZp

up to GL2(Zp)-
equivalence satisfying RZp

(v) = R. Moreover, the automorphism group of
such a cubic Zp-algebra R is simply the size of the stabilizer in GL2(Zp) of
the corresponding element v ∈ VZp

(cf. Prop. 12).
We normalize the Haar measure dg on the p-adic group GL2(Zp) so that∫

g∈GL2(Zp)
dg = #GL2(Fp). Since |Disc(x)|−1

p · dx is a GL2(Qp)-invariant
measure on VZp

, we must have for any cubic Zp-algebra R = R(v0) that

∫

x∈VZp
R(x)=R

dx = c ·
∫

g∈GL2(Zp)/Stab(v0)

|Disc(gv0)|p · dg

= c · |Disc(R)|p · #GL2(Fp)

#AutZp
(R)

,

for some constant c. A Jacobian calculation using an indeterminate v0 satis-
fying Disc(v0) �= 0 shows that c = p−4, independent of v0. The lemma fol-
lows. �
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Finally, we observe that #GL2(Fp) = (p2 − 1)(p2 − p), and so

π2

12ni

∏

p

μp

(
S(Σ, i)

)

= π2

12ni

∏

p

(
1 − 1

p2

)(
p − 1

p

)
·
∑

R∈Σp

1

Discp(R)
· 1

|Aut(R)| ,

proving Theorem 31. Noting that n1 = AutR(R3) and n2 = AutR(R⊕C) then
yields Theorem 8.

Remark 4 Lemma 32, together with the identities μp(VZp
) = 1 and μp(Up)

= (p3 − 1)(p2 − 1)/p5 of Lemma 19, give the interesting formulae

∑

R nondeg. cubic ring/Zp

1

Discp(R)
· 1

|Aut(R)| =
(

1 − 1

p

)−1(
1 − 1

p2

)−1

(57)

and

∑

K etale cubic extension of Qp

1

Discp(K)
· 1

|Aut(K)| = 1 + 1

p
+ 1

p2
. (58)

(Note that (57) is an infinite sum!) What is remarkable about these formulae
is that their statements are independent of p. Such “mass formulae” for local
fields and orders in fact hold in far more generality (in particular, for degrees
other than 3); see [6, 29], and [9].

8.5 The mean size of the 3-torsion subgroups of class groups of quadratic
fields

In this section we prove Davenport and Heilbronn’s theorem on the average
size of the 3-torsion subgroups of class groups of quadratic fields. This is ac-
complished using class field theory, as in Davenport and Heilbronn’s original
arguments. This will prove Theorem 2.

Let V =⋂
p Vp be the set of all v ∈ VZ corresponding to maximal cubic

rings that are nowhere totally ramified (as in Sect. 4). Then by Lemma 19, we
have μ(Vp) = (1 − p−2)2. By the same argument as in the proof of the main
term of Theorem 3,

lim
X→∞

N(V ∩ V
(i)
Z

;X)

X
= π2

12ni

∏[(
1 − p−2)2]= 3

niπ2
.
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Now given a nowhere totally ramified cubic field K3, we have observed
earlier that in the Galois closure K6 is contained a quadratic field K2
and K6/K2 is unramified. In addition, the discriminant of K2 is equal to
the discriminant of K3. Furthermore, by class field theory the number of
triplets of cubic fields K3 corresponding to a given K2 in this way equals
(h∗

3(K2) − 1)/2, where h∗
3(K2) denotes the number of 3-torsion elements in

the class group of K2. Therefore,

∑

0<Disc(K2)<X

(
h∗

3(K2) − 1
)
/2 = N

(
V ∩ V

(0)
Z

;X),

∑

−X<Disc(K2)<0

(
h∗

3(K2) − 1
)
/2 = N

(
V ∩ V

(1)
Z

;X).
(59)

Since it is known that

lim
X→∞

∑
0<Disc(K2)<X 1

X
= 3

π2
,

lim
X→∞

∑
−X<Disc(K2)<0 1

X
= 3

π2
,

(60)

we conclude

lim
X→∞

∑
0<Disc(K2)<X h∗

3(K2)∑
0<Disc(K2)<X 1

= 1 + 2 lim
X→∞

N(V ∩ V
(0)
Z

;X)
∑

0<Disc(K2)<X 1

= 1 + 2 · 3/6π2

3/π2
= 4

3
,

lim
X→∞

∑
−X<Disc(K2)<0 h∗

3(K2)∑
−X<Disc(K2)<0 1

= 1 + 2 lim
X→∞

N(V ∩ V
(1)
Z

;X)
∑

−X<Disc(K2)<0 1

= 1 + 2 · 3/2π2

3/π2
= 2.

9 A refined sieve, and proofs of Theorems 3, 4, and 7

As we have seen, an integral binary cubic form corresponds to a maximal ring
if and only if its coefficients satisfy certain congruence conditions modulo
p2 for each prime p. To prove Theorem 3 using Theorem 27, we require a
suitable sieve as follows. Recall that for each prime p, we defined Wp to
be the set of binary cubic forms corresponding to cubic rings that are non-
maximal at p, and Zp to be the set of binary cubic forms corresponding to
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cubic rings that are non-maximal at p, or are maximal at p but in which
p is totally ramified. For a squarefree integer n, define Wn =⋂

p|n Wp and
Zn =⋂

p|n Zp . Then the number of isomorphism classes of maximal cubic
orders having absolute discriminant in the dyadic range X/2 to X is equal to

N
(

U ∩ V
(i)
Z

;X/2,X
)=

∑

n∈N

μ(n)N
(

Wn ∩ V
(i)
Z

;X/2,X
)

(61)

and the number of isomorphism classes of nowhere totally ramified maximal
cubic orders in the range X/2 to X is equal to

N(V ∩ V
(i)
Z

;X/2,X) =
∑

n∈N

μ(n)N(Zn ∩ V
(i)
Z

;X/2,X). (62)

We focus our discussion on the first sieve, the second sieve being treated in
an analogous manner. In order to prove Theorem 3, we need to estimate the
individual terms on the right hand side of (61) accurately. The difficulty lies
in the fact that the sets Wn are defined by congruence conditions modulo n2.
We are then not able to directly apply Theorem 27, due to the fact that the Wn

is the union of a large number of lattices modulo n2. In Sect. 9.1, we show
how to transform this count to one over fewer lattices defined by congruence
conditions modulo n, thus enabling us to use Theorem 27 more effectively.

We then split (61) into three ranges for n and use a different method
on each range. We use the splitting of the discriminant range into dyadic
ranges so that we may choose the three ranges for n depending on the dyadic
range of the discriminant. When n is small, we use Theorem 27 together
with an identity proven in Sect. 9.1 to evaluate N(Wn;X/2,X) with two
main terms and a smaller error term. Meanwhile, when n gets very large we
apply the uniformity estimates from [4, Lemma 2.7] to bound the size of
|N(Wn;X/2,X)|. Lastly, when n is around X1/6 it turns out that Theorem 27
and [4, Lemma 2.7] do not suffice, and so we require a different argument.
We use again the correspondence of Sect. 9.1 to reduce the problem to one of
determining the main term for the weighted count of binary cubic forms hav-
ing bounded discriminant, where each binary cubic form is weighted by the
number of its roots in P

1(Z/nZ). To accomplish this count, we us an equidis-
tribution argument, carried out in Sect. 9.4. We then complete the proof of
Theorem 3 in Sect. 9.5.

In Sect. 9.6, we prove Theorem 4 in a very similar manner to the proof
of Theorem 3. Finally, in Sect. 9.7, we prove Theorem 7 by expressing the
second terms that arise in the count of isomorphism classes of cubic rings of
bounded discriminant satisfying specified local conditions in terms of local
masses of cubic rings.
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9.1 Two useful identities

For α ∈ P
1(Z/pZ), define Vp,α to be the set of all integer binary cubic forms

f ∈ VZ such that f (mod p) has a root at α, and V 2
p,α the set of all integer

binary cubic forms f ∈ VZ such that f (mod p) has at least a double root
at α. Note that although Vp,α and V 2

p,α are not GL2(Z)-invariant, the unions⋃
α Vp,α and

⋃
α V 2

p,α are each GL2(Z)-invariant.
Our sieve makes use of the following proposition which contains two es-

sential identities:

Proposition 33 We have

N(Wp;X) =
∑

α∈P1(Fp)

N
(
Vp,α;X/p2)−

∑

α∈P1(Fp)

N
(
Vp,α;X/p4)

+ N
(
VZ;X/p4); (63)

N(Zp;X) =
∑

α∈P1(Fp)

N
(
Vp,α;X/p2)+ N

(
Tp

(
13);X)

−
∑

α∈P1(Fp)

N
(
V 2

p,α;X/p2)+ N
(
VZ;X/p4). (64)

Proof To prove (63), we count isomorphism classes of pairs (R,R′) of cubic
rings such that R ⊂ R′ with [R′ : R] = p and Disc(R) < X. We count these
in two ways, namely, by R and by R′.

First, in order to count pairs (R,R′) by R, recall from Proposition 16 that,
for any integral binary cubic form f ∈ Wp \ p · VZ, the ring R = R(f )

is contained in a unique ring R′ ⊂ R ⊗ Q such that [R′ : R] = p. Mean-
while, if f = pg ∈ p · VZ, then R sits inside ωp(g) rings R′ ⊂ R ⊗ Q with
[R′ : R] = p, where we use ωp(g) to denote the number of roots in P

1(Z/pZ)

of g (mod p). It follows that the total number of pairs (R,R′) is

N(Wp;X) − N
(
VZ;X/p4)+

∑

α∈P1(Fp)

N
(
Vp,α;X/p4). (65)

The third term on the right hand side of the above expression counts those
pairs (R=R(f ),R′) that correspond to integer binary cubic forms f = pg ∈
pVZ.

We now count the number of pairs (R,R′) by R′. Recall by Proposi-
tion 15 that for any binary cubic form f , the cubic ring R′ = R(f ) has pre-
cisely ωp(f ) subrings R of index p. Therefore, since R′ is constrained by
Disc(R′) = Disc(R)/p2 < X/p2, we see then that the total number of pairs
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(R,R′) is given by
∑

α∈P1(Fp)

N
(
Vp,α;X/p2). (66)

Equating (65) and (66) yields the identity (63).

To prove (64), we begin by deriving a formula for N(Wp ∩Tp(13);X). To
this end, we count now isomorphism classes of pairs (R,R′) of cubic rings
such that R ⊂ R′ with [R′ : R] = p and Disc(R) < X, where furthermore R

has splitting type (121) at p. We again count these in two ways, namely, by
R and by R′.

First, we note that if R has splitting type (121) at p, and R = R(f ), then
R′ ⊂ R ⊗ Q is uniquely determined and is primitive at p; moreover, if we
write R′ = R(f ′), then f ′ (mod p) has a distinguished simple root in P

1(Fp).
Conversely, if R′ = R(f ), where f (mod p) has a simple root in P

1(Fp), then
any subring R of index p will have splitting type (121) at p. It follows that
the number of desired pairs (R,R′) is

N
(

Wp ∩ Tp

(
121
);X)=

∑

α∈P1(Fp)

N
(
Vp,α;X/p2)−

∑

α∈P1(Fp)

N
(
V 2

p,α;X/p2)

(67)
where we have counted such pairs (R,R′) by R on the left and by R′ on the
right. Noting that

N(Wp;X) = N
(

Wp ∩ Tp

(
121
);X)+ N

(
Wp ∩ Tp

(
13);X)+ N(pVZ;X),

(68)
together with (63) and (67), yields the following identity:

N
(

Wp ∩ Tp

(
13);X)=

∑

α∈P1(Fp)

N
(
V 2

p,α;X/p2)−
∑

α∈P1(Fp)

N
(
Vp,α;X/p4).

(69)
Since we know that

N(Zp;X) = N(Wp;X) + N
(
Tp

(
13);X)− N

(
Wp ∩ Tp

(
13);X),

we obtain (64). �

For any squarefree n ∈ N and α ∈ P
1(Z/nZ), let Vn,α denote the set of all

integral binary cubic forms f ∈ VZ such that the reduction of f (mod n) has
a root at α, and V 2

n,α the set of all integral binary cubic forms f ∈ VZ such
that the reduction of f (mod p) has at least a double root at the reduction of
α (mod p) for all primes p dividing n.
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Then the above analysis generalizes in a straightforward way to squarefree
integers n to give

N(Wn;X) =
∑

k,�,m∈Z≥0
k�m=n

α∈P
1(Z/k�Z)

μ(�)N

(
Vk�,α; X

k2�4m4

)

=
∑

k,�∈Z≥0
k�|n

α∈P
1(Z/k�Z)

μ(�)N

(
Vk�,α; Xk2

n4

)
; (70)

N(Zn;X) =
∑

k,�,m,q∈Z≥0
k�mq=n

α∈P
1(Z/k�Z)

μ(�)N

(
Vk,α ∩ V 2

�,α ∩ Tq

(
13); X

k2�2m4

)
. (71)

9.2 Back to the sieve

Let us define the error functions E
(i)
n (X) and E

(i)
n (X/2,X) for squarefree n

by

E
(i)
n (X) = N

(
Wn ∩ V

(i)
Z

;X)− (γ1(n)c
(i)
1 X + γ2(n)c

(i)
2 X5/6),

E
(i)
n (X/2,X) = N

(
Wn ∩ V

(i)
Z

;X/2,X
)

−
(

γ1(n)

2
c
(i)
1 X + (1 − 2−5/6)γ2(n)c

(i)
2 X5/6

)
,

(72)

where γ1(n) and γ2(n) are defined by the conditions γ1(p) + μ1(p) =
γ2(p) + μ2(p) = 1 for n = p prime, and γ1(n) =∏

p|n γ1(p) and γ2(n) =∏
p|n γ2(p) for general squarefree n. Returning to (61), we write

N
(

U ∩ V
(i)
Z

;X/2,X
)=

∑

n∈N

μ(n)N
(

Wn ∩ V
(i)
Z

;X/2,X
)

=
∑

n∈N

μ(n)

(
γ1(n)

2
c
(i)
1 X + (1 − 2−5/6)γ2(n)c

(i)
2 X5/6

)

+
∑

n∈N

μ(n)E(i)
n (X/2,X)

= c
(i)
1 X

2ζ(2)ζ(3)
+ (1 − 2−5/6) c

(i)
2 X5/6

ζ(2)ζ(5/3)
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+
∑

n∈N

μ(n)E(i)
n (X/2,X).

Thus to prove Theorem 3, it is sufficient prove the estimate

∑

n∈N

∣∣E(i)
n (X/2,X)

∣∣= Oε

(
X5/6−1/48+ε

)
. (73)

Fix small numbers δ1, δ2 > 0 to be determined later. We break up (73) into
the three different ranges

0 ≤ n ≤ X1/6−δ1, X1/6−δ1 ≤ n ≤ X1/6+δ2, and X1/6+δ2 ≤ n

and estimate
∑

n |E(i)
n (X/2,X)| for n in each range separately.

9.3 The small and large ranges

Suppose n is a fixed positive integer. Let k, � be positive integers such that
k� | n and let α ∈ P

1(Z/k�Z). Then, by Theorem 27, there exist constants
c
(i)
1 (α) and c

(i)
2 (α) such that

N

(
Vk�,α ∩ V

(i)
Z

; Xk2

2n4
,
Xk2

n4

)
= c

(i)
1 (α)

Xk2

2n4
+ (1 − 2−5/6)c(i)

2 (α)

(
Xk2

n4

)5/6

+ Oε

(
T

1/3
1 X3/4+εk3/2

n3

)
(74)

where, in the notation of Theorem 27, T1 = T1(k, �,α) is an integer dividing
k� which depends only on the lattice Vk�,α . Now, if a lattice Vk�,α satisfies
T1(k, �,α) = d , then by the definition of T1, the image of α in P

1(Z/dZ)

must be 0. Hence, the number of choices for α is O((k�/d)1+ε). Since the
total number of (k, �) such that k� divides n is O(nε), we conclude that the
number of lattices Vk�,α satisfying T1(k, �,α) = d is bounded by O(n1+ε/d).
Therefore, from (70), (72), and (74), we see that

|E(i)
n (X/2,X)| = Oε

(∑

d|n

n1+εd1/3X3/4+ε

dn3/2

)
= Oε

(
X3/4+ε

n1/2−ε

)
.

Summing over n, we conclude that

X1/6−δ1∑

n=0

|E(i)
n (X/2,X)| = Oε

(
X5/6−δ1/2+ε

)
. (75)
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From the definitions of γ1 and γ2, and from (56), we have the estimates

γ1(n) = Oε

(
n−2+ε

)
and γ2(n) = Oε

(
n−5/3+ε

)
. (76)

Let q(n) denote the number of prime divisors of n. The next lemma follows
from [4, Lemmas 2.7 and 3.3]:

Lemma 34 For a square-free integer n, we have

N(Zn;X) = O
(
3q(n)X/n2).

Thus we also have the estimate

N(Wn;X) = Oε

(
X/n2−ε

)
.

We deduce that

|E(i)
n (X/2,X)| = Oε

(
X/n2−ε

)+ Oε

(
X5/6/n5/3−ε

)
,

and summing up over n we obtain

∑

n≥X1/6+δ2

∣∣E(i)
n (X/2,X)

∣∣= Oε

(
X5/6−δ2+ε

)+ Oε

(
X13/18−2δ2/3+ε

)
. (77)

In the next section, we estimate the sum of |E(i)
n (X/2,X)| over the range

X1/6−δ1 ≤ n ≤ X1/6+δ2 .

9.4 An equidistribution argument

We now concentrate on the middle range X1/6−δ1 ≤ n ≤ X1/6+δ2 . Let us write

N
(

Wn ∩ V
(i)
Z

;X)=
∑

k�|n
μ(m)S

(i)
k�

(
Xk2/n4), (78)

where

S(i)
n (X) =

∑

α∈P1(Z/nZ)

N
(
Vn,α ∩ V

(i)
Z

,X
)
.

In this section, we estimate S
(i)
n (X), and then use (72) and (78) to obtain a

corresponding estimate on E
(i)
n (X/2,X). Given a form f , let wn(f ) denote

as before the number of roots in P
1(Z/nZ) of f (mod n). Then the number

S
(i)
n (X) counts the number of GL2(Z)-equivalence classes of irreducible bi-

nary cubic forms in V
(i)
Z

, weighted by wn(f ), having discriminant bounded



488 M. Bhargava et al.

by X. Thus

S(i)
n (X) =

∑

f ∈GL2(Z)\V irr
Z|Disc(f )|≤X

wn(f ). (79)

We now consider wn(f ) as a function on VZ/nZ and bound its Fourier
transform pointwise. This in turn will allow us to count the number of binary
cubic forms f , weighted by wn(f ), in small boxes (boxes with each side
length at least n3/4+ε). We then can count this weighted number of binary
cubic forms in fundamental domains using the ideas of Sect. 5, yielding the
desired estimate for S

(i)
n (X), and therefore for |E(i)

n (X/2,X)|.
Define ̂VZ/nVZ to be the space of additive characters χ : VZ/nVZ →

C
×. Then we define the Fourier transform ĝ : ̂VZ/nVZ → C of a function

g : VZ/nVZ → C via

ĝ(χ) := n−4
∑

v∈VZ/nVZ

g(v)χ(v).

Fourier inversion then states that

g(v) =
∑

χ∈ ̂VZ/nVZ

ĝ(χ)χ̄(v).

We focus now on computing ŵn(χ). Assume first that n = p is prime.
We start with the trivial character which maps all of VZ/pVZ to 1, which we
denote by Id. Then

ŵp(Id) = p−4
∑

v∈VZ/pVZ

wp(v) = 1 + p−1.

Now for any χ �= Id, we compute

ŵp(χ) = p−4
∑

v∈VZ/pVZ

χ(v)wp(v)

= p−4
∑

v:χ(v)=1

wp(v) + p−4
∑

v:χ(v) �=1

wp(v)χ(v). (80)

Since χ(v) = 1 for p3 values of v and wp(v) ≤ 3 for v �= 0, we have the
estimate

∑

v:χ(v)=1

wp(v) ≤ 3
(
p3 − 1

)+ (p + 1) = 3p3 + p − 2. (81)
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Because wp(λv) = wp(v) for any λ ∈ F
×
p , we see that if χ(v) �= 1 then

∑

λ∈F
×
p

wp(λv)χ(λv) = −wp(v),

implying

∑

v:χ(v) �=1

wp(v)χ(v) = −(p − 1)−1
∑

v:χ(v) �=1

wp(v). (82)

Combining (81) with (82), we see that (80) implies that

ŵp(χ) � p−1 (83)

uniformly for χ �= 0.
Now let n be a general squarefree integer. Then ̂VZ/nVZ

∼=⊕p|n ̂VZ/pVZ

and wn(f ) =∏p|nwp(f ). From this we conclude that ŵn(χ) =∏p|nŵp(χp),
where χp is the p-part of χ . Using this and (83) implies that

ŵn(χ) �
∏

p|n
χp �=Id

p−1 (84)

and also

ŵn(Id) =
∏

p|n

(
1 + p−1)= σ(n)/n, (85)

where σ(n) =∑d|n d denotes as usual the sum-of-divisors function.
We now run through the argument in Sect. 5, counting integer binary cubic

forms f weighted by wn(f ). Identically as in (23), we have the following
identity.

S(i)
n (X) = 1

Mi

∫

g∈N ′(t)A′Λ
S(i)

n (m, t, λ,X)t−2dmd×t d×λ, (86)

where

S(i)
n (m, t, λ,X) :=

∑

x∈B(m,t,λ,X)

wn(x).

To estimate S
(i)
n (m, t, λ,X), we tile the set B(m, t, λ,X) with boxes and

count weighted integer cubic forms inside each box. We have the following
two lemmas.
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Lemma 35 Suppose R is a region in R
4 having volume C1 and surface area

C2. Let N be a positive integer. Then there exists a set R′ ⊂ R having volume
equal to C1 + O(N · C2) such that R′ can be tiled with 4-dimensional boxes
with all sides having length N .

Proof We first tile R
4 with boxes having side length equal to N . Then we

place R inside R
4 and take R′ to be the union of those boxes which lie entirely

inside R. The region R \ R′ is within distance N of the boundary of R. It is
thus clear that the volume of R′ is equal to C1 + O(N · C2). �

We now use (83) to establish the following quantitative equidistribution
statement for wn(f ) inside boxes having small sidelengths relative to n.

Lemma 36 Let B ⊂ VR be a box with sides parallel to the coordinate axes
on VR formed by the coefficients of the cubic form (a, b, c, d) such that each
side has length N ≤ n. Then

∑

v∈B∩VZ

wn(v) = σ(n)

n
Vol(B) + Oε

(
n3+ε

)
.

Proof Since each side length of B has side length at most n, we can consider
the set of lattice points in B as a subset Bn of VZ/nVZ. We then use Fourier
inversion to write

∑

v∈B∩VZ

wn(v) =
∑

v∈Bn

∑

χ∈ ̂VZ/nVZ

ŵn(χ)χ̄(v) (87)

= N4ŵn(Id) +
∑

χ∈ ̂VZ/nVZ

χ �=Id

ŵn(χ)
∑

v∈Bn

χ(−v) + O(N3).

(88)

There is a v0 ∈ VZ/nVZ such that Bn = {(a1, a2, a3, a4) + v0 | 0 ≤
a1, a2, a3, a4 ≤ N − 1}. For each χ , there are characters χi , for 1 ≤ i ≤ 4,
such that χ(a1, a2, a3, a4) =∏4

i=1 χi(ai). Then, up to an error of O(N3), we
see that

∑
v∈Bn

wn(v) is equal to

N4ŵn(Id) +
∑

χ∈ ̂VZ/nVZ

χ �=Id

ŵn(χ)
∑

v∈Bn

χ(−v)

= N4 σ(n)

n
+

∑

χ∈ ̂VZ/nVZ

χ �=Id

ŵn(χ)χ(−v0)

4∏

i=1

N−1∑

ai=0

χi(−ai). (89)
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We estimate the sum over each χ �= Id separately. By (84), we know
|ŵn(χ)| �∏

p|n
χp �=Id

p−1. Now, for a character ψ of Z/nZ, we define AN(ψ)

by

AN(ψ) :=
N−1∑

a=0

ψ(a) =
{

N ψ = Id
1−ψ(N)
1−ψ(1)

ψ �= Id

and then define AN(χ) :=∏4
i=1AN(χi). This implies that

∑
ψ∈Ẑ/nZ

|AN(ψ)|
�∑n

k=1
n
k

� n logn.
We now estimate the right hand side of (89) as follows:

N4 σ(n)

n
+

∑

χ∈ ̂VZ/nVZ

χ �=Id

ŵn(χ)χ(−v)

4∏

i=1

N−1∑

ai=0

χi(−ai)

= N4 σ(n)

n
+ O

( ∑

χ∈ ̂VZ/nVZ

χ �=Id

|AN(χ)ŵn(χ)|
)

= N4 σ(n)

n
+ Oε

(
n3+ε

)
,

where the last bound follows from

∑

χ∈ ̂VZ/nVZ

χ �=Id

|AN(χ)ŵn(χ)| ≤
∑

d|n
1<d

d−1
∑

χ
χp �=Id∀p|d
χp=Id∀p�d

|AN(χ)|

≤
∑

d|n
1<d

d−1
(( ∑

ψ∈Ẑ/dZ

|AN(ψ)|
)4

− N4
)

≤
∑

d|n
1<d

d−1((N + O(d logd)
)4 − N4)

≤
∑

d|n
1<d

Oε

(
max(d,N)3+ε

)

≤ Oε

(
n3+ε

)
.

This completes the proof of the lemma. �
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We now estimate S
(i)
n (m, t, λ,X) for |m| < 1/2. First, tile B(m, t, λ,X)′ ⊂

B(m, t, λ,X) with boxes using Lemma 35. Note that the region B(m, t, λ,X)

is obtained by acting on the region B(1,1,1, X

λ4 ) by m · t · λ ∈ GL2(R). So

the surface area of B(m, t, λ,X) is O(λ3t3). We thus have

S(i)
n (m, t, λ,X) = σ(n)

n
Vol
(
B(m, t, λ,X)

)+ Oε

(
n3+ελ4

N4

)
+ O

(
λ3t3N

)
,

(90)
where the first error term comes from Lemma 36 and the second comes from
Lemma 35. We optimize by picking N = λ1/5t−3/5n3/5. Using (90), as in
Sect. 5, we evaluate the right hand side of (86) to obtain

S(i)
n (X) = σ(n)

n
c
(i)
1 X + Oε

(
n3+ε + X5/6n1/2). (91)

Using (70), (72), (76), and (91) we finally arrive at the bound

|E(i)
n (X)| ≤ γ2(n)X5/6 + Oε

(
nε
)(∑

k,�∈Z

k�|n

(k�)3 + X5/6k5/3

n17/6

)
.

Therefore, we have

|E(i)
n (X)| = Oε

(
nε
)(X5/6

n7/6
+ n3

)

implying

X1/6+δ2∑

n=X1/6−δ1

|E(i)
n (X)| = Oε

(
X29/36+δ1/6+ε + X2/3+4δ2+ε

)
. (92)

This also implies the estimate

X1/6+δ2∑

n=X1/6−δ1

|E(i)
n (X/2,X)| = Oε

(
X29/36+δ1/6+ε + X2/3+4δ2+ε

)
. (93)

9.5 Putting it together

We combine (75), (77) and (93) to obtain

∑

n∈Z

|E(i)
n (X/2,X)| �ε X5/6−δ1/2+ε + X5/6−δ2+ε + X13/18−2δ2/3+ε
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+ X29/36+δ1/6+ε + X2/3+4δ2+ε.

We optimize by picking δ1 = 1
24 and δ2 = 1

30 to get

∑

n∈Z

|E(i)
n (X/2,X)| �ε X5/6−1/48+ε,

which proves Theorem 3.
Finally, note that the values of μ1(σ,p) and μ2(σ,p) that we list in Table 1

are the same as the values of Cp,αp and Kp,αp , respectively, in [26, (5.1)]. We
thus also obtain Roberts’ refined conjecture (see [26, Sect. 5]); the proof is
identical to the proof of Theorem 3.

9.6 Proof of Theorem 4

The proof of Theorem 4 is very similar to that of Theorem 3. This time, we
define the error function F

(i)
n (X/2,X) for squarefree n by

F (i)
n (X/2,X) = N

(
Zn ∩ V

(i)
Z

;X/2,X
)

−
(

γ ′
1(n)

2
c
(i)
1 X + (1 − 2−5/6)γ ′

2(n)c
(i)
2 X5/6

)
, (94)

where γ ′
1(n) and γ ′

2(n) are defined by the conditions γ ′
1(p) + μ′

1(p) =
γ ′

2(p) + μ′
2(p) = 1 for n = p prime, and γ ′

1(n) =∏
p|n γ ′

1(p) and γ ′
2(n) =∏

p|n γ ′
2(p) for general squarefree n. We can write

N
(

V ∩ V
(i)
Z

;X/2,X
)=

∑

n∈N

μ(n)N
(

Zn ∩ V
(i)
Z

;X/2,X
)

=
∑

n∈N

μ(n)

(
γ ′

1(n)

2
c
(i)
1 X + (1 − 2−5/6)γ ′

2(n)c
(i)
2 X5/6

)

+
∑

n∈N

μ(n)F (i)
n (X/2,X)

= c
(i)
1 X

2ζ(2)ζ(3)
+ (1 − 2−5/6) c

(i)
2 X5/6

ζ(2)ζ(5/3)

+
∑

n∈N

μ(n)F (i)
n (X/2,X).

Thus, to prove Theorem 4, it is sufficient prove the estimate
∑

n∈N

|F (i)
n (X/2,X)| = Oε

(
X5/6−1/48+ε

)
. (95)



494 M. Bhargava et al.

Let δ1, δ2 > 0 be as in the previous subsection. Again, we break up (95) into
the three different ranges

0 ≤ n ≤ X1/6−δ1, X1/6−δ1 ≤ n ≤ X1/6+δ2, and X1/6+δ2 ≤ n

and estimate
∑

n |F (i)
n (X/2,X)| for n in each range separately.

In (71), we write N(Zn ∩ V
(i)
Z

;X/2,X) as a sum over positive inte-
gers k, �,m,q with k�mq = n. Let k, � ∈ Z>0 such that k�|n. Then, for
α ∈ P

1(Z/k�Z), we may write Vk,α ∩ V 2
�,α ∩ Tq(13) as a union of O(q2)

translates of lattices, each of which has index k�2q4 in VZ and is defined via
congruence conditions modulo k�q . The remark following Theorem 27 im-
plies that for each of these lattice-translates L there exist constants c

(i)
1 (L)

and c
(i)
2 (L) such that

N

(
L; Xk2�2q4

2n4
,
Xk2�2q4

n4

)
= c

(i)
1 (L)

Xk2�2q4

2n4

+ (1 − 2−5/6)c(i)
2 (L)

(
Xk2�2q4

n4

)5/6

+ Oε

(
X3/4k3/2�1/2

n3

)
. (96)

Since there are Oε(n
εk�q2) such lattices, we see that

|F (i)
n (X/2,X)| = Oε

( ∑

n=kn1

nε X3/4

k1/2�3/2m3q

)
= Oε

(
X3/4

n1/2−ε

)
.

Summing over n = kn1 in the small range, we conclude that

X
1
6 −δ1∑

n=1

|F (i)
n (X/2,X)| = Oε

(
X5/6−δ1/2+ε

)
. (97)

As in Sect. 9.3, we may use Lemma 34 to estimate
∑

n |F (i)
n (X/2,X)| over

n lying in the large range:

∑

n≥X
1
6 +δ2

|F (i)
n (X/2,X)| = Oε

(
X5/6−δ2+ε

)+ Oε

(
X13/18−2δ2/3+ε

)
. (98)

We now consider the middle range. Fix k, �, q,m such that k�qm = n. For
β ∈ P

1(Z/�Z), we may write V 2
�,β ∩ Tp(13) as a union of O(p2�2) translates
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of p�VZ. Let L be one of them. Identically to Sect. 9.4, using equation (91)
we have:

∑

α∈P1(Z/kZ)

N

(
V

(i)
Z

∩ Vk,α ∩ L; X

k2�2m4

)

= c(i)(L)X + Oε

(
k3+ε + k1/2

(
X

k2�6m4p4

) 5
6
)

,

where c(L) is some explicit constant. It follows, just as in Sect. 9.4, that

X1/6+δ2∑

n=X1/6−δ1

|F (i)
n (X/2,X)| �ε X29/36+ δ1

6 +ε + X2/3+4δ2+ε. (99)

Finally, note that

∑

0<Disc(K2)<X

1 = 3

π2
· X + O

(
X

1
2
);

∑

−X<Disc(K2)<0

1 = 3

π2
· X + O

(
X

1
2
)
.

(100)

Theorem 4 may now be deduced from (97), (98), and (99) (together with (59)
and (100)) just as Theorem 3 was deduced in Sect. 9.5 from (75), (77), and
(93).

9.7 Another simultaneous generalization

In this subsection, we prove Theorem 7.

Proof of Theorem 7 Let p be a fixed finite prime. If R ∈ Σp is a cubic ring
over Zp , then we define V (R) ⊂ VZ to be the set of all integer binary cubic
forms f such that the corresponding cubic ring C satisfies C ⊗ Zp

∼= R. As
in Sect. 7, we define μ1(R,p) and μ2(R,p) to be such that

N
(
V (R) ∩ V

(i)
Z

;X)= μ1(R,p)c
(i)
1 X + μ2(R,p)c

(i)
2 X5/6 + Oε

(
X3/4+ε

)
.

Using the same techniques as in the proofs of Theorems 3 and 4, we have

N(Σ;X) =
(

1

2

∑

R∈Σ∞

1

|AutR(R)|
)

·
∏

p

( ∑

R∈Σp

μ1(R,p)

)
· ζ(2) · X
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+
( ∑

R∈Σ∞
c2(R)

)
·
∏

p

( ∑

R∈Σp

μ2(R,p)

)
· X5/6

+ Oε

(
X5/6−1/48+ε

)
. (101)

We now prove the following lemma:

Lemma 37 With notation as above, we have

μ2(R,p) = (1 − p−2)(1 − p−1/3)

×
(

1

Discp(R)
· 1

|Aut(R)|
∫

(R/Zp)Prim
i(x)2/3dx

)
.

Proof Fix a form f ∈ VZp
corresponding to R. Let m be a positive integer

such that pm is larger than Discp(R), so that in particular Disc(f ) �≡ 0 (mod
pm). Let F = {f1, f2, . . . , fr} be the GL2(Z/pm

Z)-orbit of the reduction of
f (mod pm). By the slicing techniques of Sect. 6, as used in the proof of
Theorem 27, we have

μ2(R,p) = p−3m ·
∑r

i=1
∑

a≡a(fi)
a−s

∑
a �=0 a−s

∣∣∣∣∣
s=1/3

,

where a(fi) denotes the x3-coefficient of fi and the congruences are taken
modulo pm. Since F is GL2(Z/pm

Z)-invariant, every value of a(fi) with the
same p-adic valuation occurs equally often in F . Therefore, we have

μ2(R,p) = (1 − p−1/3)p−3m
r∑

i=1

⎧
⎪⎨

⎪⎩

p1−m|a(fi)|−2/3
p

p−1 if a(fi) �≡ 0 (mod pm)

p−m/3

1−p−1/3 if a(fi) ≡ 0 (mod pm).

(102)
The group GL2(Zp) acts on f in the natural way. Normalizing the Haar

measure so as to give GL2(Zp) measure 1, we may rewrite (102) as

μ2(R,p) = (1 − p−2)(1 − p−1/3)

|AutGL2(Z/pmZ)(f )| ·
∫

GL2(Zp)

|a(g · f )|−2/3
p dg.

The above equality holds since we are in the first case of (102) when m is
sufficiently large, and

r = #F = |GL2(Z/pm
Z)|

|AutGL2(Z/pmZ)(f )| = p4m(1 − p−2)(1 − p−1)

|AutGL2(Z/pmZ)(f )| .
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Now, by computing the measure of GL2(Zp) ·f using two different methods,
we obtain

|AutGL2(Z/pmZ)(f )| = |AutGL2(Zp)(f )| · Discp(f ).

The first method is by splitting GL2(Zp) ·f into pm ·VZp
cosets. The number

of such cosets is exactly |GL2(Z/pm
Z)| · |AutGL2(Z/pmZ)(f )|−1. The second

method is by integrating over the group, and using that the left invariant mea-
sure on VZp

is |Disc(v)|−1dv and the map g → g ·f is a |AutGL2(Zp)(f )|-to-1
cover.

We thus have

μ2(R,p) = (1 − p−2)(1 − p−1/3)

Discp(f ) · |AutGL2(Zp)(f )| ·
∫

GL2(Zp)

|a(g · f )|−2/3
p dg.

Note that a(g · f ) = f (v0 · g) where v0 = (1,0) ∈ Zp × Zp . Therefore, we
have ∫

GL2(Zp)

|a(g · f )|−2/3
p dg =

∫

(Z2
p)Prim

|f (v)|−2/3
p dv,

where dv is normalized to have measure 1 on (Z2
p)Prim.

From the correspondence in Sect. 2, we see that the set (Z2
p)Prim corre-

sponds to (R/Zp)Prim and that for v ∈ (Z2
p)Prim corresponding to x ∈ R, the

value of f (v) is equal to the index of Z[x] in R. The lemma follows. �

Theorem 7 now follows from Theorem 31 and the above lemma. �
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