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As all roads lead to Rome so I find in my own case at least
that all algebraic inquiries, sooner or later, end at the Capitol of
Modern Algebra over whose shining portal is inscribed the Theory
of Invariants.

— Sylvester, quoted in [72; p. 143].

The theory of invariants came into existence about the mid-
dle of the nineteenth century somewhat like Minerva: a grown-up
virgin, mailed in the shining armor of algebra, she sprang forth
from Cayley's Jovian head. Her Athens over which she ruled and
which she served as a tutelary and beneficent goddess was "protec-
tive geometry.

— Weyl, [230].

Like the Arabian phoenix arising out of its ashes, the theory
of invariants, pronounced dead at the turn of the century, is once
again at the forefront of mathematics.

— Kung and Rota, [135].
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Introduction

Classical invariant theory is the study of the intrinsic or geometrical
properties of polynomials. This fascinating and fertile field was brought
to life at the beginning of the last century just as the theory of solu-
bility of polynomials was reaching its historical climax. It attained its
zenith during the heyday of nineteenth-century mathematics, uniting
researchers from many countries in a common purpose, and filling the
pages of the foremost mathematical journals of the time. The dramatic
and unexpected solution to its most fundamental problem — the fini-
tude of the number of fundamental invariants — propelled the young
David Hilbert into the position of the most renowned mathematician
of his time. Following a subsequent decline, as more fashionable sub-
jects appeared on the scene, invariant theory sank into obscurity during
the middle part of this century, as the abstract approach entirely dis-
placed the computational in pure mathematics. Ironically, though, its
indirect influence continued to be felt in group theory and representa-
tion theory, while in abstract algebra the three most famous of Hilbert's
general theorems — the Basis Theorem, the Syzygy Theorem, and the
Nullstellensatz — were all born as lemmas (Hilfsdtze) for proving "more
important" results in invariant theory! Recent years have witnessed a
dramatic resurgence of this venerable subject, with dramatic new ap-
plications, ranging from topology and geometry, to physics, continuum
mechanics, and computer vision. This has served to motivate the dusting
off of the old computational texts, while the rise of computer algebra sys-
tems has brought previously infeasible computations within our grasp.
In short, classical invariant theory is the closest we come in mathemat-
ics to sweeping historical drama and romance. As a result, the subject
should hold a particular fascination, not only for the student and prac-
titioner, but also for any mathematician with a desire to understand the
culture, sociology, and history of mathematics.

I wrote this introductory textbook in the hope of furthering the re-
cent revival of classical invariant theory in both pure and applied math-
ematics. The presentation is not from an abstract, algebraic standpoint,

Cambridge Books Online © Cambridge University Press, 2010(C7��3)3� 3� 7�3D�:DD$C���*** 53!�B�697 #B9�5#B7�D7B!C �:DD$C���6#� #B9��� ������,/
���	��
��

� ���
.#*" #3676�8B#!�:DD$C���*** 53!�B�697 #B9�5#B7 �2"�)7BC�D+�#8�1#B#"D#��#"����07$����
�3D�����
�	���C(��75D�D#�D:7��3!�B�697��#B7�D7B!C�#8

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623660.001
https://www.cambridge.org/core


Introduction xi

but rather as a subject of interest for applications in both mathematics
and other scientific fields. My own training is in differential equations
and mathematical physics, and so I am unashamed to restrict my at-
tention to just real and complex polynomials. This approach allows me
to directly employ differentiation and other analytical tools as the need
arises. In this manner, the exposition at times resembles that of the
classical texts from the last century, rather than that of more modern
treatments that either presuppose an extensive training in the methods
of abstract algebra or reduce the subject to a particular case of general
tensor analysis. Nevertheless, a fair amount of more recent material and
modern developments is covered, including several original results that
have not appeared in print before. I have designed the text so that it
can be profitably read by students having a fairly minimal number of
mathematical prerequisites.

Notes to the Reader

The purpose of this book is to provide the student with a firm ground-
ing in the basics of classical invariant theory. The text is written in
a non-abstract manner and makes fairly low demands on the prospec-
tive reader. In addition, a number of innovations — in methodology,
style, and actual results — have been included that should attract the
attention of even the most well-seasoned researcher. We shall concen-
trate on the basic theory of binary forms, meaning polynomials in a
single variable, under the action of the projective group of linear frac-
tional transformations, although many of the methods and theoretical
foundations to be discussed have far wider applicability. The classical
constructions are all founded on the theory of groups and their repre-
sentations, which are developed in detail from the beginning during the
exposition.

The text begins with the easiest topic of all: the theory of a sin-
gle real or complex quadratic polynomial in a single variable. Although
completely elementary, this example encapsulates the entire subject and
is well worth reviewing one more time — although an impatient reader
can entirely omit this preliminary chapter. As any high school student
knows, the solution to the quadratic equation relies on the associated
discriminant. Less obvious is the fact that the discriminant is (relatively)
unchanged under linear fractional transformations. Hence it forms the
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xii Introduction

first (both historical and mathematical) example of an invariant and
so can be used for classification of canonical forms. The text starts
in earnest in Chapter 2, which provides an overview of the basics of
classical invariant theory within the context of binary forms. Here we
meet up with the basic definitions of invariants and covariants, and
investigate how the geometry of projective space governs the correspon-
dence between homogeneous and inhomogeneous polynomials, as well
as their transformation properties under, respectively, linear and pro-
jective transformations. The motivating examples of cubic and quartic
polynomials are discussed in detail, including complete lists of invariants,
covariants, and canonical forms. The Fundamental Theorem of Algebra
guarantees the existence of a complete system of (complex) roots, whose
geometrical configuration is governed by the invariants. Two partic-
ularly important invariants are the classical resultant, which indicates
the existence of common roots to a pair of polynomials, and the dis-
criminant, which indicates multiple roots of a single polynomial. The
chapter concludes with a brief introduction to the Hilbert Basis The-
orem, which states that every system of polynomials has only a finite
number of polynomially independent invariants, along with remarks on
the classification of algebraic relations or syzygies among the invariants.

With this preliminary survey as our motivating guide, the next two
chapters provide a grounding in the modern mathematical foundations
of the subject, namely, transformation groups and representation theory.
Chapter 3 is a self-contained introduction to groups and their actions
on spaces. Groups originally arose as the symmetries of a geometric or
algebraic object; in our case the object is typically a polynomial. The
chapter includes a discussion of the equivalence problem — when can
two objects be transformed into each other by a suitable group element
— and the allied concept of a canonical form. Chapter 4 concentrates
on the theory of linear group actions, known as representations. For
general transformation groups, the associated multiplier representations
act on the functions defined on the space; the linear/project ive actions on
polynomials form a very particular instance of this general construction.
The invariant functions arise as fixed points for such representations,
and so the focus of classical invariant theory naturally falls within this
general framework.

The next three chapters describe the core of the classical construc-
tive algebraic theory of binary forms. The most important operations
for producing covariants are the "transvection" processes, realized as
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Introduction xiii

certain bilinear differential operators acting on binary forms, or, more
generally, analytic functions. According to the First Fundamental The-
orem of classical invariant theory, all of the invariants and covariants
for any system of polynomials or, more generally, functions, can be con-
structed through iterated transvectants and, in the inhomogeneous case,
scaling processes. Thus, a proper grounding in these basic techniques
is essential. Traditionally, such invariant processes are based on the
symbolic method, which is the most powerful computational tool for
computing and classifying invariants. However, no aspect of the classi-
cal theory has been as difficult to formalize or as contentious. The point
of view taken here is nonstandard, relying on the construction of covari-
ants and invariants as differential polynomials. Taking inspiration from
work of Gel'fand and Dikii, [77], in solitons and the formal calculus of
variations, I introduce a transform that mimics the Fourier transform of
classical analysis and maps differential polynomials into algebraic poly-
nomials. The transform is, in essence, the symbolic method realized in a
completely natural manner, applicable equally well to polynomials and
more general functions. The chapter concludes with proofs of the First
Fundamental Theorem, which states that every covariant has symbolic
form given by a polynomial in certain "bracket factors", and the Second
Fundamental Theorem, which completely classifies the syzygies among
the brackets. Although the determination of a complete Hilbert basis
for the covariants of a general binary form turns out to be an extremely
difficult problem, which has been solved only for forms of low degree, I
shall prove a result due to Stroh and Hilbert that constructs an explicit
rational basis for a form of arbitrary degree.

Chapter 7 introduces a graphical version of the symbolic method
that can be used to simply and pictorially analyze complicated invariant-
theoretic identities for binary forms. Each symbolic expression has an
equivalent directed graph, or "digraph" counterpart, whereby algebraic
identities among the symbolic forms translate into certain graphical op-
erations that bear much similarity to basic operations in knot theory,
[124], and thereby lead to a significant simplification with visual appeal.
As an application, I show how to implement Gordan's method for con-
structing a complete system of fundamental invariants and covariants
for binary forms, illustrated by the cubic and quartic examples.

At this point, we have covered the classical algebraic techniques un-
derlying the theory of binary forms. Since the group of linear/pro jective
transformations depends analytically on parameters, it is an example of
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xiv Introduction

a Lie transformation group. The theory of Lie groups includes a wide
range of powerful calculus-based tools for the analysis of their invari-
ants. Chapter 8 begins with a very brief introduction to Lie groups,
including the general Frobenius Theorem that completely determines
the local structure of the orbits and the fundamental invariants for reg-
ular actions. Here, invariants are classified up to functional dependence,
rather than polynomial or rational dependence as was done in the more
algebraic aspects of the theory; the number of fundamental invariants
depends solely on the dimension of the group orbits. Even better, there
is an explicit computation algorithm, which relies just on the Implicit
Function Theorem, for constructing the invariants of regular Lie group
actions. This method, known as "normalization", has its origins in Elie
Cartan's theory of moving frames, [33,93], which was developed for
studying the geometry of curves and surfaces. Surprisingly, the normal-
ization method has not been developed at all in the standard literature;
the construction relies on a new theory of moving frames for general
transformation group actions recently established by the author in col-
laboration with Mark Fels, [69, 70]. Applications to the classification of
joint invariants and differential invariants for interesting transformation
groups are provided.

In the theory of moving frames, the determination of symmetries,
the complete solution to the equivalence problem, and the construction
of canonical forms rely on the analysis of suitable differential invariants.
In the case of planar curves, there is a single basic differential invari-
ant — the group-theoretic curvature — along with a group-invariant
arc length element. Higher order differential invariants are obtained by
repeatedly differentiating curvature with respect to arc length. The first
two fundamental differential invariants trace out the signature set which
uniquely characterizes the curve up to group transformations. A direct
application of the moving frame method leads to a remarkable theorem
that the equivalence and symmetry of a binary form relies on merely
two classical rational covariants! This result, first established in [167],
reduces the entire complicated algebraic Hilbert basis to a simple pair of
rational covariants whose functional dependencies completely encode the
geometric properties of the binary form. I present a number of striking
new consequences of this result, including a new bound on the number
of discrete symmetries of polynomials. These innovative techniques are
of much wider applicability and clearly deserve further development in
the multivariate context.
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Introduction xv

While Chapter 8 develops "finite" Lie theory, the following chapter
is concerned with Lie's powerful infinitesimal approach to invariance.
Each Lie-theoretic object has an infinitesimal counterpart, and the re-
placement of complicated group-theoretic conditions by their infinitesi-
mal analogs typically linearizes and significantly simplifies the analysis.
The infinitesimal version of a Lie group is known as a Lie algebra, which
contains the infinitesimal generators of the group action, realized as first
order differential operators (or vector fields). Assuming connectivity, a
function is invariant under the group if and only if it is annihilated by
the infinitesimal generators, allowing methods from the theory of partial
differential equations to be applied to the analysis of invariants. In the
context of binary forms, the infinitesimal generators were, in fact, first
recognized by Cayley, [41], to play an important role in the theory. I
show how one can use these to build up general invariants from simpler
"semi-" and "isobaric" invariants through an inductive procedure based
on invariance under subgroups. The chapter culminates in a proof of the
Hilbert Basis Theorem that relies on a particular differential operator
that converts functions into invariants.

The final chapter is included to provide the reader with an orienta-
tion to pursue various generalizations of the basic methods and theories
to multivariate polynomials and functions. Unfortunately, space has fi-
nally caught up with us at this point, and so the treatment is more
superficial. Nevertheless, I hope that the reader will be sufficiently mo-
tivated to pursue the subject in more depth.

I have tried to keep the prerequisites to a minimum, so that the
text can be profitably read by anyone trained in just the most standard
undergraduate material. Certainly one should be familiar with basic lin-
ear algebra: vectors, matrices, linear transformations, Jordan canonical
form, norms, and inner products — all of which can be found in any
comprehensive undergraduate linear algebra textbook. Occasionally, I
employ the tensor product construction. No knowledge of the general
theory of polynomial equations is assumed. An introductory course in
group theory could prove helpful to the novice but is by no means essen-
tial since I develop the theory of groups and their representations from
scratch. All constructions take place over the real or complex numbers,
and so no knowledge of more general field theory is ever required. One
certainly does not need to take an abstract algebra course before start-
ing; indeed, this text may serve as a good motivation or supplement for
such a course!
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xvi Introduction

In Chapters 8 and 9, I rely on multivariable differential calculus, at
least as far as the Implicit Function Theorem, and the basic theory of
first order systems of ordinary differential equations. In particular, the
reader should be familiar with the solution to linear systems of differen-
tial equations, including matrix exponentials and their computation via
Jordan canonical forms. I do not require any experience with Lie group
theory or differential geometry, although the reader may wish to consult
a basic text on manifolds, vector fields, and Lie groups to supplement
the rather brief exposition here. (Chapter 1 of my own book [168] is
particularly recommended!) Some of the more difficult results are stated
without proof, although ample references are provided. I should remark
that although the transform method adopted in Chapter 6 is inspired
by the Fourier transform, no actual knowledge of the analytical Fourier
theory is required.

Inevitably, the writing of an introductory text of moderate size re-
quires making tough choices on what to include and what to leave out.
Some of my choices are unorthodox. (Of course, if all choices were "or-
thodox", then there wouldn't be much point writing the book, as it
would be a mere reworking of what has come before.) The most ortho-
dox choice, followed in all the classical works as well as most modern
introductions, is to concentrate almost entirely on the relatively modest
realm of binary forms, relegating the vast hinterlands of multivariate
polynomials and functions to an all too brief final chapter that cannot
possibly do them justice. Of course, one motivation for this tactic is
that most of the interesting explicit results and methods already make
their appearance in the binary form case. Still, one tends to leave with
the wish that such authors (including the present one) had more to say
of substance in the multidimensional context.

Less orthodox choices include the reliance on calculus — differential
operators, differential equations, differential invariants — as a frame-
work for the general theory. Here we are in good company with the
classics — Clebsch, [49], Gordan, [89], Grace and Young, [92], and
even Hilbert, [107]. Post-Noetherian algebraists will no doubt become
alarmed that I have regressed, in that the calculus-based tools are only
valid in characteristic zero, or, more specifically, for the real and complex
numbers, while "true" invariant theory requires that all fields be treated
as equals, which means throwing out such "antiquated" analytical tools.
My reply (and I speak here as the semi-applied mathematician I am)
is that the primary physical and geometrical applications of invariant
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Introduction xvii

theory, which, after all, motivated its development, remain either real
or complex, and it is here that much of the depth, beauty, and utility
of the subject still resides. Another, more provocative, response is that
the more interesting generalization of the classical techniques is not nec-
essarily to fields of nonzero characteristic, but rather to more general
associative and non-associative algebras, starting with the quaternions,
octonions, Clifford algebras, quantum groups, and so on. One retains
calculus (the quaternion calculus is a particularly pretty case) but gives
up commutativity (and even possibly associativity). The development of
a non-commutative classical invariant theory remains, as far as I know,
completely unexplored.

The most original inclusion is the application of the Cartan theory
of moving frames to the determination of symmetries and a solution to
the equivalence problem for binary forms. Most of the constructions and
results in this part of the text are new but can be readily comprehended
by an advanced undergraduate student. This connection between geom-
etry and algebra, I believe, opens up new and extremely promising vistas
in both subjects — not to mention the connections with computer vision
and image processing that served as one of my original motivations.

An unorthodox omission is the combinatorial and enumerative tech-
niques that receive a large amount of attention in most standard texts.
This was a difficult decision, and a topic I really did want to include.
However, as the length of the manuscript crept up and up, it became
clear that something had to go, and I decided this was it. The com-
binatorial formulae that count the number of invariants, particularly
those based on Hilbert and Molien series and their generating functions,
are very pretty and well worth knowing; see [200,204], for instance.
However, as far as practical considerations go, they merely serve as indi-
cators of what to expect and are of less help in the actual determination
and classification of invariants. Indeed, in all the examples presented
here, enumeration formulae are never used, and so their omission will
not leave any gaps in the exposition. But the reader is well advised to
consult other sources to rectify this omission.

The text is designed for the active reader. As always, one cannot
learn mathematics by merely reading or attending lectures — one needs
to do mathematics in order to absorb it. Thus, a large number and vari-
ety of exercises, of varying degrees of difficulty, are liberally interspersed
throughout the text. They either illustrate the general theory with ad-
ditional interesting examples or supply further theoretical results of im-
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xviii Introduction

portance that are left for the reader to verify. The student is strongly
encouraged to attempt most exercises while studying the material.

I have also included many references and remarks of historical and
cultural interest. I am convinced that one cannot learn a mathematical
subject without being at least partially conversant with its roots and its
original texts. Modern reformulations of classical mathematics, while
sometimes (but not always) more digestible to the contemporary palate,
often shortchange the contributions of the original masters. Worse yet,
such rewritings can actually be harder for the novice to digest, since they
tend to omit the underlying motivations or significance of the results and
their interconnections with other parts of mathematics and applications.
I am a firm believer in the need for a definite historical consciousness
in mathematics. There is no better way of learning a theorem or con-
struction than by going back to the original source, and a text (even at
an introductory level) should make significant efforts to uncover and list
where the significant ideas were conceived and brought to maturation.
On the other hand, I do not pretend that my list of references is in
any sense complete (indeed, the sheer volume of the nineteenth-century
literature precludes almost any attempt at completeness); nevertheless,
it includes many obscure but vital papers that clearly deserve a wider
audience. I hope the reader is inspired to continue these historical and
developmental studies in more depth.

The text has been typeset using the author's own OT̂ }X system of
macros. Details and software can be found at my web site:

http://www.math.umn.edu/~olver .

The figures were drawn with the aid of MATHEMATICA. Comments,
corrections, and questions directed to the author are most welcome.

A Brief History

Classical invariant theory's origins are to be found in the early-
nineteenth-century investigations by Boole, [24], into polynomial equa-
tions. The subject was nurtured by that indefatigable computer Cayley,
to whom we owe many of the fundamental algorithms. Any reader of
Cayley's collected works, [36], which include page after page of exten-
sive explicit tables, cannot but be in awe of his computational stamina.
(I often wonder what he might have accomplished with a functioning
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Introduction xix

computer algebra system!) While the British school, led by Cayley and
the flamboyant Sylvester, joined by Hermite in Prance, was the first to
plow the virgin land, the actual flowering and maturation of the theory
passed over to the Germans. The first wave of German experts includes
Aronhold, the progenitor of the mystical "symbolic method", Clebsch,
whose contributions metamorphosed into basic formulae in represen-
tation theory with profound consequences for quantum physics, and,
most prominently, Gordan, the first among equals. Gordan's crowning
achievement was his computational procedure and proof of the funda-
mental Basis Theorem that guarantees only a finite number of indepen-
dent invariants for any univariate polynomial. The classical references
by Clebsch, [49], Faa di Bruno, [67], and Gordan, [89], describe the re-
sulting invariant theory of binary forms. A very extensive history of the
nineteenth-century invariant theory, including copious references, was
written by F. Meyer, [151]. Modern historical studies by Fisher, [72],
and Crilly, [55], also document the underlying sociological and cultural
implications of its remarkable history.

Despite much effort, extending Gordan's result to polynomials in
two or more variables proved too difficult, until, in a profound stroke
of genius, David Hilbert dramatically unveiled his general Basis The-
orem in 1890. Hilbert's first, existential proof has, of course, had an
incomparable impact, not just in classical invariant theory, but in all of
mathematics, since it opened the door to the abstract algebraic approach
that has characterized a large fraction of twentieth-century mathemat-
ics. Its immediate impact was the discredit at ion of the once dominant
computational approach, which gradually fell into disrepute. Only in
recent years, with the advent of powerful computer algebra systems and
a host of new applications, has the computational approach to invariant
theory witnessed a revival.

Nevertheless, the dawn of the twentieth century saw the subject in
full florescence, as described in the marvelous (and recently translated)
lectures of Hilbert, [107]. The texts by Grace and Young, [92], and El-
liott, [65], present the state of the computational art, while Weitzenbock,
[229], reformulates the subject under the guiding light of the new physics
and tensor analysis. So the popular version of history, while appealing
in its drama, is not entirely correct; Hilbert's paper did not immediately
kill the subject, but rather acted as a progressive illness, beginning with
an initial shock, and slowly consuming the computational body of the
theory from within, so that by the early 1920's the subject was clearly
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xx Introduction

moribund. Abstraction ruled: the disciples of Emmy Noether, a student
of Gordan, led the fight against the discredited computational empire,
perhaps as a reaction to Noether's original, onerous thesis topic that
involved computing the invariants for a quartic form in three variables.

Although the classical heritage had vanished from the scene by mid-
century, all was not quiet. The profoundly influential, yet often frustrat-
ingly difficult, book by Weyl, [231], places the classical theory within
a much more general framework; polynomials now become particular
types of tensorial objects, while, motivated by simultaneous develop-
ments in algebra and physics, the action of linear or linear fractional
transformations is now extended to the vast realm of group represen-
tations. Attempts to reconcile both the classical heritage and Weyl's
viewpoint with modern algebra and geometry have served to inspire a
new generation of invariant theorists. Among the most influential has
been Mumford's far-reaching development of the incisive methods of
Hilbert, leading to the deep but abstract geometrical invariant theory,
[156]. New directions, inspired by recent developments in representation
theory and physics, appear in the recent work of Howe, [112]. Partic-
ular mention must be made of Rota and his disciples, [94,135], whose
efforts to place the less than rigorous classical theory, particularly the
symbolic method, on a firm theoretical foundation have had significant
influence. The comprehensive text of Gurevich, [97], is a particularly
useful source, which helped inspire a vigorous, new Russian school of
invariant theorists, led by Popov, [181], and Vinberg, [226], who have
pushed the theory into fertile new areas.

Of course, one cannot fail to mention the rise of modern computer
algebra. Even the masters of the last century became stymied by the
sheer complexity of the algebraic formulas and manipulations that the
subject breeds. The theory of Grobner bases, cf. [54], has breathed
new life into the computational aspect of the subject. Sturmfels' elegant
book, [204], gives an excellent survey of current work in this direction
and is particularly recommended to the student wishing to continue be-
yond the material covered here. The influence of classical invariant the-
ory can be felt throughout mathematics and extends to significant physi-
cal applications, ranging from algebra and number theory, [79], through
combinatorics, [201], Riemannian geometry, [149,150,229], algebraic
topology, [196], and ordinary differential equations, [235,195]. Appli-
cations include continuum mechanics, [197], dynamical systems, [195],
engineering systems and control theory, [213], atomic physics, [189],
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and even computer vision and image processing, [157]. This text should
prove to be useful to students in all of these areas and many more.
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Chapter 1

Prelude —
Quadratic Polynomials and

Quadratic Forms

Classical invariant theory is the study of the intrinsic properties of poly-
nomials. By "intrinsic", we mean those properties which are unaffected
by a change of variables and are hence purely geometric, untied to the
explicit coordinate system in use at the time. Thus, properties such as
factorizability and multiplicities of roots, as well as their geometrical con-
figurations, are intrinsic, whereas the explicit values of the roots and the
particular coefficients of the polynomial are not. The study of invariants
is closely tied to the problem of equivalence — when can one polynomial
be transformed into another by a suitable change of coordinates — and
the associated canonical form problem — to find a system of coordinates
in which the polynomial takes on a particularly simple form. The solu-
tion to these intimately related problems, and much more, are governed
by the invariants, and so the first goal of classical invariant theory is
to determine the fundamental invariants. With a sufficient number of
invariants in hand, one can effectively solve the equivalence, and canon-
ical form problems, and, at least in principle, completely characterize
the underlying geometry of a given polynomial.

All of these issues are already apparent in the very simplest example
— that of a quadratic polynomial in a single variable. This case served
as the original catalyst for Boole and Cayley's pioneering work in the
subject, [24, 36], and can be effectively used as a simple (i.e., just high
school algebra is required) concrete example that will motivate our study
of the subject. We shall devote this introductory chapter to the elemen-
tary theory of quadratic polynomials in a single variable, together with
homogeneous quadratic forms in two variables. Readers who are unim-
pressed with such relative trivialities are advised to proceed directly to
the true beginning of our text in Chapter 2.
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2 Prelude

Quadratic Polynomials

Consider a quadratic polynomial in a single variable p:

Q(p) = ap2 + 2bp + c. (1.1)

Before addressing the question of what constitutes an invariant in this
context, we begin our analysis with the elementary problem of deter-
mining a canonical form for the polynomial Q. In other words, we are
trying to make Q as simple as possible by use of a suitable change of
variable. As long as a / 0, the two roots of Q are, of course, given by
the justly famous quadratic formula

P- (1.2)
a a

where
A = ac-b2 (1.3)

is the familiar discriminant^ of Q. The existence of the two roots implies
that we can factor

= a(p-p+)(p-p_) (1.4)

into two linear, possibly complex-valued, factors.
At this point, we need to be a bit more specific as to whether we

are dealing with real or complex polynomials. Let us first concentrate
on the slightly simpler complex version. The most obvious changes of
variables preserving the class of quadratic polynomials are the affine
transformations

p = ap + (3, (1.5)

for complex constants a / 0 and /?. Here a represents a (complex) scal-
ing transformation,* and (3 a complex translation. The transformation
(1.5) maps the original quadratic polynomial Q(p) to a new quadratic
polynomial Q(p), which is constructed so that

Q(p) = Q(ap + /3) = Q(p). (1.6)

In particular, if p0 is a root of Q(p), then p0 — ap0 + j3 will be a root of
Q(p). For example, if Q(p) — p2 — 1, and we apply the transformation

' The sign chosen for the discriminant is in accordance with later general-
izations.

* If we write a = re , then the modulus r will act by scaling, whereas the
exponential e will induce a rotation in the complex p-plane; see p. 46.
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Quadratic Polynomials 3

p = 2p - 1, then Q(p) = \p2 + \p - §. The roots p ± = ±1 of Q are
mapped to the roots p + = 1 and p_ = — 3 of Q-

For a general complex quadratic polynomial, there are only two
cases to consider. If its discriminant is nonzero, A / 0, then the roots of
Q are distinct. We can translate one root, say, p_, to be zero and then
scale so that the second root takes the value 1. Thus, by a suitable choice
of a and (3 we can arrange that Q has its roots at 0 and 1. Consequently,
under complex affine transformations (1.5), every quadratic polynomial
with distinct roots can be placed in the canonical form Q(p) = k(p2 — p)
for some k £ C

Exercise 1.1. Find the explicit formulas for a, f3 that will reduce
a quadratic polynomial Q to its canonical form. Is the residual coefficient
k uniquely determined? Determine the formula(e) for k in terms of the
original coefficients of Q.

Exercise 1.2. An alternative canonical form for such quadratics
is Q(p) = k (p2 + 1). Do the same exercise for this canonical form, and
describe what is happening to the roots of Q.

On the other hand, if the discriminant of Q vanishes, so ac = 62,
then Q has a single double root p0 and so factors as a perfect square:
Q(p) = a(p — pQ)2. Clearly this property is intrinsic — it cannot be al-
tered by any change of coordinates. We can translate the double root to
the origin, reducing Q to a multiple of the polynomial p 2, and then scale
the coordinate p to reduce the multiple to unity, leading to a canonical
form, Q = p2, for a quadratic polynomial with a double root.

We are not quite finished, since we began by assuming that the
leading coefficient a ^ 0. If a — 0, but 6 / 0 , then Q reduces to a linear
polynomial with a single root, p0 = —c/b. We can, as in the preceding
case, translate this root to 0 and then scale, producing the canonical
form Q = p in this case. If b = 0 also, then Q is a constant, and, from
the viewpoint of affine transformations (1.5), there is nothing that can
be done. Thus, we have constructed a complete list of canonical forms
for quadratic polynomials, under complex affine changes of coordinates.
Note particularly that the discriminant A and the leading coefficient a
play distinguished roles in the classification.

Exercise 1.3. Suppose Q and Q are related by an affine change
of variables (1.5). Determine how their discriminants and leading coef-
ficients are related.
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Affine

I.
II.

III.
IV.

Canonical

k(p2^
P2

P
c

Forms for

-1) A
A
a
a

Complex

- 0 ,
= 0,

Quadratic Polynomials

0 distinct roots
0 double root

6 ^ 0 linear
constant

The case of real polynomials under real affine changes of coordinates
is similar, but there are a few more cases to consider. First, note that the
roots (1.2) of a real quadratic polynomial are either both real or form a
complex conjugate pair, depending on the sign of the discriminant. If Q
has complex conjugate roots, meaning that its discriminant is positive,
then it can never be mapped, under a real change of variables, to a
quadratic polynomial with real roots, and so our complex canonical form
is not as universally valid in this case. However, if the two roots are
p± = r ± is, then a translation by (3 — —r will move them onto the
imaginary axis; this may be followed by a scaling to place them at ±i.
Thus, the canonical form in this case is k(p2 + 1). On the other hand, if
the discriminant is negative, then Q has two distinct real roots, which
can be moved to ±1, leading to the alternative canonical form k(p2 - 1).
The remaining cases are as in the complex version, since a double root
of a real quadratic polynomial is necessarily real. We therefore deduce
the corresponding table of real canonical forms.

la.
Ib.
II.

III.
IV.

Affine

k(P

k(p

Canonical

2-f
2 _

P2

P
C

- i )
- i )

Forms

A
A
A
a -
a -

> 0
< 0
= 0
- o ,
= 6:

for Real

, a / 0
, a / 0
, a / 0
6 / 0

= 0

Quadratic Polynomials

complex conjugate roots
distinct real roots
double root
single root
constant

Exercise 1.4. Determine the possible canonical forms for a com-
plex cubic polynomial Q(p) = ap3 + bp2 + cp + d under affine changes of
coordinates. Hint: What are the possible root configurations?
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Quadratic Forms and Projective Transformations 5

Quadratic Forms and Projective Transformations

While affine changes of coordinates are immediately evident, they do
not form the most general class that preserves the space of polynomi-
als. In order to motivate a further extension, we begin by explaining
the connection between homogeneous and inhomogeneous polynomials.
Instead of the inhomogeneous polynomial (1.1) in a single variable, we
consider the homogeneous quadratic polynomial

Q(x,y) = ax2 + 2bxy + q/2, (1.7)

in two variables x, y, known classically as a quadratic form. Clearly
we can recover the inhomogeneous quadratic polynomial Q(p) from the
associated quadratic form Q(x,y) by setting p = x and y = 1, so that
Q(p) = Q(p, 1). On the other hand, the homogeneous version (1.7) can
be directly constructed from Q(p) according to the basic formula

(1.8)

An affine change of coordinates (1.5) will induce a linear transfor-
mation mapping the quadratic form Q(x,y) associated with Q(p) to the
quadratic form Q(x,y) associated with Q(p), as defined in (1.6). Clearly,
the upper triangular linear transformation

x — ax + /3y, y — y, OL / 0, (1.9)

will have the desired effect on the quadratic forms:

<2(^, V) = Q{OLX + j3y, y) = Q(x, y).

We conclude that the theory of inhomogeneous quadratic polynomials
under affine coordinate changes is isomorphic to the theory of quadratic
forms under linear transformations of the form (1.9).

Now, a crucial observation is that the class of quadratic forms is pre-
served under a much wider collection of transformation rules. Namely,
any invertible linear change of variables

x = ax 4- (3y, y = ^x + 6y, aS — /?7 / 0, (1-10)

will map a homogeneous polynomial in x and y to a homogeneous poly-
nomial in x and y according to

Q(x, y) = Q{ax + 0y, jx + 5y) = Q(x, y). (1.11)

The coefficients of the transformed polynomial

Q(x,y) = ax2 + 2bxy + cy2
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6 Prelude

are constructed from those of the original polynomial (1.7) according to
the explicit formulae

a = a2a
+ jS c, (1.12)

c = (32 a + 2(35b + 52 c.
Remarkably, the discriminant of the transformed polynomial is directly
related to that of the original quadratic form — a straightforward com-
putation verifies that they agree up to the square of the determinant of
the coefficient matrix A— (a^) for the linear transformation (1.10):

A = ac - b2 = (a6 - /?7)2 {ac - b2) = (aS - Pf)2 A. (1.13)

The transformation rule (1.13) expresses the underlying invariance of
the discriminant of a quadratic polynomial and provides the simplest
example of an invariant (in the sense of classical invariant theory).

Remark: A linear transformation (1.10) is called unimodular if it
has unit determinant aS — /?7 = 1 and hence preserves planar areas. For
the restricted class of unimodular transformations, the discriminant is a
bona fide invariant: A = A.

What is the effect of a general linear transformation on the origi-
nal inhomogeneous polynomial? For this purpose, it helps to refer back
to the formula (1.8) relating the inhomogeneous polynomial and its ho-
mogeneous counterpart. Specifically, the inhomogeneous or projective
variable p is identified with the ratio of the homogeneous variables, so
p = x/y. Therefore, the effect of the linear transformation (1.10) is to
transform the projective variable p according to the linear fractional or
Mobius or projective transformation

^ = ^ T T ' aS-p-y^O. (1.14)
7P + S

Thus, each invertible 2x2 coefficient matrix A = (a^) induces an invert-
ible transformation mapping p to p, which is defined everywhere except,
when 7 ^ 0, at the singular point p = — <5/7- Such transformations lie
at the heart of projective geometry and are of fundamental importance,
not just in invariant theory, but in a wide range of classical and mod-
ern disciplines, including complex analysis and geometry, [8], number
theory, [79], and hyperbolic geometry, [20]. Indeed, this rather simple
construction has led to some of the most profound consequences in all
of mathematics.
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Quadratic Forms and Projective Transformations 7

Exercise 1.5. Prove directly that the composition of two linear
fractional transformations is again a linear fractional transformation,
whose coefficients are obtained by multiplying the associated 2 x 2 coef-
ficient matrices. In particular, the inverse of a linear fractional transfor-
mation is the linear fractional transformation determined by the inverse
coefficient matrix.

Exercise 1.6. Show that two coefficient matrices A and A de-
termine the same linear fractional transformation (1.14) if and only if
they are scalar multiples of each other: A = XA. Thus, in the complex
case, any linear fractional transformation (1.14) can be implemented by
a unimodular coefficient matrix: det A — 1. What is the unimodular
linear transformation associated with the affine transformation (1.5)? Is
this result valid in the real case?

How should a general linear fractional transformation act on an
inhomogeneous quadratic polynomial (1.1)? We want to maintain the
transformation rules (1.12) on the coefficients, so that the action will
be the inhomogeneous counterpart to the linear action (1.11) on homo-
geneous quadratic forms. This requires that the quadratic polynomials
Q(p) and Q(p) are related according to the basic formula

Q(P) = (IP + S)2 Q(P) = (7P + <*)2 Q ( ~ ^ ) • (L 1 5 )

Note that the additional factor (jp + 8)2, known as the quadratic mul-
tiplier, is used to clear denominators so that the linear fractional trans-
formation (1.14) will still map quadratic forms to quadratic forms. The
reader might enjoy verifying that the transformation rules (1.15) does
lead to exactly the same formulae (1.12) for the coefficients, and hence
the discriminant continues to satisfy the basic invariance criterion (1.13).
Note that, even though two coefficient matrices which are scalar multi-
ples of each other determine the same linear fractional transformation
(1.14), their action on quadratic polynomials (1.15) is different (unless
A = =b A), owing to the effect of the multiplier.

Exercise 1.7. Show that the inversion p — l/(p + 1) maps the
quadratic polynomial Q(p) — p2 — 1 to the linear polynomial Q(p) =
—2p+ 1. Thus projective transformations do not necessarily preserve
the degree of a polynomial. Given a linear fractional transformation
(1.14), determine which quadratic polynomials Q(p) are mapped to lin-
ear polynomials. Which are mapped to constant polynomials?
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8 Prelude

Let us return to the canonical form problem for quadratic polyno-
mials, now rearmed with the more general projective transformations.
Clearly, by suitably combining the transformations and appealing to Ex-
ercise 1.5, we can begin by placing the quadratic polynomial in canonical
affine form. Consider first the complex canonical form Q = k(p2 + 1).
If we scale according to the coefficient matrix A — Al, where 1 is the
2 x 2 identity matrix and A2 = £;, then we can normalize Q i-> p2 + 1.
Furthermore, the transformation p — (p — i)/(p + i) will map p2 + 1 to
the linear polynomial p. Therefore, if A ^ 0, and so Q(p) either has
two distinct roots or is a nonzero linear polynomial, then there is just
one canonical form, namely Q(p) — p. On the other hand, if we take
the affine canonical form Q = p2, we can apply the inversion p = 1/p
to map it to the constant polynomial Q — 1; further, any other con-
stant (nonzero) polynomial can, by applying a diagonal scaling matrix,
be mapped to the constant 1. Thus, for complex quadratic polynomi-
als under general linear fractional transformations, there are only three
canonical forms: the first is p, which occurs when A / 0; the second is
1, which occurs when A = 0 but Q is not identically 0; and the last is
the most trivial case, namely Q = 0.

Canonical Forms for Complex Quadratic Polynomials

I.
II.

III.

p
1

0

A
A

Q

- o ,
= 0

Qi
distinct roots
double root

Thus, under projective transformations, every complex quadratic
polynomial is equivalent to a linear or constant polynomial. Since the
action of linear fractional transformations on inhomogeneous quadra-
tic polynomials mirrors that of linear transformations on homogeneous
quadratic forms, each of our canonical forms has a homogeneous coun-
terpart. We conclude that, under complex linear transformations, there
are also three different canonical quadratic forms: first, xy, or, alterna-
tively, x2 + y2\ second, x2\ and, third, the trivial zero form 0.

In the real case, note that the transformation rules (1.3) for the dis-
criminant imply that its sign is invariant: if A > 0, say, then A > 0 also.
Of course, this just means that one cannot map real roots to complex
roots by a real projective transformation. Moreover, the sign of Q itself is
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Quadratic Forms and Projective Transformations 9

also invariant; one cannot map a positive definite quadratic polynomial
to an indefinite or negative definite one. Consequently, there are three
different canonical forms with nonvanishing discriminant. The sign of Q
also affects the classification of quadratics with vanishing discriminant.

la.
Ib.
Ic.

Ila.
lib.
III.

Canonical

P2 +
-P2-

P
1

- 1
0

Forms

1
- 1

for

A :
A :

Real Quadratic Polynomials

> 0,
> 0,

A <o
A =
A =

Q =

= 0,
= 0,
EO

Ql

Qt

Ql
Qt

>o
^o

>o
so

complex roots
complex roots
distinct real roots
double root
double root

The corresponding homogeneous canonical forms are the positive
definite, x2 + y2, negative definite, — x2 — y2, and indefinite, which can
be taken as either xy or x2 - y2, all of which were complex-equivalent,
followed by the degenerate cases x2, —x2, and 0.

Suppose we restrict to area-preserving transformations, with uni-
modular coefficient matrix: det^4 = 1. In this case, the discriminant is
strictly invariant, and hence we can no longer rescale to normalize it to
be dzl. Retracing the preceding arguments, we see that the only effect
is to introduce an extra scaling factor into the list of canonical forms.
Thus, for complex-valued quadratic polynomials under area-preserving
changes of variables, the canonical forms having nonzero discriminant
become a one-parameter family of linear forms kp. Note that the in-
version p — —1/p will map kp to —kp, both of which have discriminant
A = /c2, but otherwise one cannot transform between two different lin-
ear canonical forms. Therefore, a complete list of canonical forms for
complex quadratic polynomials under unimodular linear fractional trans-
formations consists of the linear forms kp, along with the constant forms
1 and 0. In the real case, one similarly finds two families of canonical
forms, k(p2 + 1) and kp, which are distinguished by the sign of the dis-
criminant. In the degenerate cases where A = 0, the list of canonical
forms remains the same as before.
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10 Prelude

Remark: A generic unimodular linear fractional transformation de-
pends on three free parameters: a, /3, and 7. Further, a quadratic
polynomial (1.1) has three coefficients. Thus, one might expect that one
could normalize all three coefficients via a suitable choice of the three
parameters in the linear fractional transformation. The invariance of the
discriminant proves that this naive parameter count can be misleading.
(See Chapter 8 for a more sophisticated and accurate version, which is
based on the orbit dimensions.)

Exercise 1.8. Determine the canonical forms for complex-valued
quadratic polynomials under the class of real linear (or linear fractional)
transformations. In other words, the coefficients a,b,c in (1.7) or (1.1)
are allowed to be complex, but the transformations (1.10) or (1.14) are
restricted so that a,/?,7, 5 are all real.

This concludes our brief presentation of the admittedly elementary
theory of quadratic polynomials in one complex or one real variable. Ex-
tensions to multi-dimensional quadratic forms are certainly of interest,
and we shall briefly return to this topic in Chapters 3 and 10. However,
our more immediate interest is in extending these basic considerations
to higher degree polynomials in a single variable and/or homogeneous
polynomials in two variables. In the classical literature, these are known
as "binary forms". Their invariants, geometry, and canonical forms, un-
der projective and/or linear transformations, constitute the heart and
soul of the classical theory.
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Chapter 2

Basic Invariant Theory for Binary Forms

Using the previous chapter as our motivational springboard, let us now
dive into our chosen subject. Most of the classical literature, and indeed
most of the present text, is devoted to the simplest case — that of a bi-
nary form or homogeneous polynomial in two variables, along with the
inhomogeneous univariate counterpart. In this chapter, we shall intro-
duce many of the fundamental concepts in the invariant theory of binary
forms. The ideas will be illustrated by the next two most important cases
— that of cubic and quartic polynomials. In each case, we shall exhibit
a complete system of invariants, as well as a complete list of canonical
forms. These examples will serve to motivate the general definitions of
invariants and covariants. The emphasis here is on important particu-
lar examples, such as Hessians, resultants, and discriminants, and their
role in the classification and geometry of binary forms. These initial
constructions bring the basic problem of classifying the invariants into
focus, leading to the fundamental Basis Theorem of Hilbert, whose proof
will appear in Chapter 9. The chapter concludes with a brief discussion
of the algebraic relationships, known as "syzygies", that exist among the
fundamental invariants and covariants.

Binary Forms

In the classical literature, homogeneous polynomials are called forms."I"
The adjectives "binary", "ternary", and so on refer to the number of
variables that the form depends on. The most important case, and the
one we shall primarily concentrate on, is that of a binary form

Q(x) - Q(x, y) =

t The classical term "form" (which replaced Cayley's older "quantic", [40])
as used here should not be confused with the modern term "differential form".
In this book, all forms are symmetric (and hence polynomials) — as opposed to
the anti-symmetric forms of importance in geometry and topology, [25, 168].
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12 Binary Forms

which is a homogeneous polynomial function of two variables x = (x, y).
(The binomial coefficients (™) are introduced for later convenience.)
We shall consider both real and complex t forms, as the methods apply
equally well to both. The number n G N is the degree of the form, and we
note that Q satisfies the basic homogeneity equation Q(Ax) = AnQ(x).

As with the correspondence between quadratic polynomials and
quadratic forms, each homogeneous polynomial (2.1) will correspond
to an inhomogeneous polynomial

i=0

depending on a single scalar variable p. At the risk of initial confu-
sion, we shall use the same symbol Q for both the homogeneous form
(2.1) as well as its inhomogeneous counterpart (2.2). The reader might
wish to insert some extra notation, such as Q(p), to distinguish the
inhomogeneous version (2.2), because two different homogeneous forms
might, ostensibly, reduce to the "same" inhomogeneous counterpart. For
example, the linear form Q1(x,y) = x + 2y has inhomogeneous ver-
sion Qi(p) — p + 2; the quadratic form Q2(x,y) — xy + 2y2 also has
Q2(p) — P + 2. However, this identification is, in fact, illusory; the for-
mer is a linear (rather affine) polynomial, whereas the latter should be
regarded not as a linear polynomial, but rather as a degenerate quadra-
tic polynomial! The distinction is, at the outset, certainly not evident,
but it will become so once the transformation rules are brought into
play. In point of fact, the use of a notation like Q tends, I believe, to
be more confusing than our agreement to use the same notation for ho-
mogeneous and inhomogeneous polynomials. In the preceding example,
then, we would have Qi(p) = p + 2, and Q2(p) — P + 2, but Q1 ^ Q2
because they come from different homogeneous representatives! Any
reader who is willing to persevere should soon recover from this initial
confusion.

Remark: Actually, the difficulty we are experiencing at this junc-
ture is reflective of the fact that the inhomogeneous representative of a
homogeneous function is not really a function at all, but, rather, a sec-
tion of a "line bundle" over a one-dimensional base space, cf. [25,161].
Thus, the fact that Q± ^ Q2 even though they both have the same co-

t Polynomials whose coefficients belong to other fields are certainly of great
algebraic interest, but such extensions would take us too far "afield".
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Transformation Rules 13

ordinate formula, is because Q1 is a section of the "linear line bundle",
whereas Q2 is a section of the "quadratic line bundle", and we just hap-
pen to have chosen the underlying coordinate p so that they have the
same formula. But to keep the exposition reasonably elementary, I have
chosen not to adopt this more advanced geometric framework.

Given an inhomogeneous polynomial Q(p), we can recover its ho-
mogeneous form Q{x,y) via the simple rule

(2.3)

provided we specify its degree n in advance. Formula (2.3) proves that
there is a one-to-one correspondence Q(x,y) <=> (Q(p),n) between ho-
mogeneous forms and inhomogeneous polynomials once we append the
latter's degree. The degree n of the form might be larger than the naive
degree of Q(p), meaning the degree of its leading term. Note that the
naive degree of Q(p) will be strictly less than the degree of (2.2) if and
only if its leading coefficient vanishes: an — 0. In classical invariant the-
ory, the naive degree is more or less meaningless since it can be changed
by a suitable transformation, whereas the true degree is intrinsic and
extremely important.

Definition 2.1. The degree of a (nonzero) homogeneous form
Q(x,y) is the degree of any of its terms. The degree of an inhomoge-
neous polynomial Q(p) is the degree of its homogeneous representative.
Two inhomogeneous polynomials are considered to be equal if and only
if they have the same coordinate formula and the same degree.

Transformation Rules

Classical invariant theory is concerned with the intrinsic geometric prop-
erties of forms, meaning those properties which do not depend on the
introduction of a particular coordinate system. In the case of homoge-
neous forms (2.1), we are naturally led to consider the effect of invertible
linear changes of variables

x = ax + 0y, y = j X + 5y, aS - fa / 0, (2.4)

in which the coefficient matrix A — (a^) is nonsingular, and either real
or complex, depending on the type of form under consideration. Note
that (2.4) defines (essentially) the most general class of transformations
on a two-dimensional space which preserve the class of homogeneous
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14 Binary Forms

polynomials of a fixed degree. ̂  Under such a linear transformation, the
polynomial Q(x,y) is mapped to a new polynomial Q(x,y), defined so
that

Q{x, y) = Q(ax + (3y, 7x + Sy) = Q(x, y). (2.5)

Thus, the matrix A induces a transformation on the coefficients ai of Q,
mapping them into the corresponding coefficients a{ of Q. It is not diffi-
cult to determine precise formulae for the coefficients of the transformed
polynomial.

Theorem 2.2. Let Q(x,y) and Q(x,y) be two binary forms re-
lated by the transformation rule (2.5). Then their coefficients are related
by the explicit formulae

k=0 { j { , + }

2 = 0, . . . , n . (2.6)

Note that (2.6) reduces to the quadratic transformation formulae
(1.12) when n = 2. Theorem 2.2 is a straightforward consequence of
the Binomial Theorem. In essence, classical invariant theory for binary
forms can be regarded as the analysis of the consequences of these specific
transformation rules. However, we shall make surprisingly little use of
the complicated explicit formulae (2.6); all of the major techniques can
be developed without any direct reference to them.

The induced action of a linear transformation (2.4) on the projective
coordinate p = x/y is, as in the case of quadratic forms, governed by
linear fractional transformations

^=5rf' oS-frto. (2.7)

' However, specific polynomials may admit more general types of trans-
formations which preserve their underlying form. Also, any invertible homo-
geneous polynomial transformation will map a homogeneous polynomial to
another homogeneous polynomial, albeit of a different degree. It is outside
the scope of this book to consider this more general class, which includes the
Tschirnhaus transformations, [42], [58; p. 210], that are classically used to
reduce higher degree polynomials to canonical form. Even the classification
of invertible polynomial transformations remains rather rudimentary. For in-
stance, the classical "Jacobian conjecture" — a polynomial transformation
with constant Jacobian determinant is invertible — remains unsolved, [18].
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The Geometry of Projective Space 15

The transformation rule for inhomogeneous polynomials is a simple con-
sequence of the basic correspondence (2.3).

Proposition 2.3. Let Q(x,y) and Q(x,y) be homogeneous poly-
nomials of the same degree n which are related by a linear change of
variables according to (2.5). Then the associated inhomogeneous poly-
nomials Q(p) and Q(p) are related by the basic linear fractional trans-
formation rule of degree n:

dp+sr Q IP +

As before, the role of the nth order multiplier (^p + 5)n is to clear
denominators so that the linear fractional transformation (2.7) will map
polynomials to polynomials of the same degree. It is easy to see that the
coefficients ai of the inhomogeneous form Q(p) are subjected to the same
transformation rules (2.6) under the linear fractional transformation rule
(2.8) as those of the homogeneous representative Q(x,y). Thus, the
degree of an inhomogeneous polynomial is not necessarily specified by its
local coordinate formula (2.2) but rather is distinguished by its behavior
under linear fractional changes of coordinates.

The Geometry of Projective Space

Before proceeding further, it will help if we review elementary projec-
tive geometry, which underlies the correspondence between homogeneous
forms and their inhomogeneous counterparts. Projective geometry dates
back (at least) to the Renaissance, when European artists developed per-
spective representations of scenes. The mathematical foundations begin
with the work of Desargues and Pascal, and were brought to maturity
by Poncelet; see [26] for historical details. This subject was one of the
mainstays of classical mathematics, while recent advances in image pro-
cessing and computer vision, cf. [157], have underscored its continued
relevance.

Definition 2.4. Given a vector space V, the associated projective
space F(V) is defined as the set of all one-dimensional subspaces of V,
i.e., the set of all lines through the origin in V.

If V is finite-dimensional, then its projective space forms a "man-
ifold" ̂  whose dimension is one less than that of V itself. The simplest

' See Chapter 8 for the precise definition.
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16 Binary Forms

Figure 1. The Real Projective Line.

example is the real projective line, RP = P(R ), which is the projective
space associated with the real plane, i.e., the space of lines through the
origin in R2. Each line intersects the unit circle S1 C R2 twice — see
Figure 1 — and thus we can identify RP1 with the circle obtained by
identifying opposite (antipodal) points on S1. (To see that this identi-
fication does, in fact, produce a circle, we note that the map 9 \-> 29
from S1 to itself will identify the antipodal points in a unique manner.)
Thus, the angle 0 < 9 < n that each line makes with the horizontal can
be used to coordinatize the real projective line.

Classically, one views the Cartesian coordinates on R2 as defining
homogeneous coordinates on RP1 and employs a square bracket to indi-
cate this fact. Thus, a nonzero coordinate pair 0 ^ (x, y) G R2 defines
the homogeneous coordinate [x,y] of the line passing through it. Ho-
mogeneous coordinates are defined only up to scalar multiple, so that
[Ax, Ay] = [x,y] for any A / 0. If a line is not horizontal, then it
intersects the line y = 1 at a unique point [p, 1]. Therefore, instead
of the angle 9 the line makes with the horizontal, we may adopt the
horizontal component p = cot 9 of its intersection with the line y = 1
as our preferred coordinate; see Figure 2. If [x,y] is any other homo-
geneous coordinate for the given line, then its canonical representative
[p,l] = [x/y, 1 ] is obtained by multiplying by the scalar A = 1/y. Thus,
the open subset of RP1 consisting of the non-horizontal lines can be iden-
tified with R itself, with p — x/y providing the projective coordinate. In
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The Geometry of Protective Space 17

Figure 2. The Projective Coordinate.

this way, we can regard the real projective line as the "completion" of
the ordinary real line by adjoining a single point at infinity, which cor-
responds to the horizontal line through the origin. Alternatively, we
can omit the vertical line and use the canonical coordinate [ 1, q}, where
q — y/x = tan#, to represent a different open subset of MP1. The change
of coordinates from the non-horizontal to the non-vertical cases is the
inversion q = 1/p.

A linear transformation (1.10) on M2 will induce a linear fractional
transformation (2.7) on MF1. This is because the line with homogeneous
coordinates [p, 1] is mapped to the line with homogeneous coordinates
[ap + /3,7p + 5], whose canonical representative is (assuming ^p + 5 ^ 0)
given by [ (ap + /3)/(7p + <5), 1 ]. Moreover, the projective transformation
(2.7) remains globally defined on 1RP1 — the point p — -5/^ is mapped
to the point at oo (indicating that the line through (—£,7) is mapped
to the horizontal line), whereas the point at 00 is mapped to the point
a/7. (If 7 = 0, then the point at 00 stays there, since such maps fix the
horizontal line.) Note that the scalings (x,y) i-> (Ax, A?/), corresponding
to scalar multiples of the identity matrix, have trivial action on MP1

since they fix every line that passes through the origin.
Similar considerations apply to the complex projective line CP1,

which is the projective space P(C2) corresponding to the two-dimens-
ional complex linear space C2. One can identify CP1 with the usual
Riemann sphere S2 of complex analysis, [8], which can be viewed as the
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18 Binary Forms

Figure 3. Stereographic Projection.

completion of the complex line* C by adjoining a point at oo. Explicitly,
given 0 / (z, w) G C2, we define the real variables £, 77, C by

2zw

w
|2 ' C =

z
z

2

2 +
w
w

2

2
(2.9)

The reader can check that the point (£, 77, £) necessarily lies on the unit
sphere S2 C l 3 , that is, £2 + rj2 + (2 = 1. Moreover, two points (2,1*7)
and (z', it/) in C2 map to the same point (£, 77, £) G 52 if and only if they
are complex scalar multiples of each other, so that z' — \z, w' = Aw,
for some 0 / A G C.

Exercise 2.5. The usual method for mapping the unit sphere
£2+772-f("2 = 1 to the x, y coordinate plane is by stereographic projection
from the north pole (0,0,1). Geometrically, the stereographic image of
a point (£,77,£) G S2 which is not the north pole is the point (u,v,0)
obtained by intersecting the line connecting (£, 77, (") to the north pole
with the plane — see Figure 3. Show that the stereographic image of a
point is defined by the formulae

£ .. vU = (2.10)

Prove further that the map from C2 \ {0} to C ~ R2 obtained by first

t Here is a potential source of confusion. In elementary mathematics, one
speaks of the "complex plane" since the set of complex numbers C is visualized
as a two-dimensional plane (and, indeed, is a real two-dimensional vector
space); however, as a complex vector space, C is one-dimensional and will
therefore be referred to as the "complex line", with C2 being the "genuine
complex plane". To minimize misunderstanding, we shall try to avoid using
the term "complex plane" in this book.
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Homogeneous Functions and Forms 19

mapping to the Riemann sphere via (2.9) and then applying stereo-
graphic projection (2.10) is the same as the projective coordinate map
u + iv = z/w, for (z, w) G C2 with w ^ 0.

All of our constructions for the real projective line have their com-
plex counterparts, which are found just by letting all quantities assume
arbitrary complex values. Indeed, we shall usually use x and y rather
than z and w to denote complex coordinates on C2, so that the real
and complex algebraic formulae are identical. The subset of complex
lines not parallel to the a>axis can be given the homogeneous coordi-
nate [p, 1], where p = x/y is the projective coordinate, and can thus
be identified with the ordinary complex line C with coordinate p. Com-
plex linear changes of variables on C2, as in (2.4), induce complex linear
fractional transformations on CP1, as in (2.7).

Homogeneous Functions and Forms

The correspondence between a vector space and its associated projec-
tive space induces a correspondence between homogeneous functions and
their inhomogeneous counterparts, generalizing the correspondence be-
tween quadratic forms and ordinary quadratic polynomials. Let us il-
lustrate this correspondence in the particular case of the real projective
line. Let TT: R2 \ {0} -> RP1 denote the map that takes a point in R2 to
the line that connects it to the origin. In terms of our projective coor-
dinates, p = TT(X, y) = x/y for points (x, y) not on the horizontal axis.
Any real-valued function "̂ FiRP1 —> R on the projective line induces a
function Q: R2 -> R, which is given by composition: Q = F OTT. In other
words, given F(p), the corresponding homogeneous function is

(2.11)

Clearly, though, formula (2.11) does not reproduce the correspon-
dence (2.3) between homogeneous and inhomogeneous polynomials. For
instance, if F(p) = p2 + 1, then Q(x,y) = y~2x2 + 1, which is not even
defined on the x-axis. The key point is that (2.11) defines a function
Q which is homogeneous of degree zero, Q(Ax) = <3(x), and hence can
never (unless Q is constant) define a homogeneous polynomial on R2.

t The mapping notation F: X —>• Y does not necessarily imply that F is
defined everywhere on X.
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Definition 2.6. A function Q:IR2 —» R is called homogeneous of
degree n if it satisfies the basic homogeneity equation

Q(Ax) = AnQ(x), for all x E l 2 . (2.12)

In particular, homogeneous polynomials of degree n are homoge-
neous functions, of positive integral degree n; on the other hand, not
every homogeneous function, even those of positive integral degree, is
a polynomial. The following simple characterization of homogeneous
functions is attributed to Euler.

Theorem 2.7. A differentiable function Q is homogeneous of de-
gree n if and only if it satisfies Euler's formula, which is the first order
partial differential equation

'i+»f=-«- ( 2 1 3 »
Proof: Equation (2.13) follows directly from (2.12) by differentiat-

ing with respect to A:

^ Q(\x, Xy) = x ^(Xx, Xy) + y ^(Xx, Xy) = nX^Qix, y). (2.14)

Setting A = 1 yields (2.13). Conversely, if Q satisfies (2.13), then the
first equality in (2.14) implies that

^ Q(XXy). (2.15)

Fixing x and y, we regard (2.15) as an ordinary differential equation for
the function h(X) — Q(Ax,Ay), namely, dh/dX = (n/X)h. This equa-
tion can be readily integrated; the resulting solution h(X) = Xnh(l) —
XnQ(x,y) recovers the homogeneity condition (2.12). Q.E.D.

Exercise 2.8. Show that the function

Q(*,y) =
0, y = 0,

is a smooth (meaning infinitely differentiable), globally defined homo-
geneous function of degree 2. Are there any analytic, globally defined
homogeneous functions other than homogeneous polynomials?

A simple modification of the direct formula (2.11) will allow us to
construct homogeneous functions of arbitrary degree from functions on
the projective space. First, we remark that the product of a homoge-
neous function of degree m with a homogeneous function of degree n
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Roots 21

is also a homogeneous function of degree m + n. Therefore, if Q0(x)
is a particular nonzero homogeneous function of degree n, then any
other homogeneous function of degree n can be written as a product
Q(x) = Q0(x)i?(x), where -R(x) is an arbitrary homogeneous function
of degree 0. In particular, choosing Q0(x,y) = yn allows us to conclude
the general version of the correspondence (2.3).

Proposition 2.9. Every homogeneous function Q(x,y) of degree
n can be written in the form Q(x,y) — ynF(x/y), where F(p) is an
arbitrary function on 1RP1.

As with polynomials, the feature that distinguishes the different
homogeneous representatives of a given inhomogeneous function is how
they behave under changes of variables. Consequently, we cannot speak
of a function F: MP1 - ^ l o n projective space in vacuo, since (a) it does
not tell us what degree its homogeneous representative should be, and
(b) it does not tell us how it behaves under changes of variables. Only
when we specialize to homogeneous functions of a fixed degree are the
correspondences and transformation rules unambiguous.

Roots

As we saw in Chapter 1, the roots of quadratic polynomials play a critical
role in their classification. We expect the geometrical configurations of
the roots of more general polynomials to play a similar role in their
classification and the structure of their invariants. We begin with the
basic definition.

Definition 2.10. Let Q(p) be a function defined on the projective
line. A root of Q is a point p0 where Q vanishes: Q(p0) = 0.

The key remark is that the concept of a root is independent of
the coordinate system used to characterize the inhomogeneous function.
Indeed, referring to the basic transformation rule (2.8), we see that,
provided 7p0 + 5 / 0 , then Q(p0) = 0 if and only if Q(p0) — 0, where
p0 = (ap0 + P)/(/yPo + 8) is the transformed root. On the other hand,
if 7p0 + 5 = 0, then the transformed root is at p0 — oo, and so the
coordinate formula breaks down. Nevertheless, the root still persists,
and one says that the transformed function Q(p) has a root at oo.

Each root p0 of the inhomogeneous representative will correspond
to an entire line of solutions to the homogeneous equation Q(x) = 0. In-
deed, (2.12) implies that if x0 = (xo,yo) is a solution, so is any nonzero
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scalar multiple Ax0, A ^ 0. We will not distinguish between such solu-
tions, since they all determine the same point in the projective space.

Definition 2.11. Let Q(x) be a homogeneous function. By a
homogenized root of Q we mean a line {Ax0}, x0 ^ 0, through the
origin where (except possibly at the origin itself) Q vanishes.

Each homogenized root x0 = [#0,y0] with y0 ^ 0 corresponds to
a root p0 = xo/yo of Q(p). If [#o>0] 1S a homogenized root, then it
corresponds to the "infinite" root oo of the inhomogeneous form Q(p).
For instance, Q(x,y) — xy + 2y2 has two homogenized roots: the lines
through (—2,1) and (1,0); its inhomogeneous representative Q(p) =
p -f 2, which has degree 2, has roots at p — —2 and at p — oo.

In the case of complex-valued polynomials, the Fundamental The-
orem of Algebra tells us precisely how many roots there are. The key
result is that every complex polynomial has at least one root.

Lemma 2.12. Let Q(p) be a nonconstant complex polynomial
Then there exists a point p0 £ C such that Q(p0) — 0.

Many different proofs of this seminal result exist, and we refer the
interested reader to [71], [222; Chapter 11] for details. Once we es-
tablish the existence of at least one complex root, then the polynomial
admits a linear factor, and so the complete factorization of any complex
polynomial follows by a straightforward induction.

Theorem 2.13. Let

Q[p) = cmP
m + cm_lP

m^ + • • • + clP + c0 (2.16)

be a polynomial with nonzero leading coefficient, cm ^ 0. Then Q can
be uniquely factored into a product of linear polynomials:

m

p-Pv), (2.17)

where p l 5 . . . ,pm are the finite complex roots of Q.

Exercise 2.14. Prove that any real polynomial can be factored,
over the reals, into a product of linear and quadratic factors. Hint: Use
the fact that the complex roots of a real polynomial appear in complex
conjugate pairs.

Definition 2.15. A root p0 of a polynomial Q(p) is said to have
multiplicity k if we can write Q(p) = (p — Po)kR(p), where R(p) is a
polynomial with R(p0) / 0. In other words, p0 is a root of of multiplicity
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k if and only if the linear factor p — p0 appears precisely k times in the
factorization (2.17).

Exercise 2.16. Prove that p0 is a root of Q(p) of multiplicity k
if and only if Q and its first k — 1 derivatives vanish there: Q(p0) =
Q'iPo) = ••• = Q^iPo) = 0, but Q « ( p 0 ) ± 0.

So far, we have been a bit cavalier with our presentation, since we
have been ignoring the "true" degree of the polynomial Q(p), meaning
the degree of its homogeneous representative Q(x,y), in lieu of its naive
degree, as determined by the degree of its leading term. Since the naive
degree of a polynomial can change under projective transformations,
we need to be a little more careful. The key remark is that not only
roots, but also their multiplicities, are preserved under linear fractional
transformations (2.7). Indeed, substituting (2.17) in the transformation
rule (2.8), we deduce that if p0 is a root of multiplicity k and 7P0 + 5 ^ 0,
so that p0 is not mapped to oo, then p0 = (ap0 + /3)/(7P0 + ^) wm< be a
root of multiplicity k also. On the other hand, if 7p0 + 5 = 0, then p0
will map to an infinite root p0 = oo of the same multiplicity as p0, in
accordance with the following definition.

Definition 2.17. Let Q(p) be an inhomogeneous binary form of
degree n. The point p0 = oo is said to be a root with multiplicity k if
and only if the point p0 = 0 is a root of multiplicity k for the inverted
polynomial Q(p) = pn Q(l/p).

Exercise 2.18. Prove that an inhomogeneous binary form (2.2)
has an infinite root of multiplicity k if and only if its leading k coefficients
vanish: an — an_1 — • • • = an_fc+1 = 0. Thus the naive degree of an
inhomogeneous polynomial is strictly less than its degree if and only if
the polynomial has an infinite root.

Inclusion of the roots at infinity completes the projective version of
the Fundamental Theorem of Algebra.

Theorem 2.19. An inhomogeneous polynomial Q(p) of degree n
has precisely n complex roots, counting multiplicities and roots at oo.
Moreover, the linear fractional transformation (2.7) maps each root of
Q(p) to a root having the same multiplicity of the transformed polyno-
mial Q(p), as given by (2.8).

For example, if Q(p) = p2 — 3p has degree 2, then it has two roots,
namely 0 and 3. Under the inversion p = 1/p, the transformed polyno-
mial is Q(p) = — 3p+ 1, which has corresponding roots oo = ^ and | .
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Note that any polynomial can be readily transformed to one that does
not have ooasa root and so is genuinely of degree n.

On the homogeneous level, the factorization of an inhomogeneous
polynomial (2.17) of degree n translates into a complete factorization of
its homogeneous counterpart into n linear factors. We will, for later con-
venience, always choose the points representing the homogenized roots
so that the factorization takes the normal form

n
xvy). (2.18)

The normal factorization (2.18) requires that [ j ^ = an be the leading
coefficient of Q(x, ?/), which can clearly be arranged by rescaling any one
of the root representatives; leaving all the roots in general position gives
a factorization of the same form (2.18), but with an additional nonzero
coefficient in front of the product. If the horizontal line through (1,0)
is a root of Q(x, y) having multiplicity /c, so that the factor yk appears
in (2.18), then oo will be a root of multiplicity k of Q(p), which must
therefore satisfy the conditions of Exercise 2.18. Under the projective
reduction (2.2) the "infinite" factors yk all reduce to the constant 1,
which accounts for the missing factors in (2.17).

Invariants and Covariants

We have now arrived at the key object of study in classical invariant
theory — the concept of an invariant. Our motivational example is the
discriminant (1.3) of a quadratic polynomial. The crucial property which
we shall generalize is how it behaves under general linear (or, in the pro-
jective version, linear fractional) transformations. According to (1.13),
the discriminant is not, strictly speaking, invariant, but rather is mul-
tiplied by a suitable power of the determinant of the matrix governing
the transformation rule. This justifies the general definition.

Definition 2.20. An invariant of a binary form Q(x, y) of degree
n is a function /(a) = / (a 0 , . . . ,an) , depending on its coefficients a =
(a0 , . . . , an), which, up to a determinantal factor, does not change under
the general linear transformation:

fc/(a). (2.19)

Here a = (a0 , . . . , an) are the coefficients of the transformed polynomial
(2.5), given explicitly in (2.6). The determinantal power k = w t / is
called the weight of the invariant.
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The Simplest Examples 25

For example, according to (1.13), the discriminant of a binary quad-
ratic is an invariant of weight 2. In fact, it is not difficult to prove that
the discriminant is the only independent invariant of a quadratic polyno-
mial, meaning that the other invariant is a power Am of the discriminant,
which has weight k = 2m.

While invariants are of fundamental importance in the geometry of
binary forms, by themselves they do not paint the entire picture. In-
deed, only when the discriminant of a quadratic form is nonzero does it
completely determine its equivalence class and hence its canonical form.
According to the table on p. 8, there are two possible canonical forms for
quadratic polynomials with vanishing discriminant, either Q(p) = 1 if
the form is not identically zero and hence has a double root, or Q(p) = 0.
A similar situation holds for forms of higher degree, particularly for those
with vanishing invariants, in which more subtle algebraic information is
required than can be provided by the invariants. Classically, it was rec-
ognized that one needs to also consider functions depending not only on
the coefficients of the binary form, but also on the independent variables
x and y. This leads one to the more general definition of a "covariant".

Definition 2.21. A covariant of weight k of a binary form Q of
degree n is a function J(a, x) = J(a0 , . . . , an,x,y) depending both on
the coefficients a{ and on the independent variables x = (x, y) which, up
to a determinantal factor, is unchanged under linear transformations:

fcJ(a,x). (2.20)

Note that invariants are just covariants that do not explicitly de-
pend on x. If the weight of a covariant (or invariant) J is k = 0, we
call J an absolute covariant. The simplest covariant is the form Q it-
self, which in view of (2.5) forms an absolute covariant. For a binary
quadratic, this is essentially the only covariant. More specifically, every
polynomial covariant of a binary quadratic is given by a power prod-
uct J = AmQl depending on the form and its discriminant; the weight
of J is 2m. All of the important invariants and covariants are poly-
nomial functions of the coefficients and the variables x, y, from which
more general combinations, such as rational covariants, can be readily
constructed.

The Simplest Examples

Let us now discuss some particular examples which will serve to illustrate
and motivate the general features of the theory. Since we have already
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26 Binary Forms

exhausted the study of the binary quadratic, we now turn to cubic and
quartic polynomials.

Example 2.22. Consider a binary cubic form

Q(x) = a3x3 + 3a2x2y + 3axxy2 + a0y3. (2.21)

It turns out that there is just one fundamental invariant

A = &oa3 ~~ 6a0a1a2a3 + Aaoa\ — 3a\a\ 4- 4a^a3, (2.22)

called the discriminant of the cubic Q. The direct proof that A is
an invariant of weight 6 is a lengthy computation, but this will follow
directly from the general theory presented below. The vanishing of A
has an immediate geometric interpretation: A = 0 if and only if Q has
a double or a triple root; see Theorem 2.39.

The most important covariant of a cubic or, indeed, of any binary
form is its Hessian

H = QxxQyy-Qly. (2.23)

Here, and below, we shall often use subscripts to denote partial deriva-
tives, so tha t

d_Q d_Q _d^Q _ d*Q
^x ~ dx ' Wy~ dy' ^xx ~ dx* ' V*» ~ dxdy '

and so on. If Q has degree n, its Hessian will be a polynomial of degree
2n — 4, whose coefficients depend quadratically on the coefficients of
Q itself. Moreover, the Hessian forms a covariant of weight 2. The
covariance of the Hessian will be shown in Chapter 5, although the
interested reader might wish to try to prove this directly here. Note
that the Hessian of a quadratic form is just 4 times its discriminant. If
Q is a cubic, then its Hessian is a quadratic polynomial and is given
explicitly by

•^H = (a1a3 — a\) x2 + (a0a3 — ^1^2) XV + (aoa2 ~~ a i ) V2- (2.24)

The geometrical significance of the Hessian is contained in the following
basic result; the general proof can be found on p. 91.

Proposition 2.23. A binary form Q(x,y) has vanishing Hessian,
H = 0, if and only if Q(x, y) = {ex + dy)n is the nth power of a linear
form.

In particular, the Hessian of a cubic is identically zero if and only if
the cubic has a triple root. (The reader is invited to prove this directly

Cambridge Books Online © Cambridge University Press, 2010)D8��4*4�!45!8�4(��((BD,��+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((BD,��7$� $C:��� �����.�0��
�
�������� ���
/$+#!$4787�9C$"��((BD,��+++ 64"5C�7:8 $C:�6$C8 �3#�*8CD�(,�$9�2$C$#($��$#����18B������4(���,��,
	��D)5 86(�($�(�8�.4"5C�7:8�.$C8�(8C"D�$9

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623660.003
https://www.cambridge.org/core


The Simplest Examples 27

from the explicit formula (2.24).) Since the quadratic Hessian (2.24) is
a covariant, its discriminant, which is

A = ^ (aoG3 — a l a 2 ) 2 ~~ ( a l a 3 "" a2)(a0a2 "" al)> (2.25)

is also an invariant for the cubic. (This is a special case of the general
technique of composing covariants to be discussed shortly.) Expanding
and comparing with (2.22), we see that this invariant is just a multiple
of the original cubic discriminant: A = |A. Consequently, a cubic has
a multiple root if and only if its Hessian has a multiple root.

If K, L are any two covariants of a binary form Q, their Jacobian

W)=K^-K*L* (2-26)
is also a covariant. This result can be proved directly, but will again
follow from more general considerations to be discussed in Chapter 5. If
K has degree m and weight /c, and L has degree / and weight j , then
their Jacobian J has degree m -f-1 — 2 and weight k + j + 1. For a binary
cubic, it turns out that, besides the form Q and its Hessian, iJ, there is
only one other independent covariant — the Jacobian of Q and H:

T = QxHy - QyHx

= -QyQyyQXXX + VQyQxy + QXQyy)QXXy ~ (2.27)
- (QyQxx + *QxQxy)Qxxy + QxQxxQyyy-

If Q is a binary cubic, then T is also a cubic polynomial whose coefficients
have degree 3 in the coefficients of Q and forms a covariant of weight 3.
A classical result, which we shall prove in Chapter 7, states that every
polynomial invariant or covariant of a binary cubic can be written in
terms of the covariants Q, if, T, and the invariant A.

Remark: Both the Hessian (2.23) and the Jacobian covariant (2.27)
are homogeneous differential polynomials of the function Q, meaning
that they can be expressed as polynomials in Q and its derivatives. In
fact, every polynomial covariant and invariant of a binary form can be
written as a homogeneous, constant coefficient differential polynomial.
The First Fundamental Theorem 6.14 of classical invariant theory pro-
vides the explicit mechanism for constructing the differential polynomi-
als that give rise to classical covariants and invariants.

Cubics can also be completely characterized by their covariants.
Suppose first that the cubic has three distinct roots and so is charac-
terized by the invariant condition A ̂  0. In the complex case, we can
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28 Binary Forms

place them anywhere we like in GP1 by a suitable linear fractional trans-
formation, e.g., —1,1, and oo, resulting in the canonical form p2 — 1; see
Example 4.30. The cubic has a double root if and only if its discrimi-
nant vanishes, but its Hessian is not identically zero; placing the double
root at oo and the simple root at 0 leads to the canonical form p. A
(nonzero) cubic has a single triple root if and only if its Hessian vanishes;
the canonical form can be taken either to be p3, by placing the root at
0, or to be 1, with the root sent to oo. The complete list of complex
canonical forms is given by the following table.

Canonical Forms for Complex Binary Cubics

I.
II.

III.
IV.

P2-1
p
1
0

A
A
H

Q

=
=
=

0

o,
o,
0

Qi

£0
^0

simple roots
double root
triple root

In the real case, the first canonical form splits into two real forms,
distinguished by the sign of its discriminant, depending on whether the
cubic has any complex roots. If so, they can be placed at ±i and oo
by a real linear fractional transformation. The remaining cases are un-
changed. In this manner, we complete the classification of real canonical
forms.

la.
Ib.
II.

III.
IV.

P2

P2

Canonical Forms for

+
-
P
1
0

1 A
1 A

A
H

Q

> 0
< 0
- 0 , H t
= 0, Q^
= 0

Real

E0

^0

Binary Cubics

two complex roots
three simple real roots
double root
triple root

Example 2.24. Consider next the binary quartic

Q(x) = a4x4 + 4a3x3y + 6a2x2y2 + 4a1xy3 + a0y4. (2.28)
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The Simplest Examples 29

There are two fundamental invariants:

i = aoaA - Aaxa3 + 3a2, (2.29)

which is of weight 4, and

a4 a3 a2

j = det a3 a2 ax , (2.30)
a2 al a0

which is of weight 6. (Again, these remarks can be verified directly,
but will follow more simply from the subsequent general theory.) The
vanishing of the invariants z and/or j has geometric meaning: z = j — 0
if and only if Q has a triple or a quadruple root. Furthermore, if z = 0,
j ^ 0, the roots form an "equi-anharmonic quadruplet", whereas J = 0
if and only if Q can be written as the sum of two fourth powers, Q =
(ap-h&)4 + (cp+d)4, and the roots form an "anharmonic quadruplet"; see
Gurevich, [97; Exercise 25.7], for definitions and details. Note further
that since z has weight 4 and j has weight 6, both z3 and j 2 are relative
invariants of weight 12. Therefore the ratio i3/j2 is an absolute invariant,
and its value is fixed. Any linear combination of z3 and j 2 is again a
relative invariant of weight 12. The most important of these is the
discriminant A = z3 — 27j2, which vanishes if and only if the quartic
has a multiple root; see below.

If Q is a quartic polynomial, then its Hessian (2.23) is also a quartic,

144-^ = (a2a4 ~~ az)x ~^~ 2(&i&4 — tt2a3)x y + (2.31)
+ ((2Q(X4 + 2(21d3 — 3CL2JX y -f- 2((2QCI3 — a^a2)xy -\- (#0^2 ~~ ai)y 1

and is a covariant of weight 2. By Proposition 2.23, H = 0 if and only
if Q has a single quadruple root. As with the cubic, the only other

I.
II.

III.
IV.
V.

VI.

Canonical

p4 + iip2 + 1

P2 + 1

P2

P
1
0

Forms for

A = 0,

A = 0,
i = j =

H = 0,

Complex Binary

:, A ^ O

T = 0, i^O
0, H ^0

Quartics

simple roots
one double root
two double roots
triple root
quadruple root
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30 Binary Forms

independent covariant is the Jacobian T = QxHy — QyHx of Q and H.
As we shall prove in Chapter 7, every polynomial invariant or covariant
of a binary quartic can be written in terms of the invariants z, j and the
covariants Q, H, T. One can now use the invariants and covariants to
provide a complete classification of binary quartics.

Exercise 2.25. Determine the real classification of binary quar-
tics; see also [97; Exercises 25.13, 25.14].

Degree, Order, and Weight

Since the linear transformations (2.4) induce linear maps on the coef-
ficients of a binary form, if J is any polynomial covariant, its homoge-
neous summands are individually polynomial covariants. Therefore we
can, without loss of generality, restrict our attention to homogeneous
covariants. We shall now make this requirement more precise and look
at some elementary consequences.

Definition 2.26. Let J(a, x) be a homogeneous polynomial co-
variant of a binary form. The degree of J is its degree in the independent
variables x. The order of J is its degree in the coefficients a of the form.

So far we have been considering the case of a binary form that
has weight zero, meaning that there is no extra determinantal factor in
its transformation rules (2.5). More generally, we can assign a nonzero
weighting to the original binary form.

Definition 2.27. A binary form Q(x) is said to have weight m if,
under the action of GL(2), its coefficients are subject to the transforma-
tion rules induced by the change of variables formula

Q(x, y) = (aS - /37)m Q(ax + (3y, 7 x + Sy)
= (<*6-l3>y)mQ(x,y).

Since reweighting a binary form only introduces an additional de-
terminantal factor, all the homogeneous invariants and covariants of a
weight 0 binary form remain invariants and covariants of a weight m
form, albeit with a suitably modified weighting.

Proposition 2.28. If J(a, x) is a homogeneous covariant of weight
k and order j for a binary form Q of weight 0, then J will be a covariant
of weight k + jm and order j when Q has weight m.
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Degree, Order, and Weight 31

In particular, the Hessian H = QxxQyy — Q2
xy of a weight m

form will have the modified weight 2 + 2ra. An interesting example,
which turns out to be important for the study of differential operators,
cf. [169, 235], is the case of a quartic polynomial of weight —2, so that
its transformation rule includes the reciprocal of the square of the de-
terminant. In this case, the invariants i and j both have weight 0, i.e.,
they are absolute invariants.

The degree, order, and weight of a covariant are intimately related,
which implies that any two of these uniquely determine the third.

Proposition 2.29. Let J(a, x) be a homogeneous polynomial co-
variant of a binary form Q(x). Then

deg J + 2 wt J = (deg Q + 2 wt Q) ord J. (2.33)

Proof: Let n = deg Q, m = wt Q, j = ord J, k = wt J, i = deg J.
Then, by homogeneity, J(/xa, z/x) = /iJV*J(a, x). On the other hand,
consider the effect of a scaling transformation x = Ax, which has deter-
minant det^4 = A2. According to (2.32), the coefficients of the trans-
formed polynomial Q are given by a = A~n~2ma. The covariance of J
implies that

J(a,x) = A2fcJ(a,x) = A2feJ(A"n-2ma, Ax) = Ai+2fc-(n+2m)V(a,x).

Consequently, the final exponent of A in this equation must vanish, which
suffices to prove (2.33). Q.E.D.

Exercise 2.30. Prove that a binary form of even degree has no
nonzero polynomial covariants of odd degree. Prove that every nonzero
polynomial covariant of a binary form of odd degree is either of even
order and even degree or of odd order and odd degree.

Exercise 2.31. Let Q be a binary form of degree n and weight
0, with coefficients a = (ao , . . . ,an ) . Suppose / = YlcMaM ^s a n

invariant of weight k and order j with constituent monomials aM =
(ao)m°(a1)mi • • • (an)m-. Prove that

j — m0 4- m1 + ra2 + • • • + ran,
k = \nj = m1 + 2m2 + 3m3 + • • • + nmn (2.34)

= nm0 + (n — l)m1 + (n — 2)ra2 + • • • + mn_1.
Next, write n = 21 or n = 21 + 1 depending on whether Q is of even or
odd degree. Divide the coefficients into two subsets a_ = (a0,.. . ,at)
and a+ = (an_l1... ,an). (Note that at appears in both subsets when
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32 Binary Forms

n = 2/ is even.) Prove that every term aM in the invariant / must
contain at least one factor from a_ and at least one factor from a+. In
other words, no term in an invariant can depend solely on the coefficients
a_ or solely on the coefficients a+. Is a similar result true for covariants?

Construction of Covariants

A wide variety of useful techniques for constructing covariants of bi-
nary forms have been proposed, including algebraic methods, symbolic
methods, methods using differential polynomials and/or differential in-
variants, infinitesimal methods, methods based on the roots of the poly-
nomials, and representation-theoretic methods. We begin by looking at
the simplest algebraic methods that can be used to construct covariants.

The most trivial method is to multiply covariants. If J is a covariant
of weight j and K has weight k, then the product J • K is a covariant
of weight j + k. Therefore we can take general products of (powers
of) covariants to straightforwardly construct other covariants, trivially
related to the original covariants. However, these are typically not of
great interest as they provide essentially the same information as their
constituents. It is also possible to add covariants, but only if they have
the same weight. Thus, J+K will be a covariant if and only if both J and
K have equal weight j , in which case their sum (or any other constant
coefficient linear combination thereof) also has weight j . For example,
if we begin with a binary quartic, having the standard (classical) weight
0, then its invariants i and j , cf. (2.29), (2.30), have respective weights 4
and 6, so i + j is not an invariant since its components are multiplied by
different determinantal powers. (However, its value is invariant if we only
allow unimodular linear transformations.) The powers i3 and j 2 have
weight 12, and so any linear combination, including the discriminant
A = i3 — 27j2, is also an invariant of weight 12. On the other hand, if
we give the original quartic weight —2, then, as remarked earlier, both
i and j have weight 0, and so the sum i + j is also an absolute invariant
for this special weighting; indeed, so is any function F(i,j).

A second method for constructing covariants, alluded to in our dis-
cussion of the binary cubic, is the method of composition. If Q(x) is
a binary form with coefficients a, any polynomial covariant J(a, x) can
itself be considered as a binary form, whose weight is the weight of J.
Let b = (p(a) denote the coefficients of J, which are certain polyno-
mials in the coefficients a of Q. It is not hard to see that if if (b, x)
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is a covariant depending on the coefficients of J , then the polynomial
if (a, x) = K(c/?(a),x) obtained by replacing the coefficients of J by
their formulae in terms of the coefficients of Q provides a covariant of
the original form.

For example, if Q is a quartic polynomial (2.28), then its Hessian
H = H(Q) is itself a quartic polynomial, cf. (2.23). Thus, the i and j
invariants of H, denoted i°H — i(H(Q)) and j°H = j(H(Q)), will in
turn yield new invariants of Q. To compute these, we replace the coeffi-
cient ai of xly4~l in (2.29) and (2.30) by the corresponding coefficients
bi of xly4~l in H itself, so, for instance, a0 is replaced by 144(a0a2 — a?),
and so on. However, if we already know that i and j are the only in-
dependent invariants of Q, it will not be surprising that we discover
that these new invariants can be re-expressed in terms of i and j . For
instance, i°H = 1728i2. In Chapter 6 we shall discover more efficient
methods for determining such identities.

Exercise 2.32. Determine the general rule for the behavior of
weights under composition of covariants.

Joint Covariants and Polarization

More generally, if we are given a system Q x (x ) , . . . , Q/(x) of homoge-
neous polynomials, their common or correlated geometrical properties
will be classified by their joint invariants and covariants. By defini-
tion, these are functions J ( a 1 , . . . , a*, x) depending on all the coefficients
aK = (.. . a* . . . ) of the QK, and, in the case of covariants, the variables
x = (#,y), which, when all the forms are simultaneously subjected to a
linear transformation, satisfy the same basic transformation rule (2.20).
The determinantal power k is, as before, the weight of the joint covari-
ant. The forms themselves may be of varying weights, the most common
case occurring when they all have weight 0. We shall say that the joint
covariant has order i = ( i l 5 . . . , it) if it is a homogeneous function of de-
gree iK in the coefficients aK of QK. The most important joint covariants
typically arise as differential polynomials J = J [ Q 1 ? . . . , Qt] depending
on the forms and their derivatives.

For example, if Q(x,y) = ax + by, R{x,y) = cx + dy are linear forms
of weight 0, their determinant ad —be is a bilinear, i.e., order (1,1), joint
invariant of weight 1. This is a special case of the general Jacobian
covariant J = QxRy — QyRx already considered in (2.26). Another
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34 Binary Forms

important example is the bilinear (or polarized) version of the Hessian,

H[Q, R] = QxxRyy - 2QxyRxy + QyyRxx; (2.35)

the Hessian itself, (2.23), is recovered by setting Q = R. If Q and R have
weight 0, then H[Q, R] has weight 2. As in the case of a single form,
if J = J [Q 1 ? . . . , Qj\ is joint covariant of order ( i 1 ? . . . , it) and weight k
when each Qa has weight 0, then J remains a joint covariant of weight
k + X ^ m t t w n e n QK

 n a s revised weight mK.
The connection between the Hessian and its polarized counterpart

is a special case of a general procedure for relating joint covariants and
ordinary covariants, first noted in Boole's original paper, [24]. In the
simplest version, suppose if (a, x) is any polynomial depending on the
coefficients a = (a0, • . . , an) of the degree n binary form Q. Define its
polarization to be the joint polynomial

a,x), (2.36)
t=0 *

depending on the respective coefficients a, b of two binary forms Q,R of
the same degree. If K = K[Q] is a differential polynomial in Q, then its
polarization J[Q, R] is obtained by formally applying the differentiation
process Rd/dQ to J. The formal differential operator d/dQ does not
affect the x, y coordinates, or derivatives with respect to them. For
example, if K = QQyQxxy, then

J — R -17Q — RQyQxxy + QRyQxxy + QQy^xxy^

while the polarization of the Hessian (2.23) is precisely (2.35).
Given a joint function J[Q, R] depending on two binary forms of

the same degree, we define its trace to be the function K[Q] = J[Q, Q]
obtained by setting Q = R. If J[Q, R] is a joint covariant, then its trace
is an ordinary covariant. The trace operation is, in a sense, the inverse
process to polarization. If K[Q] has order /c, and J[Q, R] = RdK/dQ is
its polarization, then Euler's formula (2.13) implies that the trace of J
recovers the original function up to a multiple: J[Q,Q] = kK[Q). For
example, setting Q = R in (2.35) gives twice the Hessian covariant. On
the other hand, the trace of the Jacobian joint covariant is trivial, and
so one cannot obtain it by polarizing an ordinary covariant.

Proposition 2.33. If K[Q] is a covariant of weight k and order I
for the single binary form Q of degree n and weight m, then its polar-
ization J[Q, R] = RdK/dQ is a joint covariant of weight k and order
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Resultants and Discriminants 35

(I - 1,1) for the pair of degree n, weight m forms Q, R. Conversely, if
J[Q,R] is a joint covariant of weight k and order (i,j) for two forms
Q, R, of the same degree and weight, then its trace K[Q] = J[Q, Q] is a
weight k and order i + j covariant for the single form Q.

Both polarization and trace can be readily generalized to joint co-
variants J[Q±,..., Qi] depending on several forms. If the Q^'s all have
the same degree and weight, then the trace J[Q,. . . ,Q], which is ob-
tained by equating all the forms, is a covariant of the single form Q of
the given degree and weight. One can also take partial traces by equat-
ing only some of the forms. Conversely, if Qa and Qp have the same
degree, then the general polarization process

~ 8 T
---,Q,]=Q0QQ-[QI,---,Q,] (2-37)

defines another covariant, whose order in Qp has increased by one, and
whose order in Qa has decreased by one. One can iterate this procedure
to provide joint covariants depending on more and more forms (all of
the same degree). An important problem then is to find a minimal
system of joint covariants, from which all others can be constructed
by polarization and algebraic operations. See Weyl, [231; p. 251], and
Chapter 8 for further results in this direction.

Exercise 2.34. Find the general formula, analogous to (2.33), for
the weight of a joint covariant.

Resultants and Discriminants

A particularly important joint invariant of two polynomials is their re-
sultant, which indicates the existence of common roots. Let

P(x) = amxm +Jim_1xm-1y + • • -+aoym,
Q(x) = bnxn+bn_1xn-1y + --- + boyn,

be homogeneous polynomials of respective degrees m and n. (The for-
mulae are a bit easier to read if we omit our usual binomial coefficients.)
If P and Q have a common nonconstant factor F, then we can write
P = F • R, Q = F • 5, and hence

5(x)P(x) = iJ(x)Q(x), where J g 5 < d e | g R'S * °' (2'39)
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36 Binary Forms

The unique prime factorization of complex polynomials implies that
(2.39) is necessary and sufficient for the existence of a common fac-
tor. In fact, by multiplying both sides by a common nonzero factor, we
can assume that the degrees of R and S are precisely one less than those
of P and Q, and so

= C
m-l

5(x) = dn_xxn~x (2.40)

Substituting into (2.39) and equating the various coefficients of powers
of x, y, we deduce that the coefficients of R, S must satisfy the system
of m + n linear equations

(2.41)

= ^0 Co-

if this homogeneous system of linear equations is to have a nonzero
solution, then its associated (ra + n) x (ra + n) coefficient matrix must
have zero determinant. The determinant^ in question is

R[P, Q] = det
un-l

Jn-\

bn-l

(2.42)

in which there are n rows of a's and m rows of 6's, and all blank spaces are
0. The resulting polynomial in the coefficients of P and Q is called their
resultant. For example, the resultant of a quadratic P = ax2 + 2bxy+cy2

t We have, in accordance with standard practice, [222; §5.8], transposed
the coefficient matrix of (2.41).
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Resultants and Discriminants 37

and a linear form Q = dx + ey is the 3 x 3 determinant

(a 2b c\
R = det I d e 0 I = ae2 - 2bde + cd2,

\0 d ej
which vanishes if and only if [—e, d] is a homogenized root of P.

Theorem 2.35. The resultant of two polynomials vanishes if and
only if they have a common nonconstant factor and hence have a com-
mon complex (possibly infinite) root.

There is an alternative formula for the resultant in terms of the
roots of the polynomials, which immediately proves its invariance under
linear transformations.

Theorem 2.36. Let P have homogenized roots x1 ? . . . ,xm and
Q homogenized roots x \ , . . . ,x n ? both of which are taken in normal
factored form (2.18). Then the resultant of P and Q can be written as
the product of the differences of the roots

m n m n

K[P,Q\=n n o ^ - v«h)=n QM=(-irn n p^-
cx=l (3=1 ot=l (3=1

(2.43)

Proof: Let us regard R — R[P, Q] as a polynomial function of the
roots xa, x^ of P and Q. Since R = 0 whenever two roots coincide,
xa = x^, it must admit the linear polynomial xjy^ — yaXp as a factor.
The degree of R in the roots equals the degree of the product of all
these factors, and hence R is a constant multiple of the right-hand side
in (2.43). Our assumption that P and Q are in normal factored form
can be used to show that the constant must be 1. Q.E.D.

Corollary 2.37. IfP, Q have respective degrees m, n and weights
j , k, then the resultant R[P, Q] is a joint invariant of weight mn+mk+nj.

Exercise 2.38. The kth subresultant Rk = Rk[P,Q] of the poly-
nomials P, Q is the (m + n — 2k) x (ra + n — 2k) determinant obtained
by deleting the first and last k rows and columns from the resultant
determinant (2.42). Prove that P and Q have precisely k roots in com-
mon (counting multiplicities) if and only if their first k subresultants
Ro = R, Ri,..., Rk_x vanish, while Rk / 0; see also [23; p. 197].

The discriminant of a binary form Q(x) of degree n is, up to a
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38 Binary Forms

factor, just the resultant of Q and its derivative, namely,

= (2.44)

Note that we can identify Qx = dQ/dx with the derivative Q'(p) of
the inhomogeneous version Q{p) = Q(p, 1). Theorem 2.35 implies that
the discriminant will detect the presence of common roots of Q(p) and
Q'(p). These are precisely the multiple roots of Q.

Theorem 2.39. Let Q be written in the normal factored form
(2.18) with roots x 1 ? . . . , xn. The discriminant of Q equals the product
of the squares of the differences of the roots

A[Q] = (xaVf3 (2.45)

The discriminant vanishes if and only ifQ has a multiple root. Moreover,
if Q has degree n and weight m, then its discriminant is an invariant of
weight (n — l)(n -+- 2m).

Proof: We compute the derivative of the factored form directly:
71 dQ n

a=l (3=1 a^/3

Substituting into the final expression in (2.43) produces (2.45). Q.E.D.

For example, the discriminant of a binary quadratic (1.7) is

A = -— det 2a2 0
0 2a9 2a,

— a.

which is | times its Hessian. Similarly, the discriminant of a binary
cubic is

A =
27a,

det

h
0
a3
0
0

3a2
a3
6a2
3a3
0

3a1
3a2
3ax
6a2
3a3

a0
3ax
0
3ax
6a2

0
a(
0
0
3a

Expanding the determinant, we find that this agrees with the previous
formula (2.22).

Exercise 2.40. Prove that the discriminant of a quartic is equal
to the particular combination z3 - 27j2 of the invariants (2.29), (2.30).
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The Hilbert Basis Theorem 39

The Hilbert Basis Theorem

Since appropriately homogeneous polynomial combinations of covariants
are also covariants, an important algebraic problem is to find a minimal
list of "fundamental" polynomial covariants, known as a Hilbert basis,
that generate all others. Knowledge of a Hilbert basis for a given sys-
tem of forms allows one to straightforwardly describe all covariants, and
hence (presumably) all the intrinsic geometric properties of such forms.

Definition 2.41. Suppose Q1,---,Ql are a collection of binary
forms. A finite collection of invariants / x , . . . , Im forms a Hilbert basis if
every other invariant can be written as a polynomial function of the basis
invariants: / = P{I^ . . . , / m ) . Similarly, a finite collection of covariants
Jx,..., Jk forms a Hilbert basis if every other covariant J can be written
as a polynomial in the basis covariants: J = P(JX, . . . , Jfc).

For example, a Hilbert basis for the covariants of a binary quadratic
consists of the form Q itself, and its discriminant, which is the only
independent invariant. A binary cubic has 4 fundamental covariants,
consisting of Q, the Hessian iJ, the Jacobian covariant T given in (2.27),
and the discriminant A, which is the one invariant. A quartic has two
invariants, i, j , and three covariants Q,H,T. These results, as well
as those for the quintic and sextic, were known to Cayley, who then
stated, [41], that binary forms of degree 7 or more do not have a finite
Hilbert basis for their invariants. In 1868, Gordan, [86], succeeded in
proving his finiteness theorem, which meant that Cayley was mistaken
— every binary form admits a Hilbert basis. Gordan's method of proof
is constructive, and so, at least in principle, one was now able to produce
complete systems of invariants and covariants for general binary forms.
However, Gordan's method has only been completely carried out for
binary forms of degree at most 8, cf. [92; p. 132], [226]. The number
of polynomial independent covariants rapidly increases with the order
of the form, and the implementation of the method in higher degrees
becomes infeasible (although modern computer algebra packages might
come to the rescue). For example, quintic forms have 4 invariants and 23
covariants (including the invariants) in a complete Hilbert basis; while
sextics have 5 invariants and 26 covariants.

Sylvester, [208, 209], produced tables of Hilbert bases for the co-
variants of binary forms of degree n < 10 and n = 12. However, as
shown by Dixmier and Lazard, [60, 61], Sylvester's entry for the form
of degree 7 is not correct — he misses several invariants, and so the
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40 Binary Forms

higher order computations are rather suspect. (Indeed, Sylvester makes
several remarks about the anomalous nature of the binary septic — the
case that also led Cayley astray — but does not conclude that his cal-
culations are incorrect.) Sylvester does get the invariants correct for a
form of degree 8, as was re-proved by Shioda, [194], but I do not know
whether Sylvester's list of covariants is correct. For historical interest,
Sylvester's tables, with known corrections in parentheses, are as follows.
The proliferation of invariants and covariants at the higher orders is
striking. However, one should trust the listed number of covariants only
up to degree 6 and invariants only up to degree 8.

degree 2 3 4 5 6 7 8 9 10 12

# invariants
# covariants

1 1 2 4 5 26 (30) 9 89 104 109
2 4 5 23 26 124 (130) 69 415 475 949

Following Gordan's triumph with binary forms, the focus shifted to
polynomials in three or more homogeneous variables. (See Chapter 10
for the precise definitions of invariants and covariants in the multivariate
context.) Progress was slow, until the mathematical world was stunned
when David Hilbert, at age 26, [105], suddenly and unexpectedly proved
the existence of a Hilbert basis for any number of forms in any number
of variables. Hilbert's celebrated theorem is the following:

Theorem 2.42. Any finite system of homogeneous polynomials
admits a Hilbert basis for its invariants, as well as for its covariants.

Hilbert's original proof of the Finiteness Theorem was existential,
thereby provoking Gordan's famous (perhaps apocryphal) exclamation
"Das ist Theologie und nicht Mathematik." In response to such crit-
icisms, Hilbert published a second, more difficult constructive proof,
[106], although this is less well known, and Hilbert has been unjustly
saddled with the reputation of killing off constructive invariant theory, t
As recently emphasized by Sturmfels, [204], Hilbert's second proof, com-
bined with the modern theory of Grobner bases, [28, 54], has the poten-
tial to be formed into a constructive algorithm for producing the Hilbert

t This and other invariant-theoretic apocrypha can mostly be traced to
Weyl's incomplete and at times misleading historical remarks, [231; p. 27].
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Syzygies 41

basis of a general system of forms. However, the actual implementation
has yet to be completed, and there are counterclaims, [226], that one
can "effectively" complete the classification only in the known cases.

Exercise 2.43. Let Q be a binary form. According to the gen-
eral composition method, if J, K are any two covariants, their resultant
R[J, K] and discriminants A[J] and A[K] will be invariants of Q. Con-
sider the particular case when Q is a binary cubic. Since its discriminant
A = A[Q] is the only independent invariant, all such composed resul-
tants and discriminants must be constant multiples of suitable powers
of A. Prove the following formulae:

A[Q] = A, A[tf] = -324A, A[T] = 28 312 A3,
R[Q,T] = -69A3, R[#,T] = 210312 A3. j

(A computer algebra package might come in handy.) Discuss impli-
cations for the possible joint root configurations of the cubic and its
covariants.

Syzygies

While polynomial independence of the fundamental covariants appearing
in a Hilbert basis has received the lion's share of interest in the algebraic
approach to invariant theory, applications to geometry do not typically
require such detailed, elusive information. Indeed, if one relaxes the
requirement of polynomial independence to either rational, algebraic,
or, most generally, functional independence, then complete results are
much easier to obtain.

Although the number of independent invariants in a Hilbert basis of
a binary form increases rapidly with its degree, a simple dimension count
based on the orbits shows that the number of functionally independent
invariants (for a generic form) cannot exceed n - 2, where n > 3 is the
degree of the form; see Chapter 9. In Chapter 7, we will construct an
explicit rational basis consisting of n rationally independent covariants,
having the property that any other invariant or covariant can be written
as a rational function thereof. Even better, in Chapter 8, we will find
that a complete solution to the equivalence and symmetry problems for
binary forms can be based on merely two absolute rational covariants,
which involve only three particular polynomial covariants. This has the
remarkable implication that the complete geometry of any binary form is
encapsulated in these two covariants and their functional dependencies!
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42 Binary Forms

The reason that one does not require so many rationally or func-
tionally independent covariants is that there exist certain polynomial
identities, known as syzygies, among the basis covariants. For example,
the four covariants of a binary cubic are related by the single syzygy

T2 = 2 4 3 6 AQ 2 - i J 3 . (2.47)

Therefore, if one is willing to forgo reliance on polynomial covariants,
one needs to understand only three of the cubic covariants. Similarly,
the covariants of a quartic are also related by a single syzygy

T2 = _^Hs + 2
1032iQ2H - 21434 jQ3. (2.48)

Methods for deriving such identities will be discussed in detail later.
One important application of the syzygy (2.47) is the following

rather pretty solution to a general cubic equation Q(p) — 0. Suppose
first that the discriminant A ^ 0, so the cubic has three simple roots.
We factor the syzygy as

H3 = (108\/A Q - T) (108\/A Q + T). (2.49)

The two cubic factors 108\/A Q ± T do not have a common linear factor,
since if they did, then T and Q would have a common root, and hence
their resultant R[Q,T] would vanish. But, according to (2.46), the re-
sultant is a multiple of A3, and we assumed that A / 0. Moreover,
again by (2.46), the discriminant of the Hessian does not vanish, and so
we factor the quadratic Hessian into distinct linear factors: H — L • M.
Equation (2.49) implies that (perhaps by relabeling the linear factors)

108VAQ -T = L3, 108\/AQ + T = M3,

and hence Q is expressed as a sum of two cubes. This expression can be
directly factored:

= L + M = (L + M)(L + eM)(L + eM)
216\/A 2 W A ' l '

where e = \/l is a primitive cube root of unity.
On the other hand, if A = 0, but H ^ 0, then (2.46) implies that

the discriminant of the quadratic Hessian vanishes, and so H = L2 is a
perfect square. Moreover, since the resultant of Q and H vanishes, Q
admits L as a factor; in fact, it is not hard to see that the linear form
L provides the double root of Q = L2 • M, and hence the solution is
straightforward. The final nonzero case is when H = 0, in which case
Q = L3 is a perfect cube, and immediately solvable.
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Exercise 2.44. Use the quartic syzygy (2.48) to solve the general
quartic equation. Hint: You will need to apply the preceding solution
to a cubic equation; see [107; Lecture XXII].

A modern result, due to Hochster and Roberts, [111], states that
the ring of covariants of a (system of) binary forms has the structure
of a Cohen-Macaulay domain. A precise definition of this more subtle
algebraic concept would be out of place here; the interested reader can
consult [204, 205] for details. An important consequence of this result
is the existence of a Hironaka decomposition of the ring of covariants;
this means that every covariant can be written, uniquely, in the form

k

/ = *,,(/! ,...,/„) + £*„( / ! , . . . ,!„)./„, (2.51)

where / l 5 . . . , In are algebraically independent covariants, and J1 ? . . . , Jk
are additional covariants needed to complete the Hilbert basis. In fact,
for a single binary form of degree n, the number of algebraically inde-
pendent covariants equals the degree of the form. However, the number
of auxiliary covariants is not known except in low order cases. For ex-
ample, in the case of a cubic, in view of the syzygy (2.47), any covariant
can be written as C = $(Q, H, A) + ^(Q, H, A) T, while for a quartic,
C = $(Q,H,i,j) + ^(Q,H,iJ)T. A similar result holds for the rings
of invariants, although this only becomes nontrivial for forms of degree
5 or more.
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Chapter 3

Groups and Transformations

Following our preliminary foray into the basic ideas of invariant theory,
it is now time to understand, in more detail, the mathematical founda-
tions of our subject. Of course, one could continue to focus solely on
invariant theory, but the full ramifications of our investigations would
remain obscure without a proper appreciation for the underlying, mod-
ern mathematical theories, most of which can trace their genesis back to
the problems of classical invariant theory itself. This chapter is devoted
to a brief survey of the basic theory of transformation groups, starting
with the properties of groups themselves. For our purposes, the most
important examples are provided by simple actions on a linear space and
their projective counterparts. Although our primary focus is on certain
infinite, continuous groups, the present chapter will develop the general
theory, which includes finite, discrete, infinite, and topological groups.
More advanced methods that rely on the additional analytic structure
of Lie groups will be postponed until Chapters 8 and 9.

Basic Group Theory

The theory of groups has its origins in the classical work of Lagrange,
Abel, and Galois on the solubility of polynomials. (See, for example,
[237, 239], for historical surveys of group theory.) These mathematical
giants discovered that the symmetries of a geometric object (in their
case, the object was the set of roots to a polynomial equation) admit a
certain underlying structure, which is crystallized in the definition of a
"group". A half century later, Felix Klein clarified the foundational role
of groups in geometry, and his justly famous Erlanger Programm, [128],
showed how each type of geometry (Euclidean geometry, affine geometry,
projective geometry, etc.) is completely characterized by an underlying
transformation group. Simultaneously, motivated by the study of partial
differential equations, Sophus Lie introduced and developed the theory
of continuous or Lie groups, [138], which are manifested as symmetry
groups of the solutions to a differential equation. Groups are ubiquitous
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Basic Group Theory 45

in mathematics and have an astounding variety of applications — to
physics, to mechanics, to computer vision, to biology, and elsewhere. As
quoted in [239], Alexandroff proclaims that " . . . the concepts of number,
set, function and group are the four cornerstones on which the entire ed-
ifice of modern mathematics rests and to which any other mathematical
concept reduces".

We begin our presentation with the fundamental definition.

Definition 3.1. A group is a set G admitting a binary multipli-
cation operation, denoted g • h for group elements g, h G G, which is
subject to the following axioms:
(a) Associativity: g • (h • k) = (g • h) • k for g,h,k G G.
(b) Identity: The group contains a distinguished identity element, de-

noted e, satisfying e • g = g = g • e for all g G G.
(c) Invertibility: Each group element g has an inverse g~x G G satis-

fying g • g-1 = g~l - g = e.

Example 3.2. The simplest example of a group is the set R of real
numbers, with addition being the group operation. The identity element
is 0, and the inverse of x is its negative —x. Both the set of nonzero
real numbers M* = R \ {0} and the set of positive reals R+ form groups
when the group operation is given by multiplication. The identity is the
number 1, and inversion means taking reciprocals. All three groups are
commutative, so g • h = h • g for all group elements g, h. In group theory,
commutative groups are called abelian in honor of Abel.

Example 3.3. The set of all invertible nxn real matrices forms a
group, known as the (real) general linear group, and denoted GL(n,R).
The group operation is matrix multiplication, and the identity element
is the identity matrix; matrix inversion defines the inverse. Except in
the case n — 1, which corresponds to the multiplicative group IR*, the
general linear group GL(n,M) forms a non-abelian group. Analogously,
the complex general linear group GL(n, C) consists of all invertible nxn
complex matrices. We will, at times, employ the abbreviated notation
GL(n) to mean either the real or complex general linear group — the
precise version will either be irrelevant or clear from the context.

Exercise 3.4. Let G and H be groups. Show how their Cartesian
product G x H can be naturally endowed with the structure of a group.

Definition 3.5. A subset H C G of a group G forms a subgroup
provided the group operations on G define a group structure on H.
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46 Groups and Transformations

Example 3.6. The set of integers Z C R forms a subgroup of
the additive group of real numbers. According to Exercise 3.4, the vec-
tor space Rn forms a group with matrix addition defining the group
operation. The set Zn of integral vectors forms a discrete subgroup.

Exercise 3.7. Suppose G is a group. Prove that H C G is a
subgroup if and only if it is closed under the group operations, meaning
that if ft, fc G H, then h-k G H and ft"1 G H.

Example 3.8. One of the most important subgroups of the gen-
eral linear group GL(n,R) is the special linear group

SL(n, R) = {A | det A = 1} , (3.1)

consisting of all unimodular (unit determinant) matrices. It forms a
subgroup because (a) the determinant of the product of two matrices
equals the product of their determinants, and hence the product of two
unimodular matrices is unimodular, and (b) the determinant of the in-
verse of a matrix is the reciprocal of its determinant, so that the inverse
of a unimodular matrix is unimodular. In general, subgroups of GL(n)
are known as matrix groups.

Exercise 3.9. Prove that the set SL(n, Z) consisting of all uni-
modular n x n matrices having integer entries forms a subgroup of
GL(n,R). On the other hand, show that the set GL(n,Z) of all n x n
integer matrices is not a subgroup.

Exercise 3.10. Prove that the set of all nonzero real matrices of
the form I „ 1 forms a subgroup of GL(2, R). Show that the group

operation coincides with that of the multiplicative group C* = C \ {0}
consisting of all nonzero complex numbers a + i/3. The circle group

S1 = {eie = cosO + is'mO} C C* (3.2)

containing all complex numbers of unit modulus forms a subgroup of
C*. Its counterpart in GL(2,R) is the subgroup SO(2) consisting of all

i j. x- fcosO — s i n 0 \ _ i o or
planar rotations . n n ; see Example 3.35.
^ \sm.O cos6 )

Exercise 3.11. Suppose H C G is a subgroup. Let g G G be a
fixed element. Prove that the set g-H-g~x = {ghg^1 \ h G H} is also a
subgroup, called the conjugate subgroup to H under g.

Definition 3.12. A subgroup H C G is called normal if it equals
its conjugate subgroups, so gHg~1 = H for all g G G.
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Example 3.13. The set Z = {Al | 0 / A G M} consisting of all
nonzero scalar multiples of the identity matrix is a normal subgroup of
GL(n,R). This example is a special case of the following basic result.

Exercise 3.14. Let G be a group. The center Z C G is the subset
consisting of all group elements which commute with every element in
G. Thus, z G Z if and only if z • g = g • z for all g G G. In particular,
Z = G if and only if G is abelian. Prove that the center of a group is
a subgroup and, in fact, a normal subgroup. Is every normal subgroup
contained in the center?

Group Homomorphisms

In the foundations of group theory, the maps that respect the group
operations play a distinguished role. These are the "morphisms" of the
category of groups.

Definition 3.15. A map p:G^H between groups G and H is
called a group homomorphism if it satisfies

P(9 • h) = p(g) • p(h), p(e) = e, p^1) = p(g)-\ (3.3)
for all g.heG.

Exercise 3.16. Prove that the image p(G) C H of a group homo-
morphism forms a subgroup of the target group H.

A group homomorphism p:G —> H is called a group isomorphism
if it is one-to-one and onto, in which case G and H are isomorphic
(meaning identical) groups. More generally, if p is one-to-one, then it is
called a group monomorphism, in which case its image p(G) C H is a
subgroup which is isomorphic to G itself.

For example, the map p : C * —> GL(2,M) that takes a complex
number a + i/3 to the 2 x 2 matrix introduced in Exercise 3.10 defines a
group monomorphism, which restricts to an isomorphism p: S1 -:=r:»SO(2)
between the circle group and the group of planar rotations.

Exercise 3.17. Show that any map p:G —> H which satisfies
the first two properties in (3.3) automatically preserves the inverse and
hence defines a group homomorphism.

Example 3.18. The map t \-> et defines a group isomorphism
p: M. —> M+ from the additive group of real numbers to the multiplicative
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48 Groups and Transformations

group of positive real numbers. The particular maps

e-t),
cost -s in A

define different monomorphisms from M to the general linear group
GL(2). All of these examples are special cases of the general matrix
exponential function pj(t) = e t J , where J is a fixed n x n matrix. The
fact that pj\ R —> GL(n) defines a group homomorphism is an immediate
consequence of the usual properties of the matrix exponential:

e{t+s)j = e u . esJ^ eoj = 1 ? e - v = (e^)"1. (3.4)

Thus, the image Hj = {exptJ} of pj forms an abelian subgroup GL(n).
These "one-parameter subgroups" play an extremely important role in
the theory of Lie groups and will be discussed in detail in Chapter 9.

Exercise 3.19. Prove that the contragredient map pc: A i-> A~T

defines a group isomorphism pc: GL(n) -^^ GL(n).

If G is a group, and H C G a subgroup, then the quotient space
G/H is denned as the set of all left cosets g-H = {g-h\h e H} for each
g G G. In general, G/H does not carry any natural group structure. Let
TT: G —> G/H be the natural projection that maps a group element g to
its coset g • H.

Proposition 3.20. If H c G is a normal subgroup, then the
quotient space G/H can be naturally endowed with the structure of a
group such that the projection n:G -> G/H is a group homomorphism.

Proof: To make TT into a group homomorphism, we should define
the group operations on G/H so that 7r(g) -7r(g) = 7r(g- g) and 7r(g~1) =
7r(g)~1 for any g,g G G. The identity element in G/H will correspond
to the identity coset ?r(e) = H. We need to show that the product
is well defined. Two group elements g and g' will map to the same
coset, 7r(g) — Tr(g'), if and only if g1 — gh for some h G H. Suppose g
and g' also map to the same coset, 7c(g) = Tr(g') so gf = gh for some
h G H. Then g' g' = gg{g~1hg)h. Now, since H is a normal subgroup,
g~xhg — h\^> also an element of H. Thus, g' g1 — ghgh = gghh = (gg)h,
where h = hh G H also. This implies that g • g and gf • g' lie in the same
coset, proving that the induced group multiplication on G/H is well
denned. The fact that the group inversion on G/H is also well denned
follows by a similar computation. Q.E.D.
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Exercise 3.21. Show that the set 2nZ = {0, ±2TT, ±4TT, ...} of
integer multiples of 2TT forms a normal subgroup of R; moreover the
quotient group M/2TTZ ~ 51 is isomorphic to the circle group. In a
similar vein, show that Zn = TLjnL forms an abelian group containing
n elements. The group operation in Zn is "addition mod n".

We next describe a more refined version of the result in Exer-
cise 3.16, which provides a group-theoretic counterpart to the funda-
mental theorem for linear transformations between vector spaces.

Theorem 3.22. Let p:G —> H be a group homomorphism. The
image p(G) forms a subgroup of H. The kernel K — {k G G \ p(k) = e}
forms a normal subgroup of G. Moreover, the quotient group G/K
is naturally isomorphic to the image p(G) under the induced group
monomorphism p: G/K —> H.

Proof: First, to show K is normal, for any k G K, g G G, we have
1) = p(g)p(k)p(g~1) = p(g) • e • pig)'1 = e,

and hence gkg~x G K. We define p as in the statement of the theorem,
so that P(TT(<7)) = p(g) for g G G. This is well defined since

p(?r(0 • k)) = p(g • k) = p(g)p{k) = p(g)e = p(ir(g)).

Finally, the fact that p is a monomorphism follows immediately from
the definition of K. Q.E.D.

Corollary 3.23. A group homomorphism p:G —> H forms a
monomorphism if and only if kev p = {e}, that is, the only element
of G mapped to the identity element of H is the identity e G G.

Example 3.24. The quotient group of the general linear group
GL(n,IR) by its center Z — {Al} is known as the projective linear group
and denoted by PSL(n,M) = GL(n,IR)/{Al}. This group plays the
underlying role in the geometry of real projective space. If n is odd, then
we can identify PSL(n, R) ~ SL(n, R) with the special linear group. This
follows from Theorem 3.22 if we use the group homomorphism p(A) =
(det A)-1/nA, which maps GL(n,R) to SL(ra,R). (We are using the fact
that, for n odd, each real number has a unique real nth root.) For n even,
this is not quite correct; we can identify PSL(n,M) ~ SL(n,R)/{±l},
so that SL(n,R) forms a two-fold covering of the projective group.

Exercise 3.25. Motivated by (1.12) (although the reader should
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note that the matrix has been transposed here), prove that the map

a /A I* 2a(3

^ ) = [ cry a6 + (3j (55 ) (3.5)

forms a group homomorphism p: GL(2) -> GL(3). Determine the kernel.

Exercise 3.26. For which matrices J does the matrix exponential
Pj(t) = etJ form a group monomorphism? (Hint: Look at the Jordan
canonical form of J.) If pj is not a monomorphism, then either J = 0
or the image Pj(M) is isomorphic to the circle group S1.

Transformation Groups

Although the abstract theory of groups is well worth developing for
its own intrinsic beauty, the real power of the concept is only revealed
when the group acts on some space. Indeed, in the last century, groups
per se did not exist in the abstract, as is now standard, but always
arose concretely through their action as groups of transformations. Such
"transformation groups" all arise as subgroups of the following general
example.

Example 3.27. Let X be any set. Let Q = Q(X) denote the
set of all one-to-one maps ip:X —> X. Then Q forms a group in which
the group operation is defined by composition of maps. The identity
transformation \ x plays the role of the group identity element, and the
inverse of a transformation is defined as the usual functional inverse. The
basic properties of functional composition and inversion automatically
imply that Q satisfies the group axioms in Definition 3.1.

Example 3.28. Let X be a finite set with n = # X elements.
Any invertible transformation ip: X -> X induces a permutation of the
elements of X, and hence we can identify Q(X) with the group of permu-
tations of n objects. Thus, Q(X) forms a finite group having n\ elements,
known as the symmetric group on n objects, and denoted Sn. For ex-
ample, if X — {1, 2, 3} has three elements, labeled by the numbers from
1 to 3, then Q(X) = S3 consists of the 6 = 3! permutations

S3 = { (123), (132), (213), (231), (312), (321) }, (3.6)

where (ijk) denotes the permutation that maps 1 to z, 2 to j , 3 to k.
Note that Sn is a non-abelian group when n > 3, while §2 ~ Z2.
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If the space X comes equipped with additional structure, then one
might impose corresponding restrictions on the class of allowable maps,
leading to important subgroups of the vast group G(X). The main re-
quirement is that the relevant constraints on the maps must be preserved
under composition and inversion.

Example 3.29. If X — Mn, then the allowable transformations
in G(X) are usually required to satisfy topological or differentiability
constraints. For example, the subgroup C°(X) consists of all continu-
ous, invertible maps cp:X —>• X. Here we are using the fact that the
composition of two continuous functions is continuous, as is the inverse
of a continuous one-to-one map. Similarly, Cfc(X), where 0 < k < oo,
is defined to be the group of all invertible continuously k times differ-
entiable maps — diffeomorphisms. Even more restrictively, the analytic
structure of X serves to define the subgroup A(X) of analytic diffeo-
morphisms. This example can be readily extended to the case when X
is an analytic manifold, e.g., a surface, as defined in Chapter 8.

Definition 3.30. A transformation group acting on a space X is
defined by a group homomorphism p:G —> G{X) mapping a given group
G to the group of invertible maps on X.

In other words, each element g G G will induce an invertible map
p(g): X —> X. In order that this identification define a group homomor-
phism, we must require that p satisfy the basic properties

p(g • h) = p(g)op(h), p(e) = l x , pig'1) = p{g)~\ (3.7)
for each g,h G G. According to Exercise 3.7, any set G C G(X) consist-
ing of invertible maps ip: X —)> X which is closed under composition ipoif;
and inversion ip~l will form a subgroup of G(X) and hence determines a
transformation group on X. In all the examples that will be considered
in this book, the space X carries an analytic structure, and the trans-
formation group p\G —>• A{X) consists of analytic diffeomorphisms.

For a fixed group action, it is common to write g • x for the action
of the group element g G G on the point x G X, instead of the more
cumbersome notation p(g)(x). Thus, conditions (3.7) become

g-(h'x) = (g-h)-x, e • x = x, g • (g^1 • x) = x, (3.8)

for all g, h G G, x G X. In the first condition, h-x = p(h)(x) denotes the
action of /i on x, whereas g • h denotes the group multiplication, which
can be identified with composition p(g) o p[K) between the corresponding
transformations.
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Example 3.31. Any group acts on itself by left multiplication. In
other words, given G, we set X — G also and let A: G -» G(G) map the
group element g to the left multiplication map \(g): h *-» g-h. Note that
this action is compatible with our notational convention (3.8). A closely
related action is given by right multiplication p(g): h \-> h-g~x acting on
X = G. The inverse is required so that p forms a group homomorphism:
p(g-h) = p(g)-p(h).

Exercise 3.32. Define the notions of homomorphism and isomor-
phism for transformation group actions. When are the left and right
actions of a group on itself isomorphic?

Example 3.33. Let X = V be a real vector space. Consider the
group GL(V) C QiV) consisting of all invertible linear transformations
T: V -» F, i.e., one-to-one maps that satisfy T(x + y) = T(x) + T(y), for
x,y £ V, and T(Xx) — \T{x) for A a scalar. If V is finite-dimensional,
then we can introduce a basis {e 1 , . . . ,e n} so as to identify V ~ W1

and thereby identify each invertible linear transformation with its n x n
matrix representative. In this manner, the abstract general linear group
GL(n, R) introduced in Example 3.3 is naturally realized as the group of
all invertible linear transformations on an n-dimensional vector space,
where composition serves to define the group operation. Note that any
matrix subgroup of GL(n, R) also acts on Rn via linear transformations.
These are the linear group actions or representations, destined to play
the pivotal role in classical invariant theory.

Example 3.34. A smooth transformation (p:Rn -> Rn is called
orientation-preserving if its Jacobian matrix has positive determinant
everywhere. The set of invertible orientation-preserving transformations
forms a subgroup of Ck(Rn) for k > 1. In particular the group of lin-
ear, orientation-preserving transformations is the subgroup GL(n, M)+ =
{det A > 0} consisting o f n x n matrices with positive determinant. A
transformation ip is called volume-preserving if vol ip(S) = vol S for every
subset S c M n , where vol denotes the ordinary Lebesgue measure. The
special linear group SL(n,R), (3.1), consists of linear transformations
that preserve both volume and orientation.

Example 3.35. We denote the usual Euclidean norm on W1 by
|| x || = v ^ i ) 2 H 1" (xn)2- A transformation tp: W1 -> Rn is called an
isometry if || ip(x) — (p(y) || = || x — y \\ for all x, y G Rn, i.e., it preserves
(Euclidean) distances. The group of linear isometries forms a subgroup
O(n) C GL(n,R) of the general linear group, known as the orthogonal

Cambridge Books Online © Cambridge University Press, 2010)D8��4*4�!45!8�4(��((BD,��+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((BD,��7$� $C:��� �����.�0��
�
�������� ��	
/$+#!$4787�9C$"��((BD,��+++ 64"5C�7:8 $C:�6$C8 �3#�*8CD�(,�$9�2$C$#($��$#����18B������4(���,��,
	��D)5 86(�($�(�8�.4"5C�7:8�.$C8�(8C"D�$9

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623660.004
https://www.cambridge.org/core


Transformation Groups 53

group; it can be characterized as 0(n) = {̂ 4 G GL(n,R) | AT A = 1}.
The orthogonal group contains both rotations and reflections, distin-
guished by the sign of their determinant. The rotation or special orthog-
onal group SO(n) = {A £ O(n) | det A — +1} consists of all orientation-
preserving orthogonal transformations.

Example 3.36. Slightly generalizing Example 3.33, we recall that
an affine transformation of the linear space W1 is a combination of a lin-
ear transformation and a translation, and hence has the general form
x ^ A i + a, where A G GL(n,R) is an invertible matrix and a G W1 a
fixed vector. The composition of two affine transformations is also affine,
as is the inverse. Therefore the set A(n) = A(n, R) of all affine transfor-
mations forms a group — the affine group— which is parametrized by
the pair (A, a) G GL(n,R) x Rn. Although as a set A(n) can be identi-
fied with the Cartesian product of the groups GL(n,R) and Mn, it is not
isomorphic to the Cartesian product group GL(n,R) x Mn because its
group multiplication law, (A, a) • (B, b) = (AB, a -f Ab), is not the same
as the Cartesian product group action. This forms a particular case of a
general construction known as the semi-direct product, cf. [169; p. 37],
and often denoted by A(n) = GL(n,R) x Mn.

Exercise 3.37. Prove that the map p(A, b) — ( 1 defines a
group monomorphism p: A(n) —> GL(n + l,R), realizing the affine group
as a matrix group in one higher dimension.

Exercise 3.38. An affine transformation is called equi-affine if it
preserves volume. Show that the set of equi-affine transformations forms
a subgroup SA(n) C A(n) of the affine group, which is defined by the
unimodularity constraint det A = 1. The Euclidean group is defined as
the subgroup of A(n) whose linear part is orthogonal, so

E(n) = {(R,a)\ Re O(n), a G Rn } = O(n) x Rn c A(n).

Prove that the Euclidean group is the group of affine isometries. In fact,
it can be shown that every isometry is necessarily affine, cf. [240; §2.3],
and thus the Euclidean group is the full isometry group of Euclidean
space. As such, it plays the foundational role in Euclidean geometry.
The proper Euclidean group SE(ra) = E(n) n SA(n) ~ SO(n) x Rn

consists of the orientation-preserving Euclidean transformations.

Given a transformation group action defined by a homomorphism
p:G —>• G(X), the image p(G) will form a subgroup of the group of all
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invertible maps of the space X. The kernel

K = {g e G | p(g) = tx} = {g \ g • x = x for all x e X}

is known as the global isotropy subgroup. It forms a normal subgroup of
the transformation group G and consists of all group elements which act
completely trivially on the space. According to Theorem 3.22, we can
identify p(G) with the quotient group G/K.

Definition 3.39. A transformation group is said to act effectively
or faithfully if it has trivial global isotropy subgroup: K — {e}.

The condition means that the only group element acting as the
identity transformation on X is the identity element of G. A group acts
effectively if and only if the map p:G —>• Q(X) is a monomorphism, which
means that different group elements have different effects: g • x — h • x
for all x e X if and only if g = h. Theorem 3.22 shows that any non-
effective transformation group G can, without any significant loss of
information or generality, be replaced by the effectively acting quotient
group G = G/K.

Proposition 3.40. Suppose G is a transformation group acting
on a space X, and let K denote the global isotropy subgroup. There
is a well defined effective action of the quotient group G — G/K on X,
which "coincides" with that of G in the sense that two group elements
g and g have the same effect on X, so g • x — g • x for all x G X, if and
only if they have the same image in G, so g — g • k for some k e K.

Example 3.41. The linear fractional transformations

(3.9)

define an action of the general linear group GL(2,M) on the real projec-
tive line KP1. The action is not effective since multiples of the identity
matrix act trivially. The global isotropy subgroup is K = {Al}, and the
effectively acting quotient group given in Proposition 3.40 is the projec-
tive linear group PSL(2,M) - GL(2,M)/{A1} defined in Example 3.24.
This example can be straightforwardly generalized to real and complex
projective actions in higher dimensions.

Symmetry Groups, Invariant Sets, and Orbits

As remarked earlier, groups originally arose because they effectively crys-
tallized the intuitive notion of symmetry and as such lie at the founda-
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tions of geometry, physics, art, and human perception. In general, a
transformation group is a symmetry group of an object if its action
leaves the object unchanged.

Definition 3.42. Let Y C X. A symmetry of Y is an invertible
transformation tp: X -> X that leaves Y fixed, so tp(Y) — Y.

The crucial observation, dating back to Lagrange and Galois, is
that the collection of all symmetries of a subset Y C X forms a subgroup
S(Y) C G(X) of the group of all invertible transformations on X, known
as the symmetry group of Y. Indeed, the identity transformation l x G
S(Y) is clearly always a symmetry; further, if tp(Y) = Y and ij){Y) — Y,
then <ipo<p(Y) = rl>(<p{Y)) = Y, and ^(Y) = Y.

Remark: If we relax the original assumption and require only that
<p(Y) C y, then the inversion property does not hold and the set of
such maps generally only forms a "semi-group". For example, if Y —
(—1,1) C M, then the transformation (p(x) = \x satisfies <p(Y) C Y,
whereas (/9-1(x) = 2x clearly does not.

Generally, one does not deal with the entire symmetry group of a
given subset but rather admits only those symmetries satisfying suitable
constraints — for example, continuous symmetries, analytic symmetries,
linear symmetries, and projective symmetries. In other words, starting
with a given transformation group p: G —> G(X), the symmetry subgroup
of a subset Y C X is GY = p " 1 ^ ^ ) ) = {g e G | g • Y = Y}. A
transformation group G acting on X is said to be a symmetry group of
the subset Y if every group element is a symmetry, so that GY — G. In
this case, Y is designated a G-invariant subset of X.

Example 3.43. Consider the planar equilateral triangle with ver-
tices A = | ( l , 0 ) , ( - | , ^ ) , ( - | , - ^ ) | C M2. A linear transformation
on M2 defines a symmetry of A if and only if it has one of the following
six matrix representatives:

(3.10)

Consequently, the linear symmetry group of an equilateral triangle is
isomorphic to the symmetric group S3. On the other hand, the isosceles
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56 Groups and Transformations

triangle with vertices A = {(1,0), (0,1), (0, —1)} has only two linear
symmetries: the identity and the reflection y *->> —y through the x-axis.
If we enlarge our class of transformations to include afrlne maps, then
the isosceles triangle A admits six affine symmetries, which we represent
as 3 x 3 matrices as in Exercise 3.37:

0 ()
1 0

1 0 0

0 - 1 0

\° ° l/ 0 0 1

I \
2

0 0

1\
2

0 0 1

1 \
2

_ 1
2

0 0

Indeed, the afline symmetry group of any triangle is isomorphic to S3.
For the square with vertices 5 = {(1,0), (0,1), (-1,0), (0, -1)}, the

linear and afrlne symmetry groups coincide and consist of eight linear
isometries: the identity; rotations through 90°, 180°, and 270°; reflec-
tions through the two coordinate axes; and reflections through the two
lines making 45° angles with the axes. The reader should verify that
these transformations form a non-abelian group, known as the dihedral
group D4. Note that there are no linear (or afline) symmetries realizing
every possible permutation of the four vertices; for instance, we cannot
leave two adjacent vertices fixed and interchange the other two. There
are, however, nonlinear transformations that realize such permutations.
For example, the protective transformation*

fixes (1,0) and (0,1), while interchanging (—1,0) and (0,-1). (Since
projective transformations map lines to lines, they also preserve the
edges of the square.) In fact, there are 24 protective symmetries of a
square, which form a group isomorphic to S4, realized as a group of 3 x 3
matrices.

Exercise 3.44. Prove that a generic quadrilateral has no non-
trivial affine symmetries but always has 24 projective symmetries. Show

' See Chapter 10 for details.
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Symmetry Groups, Invariant Sets, and Orbits 57

that a triangle has an infinite number of projective symmetries. What is
its isotropy group, that is, the subgroup leaving all three vertices fixed?
Investigate the linear, afrine, and projective symmetries of pentagons.

Given a transformation group G acting on a space X, the symmetry
group of a single point x G X is known as its isotropy subgroup: Gx —
{9 € G\g - x = x}. The transformation group acts freely if all isotropy
subgroups are all trivial: Gx = {e} for all x G X. This is equivalent to
the statement that g • x = h • x for any one point x G X if and only if
g — h. Free actions should be contrasted with effective actions, where
g = h if and only if g • x = h • x for all x G X. For example, the rotation
group SO(3) acts effectively on three-dimensional space X = R3, since
the only rotation which leaves every point fixed is the identity; however,
it does not act freely, since any nonzero point 0 ^ x G R3 is fixed by the
rotations around the axis formed by the line passing through x and 0.
And, of course, the origin is left fixed by all rotations. Similar remarks
hold for SO(n) acting on Rn provided n > 3.

Given a transformation group G, we would like to characterize the
possible G-invariant subsets. Trivially, X itself is invariant. Technically
speaking, the empty set 0 C X is also G-invariant, but this is unin-
teresting. Note that unions and intersections of G-invariant subsets are
also G-invariant. The minimal G-invariant subsets are of particular
importance.

Definition 3.45. An orbit of a transformation group is a minimal
nonempty invariant subset. In particular, a fixed point is a G-invariant
point x0 G X, so that g • x0 = x0 for all g G G.

Example 3.46. As a simple example, consider the standard action

(x, y) 1—> (x cos 0 — y sin #, x sin 0 + y cos 0) (3.11)

of the rotation group SO(2) on R2. Any circle {x2 + y2 = r2} centered at
the origin is a rotationally invariant subset of the plane. Since the circles
are minimal — they contain no nonempty rotationally invariant subset
— they are the orbits of SO(2). The only fixed point is the origin. Every
other invariant subset, e.g., an annulus {a < x2 + y2 < 6}, is necessarily
a union of circles.

Example 3.47. For the usual linear action of GL(n) on Rn, there
are two orbits: the origin {0} and the remainder Rn \ {0}. The same
holds for SL(n) since we can still map any nonzero vector in Rn to any
other nonzero vector by a matrix of determinant 1.
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58 Groups and Transformations

Proposition 3.48. Given a transformation group acting on a
space X, the orbit Ox through a point x G X is just the set of all
images of x under arbitrary group transformations: Ox — {g-x | g G G}.
A subset S C M is G-invariant if and only if it is the union of orbits.

Exercise 3.49. Let x,y G X be points lying in the same orbit
of G. Prove that their isotropy subgroups Gx and Gy are conjugate
subgroups of G. More generally, given Y C X, show that the symmetry
group of g • Y = {g • y \ y G Y} is conjugate to that of Y.

A group action is called transitive if there is only one orbit, so for
every x, y G X there exists at least one g G G such that g • x — y. In
this case, the only G-invariant subsets are the trivial ones 0 and X. For
example, the linear actions of the groups GL(n,M), SL(n,M), and SO(n)
on IRn all induce transitive projective actions on the space IRP72"1.

Exercise 3.50. Is the action of the real rotation group SO(2) on
the complex projective plane CP1 given by "linear fractional rotations"
p h-» (pcosO — sin 9) / (p sin 9 + cos 9) transitive? effective? free? Describe
the orbits.

Exercise 3.51. Prove that if G acts freely and transitively on X,
then we can naturally identify X ~ G, and the action is isomorphic to
the left multiplication action of Example 3.31.

Equivalence and Canonical Forms

Given a transformation group G acting on X, we shall call two points
x, y G X equivalent if there exists a group transformation mapping one
to the other, so that y — g • x for some g G G. In other words, two
points are equivalent if and only if they lie in the same orbit. The
equivalence problem for a transformation group is to find necessary and
sufficient conditions for this to hold. A trivial case is when the group acts
transitively, which implies that all points are equivalent. The solution
to an equivalence problem typically requires the construction of suitable
invariants which serve to distinguish the orbits of the group.

In this context, a canonical form of an element x G X just means
a distinguished, "simple" representative x0 G Ox of the orbit contain-
ing x. Thus, a complete list of canonical forms can be identified with
a list of orbits of the group, since each orbit must contain one (and, in
an irredundant list, only one) canonical form, which thereby serves to
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distinguish the orbit. Of course, there is no uniquely specified canon-
ical form, and some choice, usually based on one's aesthetic judgment
of "simplicity", must be exercised. Note that the determination of a
complete system of canonical forms leads to an immediate solution to
the associated equivalence problem: Two objects are equivalent if and
only if they have the same canonical form.

For example, the well known Jordan canonical form of a matrix
corresponds to the conjugation action X H-> AXA-1 of the complex
general linear group GL(n, C) on the space of n x n complex matrices
X. However, other less commonly known canonical forms, including the
older "rational canonical form", cf. [219], can also be advantageously
utilized.

The "coordinates" of the canonical form are particular invariants,
often referred to as the moduli for the given transformation group,
cf. [156, 213]. For the conjugation action of GL(n, C) on matrices, the
moduli are the eigenvalues of the matrix and the sizes of the different
Jordan blocks. Thus, moduli can be both continuous and discrete; in
regular cases, as discussed in Chapter 8, the moduli provide a complete
system of functionally independent invariants for the group action.

Example 3.52. For the rotation group SO(n) acting on Mn, the
orbits are the spheres {|| x || = constant} centered at the origin. Hence,
two points in W1 are equivalent if and only if they have the same norm:
|| x || = || y ||. Thus, we can choose the canonical form of a vector x G l n

to be a non-negative multiple of the first unit basis vector, rex , with
r — || x II > 0 being the single modulus for the group action. (Clearly,
there is no particular reason to choose the first basis vector for the
canonical form.) As for the actions of GL(n) and SL(n), each vector
xGMn has just two possible canonical forms: either 0 or, say, e1.

Example 3.53. Consider the action of the group GL(2,IR) of real
invertible 2 x 2 matrices on the space Q of real quadratic forms ana-
lyzed in Chapter 1. Since each quadratic form is uniquely determined
by its three coefficients, we can identify Q ~ M3. The induced action of
GL(2, R) on Q is explicitly given in (1.12). What are the orbits? Accord-
ing to the classification in Chapter 1, there are four different canonical
forms for real quadratic forms, and hence there are four distinct orbits.
These are almost completely distinguished by the discriminant; the first
orbit consists of all those quadratic forms with positive discriminant;
the second consists of those with negative discriminant. There is a fixed
point consisting of the zero quadratic form; the final orbit consists of
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all not identically zero quadratic forms with zero discriminant. In terms
of the coordinates (a, 6, c) provided by the coefficients of the quadratic
form (1.7), the orbits are

O+ = {ac > fc2}, O0 = {ac = b\ a2 + b2+c2^ 0} ,

O_ = {ac < b2}, O, = {a = b = c = 0}.

The isotropy subgroup for a given quadratic form is its (linear)
symmetry group and consists of all linear transformations that leave the
form unchanged. The positive definite canonical form x2+y2 was already
considered in Example 3.35 — its symmetry group is the orthogonal sub-
group 0(2) C GL(2); the same holds true for the negative definite canon-
ical form —x2-y2. The symmetry group of the indefinite canonical form

2 2 • ^ n T- v J. x- /±cosh£ ±sinh£\ , ^x — y consists ot hyperbolic rotations . . , , . , , , where they J F Y±smh£ icosh^y '
product of signs in each row of the matrix must be the same. The sym-
metry group of the alternative indefinite quadratic form xy is the conju-
gate subgroup containing all matrices ( \ - i ) a n d ( _i ^ 1, for
A, [x ^ 0. One can distinguish the symmetry groups of definite versus
indefinite forms by their topology: the symmetry group of a definite
quadratic form is compact, while that of an indefinite form is not. As
for the degenerate forms ±x2, they have the same symmetry group, con-
sisting of all matrices of the form I - J. Unlike the definite forms,
the symmetry group depends on two parameters. Finally the trivial
zero form has the entire four-parameter group GL(2) as a symmetry
group. Thus, one can almost distinguish between the various orbits by
the underlying structure of their isotropy subgroups.

Exercise 3.54. Use the canonical forms for cubic polynomials
presented in Chapter 2 to determine the orbits of the action on GL(2, R)
on the space of cubic forms. Determine the symmetry groups of the
canonical cubic forms.

Exercise 3.55. Consider the induced action of the rotation group
SO(2) on the space of quadratic forms Q, obtained by restricting the
general linear action to pure rotations. In other words, we use the trans-
formation rules (1.12) with a = 5 = cos#, — (3 = 7 = sin#. Prove that
a complete list of canonical forms is provided by the diagonal forms
Q0(x,y) = \x2 + fiy2. Is the list redundant, that is, can we map one
diagonal quadratic form to another? Use this to describe the orbits.
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The preceding examples are particular cases of the general theory
of quadratic forms on finite-dimensional vector spaces. According to
Sylvester's Law of Inertia, [75; §X.2, 219; p. 89], the action 5 »->> ASAT

of the general linear group GL(n,R) on the space of real symmetric
n x n matrices 5 has a discrete set of orbits, which are classified by the
matrix's signature, meaning the number of positive, zero, and negative
eigenvalues. Canonical forms are provided by the diagonal matrices with
0 < p < n entries equal to +1, followed by 0 < q < n — p entries equal
to —1, followed by n — p — q zeros on the diagonal. In particular, the
orbit containing the identity matrix consists of all symmetric, positive
definite matrices.

Theorem 3.56. Two symmetric matrices are equivalent under
the action S \-> ASAT, A € GL(n,R), if and only if they have the same
signature.

If we restrict to the orthogonal subgroup O(n) C GL(n,M), then
we can still diagonalize any symmetric matrix 5, leading to a canonical
form D = diag(A1?... An). Note that this canonical form is not quite
uniquely determined, since we can rearrange the order of the entries Â .
Thus, in this case, the moduli are provided by symmetric functions of
the eigenvalues.

Remark: We can uniquely identify each symmetric matrix S with
a quadratic form Q(x) = xT S x onWn, and so Sylvester's Theorem and
its orthogonal counterpart describe the canonical forms for multivariate
quadratic forms under linear and orthogonal transformations.
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Chapter 4

Representations and Invariants

While general transformation groups play a ubiquitous role in geometry,
the most important for invariant theoretic purposes are the linear ver-
sions (along with their projective counterparts). Linear group actions are
referred to as "representations", so as to distinguish them from the more
general nonlinear transformation groups. Representation theory is a vast
field of mathematical research, and we shall only have room to survey
its most elementary aspects, concentrating on those which are relevant
to our subject. More complete treatments can be found in numerous ref-
erence texts, including [56,144,223,231]. Representation theory has
an amazing range of applications in physics and mathematics, includ-
ing special function theory, [152,212,225], quantum mechanics and
particle physics, [46,136,232,238], solid state physics, [130], proba-
bility, [145], harmonic and Fourier analysis, [212, 228], number theory,
[79,118,145], combinatorics, [143, 201], bifurcation theory, [82,190],
and many other fields. A quote of I. M. Gel'fand, "... all of mathemat-
ics is some kind of representation theory...", [132], is perhaps not as
far-fetched as it might initially seem! The representations of a general
(even nonlinear) transformation group on the scalar-valued functions de-
fined on the space where the group acts are of particular importance.
In classical invariant theory, our original transformation rules for inho-
mogeneous and homogeneous polynomials are very special cases of the
general framework of group representations on function spaces. In this
fashion, we are led back to our primary subject, renewed and reinvigo-
rated by an understanding of the requisite mathematical theory.

Representations

For simplicity we shall state the basic concepts in representation theory
in the context of real group actions on real vector spaces; the corre-
sponding complex version is an immediate adaptation and it is left to
the reader to fill in the details.
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Representations 63

Definition 4.1. A representation of a group G is defined by a
group homomorphism p:G -> GL(V) to the group of invertible linear
transformations on a vector space V.

Thus, according to (3.3), any representation must satisfy the fol-
lowing basic rules:

P(g • h) = P(g) • P(h), P(e) = t, p(g-1) = p(g)-\ (4.1)

for all g,h G G. The vector space on which the representation acts will be
called the representation space] it is not necessarily finite-dimensional,
although, in view of our particular applications, we can safely avoid
the many analytical complications inherent in the infinite-dimensional
context.

Example 4.2. Let G — R be the additive group of real numbers.
According to (3.4), for any fixed nx n matrix J, the matrix exponential
pj(t) = etJ defines an n-dimensional representation of R. Particular
cases appeared in Example 3.18.

Example 4.3. A well-known representation of the symmetric
group Sn is provided by the nxn permutation matrices. To be specific,
a permutation n G §>n is represented by the linear transformation An
which permutes the entries of vectors x = (x l 5 . . . , xn) G Rn accordingly:
An(x) = (a^i), • • • iXn(n))- It is easy to see that the map p: n \-> An
defines a group monomorphism from Sn to GL(n) and hence determines
a representation of the symmetric group. For example, the symmetric
group §3, as given in (3.6), is represented by the following six matrices:

See Example 3.43 for several other interesting representations of the
symmetric group.

Example 4.4. Let G = GL(n, R) be the general linear group. The
simplest possible representation is the trivial one-dimensional represen-
tation that assigns to each matrix A G GL(n) the real number 1. Slightly
more interesting is the one-dimensional determinantal representation
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64 Representations and Invariants

pd(A) = detA. More generally, any power pd(A) = (det^4)fc of the de-
terminant also forms a one-dimensional representation of GL(n). An ev-
ident n-dimensional representation is provided by the identity represen-
tation pe(A) = A acting on V — Rn. A second n-dimensional representa-
tion is the so-called contragredient or dual representation pc(A) = A~T

considered in Exercise 3.19. Higher dimensional representations can be
constructed by a variety of techniques. For example, the conjugation
action X >->> AXA~X defines a representation of GL(n) on the space
Mnxn ~Rn of n x n matrices, as does the action X H-> AXAT arising
in the theory of quadratic forms.

The preceding representations of the general linear group are par-
ticular instances of tensorial operations that can be applied to arbitrary
representations. These include the operations of duality, direct sum, ten-
sor product, and symmetric product. The simplest case is the direct sum
peer of two representations p, a of G on V, W, respectively, which acts
in the obvious fashion on the sum V e W of the representation spaces.

If V is a real, finite-dimensional vector space, we let F* denote the
dual vector space, which is defined as the space of real-valued linear
maps u: V —> R. It is not difficult to see that F* is a vector space of
the same dimension as F. In terms of a basis {e l 5 . . . , en} of V, the cor-
responding dual basis {el 7 . . . ,en} of V* is defined so that s^e^) = #*•,
where 5lj is the usual Kronecker delta, which has the value 1 if i — j and 0
otherwise. The dual of F* can be identified with V again: (V*)* ~ V;
the identification takes v G V to the linear map v G (V*)* given by
V(LO) = LJ(V) for UJ G V*. If T: V —> F is any linear transformation,
then there is an induced dual transformation T*:V* —> V*, denned
so that T*(u)(v) = u)(T~1v). In terms of the dual bases, if the linear
transformation T has n x n matrix form A, then the dual map T* has
contragredient matrix form A~T. Thus, given any representation p of a
group G on F, we can construct the dual or contragredient representa-
tion p* of G on 7*, where p*(g) = p{g)* is obtained by applying the
inverse transpose operation to the representation matrices.

Remark: In invariant theory, the vectors in V = W1 which trans-
form according to the identity representation of GL(n) are known as
contravariant vectors. In other words, a contravariant vector is one that
is subject to our basic transformation rule x = i x for each A G GL(n),
cf. (2.4). Vectors in the dual space V* ~ Mn, which transform accord-
ing to the contragredient representation, are known (perhaps perversely,
although we are adhering to the classical terminology) as covariant vec-
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tors. The transformation rule for covariant vectors is a = A T a or
a = A~T a. For example, under contravariant transformations of its ar-
gument, the coefficients a of a linear form Q(x) = a • x = J^\ aixi form
the components of a covariant vector; see (4.5).

Next, recall that the tensor product V®W of two vector spaces
can be identified with the space of linear maps T: F* —» W from the
dual space of V to W. If v G V and w G W, then there is an in-
duced element v®w G V^W, defined as the rank one linear trans-
formation that takes UJ G V* to the scalar multiple UJ{V)W G W. If
{e1 ?. . . , en} is a basis of V and {/l5..., / m } a basis of W, then the
tensor products ei ®fj form a basis of V®W, which has dimension mn.
(In terms of the given bases and their duals, ei ® f- corresponds to the
linear transformation whose matrix form has 1 in the (j, i) th position.)
In particular, y®M ~ V, where we identify v®c with the scalar prod-
uct cv. Given linear maps T:V -^ V and £/: VF —>> W, we can de-
fine their tensor product T ®U\V ®W —> V ®W in the obvious manner:
(T ®U)(v ®w) — T(v)®U(w). In this way, the tensor product p®cr of
representations p of G on V and cr of G on VF defines a representation
on the tensor product space V®VF. For example, the tensor product
pe ® pe of the standard representation of GL(n) with itself acts on the
space Rn ®Rn ~ Mnxn, which we identify with the space ofnxn matri-
ces. The reader can verify that this representation can be identified with
the representation X \-> AXAT mentioned above. Similarly, the conju-
gation representation X i-> AXA-1 is the same as the tensor product
pe ® pc of the standard representation with its dual.

Example 4.5. Consider the particular case when G = GL(2). An
important example is provided by the tensor product of the contragre-
dient representation

(a 0\ 1 / 5 -
6J a6-p-y\-P a

with the determinantal representation pd I ^ I = aS — Pj. The

representation space can be identified as M2 ® IR ~ M2, and hence this
tensor product defines the two-dimensional representation

However, the latter representation is, in fact, isomorphic to the identity
representation pe(A) = A. Indeed, introduction of the alternative basis
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ex = e2, e2 = — e1 produces

Aex = Ae2 — —j3e1 -f ae2 = aex + f3e2,
Ae2 = —Ae1 = — 5el + 7e2 = 7?^ + £ eT2,

and hence, in terms of the new basis, A has the same matrix form as A.
In other words, in a two-dimensional vector space, contravariant vectors
can be obtained from their covariant counterparts by multiplication by
the determinantal representation.

Remark: This result is peculiar to GL(2) — there is no combina-
tion of contragredient and determinantal representations of GL(rc) that
reproduces the identity representation when n > 2. As a consequence,
the invariant theory of GL(n) for n > 2 is rather more involved than the
two-dimensional case. See Chapter 10 for further details.

Remark: The tensor product F®C of a real vector space with the
complex numbers defines a complex vector space known as the complex-
ification of V. The complexification process, applied to real representa-
tions, proves to be a particularly powerful tool in the general theory.

Remark: The elements of the tensor powers of the vector space V
are known as contravariant tensors, while the tensor powers of the dual
F* are known as covariant tensors. Binary forms can be regarded as
symmetric covariant tensors. Elements of tensor products of one or more
copies of the identity representation with one or more copies of the con-
tragredient representation are known as mixed tensors. Example 4.5
implies that, in the two-dimensional situation, every type of tensorial
representation can be obtained by tensoring a covariant tensor repre-
sentation with by a suitable power of the determinantal representation,
which amounts to an adjustment of the overall weight of the tensor.

Irreducibility

As we have just seen, many complicated group representations can be
built up from simpler representations using the basic tensor operations.
The simplest nontrivial cases are the irreducible representations, mean-
ing those which admit no nontrivial subrepresentations.

Definition 4.6. Let p define a representation of a group G o n a
vector space V. A subspace W C V is an invariant subspace if it has
the property that p(g)W C W for all g £ G.
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Irreducibility 67

Note that the restriction of p to an invariant subspace W induces a
subrepresentation of G on W. Trivial invariant subspaces, valid for any
representation, are W = {0} and W — V.

Definition 4.7. A reducible representation is one that contains a
nontrivial invariant subspace {0} ^ W CV. An irreducible representa-
tion is one that has no nontrivial invariant subspaces.

Example 4.8. The direct sum peer of two representations is re-
ducible since each appears as a subrepresentation therein.

Example 4.9. The identity representation pe of GL(V) on V is
clearly irreducible. However, none of its tensor powers, acting on the
tensor product spaces ® V = V ® • • • ®V, are irreducible. For exam-
ple, if we identify V — Mn, then, as we remarked, the second tensor
power V®V ~ Mnxn — MJ1 can be identified with the space o f n x n
matrices, with representation X \-> AXAT. Clearly the subspaces con-
sisting of all symmetric matrices, O V = {ST — 5}, and all skew-
symmetric matrices, f\ V — {KT = — K}, are invariant subspaces, and
so ®2V = Q2V ®/\2V decomposes into a direct sum of symmetric and
skew components, both of which form irreducible subrepresentations.
Let us prove irreducibility in the symmetric case. Suppose {0} / W C
O V is an invariant subspace, and let 0 ^ S G W be a nonzero symmet-
ric matrix therein. Using Sylvester's Theorem 3.56, we can diagonal-
ize ASAT — So — diag(±l,.. . , ±1, 0, . . . , 0) G W. Moreover, choosing
D = diag(A1?..., An) shows that DS0DT = diag(±A?,..., ±A£, 0, . . . , 0)
must lie in W. The permutation matrices constructed in Example 4.3
will act on such diagonal matrices by permuting the entries, so the
nonzero entries can be placed anywhere on the diagonal. Since W is
a subspace, we can take linear combinations of such diagonal matrices
and arrive at the conclusion that W contains all diagonal matrices. But
then Theorem 3.56 shows that every symmetric matrix is in W, prov-
ing the result. The skew-symmetric version is similar and left to the
interested reader. (For instance, one can utilize the canonical forms for
skew-symmetric matrices, cf. [75; §XL4].)

The higher tensor powers of a vector space include the symmetric
and skew-symmetric subspaces as irreducible subrepresentations, but
these are not an exhaustive list. One indication of this fact is to note
that ® 3 F has dimension n3, while the symmetric and completely skew-
symmetric subspaces have respective dimensions \n{n + l)(n + 2) and
\n(n - l)(n - 2), whose sum is less than n3. The full classification of
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68 Representations and Invariants

the irreducible subrepresentations of the tensor representations of GL(V)
can be found in [231], for instance, and lead to the theory of symmetry
classes of tensors, classified by Young diagrams, which are also inti-
mately related to the representation theory of the symmetric group §n .
The resulting theory has important applications not only in mathemat-
ics, including combinatorics and geometry, cf. [143,231], but also in
quantum mechanics and chemistry, cf. [232, 238].

Exercise 4.10. Prove that if p: G —>> GL(n) is any n-dimensional
representation, then its determinant det p: G —>> R \ {0} defines a one-
dimensional representation.

In many of the most important cases — for instance, when the
group is finite, or compact, or the general tensor representations of
GL(n) — finite-dimensional reducible representations can always be de-
composed into a direct sum of irreducible subrepresentations, cf. [231].
For such groups, then, the irreducible representations form the funda-
mental building blocks, and it suffices to study their properties in order
to understand completely general representations. The classification of
irreducible representations has been the focus of major research efforts
for over a half century; see [144, 223, 231] for example. Unfortunately,
space precludes us from looking at anything beyond the particular ex-
amples that form the focus of this book.

Example 4.11. A simple counterexample to decomposability is
provided by the reducible two-dimensional representation

of the general linear group GL(n,R). This representation leaves the
subspace spanned by the vector (l,0)T invariant, but there is no com-
plementary invariant subspace, and hence p cannot be written as the
direct sum of two subrepresentations.

Exercise 4.12. Prove that if a representation of G acts transi-
tively o n F \ {0}, then it is irreducible. Is the converse true?

Exercise 4.13. A representation is called unitary^ if its image is
contained in the group of norm-preserving linear transformations of an

' The term comes from the complex version, in which the representation
maps G to the unitary group U(V) consisting of all norm-preserving linear
transformations of the complex Hermitian inner product space V.
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Function Spaces 69

inner product space V, so that, in the real case, p:G —>• O(V). Prove that
any finite-dimensional unitary representation decomposes into a direct
sum of irreducible subrepresentations. Hint: Prove that the orthogonal
complement to an invariant subspace is also invariant.

The decomposability of the representations of finite groups is based
on Exercise 4.13 combined with the following observation.

Proposition 4.14. Every finite-dimensional representation of a
finite group is equivalent to a unitary representation.

Proof: Let us choose any inner product (x ; y) on the representation
space V. We then average over the group* to define a new inner product

g?G
on F. It is easy to check that p is unitary with respect to the new
group-invariant inner product. Q.E.D.

Remark: The same result holds for compact Lie groups (see Chap-
ter 8), where one replaces the sum in (4.2) by an integral based on the
invariant Haar measure, cf. [212, 231]. Thus, Proposition 4.14 combined
with Exercise 4.13 implies that any representation of a finite group or
compact Lie group decomposes into a direct sum of irreducible subrep-
resentations.

Remark: A matrix group G C GL(n) is called linearly reductive,
[156, 213], if every representation that depends rationally on the ma-
trix entries of A G G decomposes into a sum of irreducible represen-
tations. As we remarked, finite groups, compact Lie groups, and the
groups GL(n) and SL(n) are all linearly reductive. The Hilbert Basis
Theorem 2.42 holds for all linearly reductive groups, cf. [156], and hence
one can argue that they form the optimal class of groups for generalizing
the full range of methods and results in classical invariant theory.

Function Spaces

One easy way to turn a nonlinear group action into a linear representa-
tion is through its induced action on the functions defined on the space.
Let G be a transformation group acting on a space X. Then there is a

See (4.8) for a more detailed discussion of this process.
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naturally induced representation of G on the linear space T = T{X) of
real-valued functions F: X —> R. A group element g G G will map the
function F to the transformed function F — g • F, which is defined by

F(x) = F(g-1.x) = F(x). (4.3)

The introduction of the inverse g~1 in (4.3) ensures that the action de-
fines a group homomorphism: g • (h • F) = (g • h) • F for all g,h £ G, and
F G T. The representation of G on the (infinite dimensional) function
space T will typically include a wide variety of important subrepresenta-
tions, including representations on subspaces of polynomials, continuous
functions, smooth (differentiate) functions, analytic functions, normal-
izable (L2) functions, and so on. This basic construction clearly extends
to the space Tk{X) consisting of all vector-valued functions F: X —» Mk.

For our invariant theoretic purposes, the most important examples
are the standard representation of the general linear group GL(2,R)
acting on M2, and its complex counterpart GL(2, C) acting on C2. Con-
centrating on the real version, the induced representation (4.3) on the
space of real-valued functions Q: IR2 —>• R is explicitly given by

e GL(2).

(4.4)

In particular, if Q is a homogeneous polynomial, so is Q, and hence the
space V^ C ^(R2) of homogeneous polynomials of degree n forms an
invariant subspace, and the representation (2.5) reduces to our original
transformation rules (2.5) for binary forms. We let pn = pn 0 denote
the induced finite-dimensional representation of GL(2) on V^n\ We
can uniquely identify each homogeneous polynomial Q G V^ with the
(n + l)-tuple a = (a0, a1 ?. . . , an) G Rn+1, where the ai are its coefficients
relative to the basis of V^ — Mn+1 provided by the scaled monomials
(^)xlyn~l, for i — 0 , . . . , n. The explicit action of GL(2) on the coeffi-
cients ai was given in (2.6). For example, the coefficients of a general
linear polynomial Q(x, y) — ax + by will transform according to

and so form a covariant vector. Therefore, the representation px on
the space V^ can be identified with the contragredient representation
of GL(2). On the space of quadratic forms Q(x,y) — ax2 -f 2bxy +
q/2, the induced representation p2 acts on the coefficients as in (1.12),
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which we identify with the second symmetric power of the contragredient
representation, cf. Example 4.9.

A particularly important class of representation is obtained by ten-
soring the polynomial representations with powers of the determinantal
representation. Under a group element, the function Q(x,y) maps to
Q(x,y), where

Q(x,y) = (a5-(3>y)kQ(x,y) = (a6 - prf Q(ax + 0y,ix + Sy).
(4.6)

The restriction of the representation (4.6) to the space V^ of homoge-
neous polynomials serves to define the fundamental representation pn k
of weight k and degree n, cf. (2.32). In particular, according to Exam-
ple 4.5, the representation p1 x of weight 1 and degree 1 is isomorphic to
the identity representation of GL(2).

Theorem 4.15. The representation p k of GL(2) is irreducible.

Proof: Let {0} 7̂  W C V^ be a nonzero invariant subspace. We
first show that if Q(x,y) is any polynomial in W, as in (2.1), then
every monomial appearing in Q with nonzero coefficient also lies in W;
that is, xlyn~l G W provided at / 0. This follows immediately from
the invariance of W under the unimodular scaling (x,y) i-> (\x, \~1y),
which changes Q into

Qx(x,y) = ]T r a ^ x r = \~n £ " a ^ ^ - - (4.7)

Now Qx G W for each A £ 1R. But An Qx is a polynomial in the param-
eter A, hence this will hold if and only if each coefficient of each power
of A itself lies in VF, proving the assertion.

Thus, we have proved that any subspace invariant under the uni-
modular scaling subgroup must be spanned by monomials. Next, sup-
pose xkyn~k E W is any monomial. We apply the linear transformation
(x, y) H> (x + (3y, y), which maps it to X^=o (?) P% xlyn~\ which, as be-
fore, lies in W, and hence each of its constituent monomials, xkyn~k,
xk-iyn-k+i^ _ ^yn^ aiSo lies in W. Application of the linear transfor-
mation (x,y) y-^ (x,7x + y) shows that the monomials x n , . . . ,xhyn~k

also lie in W. Therefore W contains every monomial of degree n, and
hence W = V^n\ which proves irreducibility. Q.E.D.

Remark: In fact, the representations pn k provide a complete list
of all irreducible finite-dimensional representations of GL(2). Moreover,
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72 Representations and Invariants

any tensor representation can be decomposed into a direct sum of copies
of the pnk; see [231] for a proof.

Note that our proof utilized only unimodular linear transforma-
tions, proving that pn k remains irreducible when restricted to the spe-
cial linear group SL(2). On the other hand, if n > 2, the restriction
of the representation pnk to the rotation subgroup SO(2) C GL(2) is
no longer irreducible. For example, the representation of SO(2) on the
space of real quadratic polynomials V^ decomposes into the sum of
two irreducible subrepresentations, a trivial one on the one-dimensional
subspace spanned by x2 + y2, and a two-dimensional representation on
the subspace spanned by x2 — y2 and xy. Finally, we remark that
the preceding proof shows that the subgroup of upper triangular uni-
modular matrices is not linearly reductive since each of the subspaces
Wk = Spa,n{xkyn~k,xh~1yn~k+1,... , yn} is invariant, but clearly not
irreducible (unless k — 0).

Exercise 4.16. Decompose the restriction of pn k to the subgroup
SO(2) C GL(2) into irreducible subrepresentations. Hint: Note that
the subspaces Um = {(x2 + y2)rnQ(x,y) \ Q £ p(n~2m)} are rotationally
invariant.

Exercise 4.17. The (complex) one-dimensional representations
of the circle group SO(2) ~ S1 are given by pn{6) — ein9, where 6
is the angular coordinate on S1 and n G Z. It can be proved that
any other (complex) representation can be decomposed into a direct
sum of these irreducible representations. For example, prove that the

standard representation p(6) = f . „ n ) decomposes into the
v ' \SWL6 COSO J

direct sum px ep_x. Similarly, show that the representation p^ of SO(2)
on the space of complex quadratic polynomials breaks up into the direct
sum p2 po®p_2- ^oie: The subspace W — Span{x2 — y2,xy} C V^
mentioned above is irreducible over the reals but decomposes into two
invariant one-dimensional subspaces over the complexes.

Remark: The appearance of the Fourier modes etne in this case
is not an accident, but forms a special case of a general theory, due
to Peter and Weyl, [179], of Fourier analysis on compact Lie groups.
Details, including applications to the theory of special functions, can be
found in [212].
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Invariant Functions 73

Invariant Functions

In general, an invariant is denned as a real-valued function that is unaf-
fected by group transformations. The determination of a complete set
of invariants of a given group action is a problem of supreme impor-
tance for the study of equivalence and canonical forms. For example,
in sufficiently regular cases, the orbits, and hence the canonical forms,
for a group action are completely characterized by its invariants; see
Theorem 8.17.

Definition 4.18. Let G be a transformation group acting on a
space X. An invariant is a real-valued function I: X —> R which satisfies
I(g-x) = I(x) for all transformations g G G.

In other words, an invariant function is a fixed point for the induced
representation of G on the function space F(X).

P r o p o s i t i o n 4 .19 . Let I:X —> R. The following conditions are
equivalent:
(a) I is a G-invariant function.
(b) / is constant on the orbits of G.
(c) All level sets {I(x) = c} are G-invariant subsets of X.

In particular, constant functions are trivially G-invariant. If G acts
transitively on X, then these are the only invariants.

Example 4.20. For the standard action (3.11) of the rotation
group SO(2) on R2, the radius r = \Jx2 -\- y2 is an invariant function,
as is any function /(r) thereof. Indeed, Proposition 4.19 immediately
implies that these are the only invariants for the rotation group. Note
that in this case the invariant function r serves to distinguish the orbits:
two points lie in the same circular orbit if and only if they have the same
value for the radial invariant.

Example 4.21. Even though there are several orbits, there are no
continuous, nonconstant invariant functions for the action of GL(2) on
the space Q of real quadratic forms described in Example 3.53, and hence
the orbits are not distinguished by continuous invariants. However, we
can certainly find discontinuous invariant functions, e.g. the sign of the
discriminant,t which will serve the purpose.

t The discriminant itself is an SL(2) invariant, but is not GL(2)-invariant.
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74 Representations and Invariants

A fundamental problem is to determine all possible (continuous,
polynomial, analytic, etc.) invariants of a group of transformations.
Note that if Ii(x),..., Ik{x) are invariants, and H(y1,... ,yk) is any
function, then I(x) = H(I1(x),... ,Ik(x)) is also invariant. Therefore,
we only need to find a complete set of functionally independent invari-
ants, having the property that any other invariant can be written as a
function thereof. In the case of polynomials, one can ask for more de-
tailed information: algebraically independent invariants, as in the defi-
nition of a Hilbert basis, rationally independent invariants, and so on.

For finite groups, one can introduce a method of "group averaging"
to generate invariants. Let G be a finite group with #G elements that
acts on a space X. The symmetrization or Reynolds operator

^ (4.8)

averages functions over the group and so defines a projection from the
space J-(X) of all functions on X to the subspace of G-invariant func-
tions. In other words, if F: X —> R is any function, then I(x) = <;-F(x) —
(#G)~1 ^2F(g • x) is an invariant; moreover, if / is already invariant,
then <; • I = I.

Example 4.22. Consider the representation of the symmetric
group § n on W1 given by the permutation matrices, as in Example 4.3.
A function / : W1 —>• R is invariant under §n if and only if it satisfies

I(xn{1),.. .,x<n)) = I(xly... ,xn), for every n G §n . (4.9)

The invariants of the permutation group Sn are known as symmetric
functions. According to (4.8), the associated symmetrization operator

= hZ* (4-10)
defines the projection onto the subspace of all symmetric functions. Of
particular importance are the elementary symmetric polynomials

, . . . , Xn) = XXX2 + # i#3 + * ' ' + Xn_1Xn =
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Invariant Functions 75

In general,

The Fundamental Theorem for the symmetric group states that the el-
ementary symmetric polynomials form a complete system of invariants.

Theorem 4.23. If I(x) is a symmetric polynomial, then I can
be written uniquely in terms of the elementary symmetric polynomials:
I{x)=P{a1{x),"-,(Jn{x)).

Proof: Let us order the monomials xK = xkl • • • x^n lexicograph-
ically, so that xK < xJ whenever the first nonvanishing difference
j 1 — fc1? j 2 — k2,. • • is positive. The last monomial in the elementary
symmetric polynomial ak in the lexicographic ordering is xxx2- • • xk.
Given a symmetric polynomial / (#) , let aKxK, aK ^ 0, be its last
monomial. Since I(x) is symmetric, the permuted monomials x^K^ also
occur with the same nonvanishing coefficient aK; therefore, x71"^) < xK,
which implies that k± > k2 > ••• > kn. On the other hand, the
last monomial in the power product of elementary symmetric polyno-
mials SR = a^-k2a^2-k3 '-<J^Si~kn(T^ is also xK. The difference
1 = 1 — aKSK is also symmetric and has a last monomial of lower order.
A straightforward induction completes the demonstration that / can be
written as a polynomial in the elementary symmetric polynomials. In
order to prove uniqueness, it suffices to note that each power product
SK of elementary symmetric polynomials has a different last monomial,
namely xK. Q.E.D.

Exercise 4.24. The power sum symmetric polynomials are ob-
tained by symmetrizing {xx)k^ so Pk(x) — ̂ ((x^) = Yl(xi)k- Use the
method of proof of Theorem 4.23 to express the Pk in terms of the ele-
mentary symmetric polynomials for k small. Can you extend your result
to general k? See [143] for details.

Exercise 4.25. Prove that the coefficients ck in a polynomial
(2.16) of degree n can be written in terms of the elementary symmetric
polynomials of its (complex) roots pk, as in (2.17). Specifically,

ck = (-1)n~^n(j f c(p1, . . . , p j , k = 1 , . . . , n.

Remark: Extensions of the Fundamental Theorem 4.23 to more gen-
eral symmetric functions are discussed in [14,16, 81].
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76 Representations and Invariants

Joint Invariants

Joint invariants appear when a transformation group acts simultaneously
on several different spaces or, more typically, on multiple copies of the
same space. More specifically, suppose G is a fixed group which acts on
the spaces X x , . . . , Xm. Then there is a naturally induced action of G on
the Cartesian product space X1 x • • • x Xm given by g • (x±,..., xm) =
(g-x1,...,g-xm) for xi G X-, g G G.

Definition 4.26. A joint invariant is merely an invariant function
J:X± x -" x Xm —>> R for a Cartesian product action of a group G. In
o t h e r w o r d s , J(g-x1,...,g-xm) = J(x1,...,xm) for a l l g E G, x { e X - .

When the spaces Xi = X are identical, with identical actions of
G, we shall call a joint invariant J(x1,..., xm) depending on m points
xt G X an m-fold joint invariant. Any ordinary invariant /(#) induces
trivial m-fold joint invariants, namely, Ji(x1,... ,xm) — I{xj) for any
1 < i < m. Typically, one is really only interested in "genuine" joint
invariants, which are not trivially obtained from joint invariants depend-
ing on fewer than m points. Vice versa, if J(x1,..., #m) is an m-fold
joint invariant, then its trace

I(x) = J(x,x,...,x), xeX, (4.12)

produces an ordinary invariant on X.

Example 4.27. Consider the Euclidean group E(2) acting on the
plane X = M2. Since the action is transitive, there are no ordinary
invariants. On the Cartesian product X^ — X x X, there is a single
joint invariant, namely, the distance (i(x1,x2) = || xx — x2 || between two
points x l 5x2 G M2. On higher Cartesian powers, X^m>) = X x • • • x X,
the two-fold joint invariant induces a variety of joint invariants:

d y =d(x i ,x , . ) = | | x i - x j | | (4.13)

for any i < j . A fundamental result states that these are the only joint
invariants — any other joint invariant / (x 1 ? . . . , xm) can be written as a
function of the interpoint distances. See Example 8.29, and also Weyl,
[231; Theorem 2.9.A], for more details.

Example 4.28. A similar result holds for the equi-afrine group,
SA(2), consisting of area-preserving affine transformations, as intro-
duced in Example 3.36. In this case there are no (continuous) ordinary
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Joint Invariants 77

or two-fold joint invariants, so the first example of a joint invariant arises
on X^3\ and is given by a123, where1"

aijk = ^(x;>xj>xfc) = | ( x j " X J A (x j - xfc) (4-14)
denotes the (signed) area of the triangle with corners x^x^x^ . Again,
in Example 8.31 we prove that every other joint invariant can be written
as a function of the three-fold area invariants (4.14). Note that the area
aijk is only a proper Euclidean joint invariant, since a reflection will
reverse its sign; however, its square is Euclidean-invariant. According
to the preceding example, then, we should be able to write the latter in
terms of the distances between the vertices of the triangle. Of course, the
answer is provided by the well-known semi-perimeter formula (a^-fe)2 =
s(s — dij)(s — dik)(s — djk), where s = \{d^ + dik + djk) is the semi-
perimeter of the triangle with vertices x^, x^, xfc.

For the full affine group A(2), the area of a triangle is multiplied
by the determinant of the linear part of the transformation and hence
forms a "relative joint invariant" — see below. The ratio r-kl — a>ijklaiji
between two such areas provides a genuine joint affine invariant. Again,
all joint affine invariants are expressible as functions of these ratios.

Exercise 4.29. Determine the orbits of the action of the groups
SA(2) and A(2) acting on R2 x R2 and R2 x R2 x R2.

Example 4.30. The next example is of crucial importance for
understanding how the group of linear transformations affects the ge-
ometry of the roots of polynomials. Consider the joint projective action
of SL(2, C) on the m-fold Cartesian product CP1 x • • • x CF1 given by

Let us concentrate on the open subset X^ = {pi ^ p^i / j} consist-
ing of distinct ra-tuples of points. For m < 3, the action is transitive on
X(m\ and there are no nonconstant two- or three-fold invariants. In-
deed, we can map any three distinct points (j>i,P2'^3) o n ^ n e Riemann
sphere to any desired canonical form, e.g., (0,1, oo), by a suitable linear
fractional transformation. The cross-ratio

' The symbol A denotes the standard scalar cross product between planar
vectors: (x, y) A (xf, yf) = xy — xy.
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78 Representations and Invariants

is four-fold joint invariant, as can be verified directly. (If one of the
points is infinite, (4.15) is computed in a consistent manner.) Now, only
the first three points can be fixed, so a canonical form for four points
could be (0,1, oo, z), where the value of the projective modulus z is fixed
by the cross-ratio [0,1, oo, z] = 1/(1 —z). In Example 8.34 we shall prove
that every joint projective invariant can be written as a function of the
cross-ratios of the points taken four at a time.

Exercise 4.31. Discuss the action of SL(2, R) on RP1 x • • • x MP1,
and on CP1 x • • • x CP1.

Example 4.32. A joint invariant for the standard action of the
symmetric group Sn on vectors in IRn, as in Example 4.3, is known as
a multi-symmetric function. The theory of multi-symmetric polynomi-
als is less extensively investigated than the more elementary theory of
symmetric polynomials, although it has been the subject of intermittent
research activity, beginning with Junker, [121,122], and Netto, [158;
§377-386]. See [147,80], for connections with combinatorics, [5] for
recent applications to algebraic topology, and [172] for applications to
dissipative decompositions of partial differential equations.

We consider the Cartesian product representation of Sn on the
space Rn x • • • x Rn ~ Mmn consisting of m copies of Rn. A func-
tion ^ (x 1 , . . . ,xm) , where x* = (x\,... ,xl

n) £ Mn, is called a multi-
symmetric function if TT • Q — Q for every TT £ §n , which acts by simul-
taneous permutation of the components of the vectors x^. Alternatively,
one can view a multi-symmetric function Q(x l 5 . . . , xn) as depending on
n vectors Sck = (x\,..., x™) £ Mm and require symmetry under permu-
tations of the vectors: Q(xn(1), •.. ,x7r(n)) = Q(xl 5 . . . ,xn) .

We can evidently construct multi-symmetric functions by applying
the symmetrization operator (4.10) to ordinary functions. In particular,
the elementary multi-symmetric polynomials are found by applying c to
the multi-linear monomials:

W 4 - - ^ ) , ' T ^ V - ^ ' (4.16)
For example, in the case m = n — 2, the multi-symmetric functions
depend on two sets of two variables and satisfy the symmetry condition
Q(x2,x1',y2,yl) = Q(xl,x2;y1,y2). The linear multi-symmetric func-
tions are

a± =xx + x 2 , a2 = y1 + y2.
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Multiplier Representations 79

There are three quadratic elementary multi-symmetric functions:

crn = x±x2, a12 = \{xxy2 + x2y1), cr22 =

As before, the Fundamental Theorem states that the elementary multi-
symmetric polynomials form a generating set.

Theorem 4.33. Any multi-symmetric polynomial can be written
as a polynomial in the elementary multi-symmetric polynomials.

The proof of this result is similar to that of Theorem 4.23; see
[80,158]. There is, however, one crucial difference between the two ver-
sions — the formula expressing a multi-symmetric polynomial in terms
of the elementary ones is not unique, owing to the existence of nontrivial
syzygies. The simplest such syzygy is in the case n = 2, where

Thus, in the case m = n = 2, there is one such syzygy,
4[(JllCr22 - Ol2)2] = (Cr2)2(Jll ~ 2(71CT2<712 + (cr1)2(722. (4.18)

It can be shown, [63], that (4.17) forms a complete list of syzygies when
n = 2. Higher order syzygies are more complicated, and still not com-
pletely classified,t although particular cases appear in [121,122,172].

Multiplier Representations

Although induced actions of transformation groups on functions provide
us with a wide variety of important representations, these are not quite
general enough for our purposes. Consider the linear fractional action
(2.7) of the group GL(2, C) on the projective line CP1. According to the
preceding construction, (4.3), this induces the representation

t A personal story: In the first version of [172], unaware of the work of
Junker, Cheri Shakiban and I ran several computer algebra computations of
multi-symmetric syzygies. Using the specialized MACAULAY computer algebra
package on a workstation, we were just able to treat the cases when ra, n < 3,
but this came close to the limits of the machine at that time. However, the
referee of our paper pointed out Junker's thesis (written under Hilbert), which
successfully treated cases like m = 2,n = 7, and m — 3,n = 4. So much for
the power of symbolic computing!
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80 Representations and Invariants

on the space of scalar-valued functions on GP1, written in terms of the
projective coordinate p = x/y. However, with the exception of the
constants, which are homogeneous of degree 0, this representation does
not naturally contain any of the fundamental polynomial representations
p k given by (4.6). Indeed, each homogeneous polynomial (2.1) has an
inhomogeneous representative given by (2.2). The induced action of
GL(2) corresponding to the representation pnk is readily seen to be

( 4 1 9 )

The linear action (4.19) defines a more general kind of representation of
the projective group on the space of functions over CP1, which is known
as a "multiplier representation", and the prefactor (aS - (3'y)k('yp + 5)n,
or, rather, its reciprocal, is called the multiplier. The general definition^
follows, cf. [17,153,231].

Definition 4.34. Let G be a group acting on a space X. A
multiplier representation of G is a representation F = g • F on the space
of real-valued functions T{X) of the particular form

F{x) = F(g • x) = n(g, x) F(x), g € G, FeT. (4.20)

The condition that (4.20) actually defines a representation of the
group G requires that the multiplier \i satisfy a certain algebraic identity,
which follows directly from the group law g • (h • F) = (g • h) • F.

Lemma 4.35. A function fi:G x X -> C\ {0} is a multiplier for
a transformation group G acting on a space X if and only if it satisfies
the multiplier equation

) , g^heG,
for all < (4-21)

//(e,x) = 1, V x eX.
Note that if fi(g, x) and JI(g, x) are multipliers for a group G, so is

their product fji(g,x) • j2(<7,x), as is any power fj,(g,x)h.

Remark: If a multiplier does not depend on the point x, so \i — fi>(g),
then the multiplier equation (4.21) reduces to

aU g,h e G, and /i(e) = 1.

' This definition of multiplier representation is not the same as that ap-
pearing in the work of Mackey, [144]; the latter are also known as projective
representations, [100], and will not play any role in our discussion.
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Multiplier Representations 81

In other words, /i defines a one-dimensional representation of the group
G. Weyl, [231], only permits such multipliers, but (4.19) underscores
the need to allow x dependence in our treatment.

Example 4.36. Consider the usual projective action (2.7) of the
general linear group GL(2). By the preceding remark, the determinantal
representation fiol(A) = a5 — /?7, for A = I \? j , automatically
defines a multiplier. More interestingly, the function

also defines a multiplier, t Indeed,

= j(ap + (3) + S(jp + 6) = U

as required by (4.21). Since we can multiply multipliers, the functions

6)-n (4.22)

also define multipliers for the projective group. The restriction of this
multiplier representation to the space Vn of polynomials of degree < n
coincides with the fundamental representation pn k defined by (4.19).

There is a trivial way to obtain multipliers from the ordinary rep-
resentation (4.3) of a transformation group G on the function space
F{X). Suppose we multiply every function by a fixed nonvanishing
function rj: X -> C \ {0}, and set F*(x) = rj(x) F(x) for each F G T.
The function r\ is sometimes known as a gauge factor ̂  In terms of the

t Note that m vanishes at the point po = —l/S, but the projective group
transformation maps po to oo, so consistency is maintained.

* This terminology comes from physics and has its origins in Weyl's spec-
ulative attempt, [233], to unify electromagnetism and gravity. Our use of the
term "gauge" is closer in spirit to Weyl's original coinage since, unlike the
modern definition appearing in quantum electrodynamics, cf. [232, 22], our
gauge factors rj(x) are not restricted to be of modulus 1. See [85, 169] for
further developments and applications.
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82 Representations and Invariants

new choice of gauge, then, the standard representation (4.3) takes the
modified form

F*(x) = ^ F * ( x ) , where x = g-x, F* = g-F*.

The function /i(g,x) = r](g • x)/rj(x) is readily seen to satisfy the multi-
plier equation (4.21) and so defines a trivial multiplier.

Definition 4.37. Two multipliers //, /J: G x X —> C are gauge
equivalent if they are related by the formula

^ ^ ) J (4.23)

for some nonzero function rj: X —>> C \ {0}.

Equivalent multipliers prescribe the same underlying multiplier rep-
resentation, up to multiplication by a function. For example, it can be
shown, cf. [169], that the multipliers (4.22) provide a complete list of
inequivalent multipliers for the projective action of the group GL(2).

Exercise 4.38. Consider the standard linear action of the group
SL(2) on R2 given by matrix multiplication. Prove that, for k € M,

defines a multiplier. In fact, these give a complete list of inequivalent
multipliers for this group action, cf. [84], [169; Exercise 3.25]. Does the
multiplier (4.24) extend to the full general linear group GL(2)?

Although we shall primarily deal with scalar multipliers, the defini-
tion readily extends to vector-valued functions. On the function space
Fk(X), a multiplier will be a matrix-valued function / i : G x l 4 GL(/c)
that satisfies the multiplier equation (4.21); the order of the factors is
now important in the first condition, and we replace 1 by the k x k iden-
tity matrix 1 in the second. In particular, any representation p:G —>
GL(fc) defines a matrix multiplier \i — p(g) that does not depend on the
spatial coordinates x.

Exercise 4.39. Suppose G acts smoothly on X C Mn, with ex-
plicit transformation formulae g • x = w(g,x). Prove that the Jacobian
matrix J(g,x) — dw(g,x)/dx defines a matrix-valued multiplier. Use
this to conclude that the Jacobian determinant /i(#, x) = det J(g, x)
forms a scalar multiplier for any transformation group. Determine the
Jacobian multiplier for the linear fractional action of GL(2).
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Relative Invariants 83

Relative Invariants

Earlier we characterized an invariant of a group of transformations as
a fixed point of the induced representation on the space of functions:
g - I = I for all g £ G. The analog of an invariant for a multiplier
representation is known as a relative invariant.

Definition 4.40. Let //: G x X —>• R be a multiplier for a trans-
formation group action. A relative invariant of weight fi is a function
R: X -> R which satisfies

R(g-x) = iJL(g,x)R(x). (4.25)

It is not hard to see that, as long as R ^ 0 satisfies (4.25), the
weight function fi must necessarily be a multiplier for the group action.
For clarity, ordinary invariants are, occasionally, referred to as absolute
invariants. For example, the invariants appearing in classical invariant
theory are absolute invariants for the unimodular group SL(2), but only
relative invariants for the full group GL(2). The relevant multiplier is
the determinantal power /J>k(A) = (det̂ 4)~~fc, where k determines the
weight of the invariant. Thus, (2.19) is a particular case of the general
condition (4.25) for a relative invariant.

If R and S are relative invariants corresponding to the same multi-
plier //, then any linear combination cxR + c2S is also a relative invariant
of weight fi. (However, this certainly does not hold if R and S are rel-
ative invariants corresponding to different multipliers!) If R has weight
\i and S has weight z/, then their product R • 5 is a relative invariant for
the product multiplier JJL • v. In particular, the ratio R/S of two relative
invariants having the same weight is an absolute invariant of the group.
Therefore, once we know one relative invariant of a given weight \i, we
can easily provide a complete list of all such relative invariants.

Proposition 4.41. Let fj, be a scalar multiplier for a transforma-
tion group G. If R0(x) is a nonvanishing relative invariant of weight
fi, then every other relative invariant of weight /i has the form R(x) —
I(x)R0(x), where I is any absolute invariant.

Remark: Proposition 4.41 does not guarantee the existence of a
nontrivial relative invariant. In the case of matrix multipliers, one typ-
ically requires several different relative invariants to form a basis (with
respect to the absolute invariants) for the space of vector-valued relative
invariants. See [68] for a general theorem that characterizes the precise
number of relative invariants for "regular" matrix multipliers.
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84 Representations and Invariants

The classical theory can also be fitted into this general framework.
A classical invariant /(a) is a relatively invariant function / : T>(n) —>. C
defined on the space of homogeneous polynomials of degree n under the
induced representation of GL(2). A covariant J(a, x) can be viewed
as a homogeneous function J: T>(n) x C2 —> C which is a joint relative
invariant for the Cartesian product action with respect to the deter-
minant al multiplier of weight k. In the case of projective coordinates,
where J: V^ x CP2 —> C, one replaces the determinant al multiplier by a
suitable fundamental multiplier of the form (4.22) for appropriate values
of /c, the weight, and n, the degree, of the covariant.

The simplest example is the "tautologous" function

xV-\ (4.26)
»=o

which defines a function Q:V^ x C2 -> C. In other words, Q(a,x) =
Q(x) coincides with the original binary form, now considered as a func-
tion of both its coefficients and its arguments. The function Q forms a
relative invariant whose weight equals the original weight of the binary
form: Q(a,x) = (ad — /^7)~m Q(a, x). In practice, we shall revert to our
old notation and, at the slight risk of confusion, identify the function Q
with the (general) binary form Q.

A fixed point for a matrix multiplier representation will form a
vector-valued relative invariant. These are much less common in classi-
cal invariant theory, but the following particular example plays an im-
portant role in establishing the symbolic method presented in the next
chapter.

Exercise 4.42. Let G be any transformation group acting on W1.
Prove that if I(x) is any sufficiently smooth absolute invariant, then
its gradient V/: W1 —> Rn defines a vector-valued relative invariant for
the Jacobian multiplier representation of Exercise 4.39. (In differential
geometric terms, this means that the Jacobian multiplier governs the
induced action of a transformation group on the space of differential
one-forms, cf. [169].)

An important case occurs when G = GL(2) acts linearly on M2, and
so the Jacobian multiplier coincides with the identity representation. Of
course, there are no nonconstant absolute invariants, and so this case
is not particularly interesting. However, consider the Cartesian product
action on V^ x M2, and suppose J(a, x) is any absolute covariant. Then
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Relative Invariants 85

VJ = (Jx, Jy)T will be a vector-valued relative invariant for the identity
multiplier; in other words,

aJs + iJy = Jx, fit + SJg = Jr (4.27)

Therefore, the gradient operator satisfies

V i—> A~TV — V, under the map x i—> x = Ax, (4.28)

which indicates that it transforms like a covariant vector! Of course, one
can establish this formula by a simple direct calculation; nevertheless,
it is of interest to understand how it fits into the general theory of
relative invariants and multiplier representations. More generally, if J
is a covariant of weight ft, then VJ will be a relative invariant for the
matrix-valued multiplier n(A) = (det A)k A corresponding to the tensor
product of the kth power of the determinantal representation with the
identity representation.

Exercise 4.43. Determine what the gradient operator looks like
in projective coordinates. What is the appropriate matrix multiplier?
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