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Preface

This book is intended both for number theorists and more generally for
working algebraists, though some sections (notably §15) are likely to be
of interest only to the former. It is largely an account of mainstream
theory; but for example Chapter 3 and §20 should be seen as illustrative
applications.

An algebraic number field is by definition a finite extension of Q, and
algebraic number theory was initially defined as the study of the properties
of algebraic number fields. Like any empire, its borders have subsequently
grown. The higher reaches of algebraic number theory are now one of the
crown jewels of mathematics. But algebraic number theory is not merely
interesting in itself. It has become an important tool over a wide range
of pure mathematics; and many of the ideas involved generalize, for ex-
ample to algebraic geometry. Some applications to Diophantine equations
can be found among the exercises, but there has not been room for other
applications.

Algebraic number theory was originally developed to attack Fermat’s
Last Theorem — the assertion that X™ + Y" = Z™ has no non-trivial
integer solutions for n > 2. It provided proofs that many values of n are
impossible; some of the simpler arguments are in §13. But it did not provide
a proof for all n, though recently the theorem has been proved by Andrew
Wiles, assisted by Richard Taylor, by much more sophisticated methods
(which still use a great deal of algebraic number theory). There are still
respectable mathematicians seeking a more elementary proof, and this is
not a ridiculous quest; but even if a more elementary proof is found, it is
almost bound to be highly sophisticated.

There are two obvious ways of approaching algebraic number theory,
one by means of ideals and the other by means of valuations. Each has its
advantages, and it is desirable to be familiar with both. They are covered

vii
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viii Preface

in Chapters 1 and 2 respectively. In this book I have chosen to put the
main emphasis on ideals, but properties which really relate to local fields
(whether or not the latter are made explicit) are usually best handled
by means of valuations. Chapter 3 then applies the general theory to
particular kinds of number field. The first two chapters (perhaps omitting
89), together with the easier parts of Chapter 3 and the first half of the
Appendix, would form a satisfactory and self-contained one-term graduate
course.

Though §9 is more advanced than the rest of Chapter 2, its logical home
is there; it is needed in Chapters 4 and 5, and introduces language which is
widely used across number theory. The somewhat peripheral §12 depends
on the results stated in §14 and proved in §15 of Chapter 4, as do parts
of §13.1, and thus they are not in the correct logical order; but there are
advantages in collecting all the information on special kinds of number field
in a single chapter.

There are important results which, though not in appearance analytic,
can as far as we know only be proved by analytic methods. Indeed it has
been said: ‘The zeta function knows everything about the number field; we
just have to prevail on it to tell us.’ Some of what it has already told us
can be found in Chapter 4.

The more advanced parts of the algebraic theory are generally known as
class field theory; most of the proofs involve Galois cohomology, either
openly or in disguise. Anyone who writes a book on algebraic number
theory is faced with a dilemma when he comes to class field theory. Most
authors stop short of it; but working algebraists ought to know the main
results of class field theory, though few of them need to understand the
rather convoluted proofs. I would think it wrong to make no mention
of class field theory; but to have included the proofs and the necessary
background material would have doubled the length of the book without
doubling its value. In consequence §§17 and 18 present an exposition of
class field theory without proofs. In §19 we deduce the general reciprocity
theorems, which are the simplest major applications of class field theory. In
addition, §20 contains a proof of the Kronecker-Weber Theorem that every
abelian extension of the rationals is cyclotomic; it is this result which made
the general structure of classical class field theory plausible long before it
was proved. The proof of the Kronecker-Weber Theorem is also rather
convoluted, but it illustrates most of the ideas in the first two chapters.

The reader needs to know the standard results about field extensions
of finite degree, including the relevant Galois theory. The properties of
finitely generated abelian groups and lattices, and of norms and traces, are
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Preface ix

described in §A1.1 and §A1.2; most readers will already know these results,
but those who do not will need to start by reading these two subsections.
The existence of Haar measure and the Haar integral (described without
proofs in §A1.3) is a fact which all working mathematicians should know,
though again they have no need to study the proofs. Indeed, the main use
of the general theory is to provide motivation and guidance; in any particu-
lar case one can expect to be able to define explicitly an integral having the
required properties, and thereby evade any appeal to the general theory.
The status of §A2 is rather different. The Galois theory of infinite exten-
sions is not actually needed anywhere in this book; but anyone who uses
the results in Chapter 5 may need to consider field extensions of infinite de-
gree. The remaining subsections of §A2 cover (without proofs) characters,
duality and Fourier transforms on locally compact abelian groups; these
are prerequisites for §15, but also for much of advanced number theory.

The book concludes with a substantial collection of exercises. Others
can be found in the text; see the index. The latter are results which are
too peripheral to justify the provision of a detailed proof but which may be
interesting or useful to the reader. Each of them is provided with ‘stepping-
stones’: intermediate results which are individually not too difficult and
which should enable the reader to construct a complete proof.
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Numbers and Ideals

1 The ring of integers

Unless otherwise stated, throughout this book K and k will be algebraic
number fields, even though some results hold more generally. The ring of
integers of k (yet to be defined) will be denoted by o or ox; the ring of
integers of K will be © or Ox. What are the properties which one would
like the integers of k to have? Some obvious ones are the following;:-

1. o is a commutative ring.

2. 0, NQ = Z, so that the integers which are rational are just the rational
integers.

3. 0 ®z Q = k, so that each a in k can be written as ¢ where c is in Q
and f is an integer in k.

4. If a is in Q, the algebraic closure of Q, the property that o is an integer
only depends on a and not on the field in which we are working;
in other words,

or = k N {integers of Q}.
5. If a and o' are conjugate over Q and a is an integer, then so is o.

There is a largest subring of k satisfying these conditions, but no smallest
one; so we shall choose o4 to be the largest such subring. It follows from 1,
2 and 5 that if  is an integer then its monic irreducible polynomial over Q
has coefficients in Z. We shall say that o in Q is an algebraic integer if
it satisfies one of the three equivalent conditions in the following theorem.

Theorem 1 Let o be an element of Q; then the following conditions on o
are equivalent:

(i) Z{o] is a finitely generated Z-module;

1
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2 1 Numbers and Ideals

(ii) « is a root of a monic polynomial with coefficients in Z;
(iii) the monic minimal polynomial for a over Q has coefficients in Z.

Proof 1t is trivial that (iii)=>(ii). To prove (ii)=>(i), let m be the degree of
the monic polynomial given by (ii); then o™ is in the Z-module generated
by 1,a,...,0™"}, whence o* is in the same module for all p > m. To
prove (i)=(ii) choose elements fi(a),... , fn(a) which span the Z-module
Z[a], where the f,(X) are in Z[X]. For any N > 0 there is a relation

o =Y b fufa) =0

where the b, are in Z, and if N is greater than the degree of any of the f,
this is the monic equation required.

It remains to prove (ii)=(iii). Let f(X) with coefficients in Z be the
monic polynomial for a given by (ii), and let g(X) be the monic minimal
polynomial for a over Q. There is a monic polynomial h(X) with coef-
ficients in Q such that f(X) = g(X)h(X). If (iii) were false then there
would be a prime p which divided the denominator of at least one of the
coeflicients of g(X). Let p* with u > 0 be the greatest power of p which
divides any of the denominators of the coefficients of g(X) and let p¥ with
v 2 0 be the greatest power of p which divides any of the denominators of
the coefficients of h(X). Let F, denote the finite field of p elements. In

T f(X) = {p"9(X)Hp"h(X)}

all the coefficients have denominators prime to p; reducing mod p we obtain
an expression for 0 as the product of two non-zero polynomials in Fy[X].
This is impossible; hence (iii) must be true. O

With this definition requirements 2 to 5 are trivial. To prove 1, let a, 8 be
algebraic integers, so that there are corresponding polynomials satisfying
(ii) with degrees m, n respectively. Thus 1,q, ... ,a™~! span the Z-module
Z[a] and similarly for 8; hence the a*3 with 0 < p <m, 0 < v < n span
the Z-module Z[a, 8]. Since it is finitely generated, so are its submodules
Zla + B8] and Z[af); so a + § and af are integers.

Lemma 1 If k is identified with Q™ where [k : Q] = n, then oy is a lattice
in k.

Proof Let ay,...,qa, be a base for k as a Q-vector space. We can find
m, # 0 in Z such that the 8, = m,a, are in o,; so o, spans k. For any ¢,
in Q write £ =Y £, . If o4 is not discrete in k then there are arbitrarily
small ¢y,...,¢, such that £ is non-zero and in ox; hence normy /g€ is in
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1 The ring of integers 3

Z, and it is non-zero because it is the product of conjugates of £. But
normé = ¢(¢4, ... ,£,) where ¢ is a homogeneous polynomial of degree n
with coefficients in Q; so we can choose the £, so small that |§| <1. O

More generally, an order in k is defined to be any subring of o; which
contains 1 and has finite index in o considered as a Z-module. Equiva-
lently, an order is a subring of 0 which satisfies the analogues of 1, 2 and
3. It is easy to write down some orders in k; for example, if n = [k : Q]
and « is any integer in k such that k = Q(a), then the Z-module spanned
by 1,0,...,0™ ! is an order in k.

Let R; C Ry be commutative rings with a 1. We shall say that R; is
integrally closed in R; if a in Ry, all 8, in R; and

" +B1a" 4 4 =0

together imply that o is in R;.

Lemma 2 The ring of integers in Q is integrally closed in Q.

Proof We argue as in the proof of 1 on page 1. In the notation above, the
Z-module Z[B, ... ,By] is finitely generated because it is contained in the
ring of integers of Q(84, ... ,B,); suppose the finite set S spans it. In an
obvious notation S, Sa, ... ,Sa™ ! span Z[a, By, ... , Bn]; hence the latter
is finitely generated and so is its submodule Z[a]. O

The identification of & with Q™ which we used in Lemma 1 does not
enable us to compute a meaningful measure for k/oy, because there is no
natural measure on the Q" in Lemma 1 which is not derived from o;. But
there is an identification of k ®q R which does achieve this. Let o, run
through the n embeddings k — C. Of these, there are r; embeddings into
R and r; pairs of complex conjugate embeddings whose images are not in
R. Here r; + 2r; = n; and ry, 72 will almost always have these meanings.
Denote temporarily by o : k — C™ the map given by a — (010, ... ,0n0)
and by V the R-vector space ok ®q R; since o,k C R if g, is real, and
(0, x T)k is contained in a space R? if 0,7, are complex conjugate,
dim V' < n. But o, — oo is an isomorphism because it has trivial kernel,
S0 g0y, is a free Z-module on n generators; and ooy is discrete in C™ and
hence in V, for the same reason as in the proof of Lemma 1. So ooy is a
lattice in V, and dimV =n.

The inclusion V C C" induces a canonical measure of volume in V. The
measure of V/oo is finite and non-zero; it tells one how sparse the integers
of k are. With a suitable choice of the canonical measure on V, the volume
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4 1 Numbers and Ideals

of V/oo is | det M|, where oy, ... ,a, are a base for o, and M is the matrix
of the o,a,. Unfortunately det M is only defined up to sign, and is not
necessarily in either R or k; so instead we consider

di, = (det(M))? = det(*'MM) = det(Tr/q (auaw)).

This is called the absolute discriminant of k. Observe that M has ry
pairs of complex conjugate rows, so its determinant is 1™ times a real
number; thus the sign of dj, is (—1)™.

More generally, let 81,... , 8, in ok be linearly independent over Z, and
let m be the index in o of the Z-module generated by £,...,8,. If

A%(By, ... ,Bn) = det(Tx(8,0.)) (1)

then a comparison of the last two displayed equations gives A2 = m?d;.
Conversely, if we start from linearly independent integers 8,...,8, and
try to find a base for og, the fact that dj, is an integer restricts us to finitely
many possible m.

We can further generalize (1) by considering K D k with [K : k] = n.
Let a4,... ,a, be a base for K as a k-vector space, and write

Aﬁ/k(al,... ,0p) = det(’IHK/k(a#a,,)).

Then A%{ /k is non-zero. For otherwise there would be a non-zero column

vector (1, .. ,£&x) killed by the matrix (Trg /i (a0, )), where the £, are in

k. Set v =3 &, a,; then Tr(a,y) = 0 for each p and therefore Tr(ay) =0

for each o in K. But this cannot be true for a = y~!. This argument, and

the two lemmas which follow, are valid for any field & of characteristic 0.
The following result will be needed in §8.

Lemma 3 Let K,k be algebraic number fields with K C k; then every
k-linear map K — k is given by o — Trg /i (Ba) for some B in K.

Proof Call this map ¢g. The k-linear map from K to the dual space of K
given by 8 — ¢z has trivial kernel. The two spaces involved have the same
dimension as k-vector spaces, so the map is an isomorphism. a

The following result, which will be needed in §13.1, is known as Hilbert’s
Theorem 90; in highbrow language it states that a certain cohomology
group is trivial.

Lemma 4 Let K/k be a Galois extension whose Galois group Gal(K/k)
is cyclic with generator 0. If a in K is such that normg/ra = 1 then
a = /o for some B in K; and we can take (3 to be integral.
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1 The ring of integers 5
Proof Let [K : k] =n and for any v in K consider

n-1

ﬂ=7.a+0'7.a.0'a+...+(0-n_1'y)(a...o' a)’

then a- o8 = 8. If 8 = 0 for every 7 then Af(/k('yl,... »Yn) = 0 for any
41,.+- ,7n in K, and this we know to be false. We can make § integral by
multiplying it by a suitable element of oy. |

One curious property of the absolute discriminant is the following.

Theorem 2 (Stickelberger) We have di, =0 or 1mod 4.

Proof Write n = [k : Q], let a1,... ,a, be a base for o, and write
A= Z (H Uu“ﬂ(u)) , B= Z (H "nQW(u))
all w w n odd h

where 7 denotes a permutation of 1,... ,n. We have det M = A — 2B and
therefore dy = A% + 4(B? — AB). Both A and B are algebraic integers,
and A is rational by Galois theory; hence B2 — AB is also rational and is
therefore a rational integer. Hence dj, = A% = 0 or 1 mod 4. O

The relation between k and o which we have been discussing is a special
case of a much more general one. The results which we need are not much
harder to prove in the general case, provided one takes the assertions in
the right (somewhat unnatural) order. Until the end of this section, we
therefore consider any pair of commutative rings R O o having a common
identity element 1. (In the applications o will be an integral domain and
R a field; but we do not need to assume as much as this.) For any a in R
consider the following three statements:

(i) o[c] is finitely generated as an o-submodule;

(i)’ o[a] is contained in a ring R, C R which is finitely generated as an
o-submodule;

(ii) o is a root of a monic polynomial with coefficients in o.

I claim that these statements are equivalent. Clearly (i) implies (i)', and
(ii) implies (i) as in the proof of Theorem 1. So assume that (i)’ holds
and that fy,..., 8y, span R, as an o-module. We have a8, = ) 7,.8, for
some 7y, in 0; so a is a root of det(zI — I') = 0 where I is the matrix of
the «y,,. This is just (ii).

Denote by O the set of all « in R satisfying any of these conditions. An
argument like that which follows the proof of Theorem 1 shows that £ is
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6 1 Numbers and Ideals

a ring with 0 C © C R. Similarly an argument like that in the proof of
Lemma 2 shows that © is integrally closed in R. If o is an integral domain,
let k be its quotient field and assume R D k. In this case o is in O if and
only if

(iii) the monic minimal polynomial for o over k has coefficients in O N k.

Since O is integrally closed in R, (iii) implies that « is in O. Conversely, if
(ii) holds then « satisfies some monic equation f(X) = 0 with coefficients
in o; hence so does go: where o is any embedding k(a) — k. Thus each oca
is in the integral closure of o in k. Whatever the characteristic, the monic
minimal polynomial for o over & has the form

9(x) = [(X - o)™
-
for some N > 0; and the coefficients of g(X) lie both in k£ and in the
integral closure of o in k, so they lie in O N k. Note that we need not have
o = D Nk; if for example 0 = Z[v/=3] and R = Q then o = $(1+ v/=3) is
in O because it satisfies a2 — o+ 1 =0, and in fact O Nk = Z[q].

The unnatural looking criterion (i)’ in the preceding discussion has been
included because an o-submodule of a finitely generated o-module need not
be finitely generated. (See Exercise 1.6.) This is frequently inconvenient;
so if 0 is a commutative ring with a 1 we say that an o-module M is
Noetherian if every o-submodule of M (including M itself) is finitely
generated, and we say that o itself is Noetherian if o is a Noetherian
o-module — in other words, if every ideal of o is finitely generated. Any
o-submodule of a Noetherian module o is Noetherian; but a subring of a
Noetherian ring need not be Noetherian.

We say that an o-module M satisfies the ascending chain condition if
every increasing sequence My C M C --- of o-submodules of M stabilizes
— that is, if the sequence is eventually constant.

Lemma 5 The three following conditions are equivalent:

(i) M is Noetherian,

(ii) M satisfies the ascending chain condition;

(iii) every non-empty family of o-submodules of M contains mazimal ele-
ments.

Proof (i)=(ii). Suppose that M; C M, C --- is an increasing sequence of
o-submodules of M; then M¥ = UM, is an o-submodule of M. Hence it
is generated by a finite set S of elements of M!. If My contains all the
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1 The ming of integers 7

elements of S, then M* C My; so the increasing sequence is constant from
My on.

(il)=>(iii). If (iii) were false we could construct a strictly increasing se-
quence M; C M, C - -- of o-submodules of M. For suppose we have chosen
M,,... , M,. The o-submodules of M which contain M,, form a non-empty
family, and this family contains no maximal elements; so we can choose an
M, +1 which strictly contains M,,. This contradicts (ii).

(iii)=>(i). Suppose that M contains an o-submodule N which is not
finitely generated. Let S be the set of all finitely generated o-submodules
of N, let M be an element of S and let £ be an element of N not in
Mg. Then M is not maximal in S because S contains the strictly larger
o-submodule of N generated by M and &. O

Lemma 6 Let L, M, N be o-modules such that the sequence
0-L-M-N->0
is exact. Then M is Noetherian if and only if L and N are.

Proof If M is Noetherian then L is a submodule of M and therefore also
Noetherian; and if N; is a submodule of N then its inverse image in M is
finitely generated and hence so is Nj.

Conversely, if L and N are Noetherian let ¢ : L = M and ¢y : M - N
be the maps in the exact sequence. Let My C My C --- be an increasing
sequence of o-submodules of M. The increasing sequences {¢(L) N M, }
and {¢(M,)} consist of o-submodules of §(L) = L and N respectively, so
they both stabilize — say by the n-th term. If now v > n then

d(L)NM, = (L) M, = L*

say, and M, /L* = 9v(M,) = Yv(M,) = M,/L*; so M, = M, and the
sequence {M, } also stabilizes by the n-th term. O

Theorem 3 If o is Noetherian then an o-module is Noetherian if and only
if it is finitely generated.

Proof It follows from Lemma 6 by induction that the direct sum of finitely
many copies of o is Noetherian. But any finitely generated o-module is a
homomorphic image of such a direct sum; so it too is Noetherian. a

To study Noetherian modules over a non-Noetherian ring would be eccen-
tric, so Theorem 3 reduces us to the study of Noetherian rings. Let 0 — o/
be a surjective homomorphism of rings and assume that o is Noetherian.
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8 1 Numbers and Ideals

Then o’ is a Noetherian 0-module, by Theorem 3, so all its ideals are finitely
generated as o-modules. Hence they are finitely generated as o’-modules; so
o’ is Noetherian. In other words, the homomorphic image of a Noetherian
ring is Noetherian.

Let © be a ring containing o; we shall say that O is finitely generated
over o as a ring if O = o[ay,... ,ay| for some elements aj,... ,a, in O.

Theorem 4 (Hilbert Basis Theorem) If o is Noetherian and O is
finitely generated over o as a ring, then O is Noetherian.

Proof We prove first that if X is transcendental over o (that is, if X is not
a root of any polynomial with coefficients in o) then o[X] is Noetherian.
For let J be an ideal in 0[X]. The set M of leading coefficients of elements
of J is an o-ideal. Let B be a finite set which spans M as an o-module
and for each element of B choose a polynomial in J with that element as
its leading coefficient. Let S be the set of these polynomials, and let N
be the largest of their degrees. For each n with 0 < n < N let M,, be
the o-ideal of the coefficients of X™ in polynomials in J of degree at most
n, and let B, be a finite set which spans M,,. For each element of B,
choose a polynomial in J of degree at most n with that element as the
coeflicient of X", and let S, be the set of these polynomials. I claim that
J is spanned as an o[X]-module by the set S* which is the union of S arid
the S,, with 0 < n < N. For if not, among the elements of J which do not
lie in the o[X]-module spanned by S*, let f(X) be one of lowest degree. If
deg f(X) = N, let the leading coefficient of f(X) be o = 3_ B, where
the (3, are in o0 and the o, are elements of B. Let f.(X) be the element of
S whose leading coefficient is c,. Then

F(X) =) BuXxdes—deatu, (X)

is an element of J which has degree less than that of f(X), so it is in the
0[X]-module spanned by S*. Hence so is f, which is a contradiction. If
deg f(X) = n < N then a similar argument works, using the elements of
S,, instead of those of S.

If X1,...,X.m are independent transcendentals over o, it follows by in-
duction that o[Xj,...,Xm] is Noetherian. Finally, if O = o[ay,... ,am]
is any finitely generated ring over o then it is the image of 0[X1,... , Xp,]
under a suitable homomorphism; so it too is Noetherian. 0

If we know some Noetherian rings, Theorem 4 enables us to generate
many more. But any principal ideal domain is Noetherian; in particular Z
and all fields are Noetherian. For our purposes what matters is that o, is
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2 Ideals and factorization 9

Noetherian whenever k is an algebraic number field, because oy, is finitely
generated over Z by Lemma 1.

2 Ideals and factorization

Let o, be the ring of integers of k. Unfortunately we do not in general have
unique factorization in o; for the standard example see Exercise 1.2. Of
the various ideas that have been introduced to alleviate this situation, two
have turned out to be valuable: these are ideals (described in this section)
and valuations (described in Chapter 2).

Of the key theorems about ideals in o, Theorems 5, 6 and 7 below are
usually proved in a more general setting — that of Dedekind domains. The
disadvantage of this approach is that it involves one very opaque proof —
in our case, that of Theorem 5. In the exercise at the end of this section
the reader will find a simpler approach, but one whose validity is confined
to algebraic number fields.

A Dedekind domain is an integral domain o with a 1 such that

(i) o is Noetherian and integrally closed in its field of fractions,
(ii) every non-zero prime ideal of o is maximal.

Denote the quotient field of o by k. The following lemma shows that we
cannot get rid of non-principal ideals by replacing ¢ by a smaller ring having
the same quotient field k. We can do so by replacing o by a slightly larger
ring R (see Exercise 1.10) and this is sometimes useful; but there is a price
to be paid. In particular, we cannot expect R to satisfy the criteria at the
beginning of §1.

Lemma 7 Any principal ideal domain is Dedekind.

Proof Let o be a principal ideal domain, and therefore Noetherian. Suppose
that § in k is integral over o and write § = ay/as with a;,a2 in 0. We
can assume that (a1, ) = (1); for if (a1,a2) = (y) with v not a unit,
we can divide oy and a3 by 7. If B + 18" 1 + ..+ + ¢, = 0 where
the ¢, are in o then of + cla;"lag + -+ cpaf = 0. It follows that
(a2) = (a},az) D (a1,a2)® = (1), so that az is a unit and 8 is in o.
Now let (a) be a non-zero prime ideal of 0 and let (5) be a maximal ideal
containing (a). Thus « is in (3) and hence equal to By for some v in o.
But (@) is prime, so one of 3,y must be in (). If 8is in (a) then (8) C (a)
so that (a) is maximal; but if ¥ = aé then @ = fad whence 8§ = 1, and
then (8) = 1 which is forbidden. |

Downloaded from https://www.cambridge.org/core. University of Toronto, on 06 Sep 2020 at 20:54:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139173360.002


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.002
https://www.cambridge.org/core

10 1 Numbers and Ideals

By a fractional ideal a we mean a finitely generated o-submodule of k.
(To avoid ambiguity, an ideal in o sometimes has to be called an integral
ideal.) If ay,...,am span a as an o-module and a, = 8, /7, with v,,d,
in o, then ya C o where y = [ 7,. Hence any fractional ideal has the form
cb, the set of ¢ where c is a fixed element of k and 8 runs through the
elements of some ideal b. Conversely, any such set ¢b is a fractional ideal.
All the obvious rules extend from ideals to fractional ideals.

Theorem 5 The non-zero fractional ideals of a Dedekind domain form a
multiplicative group.

Proof The only difficulty is to prove the existence of inverses. The proof
proceeds through a sequence of assertions.

o If a is a non-zero ideal then p;ps - - - pr C a for some prime ideals p,,.

Suppose the assertion is false; then because o is Noetherian we can choose
a maximal among the ideals which do not have this property. Since a is
not itself prime, we can choose 31, 32 in 0 but not in a such that 8,5, is in
a. Write b, = (a, 8,); then each b, strictly contains a, so by maximality
it contains a product of prime ideals, and hence so does a D b;b,.

o Every non-zero prime ideal p is invertible.

Let p~ be the o-module of elements « in k such that ap C o; we shall show
that p~ is the inverse of p which we are looking for. Choose 3 # 0 in p;
then Bp~ C o is an o-module and hence an ideal; so p~ is a fractional ideal.
Since p~ D 0, we have 0 D p~p D p; and because p is maximal, we must
have equality in one inclusion or the other. If we have equality in the first
inclusion, p~ is the inverse of p which we are looking for; so we assume
that p = p~p and derive a contradiction. Choose m minimal so that there
exists a product

pib2 - pm C (B) Cp,

where 3 is as before. One of the p,, say p;, must be contained in p and
thus equal to p; for otherwise for each y we could choose o, in p,, but not
in p, and [] oy, would not be in p. By the minimality of m, p2 - pm ¢ (B)
and hence there exists v in p2 - - - p, but not in (3). Now vp C (B), so that
d = /B isin p~ but not in 0. Thus ép C p~p = p; and if {By,...,Bn}
spans p as an o-module then 68, = 3 v,,0, for some v, in 0. This implies
det(dI —T') = 0 where I" is the matrix of the v,,; and since o is integrally
closed in k it follows that § is an integer, which is a contradiction.
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2 Ideals and factorization 11

¢ Every non-zero integral ideal is invertible.

If not, there would be a maximal non-invertible ideal a. Among the ideals
containing a there is one which is maximal and therefore prime; denote it
by p. Thus a C p~'a C 0. If a = p~la then an argument like that for
the previous displayed statement shows that p~! C o, which would imply
o=pp ! Cp. Soa#pla By maximality p~la has an inverse b, and
bp~1! is an inverse for a.

Finally, any fractional ideal ca has an inverse ¢ !a~1l. O

Corollary For any non-zero ideals ay,ay the four assertions a; C ao,
aja; ! Co, a7laz Do and azja; are equivalent.

Theorem 6 Let o be a Dedekind domain. Any non-zero integral ideal a in
o can be written as a product

a:pl...pm (2)

where the p, are prime ideals, and this expression is unique up to the order
of the factors.

Proof If there are non-zero a with no decomposition (2), we can assume
that a is maximal among them. There exists a maximal ideal p D 4, so
p~la is an integral ideal strictly containing a; for p~la = a would imply
p~! = 0 on multiplying by a—!. Hence p~'a is a product of prime ideals,
and if we multiply this product by p we get a product for a.

Suppose that there are two essentially different factorizations of some a.
Among such ideals a and their factorizations let

E=PLPm =1

be the formula with the least value of m. We cannot have m = 0, because
then a = (1) and so also n = 0. If p; were not among the q,, we could
for each v find o, in g, but not in p; and [[ @, would be in a but not
in p;, which gives a contradiction. So we can remove a factor p; in both
expressions for a, and m is not minimal. d

Corollary Let o be a Dedekind domain with quotient field k. Any non-zero
fractional ideal a in k can be written in the form

a=p1-Pm/q1 " Gn (3)

where the p,,q, are prime ideals and no p, is equal to any q,; and this
erpression is unique up to the order of the factors.
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12 1 Numbers and Ideals

Proof We have a = (1/72)b for some integral b and some non-zero v;,ys
in o; applying the theorem to (1), (72) and b gives an expression (3), and
we can remove any factors common to the numerator and denominator.
Suppose that there were a second such expression

a=pp P /A s
then we would have
pl...pmq’l...q"’l, =q1"'q'np’1"'p:n'

and since no p, is a q, and no p), is a qj, it follows from the uniqueness
clause in the theorem that the p),, are a permutation of the p, and the g;,
a permutation of the q,. d

The theorem which follows, and also Corollary 1 to it, are each known
as the Chinese Remainder Theorem.

Theorem 7 Let a = [[pp* be a non-zero ideal of o; then the natural map
¢: 0— [[(o/pp*) is onto and induces an isomorphism

o/ar [J(o/p%).

Proof The kernel b of ¢ consists of the o which lie in each pj*; so b is
the largest ideal divisible by each p.*, by the Corollary to Theorem 5.
Thus b = a. Since b; = p3? - - - pim is not divisible by p; and hence is not
contained in it, we can find $; in b; but not in p;. Since p; is maximal,
o/p; is a field, and hence we can find v; in o whose image in o/p; is the
inverse of the image of 8;. Thus 817, =1 — 6; with &; in p;. Now 1 —4T*
is a multiple of 8; which is congruent to 1 mod p}'. Hence the image of ¢
contains 1 X 0 x --- x 0. It also contains all the other similar expressions;
so ¢ is onto. g

Corollary 1 Let ay,...,a,, be non-zero integral ideals coprime in pairs
and let ay,... ,ay, be elements of 0. Then there exists a in o such that

a=oymoda, (p=1,...,m). (4)

Proof Write a, = []pput”; by hypothesis no prime ideal occurs more than
once as a Py, and each congruence (4) is equivalent to the finite set of

congruences
— Ny
a = qa,modpgt.
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2 Ideals and factorization 13

Now write a = []a,; the corollary just restates that the map ¢ in the
theorem is onto. |

Corollary 2 Let a,b be non-zero ideals; then we can find o in a such that
(c)/a is prime to b.

Proof Let pi,...,pm be the prime factors of b. For each p = 1,... ,m
define n,, by pu*||a, and choose a,, in py* but not in pZ“H. By Corollary
1 there exists « in o such that

a = oy, mod pﬁ““ foreach 4 and o= 0mod (a/HpZ");

and this does what we need. O

Corollary 3 Let a be a non-zero ideal and o' a non-zero element of a; then
there erists o in a such that a = (o, ).

Proof Apply Corollary 2 with b = (¢). 0

Each of the last two corollaries extends to fractional ideals a. For we
can find a non-zero ¢ in o such that ca is integral. If v in ca is such that
(7)/ca = (c'v)/a is prime to b then o = ¢~y meets the requirements of
Corollary 2; and if & in ca is such that ca = (6, ca’) then a = c¢™1§ meets
the requirements of Corollary 3.

It follows from Theorem 7 that there is an isomorphism (though not a
canonical one)

prl/pt mo/p (5)

for any non-zero prime ideal p and any integer n > 0. For fix 8 in p"~!
but not in p™; the map o — p"~!/p™ given by a — af has kernel p, so
we need only prove that it is onto. Given any v in p™~!, by Corollary 1 to
Theorem 7 we can find 7, satisfying

v = ymodp®, 1 =0mod ((B)/p""1).

Now a; = 71/8 is an integer, because any prime power which divides 8
also divides «;; and ; maps to y; and hence to vy mod p™.

Now let k be an algebraic number field and o the ring of integers in k.
It follows from Lemma 1 that any non-zero fractional ideal a is a lattice in
k. We now define the absolute norm Norm a of a; note the capital letter.
Let V be the R-vector space k ®q R, on which volume is defined up to
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14 1 Numbers and Ideals

multiplication by an arbitrary constant. Both o and a are lattices in V, so
we can write

Norm a = vol(V/a)/vol(V/o).
If a is integral, then
Norma=[o: a]. (6)

By convention, and despite this definition, we write Norm (0) = 0 where
(0) is the zero ideal. If o # 0 is in k and a1,... ,ap, are a base for a as a
Z-module, then aay,... ,aq, are a base for aa. Using the volume defined
on page 3, we deduce

[[oe

g

Norm(aa) = Norm a = |norm;/qa| Norm a {7

and in particular Norm((a)) = |normy,qa|. We could instead have used
(6) and (7) to define the absolute norm; this is more algebraic but clumsier.

Lemma 8 If ay, a2 are fractional ideals in k, then
(Norm a;)(Norm az) = Norm(a;jaz).

Proof In view of (7) it is enough to prove this when the a,, are integral and
non-zero. If a = [] p* is integral, then by (5), (6) and Theorem 7

Norma = H[o : p“]nu = H(Normp“)nn.

The lemma now follows by factorizing a; and a,. 0

For some applications it is convenient to generalize o, the purpose being
to enable us to ignore certain ‘bad’ primes. If p is a prime ideal of o, we
say that « in k is integral at p if a = a; /a2 where a;, 05 are in o, and
a9 is not in p; provided that a # 0, this is equivalent to saying that p does
not occur among the q, in the factorization (3) of (a). More generally,
let S be any set of primes, and define os to be the set of elements of k
integral at each prime outside S. (This notation must not be confused
with the much more important o, introduced in Chapter 2.) It is easy to
see that os is Dedekind. The ideals of os are just the ag = a ®, 05 where
a is an ideal of o; for we can recover one possible a from any ideal b of
0s because a = bNo implies b = as. To any fractional ideal a in k there
corresponds the fractional ideal as = a ®, 0s; but recovering a possible a
from a fractional ideal for os is untidy and is best done by means of (3).
The prime ideals of o5 are just the ps where p is a prime ideal of o not in
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2 Ideals and factorization 15

S; to derive from (2) a factorization of as we delete from the right hand
side any primes in S and put a subscript S on the others.

There is a general theorem that if o is a Dedekind domain with quotient
field k, and if K is a finite algebraic extension of k£ and © the integral closure
of o in K, then O is Dedekind; taking o,k to be Z, Q it follows that the
ring of integers of any algebraic number field is a Dedekind domain. But
the proof of this general theorem is tedious and there is an easy shortcut.

Theorem 8 If o is the ring of integers of an algebraic number field k then
o0 is Dedekind.

Proof We have only to prove that any non-zero prime ideal p in 0 is maximal
— in other words that o/p is a field. It is an integral domain, so we only have
to prove the existence of inverses. Let a be in ¢ but not in p. Multiplication
by a gives a map of o/p to itself with trivial kernel; since o/p is finite such
a map must be onto, so the class of a has an inverse. a

Since o/p is a finite field, it contains p/ elements for some rational prime
p and some f = f, > 0. Clearly p D (p), so let p® be the exact power
of p which divides (p). The primes with e, > 1 are called ramified; we
shall see later that for each k there are only finitely many of them. We can
factorize (p) as a finite product (p) = []p®»; taking Norms on both sides
and writing n = [k : Q] we obtain

n= Zepfp (8)

where the sum is taken over all p dividing a fixed p. The analogue for
extensions K /k will be proved as the Corollary to Lemma 13.

Let o be a Dedekind domain with quotient field k, and let Ji be the
group of non-zero fractional ideals of k. The ideal class group of k is

Cr. = Ji/(group of non-zero principal ideals).

If k is an algebraic number field and o its ring of integers, we shall show
below that the order of Jj is finite; it is called the class number of k and
is denoted by h. There is an exact sequence

0—0*—k*—> J,—C—0,

where 0* is the group of units of 0. For a general Dedekind domain, we
can say nothing useful about the two outer terms. But if o is the ring of
integers of an algebraic number field k (or even if 0 = o5 for some set S of
primes in such a k), they have important properties. We consider units in
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16 1 Numbers and Ideals

83; the main theorem about C; is Theorem 9 below, though it too will be
refined in §3.

Let [k : Q] = n and fix a base a;,... ,ay for 0, as a Z-module. Any 3
in k can be written

B=ba;+---+bya, withb, in Q;
we define the height of 5 to be H(8) = 3 |b,|, which gives a metric on .
Write C = max H(a,a,). If § is in o, then H(G) isin Z, as is C.

Lemma 9 Let a be a non-zero fractional ideal in an algebraic number field
k and o a non-zero element of a of minimal height. For any 8 in a we can
find v in o and m in Z such that

HmB/a-7)<(C+1)"! and 0<m <M, 9
where M = (n(C +1))" + 1.

Proof If we multiply a, o and 3 by the same integer N, we alter neither
the hypotheses nor the conclusions; so we can assume that a is integral. In
particular, H is integral on a, so its minimum is attained and o exists. We
now use the pigeonhole principle. For any <, in o write

mB/a ~ym = cg’")al +.-o 4 cflm)an with cf,'") in Q;
given m we can choose ¥, in 0 so that 0 < ¢i™ < 1 for each v and thus
determine a point P, = (cgm), cees (m)) in the unit cube. Partition this
cube into M — 1 subcubes of side (n(C + 1)), each defined by

r./(n(C +1)) L ¢ < (ry +1)/(n(C + 1))

for some integers r, with 0 < r, < n(C +1). Two of Pi,..., Py must
lie in the same subcube — say P,, and P, with m; < my. Writing
m=mg — My, ¥ = Ym, — Ym, We obtain (9). 0

Theorem 9 If k is an algebraic number field the order of Cy, is finite.
Proof For any € =Y e a, € =Y €,a, in k we have
H(e)=H (Z Ze,‘e:,a,,au)
<3 lewe | H(auen) < CH(QH(E)
in the notation above. It now follows from (9) that

H(mf — ay) < CH(e)H(mB/a — ) < CH(a) /(C +1).
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2 Ideals and factorization 17

But mf — oy is in a, and must therefore vanish because o has minimal
height among the non-zero elements of a. It follows that (M!)3 is a multiple
of a for every 3 in a. Now consider a; = (M!)a/a. It is an integral ideal
in the class of a, and it contains M! because a contains «; so it is a union
of cosets of (M!)o in 0. But there are only finitely many ideals composed
in this way. O

The corresponding result for (0x)s as defined on page 15 follows at once.
If a and b are in the same ideal class for o, so are ag and bg for os; so
Theorem 9 for 05 follows from Theorem 9 for o.

We shall obtain a much more realistic way of bounding the order of C,
in Theorem 10 below, whose proof does not depend on Theorem 9. The
real point of the proof above lies in the following exercise.

Exercise Without assuming any of the earlier results in this section, de-
fine a relation between non-zero fractional ideals a,a’ in a given algebraic
number field & by

a ~ o’ if there exist non-zero o, o’ in k such that aa = o’a’.

Prove that this is an equivalence relation, and that the argument of Lemma
9 and Theorem 9 shows that there are only finitely many equivalence
classes. Now proceed as follows.

e If ab C ab for some non-zero b, then a C ().

Let Bi,..., B, be a base for b and for any o in a write A = o//a. Since
Ab C b there exist ¢y, in Z such that A3, = ) c..B,; so A satisfies
det(AI — C) = 0 where C is the matrix of the c,,. Hence X is an integer.

o If ab = ab for some non-zero b, then a = (a).

Write a’ = a~!a, which we now know to be integral. Thus b = a’b, so that
By =Y aufBy with ay,, in o’. Hence det(7 — A) = 0 where A is the matrix
of the a,,,; expanding this determinant shows that 1 is in a’.

e For any fractional ideal a, there exists b # (0) such that ab is principal.

Among the a™ with m > 0 there must be two in the same equivalence class
— say a™ and a™? with m; < mg. Thus a;a™ = aya™? for some aq, as,
whence (a;1) = a2a™2~™ and we can take b = a™2~™ 1,

Now deduce the main results of this section for the special case when
o0 = 0, the ring of integers of an algebraic number field k.
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18 1 Numbers and Ideals

3 Embedding in the complex numbers

Let k be an algebraic number field with [k : Q] = n; in this section we
exploit systematically the embedding k — R™ x C™ =~ R" already intro-
duced on page 3. For convenience we order the embeddings g, : £ — C so
that oy,...,0,, are real and that o,,0,4,, are complex conjugate when
r1 < v £ 11 + r9. We shall need the following elementary result.

Lemma 10 Let A be a lattice in V ~ R"™ and let S be a bounded closed
convex subset of V symmetric about the origin; then S contains a point of
A other than the origin provided vol(S) > 2"vol(V/A).

Proof Assume first that vol(S) > 2"vol(V/A). If the map 1S — V/A is
one-one into, then vol(3S) < vol(V/A) which is false. So there are points
P, P; in %S with the same image in V/A. By symmetry —P; is in %S , SO
that by convexity %(Pl —P)isin %S. Thus P, — P, is in both S and A.

If vol(S) = 2™vol(V/A) the same argument shows that (1 4 €)S contains
a point Q. # 0 of A for any € > 0. But for ¢ < 1 the candidates for Q. lie
in the bounded discrete set 25 N A, so they belong to a finite set. Hence
there is a point @ # 0 of A which belongs to (1 + €)S for arbitrarily small
¢; and since S is closed, @) must belong to S. O

Theorem 10 Let o be the ring of integers of an algebraic number field k
of discriminant d.

(i) There is a constant C = Cy, ,, depending only on ry,72 such that each
ideal class of k contains an integral ideal of Norm at most C|d|'/2.
(if) The order of Cy is finite.

Proof Define a map k — V = R" by sending « in k to
(o10,...,0n0, R0 110, ... ,ROp 41, @, SO 410, .., SOr 41y )

where the o, are ordered as at the beginning of this section. If a is any
non-zero fractional ideal in k, it follows from Lemma 1 and the remarks
on page 10 that the image of a in V is a lattice. Let S be any closed
bounded convex subset of V symmetric with respect to the origin; let v be
the volume of § and M the maximum of

2
|1 Ty (2241 + T2 1) (@2 4y + 22

in 8. The volume of V/a~! is ¢ = 27"2|d|'/2/Norma. For A = 2(c/v)}/"
the volume of S is 2"c; so by Lemma 10 there exists a # 0 in a”! N AS,

Downloaded from https://www.cambridge.org/core. University of Toronto, on 06 Sep 2020 at 20:54:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139173360.002


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.002
https://www.cambridge.org/core

3 Embedding in the complex numbers 19

whence [norma| < A"M. But aa is an integral ideal in the same class as
a, and

Norm(aa) = [norm o Norma < 27+72 My~ (d| /2.

This proves (i), and since there are only finitely many integral ideals in &
with Norm less than a preassigned bound, (ii) follows. O

If one is going to use this theorem to compute A (and in general no other
method is known), then it is desirable to make Cy, ,, = 2"%"2M /v as small
as possible. An efficient choice of S is

ri+r2
lza] + -+ |zry | + 2 Z VEi+xl,,, <1,
V=T1+1

which gives

4\" n!
Criry = P e

The details of this calculation are given in the exercise below. Applying (i)
to the principal ideal class and noting that C., r, < 1, we obtain
Corollary For every algebraic number field k, |d| > (n™ /n!)(%w)’2 > 1.

Thus the discriminant of an algebraic number field & with [k : Q] = n grows
at least exponentially with n. It was shown by Safarevi¢ that no stronger
statement can be true: see [CF], Chapter IX.

Exercise Prove that the & chosen above is convex, and that M = n™",
[For convexity, use the triangle inequality and

Azt +yf+ (1 - A)y/23 + 93
> V(A + (1= N)z2)? + (yn + (1 — A)ye)?

for 0 < A £ 1. In polar coordinates this last inequality is

Ary+ (1= XNra > \/A2r2 4+ 20(1 = \)rarz cos(61 — 02) + (1 - AY2r,

which is trivial. That M < n™™ follows from the inequality between the
arithmetic and geometric means.]

Transforming pairs z,,z,+r, from Cartesian to polar coordinates, show
also that v = 2"(27)" D, r,(n) where

Dl,m(t):/---/ ()yl.'.ymdzl"'dzldyl"'dym
Re,m(t
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20 1 Numbers and Ideals
and Ry m(t) is given by 2, 2 0(1 < p <€), y, 2 0(1 < p < m) and

Ty +ze+2y1+ -+ ym) ST

Prove that
t t/2
Dg,m(t) = / Dg_lym(t - .’L‘)d.’t = Dl,m-l(t — 2y)y dy
0 0
and deduce Dy, (t) = 4~™t%+2™ /(£ + 2m)! by induction. O

For small values of n, more is known. For r; = 0,72 = 1 we can take
Co, % = /3 and this appears to be all that can be said. In all other cases,
there is known or conjectured to be an isolation theorem. To explain this,
it will be convenient to write temporarily

C. = (least Norm of an integral ideal in the class c)/|dx|"/?,

where ¢ is an ideal class for the field k. For r; = 2,75 = 0 we have
C:! > 5, but C;' > /8 except when ¢ is the unique ideal class in
Q(+/5); the least point of accumulation of the C:!is 3, and all the classes
¢ with C7! < 3 can be specified. (For proofs of some of these statements,
see the exercise on page 62.) For r; = 3,75 = 0 we have C;! > 9 except
when c¢ is the unique ideal class in the field Q(2 cos 2-7’5) with d = 49. For
r1 =712 = 1 we have C 1 > /23. But the methods by which these results
are established have nothing to do with algebraic number theory. They
belong to the Geometry of Numbers, which was once fashionable but which
(except for the widely applied Lemma 10) ceased to be so some thirty years
ago in England and considerably earlier elsewhere.

All these statements are best possible, in the sense that the constants
cannot be improved. It is conjectured that both the cases ry = rp = 1
and r; = 0,79 = 2 have properties like those which have been proved for
r1 = 2,75 = 0. More spectacularly, it is conjectured that for each pair
T1,T2 With 7y + 72 > 2 the C;"! have no finite point of accumulation.

A unit of o is by definition an element a # 0 of 0 such that o~! is also
in 0; thus the units form a group which in standard notation is just o*.
An alternative and more useful definition is that a unit is any element
of o such that normy/q(a) = 1. For if o is a unit then norm(c) and
norm(a~!) are elements of Z whose product is 1; conversely, if « is in o
with norm(a) = £1 then +a~! is equal to norm(a)/c, which is a product
of powers of conjugates of a and therefore an integer.
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3 Embedding in the complex numbers 21

Theorem 11 The group of units in o is the product of the group of roots
of unity in o, which is cyclic and finite, and a free group on 1 + 719 — 1
generators.

Proof The map o* — R™*72 defined by
o > (log|o1al, .., 10g |07, +rsa) (10)
is a homomorphism from 0* to the hyperplane
Vit 4+Y, +2(Y s+ 4+ Yrgr,) =0 (11)

in R™1*72_ Its kernel consists of the a in 0* with joca| =1 for all o} so in
the standard topology on k it is a bounded subset of the discrete set o and
is therefore finite. If its order is NV then every element of it is an N-th root
of unity; and the kernel is cyclic because the group of N-th roots of unity is
cyclic, being generated by exp(27i/N), and hence so are all its subgroups.

It remains to prove that the image of the map (10) is a lattice in the
hyperplane (11). For this, let N be a bounded neighbourhood of the origin
in (11) or even in R™*"2. The points of o* which map into A have every
loa| bounded; so in the standard topology they lie in the intersection of
o and a bounded set, and hence they form a finite set. Thus the image is
discrete. It remains to show that the image of (10) spans (11). For this it
is enough to prove the following assertion:-

o Given any real Ay,...,Ar, ¢, Dot all equal, there is a unit n with

f(m) =A1loglown| + - -+ + A, log o, n]
+ 2(’\1‘1+1 lOg '01‘1+1"71 +-e 4 A7'1“'-7‘2 lOg |UT1+T277|) 7é 0.

Let p1,..., pr,+r, be positive real numbers such that
Pr Pry(Pryt1e Pr1+rz)2 = (%)mldll/2 = A, (12)

say, where d is the discriminant of k. In the coordinates defined on page
18, the set S given by

1 Xul < pufori<p<r, |X2+X2, I<p2forr <p<ri+r

is bounded, closed, convex and symmetric with respect to the origin; and
its volume is 271172|d|'/2. By Lemma 10 there is a non-zero integer a in k
such that

lopal < py for 1 < p<ry 4725
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22 1 Numbers and Ideals
and |norm;/qa| < A now follows from (12). Since also [normy/qal > 1,

| X, A p, for 1< p< iy,
X5+ Xy, | 2A700% for i <p <yt

Let us say temporarily that a;,as in o are equivalent if o /s is a unit.
The elements in an equivalence class are those which generate a particular
principal ideal, and up to sign their norm is the Norm of that principal
ideal; so there are only finitely many equivalence classes whose Norms are
bounded by A, because each of them corresponds to a subgroup of o of
index at most A. Let B3y, ..., O~ be representatives of these classes. The a
generated above lies in one of these classes, so 7 = a/f, is a unit for some
v. But now f(n) = f(a) — f(B,) and this differs from

A1 lOg ppt-+ /\1'1 IOg Pry + 2(A‘r1+1 IOg Pri+1+ -+ A'r1+‘r‘2 lOg Pr1+r2)

by at most B = |f(8,)| + (log A) 3" |A|, which does not depend on the p,.
We can choose the p, so that (12) holds and the last displayed expression
exceeds B in absolute value; this ensures f(7) # 0. a

As it stands, this argument is not constructive because we have no way
of writing down a complete set of representatives f1,...,8n. But by a
slight modification of the argument, we can find r; + 7o — 1 independent
units; for by choosing different sets of p, we can find as many a with
jnormy,/qa| < A as we wish, and suitable quotients of these will be units.
Once we have r; +7r2—1 independent units, it is in principle straightforward
to find a base for the group of units; for we can quantify the statement that
if a is a unit and the image of @ under the map (10) is near enough to the
origin then « is a root of unity. But in practice such calculations can be
quite tedious.

Corollary Let S be a finite set, consisting of m primes in 0. Then the
group of units in os is the product of the group of roots of unity in os
(which is the same as for 0) and a free group on r1+72+m—1 generators.

Proof Let p1,...,pm be the elements of S. There is an exact sequence
0 — 0* — o5 — {free group generated by the p,};

and the image of the right hand map contains each pﬁ and is therefore free
of rank m. a

Since the units give rise to a lattice A in the vector space V' defined by
(11) and there is a canonical measure on V, we expect the volume of V/A
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4 Change of fields 23

to be of interest. This volume is called the regulator R of k. To write it
down explicitly, choose any base ny,... ,%,4+r,~1 for the group

{units}/{roots of unity}
and form the (ry + ro — 1) x (r; + r2) matrix whose v-th row is

(logloinyl,... ,log|or,m|,2l0g |0, 1], - - - ,210g |07y 4,0 ])-

Now delete any column; it does not matter which, since the sum of the
columns is 0. The regulator R is then defined to be the absolute value of
the determinant of the resulting matrix.

4 Change of fields

Let £ C K be algebraic number fields; it is natural to ask how far the
concepts which we have introduced for extensions k/Q can be extended to
K/k. For this, one needs to be able to lift certain objects from & to K.
Elements of k are automatically elements of K, and the property of being
integral does not depend on the field we are working in; but there is more
difficulty with ideals. There is only one sensible way of lifting a fractional
or integral ideal a of k to K this is by means of the conorm. We define
2 = conormg,a to be the smallest (fractional or integral) ideal of K which
contains all the elements of a; equivalently we could define it as a ®, O.
It is trivial to check that taking conorms commutes with multiplication of
ideals, that if o is in k then conormg/x(a) = (a) where the () on the left
is in k and the (@) on the right is in K, and that the tower law

if K O L D k then conormg,; (conormy xa) = conormg/;a

holds for a in k. In other words, the notation is reasonably foolproof. By
abuse of language, one often writes a where one should write conormga.
In consequence, we sometimes need to write Normya instead of Norma to
make it clear which field we regard a as belonging to.

This process gives an apparently attractive way of getting rid of ideals
and working purely with elements of k:

Theorem 12 Given any algebraic number field k there is a finite extension
K D k such that for every ideal a in k, conormg a is principal.

Proof Let aj,a; be ideals of k in the same ideal class, so that there are
non-zero f1, 32 in k such that (8;)a; = (82)az; then

(B1)conormg/a; = (B2)conormy/yaz
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24 1 Numbers and Ideals

for any K O k. Thus if one ideal in an ideal class of k& becomes principal
in K, they all do. Now let a,,... ,ay be representatives of the ideal classes
in k; the a? are all principal in k, so a? = (q;) for some q; in k. Let

K = k(¥/a1,... , Yan);
then (conormg/xa;)* = (a;) and so conormg/xa; = ({/a;) in K. O

Unfortunately, this technique for describing divisibility is so clumsy as
to be unusable. But the theorem has some historical interest, as being one
of the first signposts towards class field theory.

If we know that an ideal % in K has the form conormg/,a then we can
recover a as follows.

Lemma 11 Let K D k and let a be any fractional ideal in k. Then
(conormg/ia) Nk = a.

Proof Since conormg/ka O a set-theoretically, all we have to prove is that
if 8 =3 a,A, is in k, where the o, are in a and the A, are integers in K,
then 3 is in a. Extending K if necessary, we can assume K normal over k.
Let 01,... ,0p be the elements of Gal(K/k); then

p" = H(a,,ﬂ) = H (Z auouA”) .

On the right hand side, the coefficient of any monomial in the a, is an
algebraic integer in K invariant under Gal(K/k), and hence an integer in
k. Thus 8" is in a™, and so S is in a. O

If 2 is an ideal in K, how should we define normg/,? If possible we
should form the product of % and all its conjugates, and transfer the result
back to k. To do this, we should choose an extension L of K normal
over k, denote the distinct k-homomorphisms K — L by oy,... ,0,, form
[ conormy /,, k(0. 2), which is an ideal in L, and show by some analogue
of the Fundamental Theorem of Galois Theory that this is conormp/,a for
some ideal a in k. But in this simple form the last step does not work; for
in contrast with what happens with elements of L, an ideal of L which is
invariant under every element of Gal(L/k) need not be the conorm of an
ideal in k. Suppose for example that k = Q and L = Q(v/=5), so that
O = Z[v/=5]. The ideal A = (1++/=5,1—+/=5) consists of all m+n/~5
with m + n even; so it is invariant under Gal(L/Q) and AN Q = (2). But
2 # conormy,;q(2), so A is not a conorm for L/Q. In fact A% = (2) in L.

The way round this difficulty depends on the following result:
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4 Change of fields 25

Lemma 12 Let a be the ideal in k generated by the normg ;A where A
runs through the elements of an ideal 2 in K, and let L > K be a normal
extension of k. Then in the notation above

conormy, /xa = H conormp,/q, k (0:21). (13)
Proof Since 0;A is in conormp/,, k(0:®), normg/ A = [](0;A) is in the
right hand side of (13). Hence there is an integral ideal £ in L such that

conormp /6 = £ H conormy, /4, x (0:24).

We must prove that £ = (1). Let B be an ideal in K prime to £N K and
such that A is a principal ideal, say AB = (B) with B in K. Since £ is
fixed under Gal(L/k), conormp,/,, x(0:B) is prime to £ for every o;. Since
Bisin 9,

conormpy /a8 2O (H O'iB)
= (H conormy, /, K(ai%)) (H COHOTmL/aiK(Uin)) )

so [[conormp/,, x(0:B) is a multiple of £. But [] conormp, 4, x(0:B) is
prime to £. Hence £ = (1). O

In view of this result, we define normg/;2 to be the ideal in k generated
by all the normg A for A in 2. We list the standard properties of norms
of ideals, which are analogous to those of norms of numbers:

Lemma 13 Let K D L D k be algebraic number fields, let A, B be ideals
in K and a an ideal in k, and let A be an element of K. Then

normg,/x(A) = (normgi A), (14)
normy /i (normg, A) = normpg 2, (15)
normg;;(AB) = (normgxA)(normg,/xB), (16)

alfH = normyx(conormga), (17

(Normja) = normyqa. (18)

Proof We can assume that 9A,°B,a, A are non-zero, for otherwise these
equalities are trivial. Now (14) follows immediately from the definition. In
each of the other equations, the right hand side is contained in the left hand
side in view of the corresponding equalities for numbers. Now choose ideals
2,8 in K and o in k so that AA',BB’, aa’ are principal, and multiply
the inequalities for undashed letters by the corresponding inequalities for
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26 1 Numbers and Ideals

dashed ones. We obtain statements about numbers, in which equality holds
by (14); so equality must also hold in the component inequalities. a

Corollary Let K D k be algebraic number fields and let p be a prime in k
whose factorization in K is conormg cp = [[B;*. Denote by f; the degree
of O/B; over ofp. Then norm /' P; = pfi and [K : k] =Y e fi.

Proof Taking Norms and using the last two results in the lemma,

(Normg (conormgxp)) = normg,/q(conormg /xp)
= normk/Qp[K k] = (Normkp)[K k]
and

(Normx Hmfi) = H(NormK‘Di)e-‘ — H(Normkp)eifi.

Comparing these results gives the second assertion. Hence normp/;B; is a
power of p by (17), and normyq(normg x%;) = normy,qp’ by (15), (18)
and Normg'B; = (Normgp)f+; this gives the first assertion. |

By analogy, we can define the relative discriminant of K over k as
follows. Let [K : k] = n and let ay,... ,a, be n elements of Ok linearly
independent over k. Imitating (1), we write

A";(/k(al, oy 0n) = det(Trg /i (opan));

then the relative discriminant of Dk over o is the ideal in k generated
by all the A% /k(al, ... ,0y). But this is less interesting than the relative
different introduced in §8.

5 Normal extensions

Throughout this section K, k will be algebraic number fields with K normal
over k, so that G = Gal(K/k) acts on K and everything derived from it. Let
p be a prime ideal in k, and let conormgxp = []P;* be its factorization in
K and f; the degree of the field O /%B; over ok /p. In an obvious notation
we have the tower laws ex/q = ex/ker/q and fx/q = fr/xfr/q- f o isin
G then also p = [J(0B;)®. Since each o*P; is a prime ideal in K, the o'B;
must be a permutation of the ;. The key to the results of this section is
as follows.

Theorem 13 Suppose K is normal over k with G = Gal(K/k). Then G
acts transitively on the P;, all the e; have the same value e, all the f; have
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5 Normal extensions 27

the same value f, and [G] = [K : k| = efg where g is the number of distinct
prime factors of p in K.

Proof Let P be one of the 3;; then ‘PN k is an ideal in o containing p but
not containing 1; it must therefore be equal to p because p is maximal. By
Corollary 1 to Theorem 7, we can choose « in 0 so that (a)/P is prime
to p; thus normg o lies in PNk = p, so that each P; divides some ca.
But the ideal (o) is the product of ¢'B and an ideal prime to p; hence
B; = oP. Since [K : k] = efg is now a special case of the Corollary to
Lemma 13, all the other claims follow at once. a

In what follows, we fix our attention on one prime factor P of p. Let
Z denote the subgroup of G consisting of those ¢ which fix PB; Z is called
the splitting group (Zerlegungsgruppe) of P and its fixed field Kz the
splitting field. The reason for this name comes from

Lemma 14 Let H be a subgroup of G and let Ky be its fized field. Then
B; and *P; divide the same prime ideal in Ky if and only if B; = oPB; for
some o in H.

Proof ‘If’ is clearly trivial; for ‘only if’ we apply the transitivity property
of Theorem 13 to the normal extension K/Kg with Galois group H. 0O

It follows that Kz is the smallest field L between k& and K such that
the prime PN L in L does not split in K, though it may ramify there.

Moreover if e, f, g refer to P or a prime in a smaller field divisible by it,
then g(K/Kz) =1 and [Kz : k] = [G : Z] = g(K/k), so that

e(K/Kz)f(K/Kz) = [K : Kz] = e(K/k)f(K/k).

By the tower laws e(K/Kz) < e(K/k) and f(K/Kz)-< f(K/k); so we
have equality in both relations. Thus in going from k to Kz we split off
the prime P N Kz but do not ramify it or extend its residue field.

Now consider the residue field Ok /9. Every element of the splitting
group Z induces an automorphism of O g /B which leaves o/p elementwise
fixed. Moreover, if « is in K then the characteristic polynomial of o over
Kz is 9(X) =], in z(X —oa). Denote reduction mod ‘P by a tilde; since
we have just shown that ¢(X) is defined over o/p and all its roots are Gor
with ¢ in Z, all the conjugates of & over o/p have this form. Choosing «
so that & generates Ok /P we deduce that every automorphism of Ok /P
over o/p is induced by some ¢ in Z. Let T be the kernel of the epimorphism

Z — Gal((Dk/B)/(o/p)),
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28 1 Numbers and Ideals

where we know from the Galois theory of finite fields that the right
hand side is a cyclic group of order f; T is called the inertia group
(Tragheitsgruppe) and its fixed field K7 the inertia field of 'B;. This
proves all but the last clause of

Theorem 14 T is a normal subgroup of Z, of order e, and Z/T is cyclic
of order f. T consists of those elements of Z which induce the identity on
Ok [B; these are just the elements of G for which & = camod P for all
inO K-

For the last clause, we need only note that if ¢ is not in Z then we can
choose a so that « is in P but not in 0~, whence aZoa modP. Now
Gal(K/Kr) = T, which is also the inertia group of ‘B for the extension
K/Kr; thus f(K/Kt) = 1, whence e(K/Kt) = e and so P N K = Pe.
Thus B N Kz remains prime in K7, which is why K7 is called the inertia
field, but going from Kz to Kr induces an extension of degree f of the
residue field.

We can go further. Choose II in Ok so that B||II and consider those o
in T for which oIl = ImodP2. In view of the last clause of Theorem 14
this property does not depend on the choice of II, and hence such o form
a group V; it is called the ramification group (Verzweigungsgruppe).

Theorem 15 V is normal in Z, and is the unique Sylow p-subgroup of T';
moreover TV is cyclic and its order divides Norm(%p) — 1.

Proof If p is the rational prime underlying ‘B then any element of V has
order a power of p. For if ¢ is an element of V' other than the identity then
we can choose II so that oIl # II. Thus oIl = II + aIl™ mod P™+! for
some m > 1 and some a in Ok not divisible by . Iterating, we obtain
oIl = I + rolI™ mod P™+!. Thus ¢ cannot have order prime to p, and
the same happens for any power of o other than the identity. Now let o be
any element of T and write 8, = oll/II; then B, does not depend on the
choice of II and o0 — S, is a homomorphism from T into the cyclic group
(Ok/P)* with kernel V. This implies in particular that V is normal in T
But since (O x /B)* has order prime to p, V is p-Sylow. Uniqueness follows
from the facts that all Sylow p-subgroups of an arbitrary finite group are
conjugate and V' is normal in T. That V is normal in Z follows from the
facts that T is normal in Z and V is uniquely determined by T ]

It is possible to investigate the structure of V further, by defining the
higher ramification groups. For these, and their connection with the differ-
ent (introduced in §8), see Chapter IV of [Se]. It turns out that a knowledge
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5 Normal extensions 29

of the chain of ramification groups associated with P tells one the exact
power of P which divides the different. This both strengthens Theorem 21
in Chapter 2 and proves the assertion made in §8 that the different is a
measure of the badness of bad primes. (The assertion is still valid for non-
normal extensions, but the proof requires more complicated notation.) Of
course, once one has obtained Z the rest of this section is really local theory
and might be better expressed in the language of Chapter 2; for in that
language K N k, = Kz within Ky and hence Z is canonically isomorphic
to Gal(Kp/kp).

If e = 1 then T is trivial; and Z = Gal((Ox/PB)/(o/p)), which is now
cyclic of order f, has a natural generator given by & — aN°™? for all a.
The corresponding element of G is called the Frobenius element and is
denoted by [E‘é’i] It is uniquely determined as an element of G by

K/k

[T] a = oN°™P mod P (19)

for all @ in Dg. It obviously has the property

<[4
oB pY

for every ¢ in G; thus it is defined up to conjugacy by a knowledge of p. In
particular, if G is abelian then this symbol depends only on p; in this case
it is called the Artin element or Artin symbol and is denoted by (KP&).
(Note the change from square to round brackets.) By multiplication we
can now define the Artin symbol (Ka&) for any fractional ideal a which
involves no ramified prime; and by construction the map a +— (KT/") isa
homomorphism. The Artin symbol plays a central role in class field theory.

In some contexts one needs to extend the definition of the Frobenius and
Artin elements to the case of primes ramified in K/k. There is only one
sensible way to do this; that is to define [%3&] to be the set of all elements
of G which satisfy (19). This identifies the Frobenius element as a member
of Z/T, or equivalently as a left coset of T in Z or even in G.

It is natural to ask how all these objects behave under change of field.
For this purpose we suppose that K O L D k, that K is normal over k with
G = Gal(K/k), that H = Gal(K/L) and that B is a prime ideal of K and
1, p are the corresponding prime ideals of L, k. If we consider L/k we shall
also need to assume that H is normal in G, so that Gal(L/k) = G/H.

Theorem 16 With the notation above, Zy/, = Zk/x N H and similarly
for T and V; and [%5] = [K,f,f]f' where Norm QQ = (Norm p)f*, so that f’
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30 1 Numbers and Ideals

is associated with ) as a factor of p. If H is normal in G then Zy ;. is the
image of Zg i in G/H and similarly for T and V; and [%—k] is the image
of 5]

Proof The first half of the first sentence is immediate, and the second
follows from (19) because [5‘,&]’ " is the only element of G with the requisite
property. Now assume that H is normal in G, and let ¢ be an element of
G. The image of 0 in G/H is in Z if and only if o%B divides Q; and
since H is transitive on the prime ideals in X which divide £, this happens
if and only if 0H meets Zx ;. A similar argument works for T, and the
result for V follows from the fact that V is the unique Sylow p-subgroup
of T. The result for the Frobenius symbol follows trivially from (19). O

Suppose that we consider another prime factor o of p instead of ;
then the Z,T,V for ‘P are obtained from those for P by conjugation by
o. In an obvious notation, Z,q = 0cZpo~! and so on. We have already
noted that the corresponding statements hold for the Frobenius and Artin
elements.
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Valuations

6 Valuations and completions
For any field k, an absolute value, also called a multiplicative valua-

tion, will be a map £ — R denoted by a — ||| which for some a > 0
satisfies the conditions [|a|| > 0 for a # 0, ||0]| = 0 and

llall - 181 = lleBll, e+ BlI* < fled|® + [1811*- (20)
Readers are warned that some authors use a more restrictive definition.
Two valuations ||.|[; and ||.||2 are called equivalent if ||lalls = ||a||{ for

some fixed ¢ > 0 and all a. An equivalence class of valuations is called a
place. Any valuation makes k into a metric space with metric given by
d(z1,z2) = ||z1 — 22||*; this metric depends on a, but the induced topology
only depends on the place.

Lemma 15 Distinct places induce distinct topologies on k.
Proof Suppose that |.||; and ||.]|2 induce the same topology on k. Since
lz]| <1 <= ||z"]| 2 0asn — 00 <= 2" — 0asn — oo,

llz]ls <1 if and only if ||z|2 < 1. We can assume that there exists z¢ # 0
with this property, for otherwise ||z]|; = ||z|l2 = 1 for all z # 0. Define
¢ > 0 by ||zoll2 = ||lzo]|§ and for any z # 0 in k with ||z]j; < 1 let A satisfy
lzlli = l|zo|l}. If m/n > A then ||zf*/z™||l1 < 1 whence |z]*/z"|2 < 1
and ||zl|2 > ||zol|’™; similarly if m/n < A then ||zf|2 < |lzo||7/™. Thus
llzllz = llzoll3 = llzoll* = llll5. Q

At this stage it must appear more natural to get rid of a and replace the
second relation (20) by the usual triangle inequality

llee + Bl < liell + 118]]- (21)

31
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32 2 Valuations

However on page 35 we shall see that in each place there is a natural
distinguished element (called a normalized valuation), and unfortunately
it does not always satisfy (21).

In what follows we shall ignore the trivial valuation ||| = 1 for all @ # 0,
which corresponds to the discrete topology. A multiplicative valuation on
a field k is called Archimedean if k has characteristic 0 and |m| > 1
for some m in Z, and non-Archimedean otherwise; the excuse for this
terminology is that for an Archimedean valuation ||m| tends to infinity
with m, and Archimedes wrote a book called On Large Numbers. It turns
out that Archimedean and non-Archimedean valuations have significantly
different properties.

Lemma 16 If k is an algebraic number field, the Archimedean valuations
on k are given by ||a]| = |oa|® where ¢ > 0 and o is any embedding k — C.

Proof The function on k defined in this'way is certainly an Archimedean
valuation, so let ||.|| be any Archimedean valuation. It is clearly enough to
prove the result when « is in 0. Replacing ||.|| by an equivalent valuation
if necessary, we can assume that (21) holds. The first task is to prove

¢ ||m|| = |m|€ for all m in Z and some fixed ¢ > 0.

Clearly ||£1]|{2 = ||1|| = 1, so we need only consider the case m > 1. Choose
some mg > 1 and for any m, N write m” in the scale of mq:

mV = Za,,mg where 0 € a, < my. (22)

Here the sum is taken over 0 € v < Nlogm/logmg. Let A be an upper
bound for ||a|| where 0 < a < myg. If we could choose mg with ||mg| < 1,
applying (21) to (22) would give ||m||¥ < A(1 + N logm/log mg); taking
N-th roots and letting N — oo would then give ||m|| < 1 for all m > 1,
contrary to hypothesis. Thus ||m| > 1 for all m > 1. But now the same
argument gives

[m||V < A(1 + N logm/ logmo)|jmg]||™ ‘8™ log mo;

taking N-th roots and letting N — oo we obtain [[m|| < |[mq||'8™/ logmo,
If we had strict inequality here, we could interchange the roles of my and
m and obtain a contradiction. So ||m||}/1°6™ is independent of m, and if
we choose ¢ so that it is equal to e® our assertion follows.

-Now let a be a non-zero element of o, and order the o, : k — C so that
|ova] > |o,41¢|. (This ordering depends on o and should not be confused
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6 Valuations and completions 33

with the ordering used in §3.) Let ¢ have the value obtained in the previous
paragraph. Write
v=m

H(X —oaM)=X"+ ;X" 1 4+...+an, Pn= H (a,aM).  (23)

4 v=1
The a,, are symmetric functions of the oY and the largest summand in
G IS £Pp; 80 |am| < C|Pp| where C depends only on n. Moreover, if
|om+1¢| < |oma| then once N is large enough this summand is much larger
than any other in am; 80 |am| > 3|Pm|. Also [|am|| = |am|® because the am
are in Z. If

lowel® > llall > |oy el

for some g, then in the first equation (23) with o for X the term a,a™N(®~#)
on the right would be much larger than any of the others, which contradicts
the triangle inequality since the sum of all the terms vanishes. We get a sim-
ilar contradiction if ||a|| > |o1a|¢ or |la|| < |onal%; so |jal| = |oual® for some
. Apparently 4 here might depend on o; but using ||a8Y| = |le| - |8||Y
with N large we find first that we can require g to be the same for g and
afY and then that it is the same for a3V and a. O

A refinement of this argument actually proves that any Archimedean
valuation on any field L is equivalent to one defined by ||z|| = |oz| for some
embedding ¢ : L — C. In our case there are r; + 3 classes of Archimedean
valuations — one for each real embedding k¥ — R. and one for each pair of
complex conjugate embeddings k — C. Note that R or C respectively can
be identified with the completion of k under the appropriate topology. The
Archimedean places are often called the infinite places, or by an abuse
of language motivated by Lemma 17 below, the infinite primes.

For non-Archimedean valuations we can radically improve (21), for if ||.||
satisfies (21) and is non-Archimedean then

N N
ot 1Y =1 anne™ B <3 lanwll- ¥
Here the a, v are integers, so their absolute values are at most 1. The
right hand side is bounded by (N + 1) max(Jle|, ||8]|)". Taking N-th roots
and letting N — oo gives

lle + Bl < max(jlell, 11 B11); (24)

and if this holds for one valuation in an equivalence class, it holds for them
all. Applying (24) to a = (a + 8) + (—f) gives

lledl < max(||e+ Bll, 1811);

Downloaded from https://www.cambridge.org/core. University of Toronto, on 06 Sep 2020 at 20:54:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139173360.003


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.003
https://www.cambridge.org/core

34 2 Valuations

and by symmetry there is equality in (24) whenever |la|| # ||8||- A metric
having this property is called an ultrametric.

Lemma 17 Let |.|| be a non-Archimedean valuation. There are a non-zero
prime ideal p of 0 and a constant C > 1 such that ||a|| = C™™ foralla #0
in k, where m is defined by p™|ja.

Proof Any a # 0 in o satisfies an equation
o™ +a1d™ M+ 4 a, =0

where the a, are in Z. If ||a}| > 1 then the first term on the left would have
strictly larger valuation than any of the others, which contradicts (24). So
lall <1 forall @ino. If ja]l =1 for all @ # 0 in k then our valuation
would be trivial; so there are integers a # 0 with ||| < 1. Using (24)
again, the set of a with |Ja]] < 1 form an ideal p; and p is prime because
laraz|fl < 1 implies |la;|| < 1 or |laz|| < 1.

Now choose 7 in p but not in p? and let o be any non-zero element of k.
In the notation of the lemma we can write (a/7™) = a; /a; where a;, a; are
integral ideals prime to p. By Theorem 7 we can find fs in az and prime
to p. Write 81 = foa/7™, so that £ is in a;. Neither 8; nor 3; is in p, so
they both have valuation 1; thus ||af| = ||I7||™. O

Conversely, by the formula in the lemma any p and C determine a non-
Archimedean valuation; and changing C only changes the valuation within
its place. This place can be identified with p, and will be called a finite
place. Denote by k, the completion of k£ under the metric associated with
p. An element a of k;, is determined by a Cauchy sequence {a,} where
lem — anll — 0 as m,n — oo; hence ||ay|| tends to a limit, which we can
define to be ||al|. It is easy to check that k; is a field containing k, and that
||-|| determines a non-Archimedean valuation on k, which extends the given
valuation on k. If we denote by o, the set of a in kp such that |||l < 1 and
by pp the set of a in kp such that ||a|| < 1, then o, is an integral domain
whose quotient field is k, and p, is its only non-zero prime ideal. Note
that op/p, can be canonically identified with o/p. The elements of o, are
in one-one correspondence with the nested sequences of residue classes

aymodp D azmodp? D - Daypmodp™ D --- .

Now let the 8, be a fixed set of representatives of the residue classes modp
in o, and let w be in p but not in p2. (When we work with k, we shall
consistently use m in this sense.) Thus the 7*~13, are a set of represen-
tatives of the residue classes mod p™ in p™~!; hence the elements of o, are
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6 Valuations and completions 35

the Yo" yn7™ where each 7, is a §,. Similarly the elements of k, are the
Z?N YT

The field k, is an example of a local field, a subject for which there is a
good introduction in [Ca] and a comprehensive account in [Se]. Analysis in
kp is much easier than in R; for example, it follows from (24) that a series
in kp converges if and only if its terms tend to 0. The next three lemmas
are further examples of this; they are stated only for k;, but it will be clear
from the proofs that they hold in much greater generality.

If we wish to refer to a place which is not necessarily finite, we usually
denote it by v and denote the corresponding completion of k by k,. If v is
infinite, it is conventional to take o, to be the same as k,.

The formulae for |.| in Lemmas 16 and 17 each contain an arbitrary
constant. But there is a canonical way of deriving a valuation on k, in the
class of ||.|| from the induced topology on k. For any « in k,, multiplication
by a gives a map of k, to itself which multiplies the natural measure of
volume on k, by a constant; we choose this constant to be ||a||. (The
volume on k, is only determined up to an arbitrary constant, but this does
not affect the value of ||al|.) This process is also described, from a slightly
different starting point, in §A1.3. For infinite places this gives ||a]| = |0
if o is real and ||a|| = |oa]? otherwise; for the finite place associated with p
it gives ||a|| = (Normgp)~™ where p™ is the exact power of p which divides
(e). This and Norm((a)) = |normy/qa| immediately give the Product
Formula

IT el =1

where the product is taken over all normalized valuations.

Taking the logarithm of a non-Archimedean valuation and renormalizing,
we obtain the additive valuation a + vp(a) = v where p¥ is the exact
power of p which divides a. (The double use of v is traditional, and should
not cause confusion.) The corresponding rules for this are

vp(@B) = vp(a) +vp(B), vp(a + B) > min(vp(a), vy(B)),

and in the latter rule we have equality whenever the two arguments on the
right are unequal.

Lemma 18 below says that under modest conditions factorizations of
polynomials can be lifted from o/p to 0,. This and Lemma 19 are special
cases of Hensel’s Lemma, for which the underlying idea is due to Newton.
In its most general form (which belongs to algebraic geometry), this enables
one to refine an approximate solution (in k or ky) of a set of polynomial
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36 2 Valuations

equations in k or k, to an exact solution in k,. In Lemma 18 we shall again
use a tilde to denote reduction mod p.

Lemma 18 Let f(X) be a polynomial in 0,[X] and f(X) = ¢1(X)d2(X)
where @1, ¢2 in (0/p)|X] are coprime. Then there exist p~o_lynomials fufe
in 0p[X] with f(X) = f1(X)f2(X), deg f1 = deg ¢y and f,(X) = 4,(X).

Proof We construct polynomials f("), 2(") in 0p[X] for n = 1,2,... whose
reductions mod p are ¢, d2 and which have the propertiesdeg fl(") =deg ¢y,
deg ;") < deg f — deg 1,

pl(F - FAY)  and pU(FD - FM) forv=1,2;  (25)

then the f,, = llm f will exist and have the required properties.
For the f., we lift the ¢, to 0,[X] in any way. To construct the f, (n+1)
from the f we proceed as follows. By hypothesis

F=f"gm 4 amh®™  for some ™ in 0,[X] with degh®™ < deg f.

If we choose £ = f{™ 4 a7g{™ with the g{™ in 0,[X] then the second
condition (25) will certainly be satisfied, and the first one will be equivalent
to

(n) f(")g(") + f(n)g(") mod P,
and therefore also to
R = ¢1g(n) + ¢29(")-

Since ¢1,¢ are coprime and (0/p)[X] is a principal ideal domain, there

are polynomials ¥1,%2 in (0/p){X] such that ¢192 + ¢ty = h(™ and
deg ¥, < deg ¢;; and we can take the g.(,") to be any lifts of the ,. O

The next result is not quite so obvious as one would expect.

Corollary Let K,k be algebraic number fields with K D k and let 'B,p
be prime ideals in K, k respectively such that Blp. If o is in Ogp then o is
integral over oy; in particular Try,, /k, @ and normg,, /x, a are in op.

Proof Suppose that ¢||p and choose IT in O so that B||II. Let By,... ,B,
be a base for O/ as an (o0/p)-vector space. The representation on page
35 implies that the I1*B, with 0 < p < e form a base for Og as an o,-
module. Hence Ky is algebraic over ky. In what follows, we shall use the
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6 Valuations and completions 37

absolute value associated with 3, which clearly induces an absolute value
on k associated with p. Let

fX)=cX™+aX™ 1+ tem (0=1)

be the minimal monic polynomial for a over k;. We assume that the c,
are not all in o, and obtain a contradiction. Let b in o, be such that the
bc,, are all in o, but not all divisible by p. If bc,,, were the only one of the
bcy, not in p then ¢, would have strictly larger absolute value than any of
the other terms in f(a) = 0, contradicting the ultrametric law (24). In any
other case, we can use the lemma to lift the factorization bf(X) -1 to a
non-trivial factorization of bf(X) over o,, and f would not be minimal. [

It follows from Lemma 18 that if f(X) = 0 has a root of multiplicity 1
in o/p then this root can be lifted to a root of f(X) = 0 in op. Here the
multiplicity 1 condition is inconvenient, though we haveto pay a price for
dropping it.

Lemma 19 Let f(X) be a monic polynomial in o,[X] with formal deriva-
tive f'(X), and let « in oy be such that ||f(a)|l < ||f'(@)||2. Then there is
a unique root a* of f(X) =0 in o, such that

llo* = all < 1A/ f @I < £ (@)l (26)

Proof We construct a sequence a; = o, iz, ... of elements of o, such that

1 ens )l < {IF@I/NF @IPHIF (@)l < £ (@), } @)
1 (ans)ll = £ @l llontr — anll < 1 (@n)I/If (@)
These relations imply that ||an+1 — an|| — 0, so that the sequence tends

to a limit o* which is clearly a root of f(X) =0.
If any1 = an + B, for some S, in o, then

f(ons1) = flan) + Baf'(an) + integral multiple of 52. (28)
Take B, = —f(an)/f (an), so that the first two terms on the right of (28)
cancel. Now the penultimate claim in (27) follows from
f'(@nt1) = f'(an) + integral multiple of 3,

because the second term on the right has strictly smaller value than the
first; and then the remaining claims follow at once.

It remains to prove uniqueness. But suppose ai, o} are distinct roots of
F(X) = 0 satisfying (26); then f(X) = (X — of)(X — a3)g(X) with g(X)
in 0p[X], whence || f'(af)ll = llaf — a3l - lg(aD)Il < llo] — aj]l. .
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38 2 Valuations

Some f are such that we can start this successive approximation process
with a worse estimate . An example which will be needed later is as
follows.

Lemma 20 Let p be the rational prime below p and let ao, & in oy be such
that of = £ mod p™*" where p™||p and r(p — 1) > m. Then there ezists a
in-0, such that of =¢.

Proof We again construct a sequence ag, ay,... such that
E=ab  modp™tTttl g, = 0, modp™tT; (29)

then a = lima,, will do what we want. Suppose that we have already
chosen ay, ... ,ay, and write ap4; = oy + 7178, where 3, must be in
0p. The first congruence (29) will be satisfied if

¢ — of = pr*t"al ™1 B, mod pm T

and this is always possible. a

Lemma 21 (i) Let L = ky() be a finite algebraic extension of k, and let
F(X) be the minimal monic polynomial for a over ky. If g(X) in ky[X]
is monic and close enough to f(X), then there erists B in L such that
9(B) =0 and L = kp(B), and g(X) is irreducible over k,.

(ii) Every finite algebraic extension of ky lies in some Ky where K is a
finite algebraic extension of k and *P is a prime of K above p.

Proof To prove (i), we would like to apply Lemma 19 to « as an approxi-
mate solution of g(X) = 0; but this is illegitimate because we do not yet
have a valuation on kp(c). Instead we replace f(X) by a polynomial go(X)
close to f(X) and in p[X]; and if 3 is a root of go we choose a neighbour-
hood N of f in the space of all monic polynomials in k,[X] with the same
degree as f so that the conditions of Lemma 19 hold for 8 and any g in V.
For k,(8) to be meaningful we must embed k, and 3 in a common field;
it will be convenient to take this field to be Ky, where K is the splitting
field of go(X) over k and ‘B is any prime of K lying above p. Clearly the
valuation on K associated with 3 restricts to a valuation on k associated
with p, though the latter may not be canonically normalized; thus we can
use ||.|| to denote both of them.

After multiplying a by a suitable element of o, we can assume that f(X)
is in 0p[X]. Define D(g1,g2) = [] g1(&) for any monic polynomials g1, g
in ky[X] and of the same degree as f, where the product is taken over all
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6 Valuations and completions 39

roots &; of go; thus D(g;, g2) is equal to a polynomial in the coefficients of
g1 and g2, and ¢ = ||D(f, f)|| # O because f has no repeated roots. We
require N to be so small that ||D(g1,g2)|| = ¢ for all g1, g2 in N and that
every g in N is in 0y[X]. We impose the further condition on A that for
g in NV every coefficient of f — g has absolute value strictly less than c2.
If we take go to be in N N o[X] then every coefficient of g — go admits the
same bound and hence

lg@B)Il = llg(8) — go (B < *.

If B; is any root of go, then ¢'(8;) is in Ogp; so ||g’(F;)|| < 1 and therefore
llg’(B))| = c. Hence the hypotheses of Lemma 19 are satisfied, so to each
root 3; of go there corresponds a root 7; of g in Ogp with ||7; — 8] < c. But
if B;, B; are distinct roots of go then ||3; — G;|| > |lgo(Bi)l| > c; so if also
llv; — Bjll < ¢ then +; and v; are distinct. Since g has only as many roots
as go, each root of g must occur as a +; and is therefore in Og. Moreover
kp (i) C kp(B:) C K for some root 3; of go.

Taking g to be f, this proves (ii). Knowing this, we can take go in the
argument above to be any polynomial in V. But k,(8) D kp(a), so that in

degg > [kp(B) : kp] 2 [kp(a) : ky] = deg f

the two outer terms are equal; it follows that k,(8) = kp(o) and g(X) is
irreducible over k,. O

In the language which we have introduced in this section, we can restate
the Chinese Remainder Theorem (Theorem 7) as follows. Let py,...,pm
be distinct prime ideals in o and a,... ,qy, any elements of o; for any
€ > 0 we can find o in o such that ||a — ay|lp, < € for each p. A variant
of this which does not discriminate against the infinite places is the Weak
Approximation Theorem:

Theorem 17 Let v1,... ,vyn be distinct places of k and ay,... ,0n any
elements of k. To any € > 0 we can find o in k such that la — oy, <€
for each p.

Proof We saw on page 3 that k is dense in [] k,, where the product is over
all infinite places; so we can find 3 in k satisfying |8 — oy |lv, < %e for all
the infinite places among the v,. Choose M > 0 in Z such that M(a, — 3)
is in o for each finite place v,. By Theorem 7 we can find -y in o such that

Iy — M(au - ﬂ)“v,, < %ellM"v,.
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40 2 Valuations

for each finite place v,; then a = v/MN 4+ 3 will satisfy all our conditions
provided that N > 0 in Z satisfies

INlv, > 2e‘l||'y/M||,,M for each infinite place v,,, (30)
IN = 1ls, < 3ellM/4|l,,  for each finite place v,. (31)

For this, it is enough to choose N so that N —1 is divisible by a large power
of Normp,, for every p, associated with a finite place v,. O

Exercise In the notation of the theorem, prove by induction on m that
there exists § in & such that |[g|[,, > 1 and ||B]ly, <1 for p=2,...,m.
[Use the proof of Lemma 15 to find ~ with ||y|,, > 1 and ||¥||»,. < 1. By
the induction hypothesis there exists § with |[6]|,, > 1 and ||6|},, < 1 for
p=2...,m~—1 Now take 8 = 48" if ||8]ly,, <1 or B = 6"/(1+46")
if ||8{|v,. > 1, where r is large.] By considering 87/(1 + ") for r large,
deduce the theorem in the special case ;1 = 1, az = -+ = a,, = 0 and
hence derive it in general. O

The significance of the phrase ‘weak approximation’ will be explained
in §9, where Theorem 17 will be translated into the language of adéles.
Roughly speaking, a weak approximation theorem asserts the existence of
one or more elements of k satisfying certain conditions, whereas a strong
approximation theorem asserts the existence of one or more elements of
0, or os for a preassigned finite set S of prime ideals, satisfying certain
conditions. (Thus Theorem 7 is a strong approximation theorem.) Strong
approximation theorems are in general much harder to prove than weak
approximation ones, and are usually uglier to state. For example, the
strong analogue of Theorem 17 is trivially false for o. If we add the further
condition that there is at least one infinite place which is not among the
vy, we obtain a plausible but unproved conjecture.

7 Field extensions and ramification
Let K = k(a) be an algebraic number field with [K : k] = n, let ¢(X) be
the minimal monic polynomial for o over k, let p be a prime ideal in o
and let p be the rational prime divisible by p. There is a close relationship
between the factorization of ¢ in k, and the factorization of conormg /ip
in O k. The latter must have the form

conormpy kP = H‘,BZ“ (32)
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7 Field extensions and ramification 41

for some primes P, ... ,P, in Ox. We say that p ramifies in K/k if some
ey > 1; the ramification is called wild if some e, is divisible by p, and tame
otherwise. If we write normg /1P, = pf+, the Corollary to Lemma 13 gives

n=[K:k=>) e.fy (33)

We temporarily drop the subscript p. Let 8y,...,8¢ in Ok be such that
their images are a base for O/ as an (o/p)-vector space, and let IT in Og
be such that B||II. Then the 5117 with 0 < j < e form a base for Ok /B as
an (o/p)-vector space, so that [Ksyp : k] = ef. We can however strengthen
this result considerably:

Theorem 18 In the notation above, there is a natural isomorphism
KQ®rky~Kg, & ®Kgp, (34)
both algebraically and topologically.

Proof By (33), both sides of (34) are ky-vector spaces of the same finite
dimension. There are natural maps K ® ky — Kg, and hence there is a
continuous vector space homomorphism ¢ from the left hand side of (34) to
the right hand side. But ¢(K) is dense in the right hand side, by Theorem
17, so ¢ is onto. a

Theorem 19 In the notation above, let ¢(X) = [| ¢.(X) where the ¢,,(X)
are irreducible in ky[X]. Then after renumbering, degd, = e, f, and
#u(X) is the minimal monic polynomial for o over Kgg,,.

Proof For each fixed p, it follows from Theorem 18 that o generates K,
over ky. Let ¢,(X) be the minimal monic polynomial for & over k, when
both are considered as lying in Keq,. (This will depend on y; the point
is that we cannot define binary operations between o and elements of k,
until we have embedded them both in a common field.) Thus ¢,(X) has
degree [Kgp : kp] = e, f, and divides ¢(X); comparing degrees and using
(33), it only remains to show that the ¢, (X) are distinct. But the topology
on Ky, is determined by a knowledge of ¢,(X), and by Theorem 17 the
topologies induced on K by the various B, are all different. O

We shall shortly see that when £ = Q the p with some e > 1 are just
those which divide dg; hence for any k the primes p in o which ramify
in K/k also divide dg. Assume for convenience that we have chosen o to
be an integer. In the notation above ¢(X) is in o[X] and if one excludes
finitely many p then ¢(X ) = 0 has no repeated roots. If so, by Lemma
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42 2 Valuations

18 the factorization of ¢(X) over k, corresponds to that of ¢(X) over F,
where ¢ = Normp; and if ¢(X) corresponds to PB; then we can take
P1 = (p,¥1(a)) where 11 (X) is any lift of ¢, (X) to o[X]. We can actually
do better than this.

Lemma 22 With the notation above, let o in O be such that the index of
oe] in © is finite and prime to p. Then ¢(X) = [J(¥.(X))%* where the
Yu(X) are in Fy[X], coprime and irreducible, and deg v, = fu. If gu(X)
is any lift of P, (X) to o[X] then P, = (p, gu(c)).

Proof Let 11(X) be a monic irreducible factor of ¢(X ) over F and let 3 in
F, be a root of ;(X). Every element of O can be written as 23_1 ca”
where the ¢, are in k with denominators prime to p and n = [K : kJ;
hence there is an epimorphism O — F,[f] given by a + f which extends
reduction mod p. Let P be its kernel; since the image is a field, P is a prime
ideal which divides p. If e, f denote the standard values corresponding to
B then degy; = f because Fy[f] =~ O/ has order (Norm p)f. Moreover
P D (p,g1(c)). Conversely any element 7 of P has the form h(a) where
h(X) is in k[X] and the coefficients of h have denominators prime to p; and
h(B) = 0 so that 1, divides h. In other words h(X) — g;(X)h1(X) has all
its coefficients in p for some hy(X) in o[X]; setting X = o we deduce that
v is in (p, g1(@)). In particular P||g1(c) if e > 1.

We have ¢(X) = [T(¢u(X))°* for some c,. Thus ¢(X) — [1(gu(X))°*
has all its coefficients in p, so [](g.(c))°* lies in p. On the other hand
gu(a) maps to ¥, (B) # 0 if p # 1, so g, () is not in *P and the distinct g,
correspond to distinct prime factors of p in K. Hence (g;(a))* is divisible
by P so ¢y 2 e if e > 1, by the last result in the previous paragraph.
This also holds if e = 1. Comparing [K : k] = )" ¢, f,, with (33) shows that
c¢1 = e and that each B, is generated in this way. O

The most favourable situation is when O = o|a], which seems to happen
quite often. (There is a problem with assertions like this, because it is
not clear what one should mean by an arbitrary algebraic number field.)
But there are pairs K, p for which there does not exist an « satisfying the
conditions of Lemma 22, though this can only happen if Normp < [K : k].
(See Exercise 2.8.) In such cases there may still be labour-saving tricks
available, but sometimes the least onerous way to find how p factorizes is
to study O/p. However, the following lemma, which is needed for a quite
different reason, does enable one to modify Lemma 22 so as to compute
the B, and their associated e, f, one by one.

Downloaded from https://www.cambridge.org/core. University of Toronto, on 06 Sep 2020 at 20:54:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139173360.003


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.003
https://www.cambridge.org/core

8 The Different 43

Lemma 23 Let p,P be prime ideals in algebraic number fields k, K respec-
tively with K D k and B|p. There exist an algebraic integer a in K and
embeddings of o, and a into Ky such that Kg = kp(a) and op[a] =

Proof Let & generate O/ over o/p and lift £ back to an integer a in O;
then oyla} contains representatives of all the classes in O/%. If it also
contains an element divisible by B only to the first power, then it contains
representatives of every class in ™ /B! for each m > 0, and the lemma
follows at once. But let $(X) in 0o[X] be such that ¢(X) is the minimal
monic polynomial for £ over o/p, and let ¢'(X) be the formal derivative of
¢(X). Here ¢/ (X) does not vanish identically because O/ is separable
over o/p; hence e (&) # 0 because ¢ has smaller degree than ¢. If I in O
is such that B||II then P|¢(a) and

#(a +IT) = ¢(a) + ¢ () mod P2. (35)
By (35) at least one of o and « + II satisfies the condition in the second
sentence of the proof, and they are both lifts of £. a

Exercise Obtain the analogues of Theorems 18 and 19 for infinite places.

8 The Different

Many number-theoretic objects give rise to an ideal which identifies the bad
primes for that object and measures how bad they are. Such an ideal is
important primarily because it has this property, but the definition does not
always make this evident; on occasion this fact can be a non-trivial theorem.
Typically such an ideal is called the conductor, but for an extension K/k
of algebraic number fields it is called the (relative) different.

By Lemma 3, every k-linear map K — k has the form a — Trg,(af)
for some B in K. It is natural to ask which are the 8 for which the image
of Ok under this map lies in 0. Let S be the set of such 8; clearly S is
an O g-module which contains Dk. On the other hand, Trx/q(af) must

lie in Z. So if ay,... ,an are a base for Ok as a Z-module then S must
lie in the Z-module spanned by 8,... , Oy where 8, satisfies
1 ifu=y,
Tr(ewh,) = { 0 otherwise. (36)

If we write 8, = Y 0pCpy With ¢y, in Q then we have the matrix relation

(Tr(euap))((cv)) = 1.

It follows that each dic,, is in Z where d is the discriminant of K, so
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44 2 Valuations

S is contained in the fractional ideal d,}lD k; since § is an O g-module, it
is itself a fractional ideal. Since also S D Ok, it is natural to write S as
1= DI‘(}  Where Dy, is an integral ideal called the different of K /k. If

k = Q, the 8, defined above span DR}Q and it follows that
Normdg/q = | det(Trx/q(aua,))| = |dk|. (37)

Now let K O L D k and let 3 run through the elements of O g, A through
the elements of 97, and  through the elements of vy, /x. If & is in K then

ain D}}k <= Trg k() is in of for all §

<= Trg/u(af)) = Trp i (MIrk/L(B)) is in of for all 8,
<= Trg/L(af) is in 07, for all B

<= Trgy1(ef) = Trgo(eyh) is in Oy for all B,
<= oy isin 0y, forall y <= a in 0%} 0775

and therefore

Vk/k = Ok/LOL/k- (38)

Let B be a prime ideal of K and let p be the prime ideal of & which
it divides. By analogy with what we have already done globally, we can
consider the set of # in Ky such that Trg,, /x, (o) is in 0, whenever « is
in Ogp. Asin the global case, this set is a fractional ideal in Kp; we again
write it as 97! and we now call ? the local different for the extension
Kg/k,. We identify ? with a power of B, though strictly speaking it is a
power of Pp.

Lemma 24 The global different gy is the product of the local differents.

Proof Suppose that 7 generates K over k; then by Theorem 19
'IYK/kn = Z'I‘rK,p/kpn for n in K. (39)
B

But any 7 in K can be written as ' — 5" where each of ' and n” generates
K over k, and (39) holds for 7 because it holds for ' and 7”. Now let p
be any prime ideal of k. It follows from (39) that if § in K lies in 0
for each P above p and if a is in O g then Trg/x(aB) is integral at p. By
considering all such 8 which are integral at every prime of K which does
not divide p, we conclude that [J0g,,/x, divides Dx/ where the product
is taken over all P dividing p.

Conversely, suppose that P"|[0k/x and let 8 in K be in =" but not in
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8 The Different 45

BL-". For any a in Ok it follows from (39) that Trgy /k, (@) is in o, for
all the other terms in (39) are certainly in 0p. Thus 3 is in g, /&, , whence
BT 0Ky /K, - 0

The proof of Theorem 20 below is complicated. The motivation behind
it is that if we write (K : k| = n, we can find D,:/lk by taking a base
ay,... ,on for Ok as an og-module and solving the equations (36) for the
By, where now the trace is for K/k. If we could choose the a, to be
1,a,...,a" ! for some integer a with K = k(a), there would be a sensible
formula for the solution of (36). In the first part of the proof we derive
such a formula; instead of using brute force, we apply a trick which is
worth knowing because it turns up in a variety of contexts. For the global
extension K/k we cannot expect to have such a base. But we showed in
Lemma 23 that for each prime ' in K we can find an o which has the
corresponding local property; and using Lemma 24 this is good enough.

Theorem 20 Let o run through those integers of K for which K = k(c)
and let ¢(X) be the minimal monic polynomial of a over k; then dy ., is
the highest common factor of the ¢'(c).

Proof Write

)—(?‘(ﬁ)— =B X" P+ /X" 2+ + By
Y

so that the 8, are in og[a] and By = 1. In the algebraic closure k

#(X) of
=X* f osugsn-1
ZX a Flon) or gp<gn
where the sum is over the roots a, of ¢(X) = 0; for the difference of the
two sides is a polynomial of degree at most n — 1 which vanishes at the n
values X = . Equating coeflicients of X? gives

Brn-1- 1 if H=p,

Rl (au ¢’(a)p> - { 0 otherwise;
hence the B,_1_,/¢'(c) are linearly independent over k and Tr(a#f) is in
o for p=0,1,... ,n— 1 if and only if 5 is in the og-module S spanned
by the 8,—1- ,,/qS’(a) It follows that S O DK/k, however, § C (1/¢/()),
0 0g/k O (¢'(a)) for each a. If 1,q,... ,a™! are a base for Dk as an

ox-module, this argument gives Dk, = (¢’(a)) because Gp = 1.

By Lemma 23 with P = B, we can choose a so that op(a] = Og,. The
construction ensures that a is not in P, and it allows us to require that «
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46 2 Valuations

is in B, for all 4 > 1. Hence in the notation of Theorem 19, for each x> 1
the constant term of ¢,(X) is divisible by ,, and hence by p. Since ¢,(X)
is irreducible in k;, it follows from Lemma 18 that all the coefficients in
@u(X) except the leading one are divisible by p; and hence ¢,(a) is not
divisible by B;. This implies

¢'() and ¢}(a) are divisible by the same power of ;. (40)

But ¢;(X) is the minimal monic polynomial for a over kp, where a is
regarded as an element of Kg,; so an argument like that in the previous
paragraph shows that the local different for Kg, /k, is equal to (¢}(a)).
The theorem now follows from (40) and Lemma 24. O

Theorem 21 Let p,"B be prime ideals in algebraic number fields k, K re-
spectively with K D k and let e > 0 be given by P¢||p. Then ‘Be‘llbx/k;
and P[0k sk if and only if ple.

Proof Suppose temporarily that o is in B, in the notation of Theorem
19. Then the constant term in ¢,(X) must be divisible by B, and hence
by p. As in the proof of Theorem 20 every coefficient of ¢, (X) except the
leading one must be divisible by p; for otherwise ¢,,(X) would be reducible,
by Lemma 18. In particular

ainP = pdivides Trg,, /i, (). (41)

Now let 3 be any element of !~¢; if p||w then « 3 is in P, for every u,
so that (39) and (41) imply p|Trg/x(wB) whence Trk/i(0) is in 0p. Thus
me—l divides bK/k.

Now revert to the assumption that « is in ©, and denote reduction
mod P by a tilde. Then & is a root of ¢1(X) = 0; let its minimal monic
polynomial over o /p be ¥1(X). Thus ¢, divides é1 and, using Lemma 18
again, ¢, must be a power of ¢;. But deg; divides f,, the degree of O/
over o/p, and degd; = e, f1; 50 é1 must be an e;-th power. If ple; the
second coefficient of ¢; must therefore be 0, whence

ain O and ple = p divides Trg, /x, (a); (42)

using this instead of (41) we deduce that [0k /i. If instead p fe; we can
choose a in O so that & generates O /P over o/p and the second coefficient
of ¢, which is ~Tr(&), is non-zero. But the first of these properties implies
that ¢; = 1!, and the second property then shows that p does not divide
Trgy /k, (@); thus B¢ does not divide D/ O
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8 The Different 47

Corollary In any ertension K/Q at least one prime p ramifies.

Proof By the Corollary to Theorem 10, [dk | > 1; hence 0k ,q # (1) by (37).
But note that in general there is no corresponding result for extensions K /k;
for more information see §17. ]

The lemma and corollary which follow will be useful in §13.

Lemma 25 Let K;, Ky be Galois over k, and write K = K1 Ky. Then K
and Ky N Ky are Galois over k,

[K : K1] = [K2 KL N K2],
and

Gal(K/(K1 n Kz)) ~ Gal(Kl/(Kl n KZ)) X Gal(Kz/(Kl n Kz))

Proof Any element of K is a rational function of elements of K; and K>.
Any embedding K — k restricts for i = 1,2 to an embedding K; — k
which is by hypothesis an automorphism of K;; so any image of an element
of K is a rational function of elements of K1 and K5, and therefore lies in
K. Thus K is normal over k. Similarly an element of Ky N K, has all its
conjugates over k in both K; and K5, and therefore in K; N K3; so the
latter is normal and even Galois over k.

Now choose a in K5 so that Ky = k(a), and let f(X) be a minimal
monic polynomial for a over K1 N K,. Clearly a generates K over Ky, so
K is separable over K; and hence over k. Moreover f(X) is irreducible
over Ki; for if we had f(X) = f1(X)f2(X) in K; with the f; monic, then
the coefficients of the f; would be in K3 by hypothesis and in K3 because
they are combinations of conjugates of a over k. Hence they would be in
K; N K, and f would not be irreducible. But now

[K : K1) = deg(f) = [K2 : K1 N K]
In view of what we have already proved, the natural map
Gal(K /(K1 N Ky)) — Gal(K1 /(K1 N K2)) x Gal(K2/(K1 N K3))

is an injection, for if we know the effect of o : K — k on K; and K, we
know it on K. But we already know that both sides have the same degree;
s0 it is an isomorphism. d
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48 2 Valuations

Corollary Let K, K5 be Galois over Q with coprime discriminants, and
write K = K1 Ky. Then

KiNnK,=Q, [K:Q]=[K;:Q] [K2:Q], k/qQ =0k,/Q¥k;/Q

and a base for the integers of K over Q is given by the product of bases for
the integers of Ky and of Ky over Q.

Proof 1t follows from (38) that 0k, nk,/q divides both vk, /q and ?k,/q;
since these are coprime by hypothesis, 9x,nx,/q = (1). By the Corollary
to Theorem 10, this can only happen if K; N K» = Q; this also gives the
relation between degrees.

Now suppose that 3 is in K, and also in D}'(} Kk, 1f § is any integer in
K> we showed in the proof of the lemma that the conjugates of 3¢ over K
and over Q are the same; hence Trg,,q(8¢) = Trk/k,(B€) is an integer,
and it follows that 3 is also in b}i /Q Thus 3k, divides g, /q, and it
follows from (38) that d,q divides 0k, ,Q¥Kk,/qQ- S0 Vk,/QVk,/Q = Vk/Q
will follow from the previous sentence combined with dy? d, = dk, where
n; = [K; : Q); and this in turn will follow from the assertion about integral
bases. Let aj,...,a,, be a base for the integers of Ky and 5,...,0,, a
base for the integers of K3; then the a;0; span K as a Q-vector space and
are integers, so they generate a subgroup of index m in the Z-module of
integers of K. Let 04,...,0,, be the elements of Gal(K/K3); as in the
proof of the lemma, their restrictions to K; are the elements of Gal(K;/Q).
Let 71,... ,7, be elements of Ky such that ) v;a; is an integer. The
equations

710-].(11 + - 4 Pynlo'janl = integer (1 S] $ nl)a

for the ~y;, have determinant /df, ; thus each v;1/dk, is an integer, whence
m divides some power of dg,. A similar statement holds for dg,; and since
dk,,dk, are coprime, m = 1. a

9 Idéles and Adeles

In discussing ‘local-to-global’ problems it is often necessary to consider
several different v-adic fields simultaneously, where each v may be either a
finite or an infinite place. The natural language for this is that of adéles
and idéles; we can use this to express some of our previous results in more
elegant terms, but its real importance is in the higher reaches of the theory.

At first sight it might seem natural to form the product of all the k,;
this certainly is a topological ring, and it contains all the elements which
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9 Idéles and Adéles 49

could interest us. But there are two things wrong with it. It has no
satisfactory compactness properties since the individual factors are only
locally compact; and most of its elements have not even the most superficial
claims to be in the image of the natural map k — [] k,, for we know that
any « in k is a p-adic integer for almost all p. This last remark gives us a
strong hint about the set which we ought to be considering, and it turns
out that there is only one topology which we can reasonably impose on it.

An adéle is an element of the set-theoretic product []k,, subject to
the condition that if @ = []a, is an adele then o, is in o, for all but
finitely many v. We shall usually denote adeles or ideles by bold Greek
letters. They are both examples of what in a more general context is called
a restricted direct product.

The adéles form a commutative ring Vi under componentwise addition
and multiplication. We give V. a topology by taking as a base for the open
sets the [] Uy, where each U, is open in &, and U, = o, for all but finitely
many v. It is easy to verify that this does define a topology, that the ring
operations are continuous, and that the subspace [] o, is open and the
induced topology on it is just the product topology; hence [] o, is locally
compact and so is V.

The diagonal map is the map k — Vj defined by a — [] a; it enables
us to identify k with a subset of V;. The elements of its image are called
the principal adéles. This map induces on k the subspace topology; and
if we view k and Vi simply as additive groups we can form Vi /k and endow
it with the quotient topology.

Lemma 26 With the conventions above, Vi/k is compact and k has the
discrete topology. Moreover []|lally =1 for any o #0 in k.

Proof Theorem 7 shows that given any adéle []a, there exists a in k
such that each a, — a is in 0,. In other words, every coset of k in Vj
meets [] k, x [[” 0, where the first product is over all infinite places and
the second over all finite ones. But ([ kv)/ox is compact, so there is a
compact subset S of H' ky, which meets every coset of 0. Thus every coset
of k in Vi meets S x H" op, and the latter is compact; hence so is Vi /k.

To prove that k has the discrete topology, it is enough to show that there
is a neighbourhood of 0 in V), which contains no other point of k. But the
set defined by

llaw]ls < 1if v is an infinite place,
a, is in o0, if v is a finite place
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50 2 Valuations

is an open set containing 0; and it contains no other element of k& by the
Product Formula. g

The proof that Vi/k is compact, like the results which lead up to it,
does not depend on the Product Formula; so we can now give a new proof
of the latter, which is more highbrow than the one on page 35 but does
explain why such a formula exists. For V is locally compact and therefore
possesses an essentially unique Haar measure, which must be the product
of the Haar measures on the factors. Now let & be any non-zero element
of k; multiplication by « defines an automorphism of Vi, which maps k
onto itself, so it induces a homeomorphism of Vi/k. Because Vi/k has
finite non-zero measure, this homeomorphism is measure-preserving. But
the action of a on k, multiplies the Haar measure on k, by ||al|,, by the
definition of the normalized valuation; so it multiplies the measure on Vj
by T llaf-

Lemma 26 depends crucially on using every place v in forming the prod-
uct. Let V¥ be formed in the same way as Vi but leaving out the factor
corresponding to w; then it is conjectured (but not proved in general) that
k is dense in V™.

For the argument above, we did not need to normalize the Haar measure
on Vi; but for the following corollary we do. The normalizations we need
are those described in §A1.3.

Corollary With these normalizations, Vi /k has measure 1.

Proof As in the proof of the lemma, Vi/k = (([T kv)/0) x [1" 0p- The
measure of the second factor on the right is [J(Normd,)~1/2 = |di|~1/2,

and the calculation on page 3 shows that the measure of the first factor is
, dy, '1 /2. 0

The invertible elements of Vj form a group, called the idéle group Jg;
thus an idéle is an element a = [] @, such that a, # 0 for all v and a,, is a
unit for all but finitely many v. There is a natural map Ji — Ix, where I is
the group of ideals; it sends & = [ a to (@) = [[ p™ where p™» ||, and it
extends the natural map k* — Ii. (The infinite places play no part in this
map.) But although Jj is a subset of Vi we must not give it the subspace
topology, for & — ¢! would not be continuous in that topology. (Take
k = Q and let a®) be the adéle with a,f,p ) = p and all other components 1;
in the adelic topology a® — 1 as p — oo, but (a®)~! does not tend to a
limit.) Instead we give Jj the topology induced by regarding it as a group
of operators on the additive group Vj: that is, a base for the open sets in
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9 Idéles and Adéles 51

Ji is given by the [] U, where each U, is open in &k} and U, = o}, for all but
finitely many v. This topology is strictly finer than the subspace topology,
so the inclusion Jy — Vi and the multiplication map Jx x Vi, — Vi are
continuous; and with it Ji is a locally compact topological group. As with
adeles, there is a natural map k* — Jj defined by o — []a; it is called
the diagonal map, and enables us to identify k* with a subset of J;. The
elements of its image are called the principal idéles. This map induces
on k* the subspace topology; and we can form Ji/k* and endow it with
the quotient topology.

Lemma 27 The group k* is a discrete subgroup of Ji.

Proof The topology induced on k* as a subset of Ji is finer than that
induced on it as a subset of Vj; and the latter is already the discrete
topology, by Lemma 26. a

The analogue of the first statement in Lemma 26 is much deeper than
that lemma, and to state it we need a further definition. The map J, — R*
given by a = [Jay — |laf] = [[|lav|ls is well-defined because almost all
the factors on the right are equal to 1; and it is a continuous epimorphism.
Its kernel J} contains k* by the Product Formula. For J! we no longer
have the nuisance of having two distinct induced topologies:

Lemma 28 J,§ is closed both as a subset of Jy and as a subset of Vi, and
the two induced topologies on it coincide.

Proof To prove that J} is closed in Vi, take any [] a, in Vi but not in J};
we shall construct a neighbourhood of it in Vi which does not meet J..
Write C = [] ||aw|lv, where the product must either converge or diverge to
0, because it only contains a finite number of terms which exceed 1. Since
C # 1 by hypothesis, there are two cases to consider.

First suppose that C > 1. For each infinite place and for those finite
primes p for which either Normp < 2C or |la,|[p # 1 (of which there can
only be finitely many because the product for C converges) let S, be a small
open neighbourhood of a, in k,. Now [ |law|l, = C where the product is
taken over these v; so we can choose these neighbourhoods so small that
if 8, is in S, for each such v, [['||Bv|lv < 2C. For any other v we take
S, = 0,, so that 3, in S, implies that either ||3,|l, =1 or ||5,l, < 1/2C.
If the latter possibility ever happens, then []||8y]|» < 1. Thus [] S, is open
in the adélic topology, contains [] a, and does not meet J}.

If instead C' < 1 choose a finite set of places, including all infinite places
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52 2 Valuations

and all primes with |ayll, > 1, such that if C’ is the product of the ||a, ||,
taken over these places then C’ < 1. For each such v let S, be a small open
neighbourhood of a, in k,; these neighbourhoods are to be so small that if
By is in S, for each such v then 3(C’ +1) > []||8,||» where the product is
over this finite set of v. For any other v take S, = 0,. Thus [] S, is open
in the adélic topology, contains [] &, and does not meet Ji.

Thus J,% is a closed subset of V. It is closed in Ji too, because the idélic
topology on Jy is finer than the restriction of the adélic topology.

For the last assertion in the lemma it is enough to show that any Jj-
open subset of J} is Vi-open, the converse being trivial. Now let S =[] S,
be any basic Ji-open set; we need to find a Vi-open set S’ such that
SN Jl =8 NnJ}. By writing S as a union of smaller basic open sets if
necessary, we can assume that each S, is bounded; since for all but finitely
many v we have S, = o}, and therefore ||a, ||, =1 for all o, in S,, there is
a constant C such that [] |lay]ls < C for all [[a, in S. Now write

S =

v

op if p is finite, Sp = o7 and Normp > 2C,
Sy otherwise.

Since the first of these happens for all but finitely many p, &' =[] S, is
open in Vi; and &' N J} = SN J} as in the first part of the proof. a

Theorem 22 J; /k* is compact.

Proof As before, denote by I the multiplicative group of non-zero
fractional ideals of k, and endow it with the discrete topology. Because
Ii./{image of k*} is finite, there is a finite group of translates of []o}
whose union meets every coset of k* in Ji. By Theorem 11 there is a
closed bounded set S in []’ k%, where the product is taken over the infinite
places, such that any coset of k* in J} which meets [T k% x [1" o, also
meets S x []" o}. But this last set is the product of compact spaces and is
therefore compact. 0

To prove Theorem 22 we used the finiteness of the ideal class group and
the structure of the group of units. Conversely, from an independent proof
of Theorem 22 we can immediately deduce these two results — which are
the key structural theorems of the elementary theory. For such a proof, see
Chapter II of [CF].

We specified the measure on Ji, in §A1.3, and the measure on J,% now
follows from the exact sequence (algebraic and topological)

0 Ji > Jy >R —0.
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9 Idéles and Adéles 53

In this case we can be very explicit, though uncanonical, because the exact
sequence splits. Let u be a fixed one of the infinite primes, and let a be
any idéle. There is a unique B in J} which is the same as a in all but
the u-th component and for which a,, /3, is real and positive; and the map
¢ : a— B is a continuous homomorphism. Given a set S! in J}, let S be
that part of its inverse image under ¢ which satisfies

0 < logflerl| = log [ ] llewflu < 1

and define the measure of S! to be the measure of S. It is easy to see that
this gives a Haar measure on J;, which does not depend on the choice of
u.

Theorem 23 If the measure on Ji is the product of the measures above
on the individual k;; then the measure of Ji/k* is 2™ (2n)"2hR/w where w
is the number of roots of unity in k*.

Proof The map Ji — I induces an epimorphism from J! to the ideal
class group; if we denote the kernel of this epimorphism by S! then it
is enough to find the measure of S!/k* and multiply by h. Each coset
of k* in S! contains elements of the set S* consisting of the ideles in S?
whose components at each finite prime p are in o}; and these elements
are determined up to an element of 0*. Denote by S° the elements of the
finite product []" a,, such that []' ||yl = 1, where the products are taken
over the infinite places. There is a natural measure on S” induced by the
measures chosen on R* and C*, and the measures of S'/k*, of St/o} and

of S*/o} are all equal since S* = S* x [To;. Now let n1,... ,%r 4,1 be
a base for the units modulo roots of unity; given any [] , in S8* we can
define real numbers z1,... ,Zr, +r,—1 by the equations

log lla|ly = x1log|mllv + - + Zr 4y —110g 117y 4rp -1l

for each Archimedean v. Each coset of 0* in S® has just w members in
the region given by 0 < z; < 1. But if v is real, going from da,/||ay |l to
d(log || |lv) gives a factor 2 to take account of the sign of a,; and if v is
complex, dz Adz/|z{> = d(r?) Adf/r? in polar coordinates, and integrating
over @ gives a factor 2. The measure of S*/o}, is therefore

9r1 (21r)”w‘1/-“/H”d(l°g llowllo)

where the product is taken over all but one of the Archimedean valuations
and the multiple integral is taken over the region given by 0 € z; < 1
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54 2 Valuations

for each i. Going from the log |la, ||, to the z; gives a further factor |R|.
Combining these factors, we obtain the theorem. a
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Special fields

Most of this chapter illustrates the general theory in Chapters 1 and 2 by
means of applications to particular kinds of field. However, many of the
results in §12 and §13.1 depend on analytic properties of the zeta function
which are not stated until §14 and not proved until §15. The standard
calculations on Q({/1) in §13 are also used to prove a particular case of
Fermat’s Last Theorem, due to Kummer.

10 Quadratic fields

The quadratic fields are just the fields £ = Q(y/m) where m # 1 is a
square-free integer. Since 1,/m are integers which form a base for k as a
Q-vector space and A2(1,+/m) = 4m is not divisible by any square other
than 4, the Z-module spanned by 1,/m either is o or has index 2 in o.
Since % and %Jr—n are clearly not integers, the latter case happens if and
only if a = %(1 + y/m) is an integer. The minimal equation for a over Q
is X2 — X — 3(m —1) = 0, so a is an integer if and only if m = 1mod 4.
Thus

d—{ m if m=1mod4,

4m if m =2 or 3mod4.

Both cases are covered by the statement that the integers are those numbers
of the form 1(x+yv/d) for which z,y and }(22 —dy?) are in Z. The primes
which ramify are those which divide d, and ramification can only mean
(p) = p? with f = 1. Any other prime either splits (that is, (p) = p’p” with
f =1 for each factor) or remains prime (with f = 2). To test which, we
use Theorem 19 and Lemma 19; for X2 — m factorizes in Q) if and only if

55
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56 3 Special fields
X?% —m =0 has a root in Q,. Thus when 2 does not ramify

(2) splits in k if m = 1 mod8,
(2) remains prime in & if m = 5mod §;

and if p is an odd prime which does not divide m,
(p) splits in k if and only if () =1

where the latter bracket is the quadratic residue symbol.

If m > 0 then k is real and the only roots of unity which it contains are
+1. If m < 0 all units in k are roots of unity, and they correspond to the
solutions of 22 — dy? = 4 in Z. It is now easy to see that k contains six
roots of unity if d = —3, four if d = —4 and two otherwise.

There is a close relation between ideal classes in a quadratic field k and
classes of binary quadratic forms

aX? 4+ bX 1 Xo +cX? with b?—dac=d (43)

under the unimodular group. For let a be an non-zero integral ideal of k
and let a;,a2 be a base for a as a Z-module. Any a in a has the form
a = T10q + 209 With z1, x5 in Z, which implies

norma = (z101 + T202)(T100; + Z203)

where o is the non-trivial element of Gal(k/Q). The right hand side is
a quadratic form in z,,z> all of whose coefficients are rational integers
divisible by a - ca = (Norm a), and its discriminant is

2

@ a2 = (Norm a)?dy.

oy 0o

Dividing by Norm a we get a quadratic form (43). We can change the base
for a as a Z-module by means of an integral unimodular transformation on
z1,Z9. If we start from another ideal in the same class — say o’ = (0)a for
some [ in k* — then we can take fa;, Sag as a base for a’; this yields the
same quadratic form as before. Conversely if we write

aX? +bX1 X2 + X3 = a(Xy + AX2)(X1 + o)A X2)

a straightforward calculation shows that a,a) are a base for an ideal of
k and this ideal gives rise to the quadratic form which we started from.
However, the quadratic form has two linear factors and therefore gives rise
to two ideal classes, which are in general distinct.

When m < 0 there is a simple way round this: we fix an embedding
k — C and require the base a;,as to satisfy S(az/a;) > 0. This imposes
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10 Quadratic fields 57

an ordering on any base for a as a Z-module, and restricts us to integral
transformations on z,zs with determinant +1. Now there is a one-one
correspondence between ideal classes in k and equivalence classes of binary
quadratic forms (43). This gives the easiest way of computing class numbers
when m < 0. For after a suitable linear transformation we can assume that
a is the least value taken by the quadratic form (43) and that, subject to
this, c is as small as possible; in this case we say that (43) is in reduced
form. This gives ¢ > a and |b| < a, whence a < y/—d/3. Conversely, if
these inequalities hold it follows easily that a and ¢ have the properties
in the previous sentences. We can obtain a unique representative of the
equivalence class of quadratic forms by writing X; + X for X, if b = —a,
or Xy, —X; for X;,X5 if ¢ = a and b < 0; in this way we can require
a>2b>-a,c>aand b>0if c=a. If B = az/a; these conditions are
equivalent to % > Q6 > —%, |8] 2 1 and SB > 0 if |3| = 1. The reader
who knows about elliptic modular functions will recognize the fundamental
domain of the modular group.

To compute the ideal class number, we let b run through all values with
|b| < +/—d/3, where b is odd or even according as d is; for each such b
we factorize ac = (6% — d) and list the triplets (a,b,c) with @ > b > —a,
¢ > aand b > 0if a =c. There are h of these triplets, where h is the class
number of k. The Brauer-Siegel Theorem (76) says that log h ~ 1 log|d| as
d — —o0, but the known effective results are much weaker. There is a law of
composition of quadratic forms (43) which corresponds to multiplication of
ideal classes, but for computational purposes there is little to be gained by
using it. There is a remarkable conjecture, supported by both theoretical
arguments and numerical evidence, that the odd order part of the ideal
class group is cyclic for 97-7% of all values of m < 0. (See [Co], §5.10.)

Theorem 24 Let m < 0 and suppose that t distinct primes divide d. Then
there are ezactly 2t~! elements of order 1 or 2 in the ideal class group of
k.

Proof Because a-ca = (Norma) is principal, we need to count the number
of ideal classes fixed by o. But if oy, a9 are a base of a with S(az/a;) >0
then oa;, —oay are a base of oa with S(—oag/ca1) > 0. Suppose that the
reduced binary quadratic form corresponding to a is aX? + bX; X5 + cX3;
then oa corresponds to aX? ~bX; X2+ cX2 and this is also reduced. But a
and oa are in the same ideal class if and only if these forms are equivalent,
and it is easy to see that this happens precisely for forms of the shape

aX?+cX2, aX}+aX;Xo+cXZ or aX?+bX1X,+aX3.
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58 3 Special fields

In each of these cases the ideals a = (a,a8) and oa = (a,—acf3), where
af? + bB + ¢ = 0, are not merely in the same class but equal. Hence each
ideal class in k of order 1 or 2 contains at least one ideal which is a product
of ramified primes and rational primes, and clearly we can ignore the latter.
Conversely, the square of any ideal which is a product of ramified primes
is principal.

It remains to discover which of the 2¢ ideals generated in this way are
themselves principal. Each of the latter corresponds to two pairs of integers
z,y and —z, —y such that (2% — dy?) is square-free and divides —d. This
implies 22 — dy? < —4d, so that |y| < 2. Apart from the obvious solutions
(£2,0) and (0, +2), the latter requiring 4 fd, we need only consider y = +1.
Now z? — dy? = —4d/r for some r requires 1 < r < 4; since d = —2 is
not allowed, the only solutions are given by £ = 0 when 4|d, £ = +1 when
d=-3, 7 =2whend = —4, and 2 = +3 when d = -3. Thus for
every value of d we obtain just two principal ideals of this kind: these are
(1 4+ v/—1) and (1) when m = —1, and (y/m) and (1) in all other cases. O

When m > 0 the situation is more complicated. By Theorem 11 the
group of units is the product of {£1} and an infinite cyclic group; any of
the four units which generates the latter is called a fundamental unit.
There are various ways of defining a reduced form (43), the simplest being
to require |e| > |a| > |b]; for given d there are only finitely many reduced
forms, and they can be listed because a2 < %d. But each equivalence class
will contain a number of reduced forms, this number being large if the
fundamental unit is large, which it usually is. Moreover, one wishes to
find both the class number and the group of units. For hand calculation,
the better way to proceed is illustrated in Examples 4 to 6 below. Here we
take advantage of the estimates quoted on page 20, whose proof is sketched
in the exercise at the end of this section. The analogue of Theorem 24 is
that there are 2~1 elements of order 1 or 2 in the ideal class group if the
fundamental unit has norm —1, and 2¢~2 if it has norm +1, but the proof
is considerably more complicated than that of Theorem 24. Subject to
this, the class number is usually small; for example it is conjectured that
the class number is not divisible by any odd prime in 75-4% of all cases.
But even the assertion that A = 1 infinitely often is only a long-standing
conjecture.

Examplel m = —14. Now d = —56 and the reduced quadratic forms (43)
are

X2 +14X2, 2X2+7X3, 3XP42X,X,+5X3.

Downloaded from https://www.cambridge.org/core. University of Toronto, on 06 Sep 2020 at 20:54:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB0O9781139173360.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.004
https://www.cambridge.org/core

10 Quadratic fields 59

Thus h = 4. The ideal class group must be cyclic, by Theorem 24; and this
example shows that we cannot strengthen the conclusion of that theorem
to 2t-1||h.

Example2 m = —35. Now d = —35 and if we take account of equivalences
the reduced quadratic forms are

X2+ X1 Xy +9X2, 3X?+ X1Xo+3XZ,

so that h = 2. The odd prime p splits if and only if (‘35) =1;suchapis
a product of principal ideals if p = X? + X; X, +9X2 is soluble in integers,
and of non-principal ideals if p = 3X? + X; X, + 3X2 is soluble in integers.
(Just one of these must happen.) The former requires p = +1mod5 and
the latter requires p = +2mod5. But to have so simple a rule as this
depends on having h = 2!~ in the notation of Theorem 24.

Example 3 m = —131. Now d = —131 and if we take account of equiva-
lences the reduced quadratic forms are

X2+ X1 Xy +33X2, 3X2+ X Xo+11X2, 5X24£3X1X2+7X3,

so that h = 5. Here (2) is prime, (3) = p3p4 and (5) = p;py, where we can
name the factors so that

v/—131 = 1 mod pj and v/ —131 = 2mod p},
v/~131 = 2mod p; and v/—131 = 3 mod p;.

There is no principal ideal with Norm 3, 5 or 15 because the first quadratic
form does not represent any of these numbers; so the four ideals we have
produced through factorization must between them represent the four non-
principal ideal classes. Hence there must be a principal ideal of Norm 45,
and one such is (3(7 + +/=131)). This is not divisible by p3 or pg, so it
must factor as p>pZ, whence p{ is in the class of p§°. Similarly (7) = p,p!
where v/—131 = 3modp} and v/—131 = 4mod py; and consideration of
(3(3 + v/—131)) whose Norm is 35 shows that p} is in the same ideal class
as pg.

Example 4 m = 10. Now d = 40 and 1/40/5 < 3, so any ideal class
contains an integral ideal of Norm at most 2 and we need only look at how
2 factorizes. We know that (2) = p2; moreover p; is not principal because
X2 — 10X2 = 42 is insoluble in Zs and hence in Z. Thus h = 2. By
inspection 3+ +/10 is a unit, and it is the fundamental unit because it gives
the least non-trivial solution of X? — 10X2 = +1.

Example 5 m = 229. This has been chosen because it is the first case
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60 3 Special fields

when h is not a power of 2. Now d = 229 and 1/229/8 < 6, so using the
strong result quoted at the end of §3 any ideal class contains an integral
ideal of Norm at most 5. Thus we need only consider the factorization of 2,
3 and 5. Here (2) is prime, (3) = p5p4 and (5) = pip¥. But 1(13 + +/229)
has norm —15, so after renumbering if necessary it must-be equal to p5p;;
and pj is in the same class as p§. By inspection (15 + v/229) is a unit; it
is actually a fundamental unit, but we shall not need this fact. To prove
that h = 3 it is enough to show that pg"’ is not principal — that is, that all
integer solutions of X? + X; X, — 57X2 = 49 have X;, X, both divisible
by 3 and thus give elements of k in the ideal (3). This time congruence
arguments do not help. But if the equation has a solution x,,z3, we can
multiply (z; + 2(1+ v/229)z;) by a power of the known unit 1 (15 ++/229)
to ensure that

3 < o+ L(1 + v229)x0| < 3 x 1(15 + v229);
this implies also
3 x (V229 - 15) < |z1 + 1(1 — v229)z2| < 3.

This process does not affect whether x1, 2 are both divisible by 3. These
inequalities define a bounded search region, and we find that within it there
are no pairs x1, 2 of the kind we are looking for. Of course, we can make
this process more efficient; but that does not change the underlying idea.

Example 6 m = 73. This is a case where the fundamental unit is large
enough for one to need an efficient process for finding it. Now d = 73 and
V73/8 < 4, so using the strong result quoted at the end of §3 any ideal
class contains an integral ideal of Norm at most 3. But (2) = p5p5 and
(3) = pjp¥, so after renaming we can require that (3(7+ V73)) = p4ph. By
considering Norms we obtain

(3(1 + V73)) = pps?, (38 +V73)) = pi*,
(1(5+ V73)) = p°p3, (2(7 + V73)) = phps,
(19 +V73)) = p}, (111 + v/73)) = p} p4.

These equations are enough to show that p5,p5, ps, p5 are all principal, so
h = 1. Moreover

A7+ VT3) (L9 + VT3))P(A(11 + VT3))
24

has trivial divisor, so that it is a unit. It is equal to 1068 + 1251/73 and
this is actually a fundamental unit. It might appear from the factorizations
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10 Quadratic fields 61

above that one could form smaller combinations with trivial divisor, but
there is a pitfall to beware of. For example

(3(5 + VT3)(F(7 + VT3))(3(9 - V73))
. 12
has trivial divisor; but it is just a complicated way of expressing 1.

Lemma 29 Let p be an odd prime and p a primitive p-th root of unity.

Let S =Y (p) p" where the bracket is the quadratic residue symbol and the

sum is over the residue classes prime to p; then S*> = (') p.

Proof We obtain $2 = Y3 () p"™ = ¥, (5) X, o7+ on writing
s = rt. The inner sum is p if t = —1, and 0 otherwise. a

Corollary Any quadratic field is cyclotomic — that is, it is a subfield of
the field of all roots of unity.

Proof After the lemma, it is enough to prove the result for Q(v/-1) and
Q(v2), for any quadratic field Q(\/m) lies in the least field containing
v—=1, /2 and the \/Ep for the odd primes p dividing m. But /=1 is a
fourth root of unity and (1 4+ +/=1)/v2 is an eighth root of unity. The
corollary is also a special case of the Kronecker-Weber Theorem, for which
see §20. O

Theorem 25 (Quadratic Reciprocity) If p,q are distinct odd primes,
then

(§)(3) = (-p)l-Dla=D/e, (44)
Proof Since F} is cyclic, (3) = r®=)/2mod p. If S is as in Lemma 29 then
5§91 = (—1)(P~Dla-V/4p(a-1/2 = (_1)p-1)a-1)/4 (2) modg.
On the other hand, if we write s = rq,
512 Y (5P = () Y (3)6" = (8) Smodg

dividing by S, which is prime to ¢, and combining with the previous equa-
tion we obtain (44). 0

To obtain the auxiliary law (2) = (—1)(”2‘1)/8, consider T' = (1 + )P
where ¢ = v/—1. For on the one hand T = 1 + i mod p; on the other hand

T = (1 +4)(2))P~/2 = (1 +4)i®"V/2 (2) modp.
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62 3 Special fields
Now consider separately the four possible values of pmod 8.

Exercise Let f = aX? 4+ bXY + cY? with d = b — 4ac # 0 and a,b,c
real have min |f(z,y)| = M > 0 where z, y run through all pairs of rational
integers not both zero. If the minimum M is attained, show that by an
integral unimodular change of variables, and replacing f by — f if necessary,
onecantakea=M, 0 <O M.

(i) If d < 0 show that M is attained and d > 3M2.

(ii) If d > 0 and M is attained, then split cases by considering f(1,1).
Show that f(1,1) > M implies that f = M(X%+ XY —Y?) and
d=5M2 If f(1,1) < =M then f = M(X? - 2Y?) and d = 8M?
if £(3,-2) > M, while d > ZLM? if f(3,-2) < —-M.

In (ii), can the argument be pushed further? What happens if M is not
attained?

11 Pure cubic fields

These are fields Q({/m), where we can take m = mym2 with m;, my co-
prime, square-free and positive. Write

3 __ 3 2
ay = {fmum3, a2 = {/mimy

so that 1, a;, a2 span k as a Q-vector space. We have

A%(1,0q,03) = —2Tm3mi.

Theorem 26 In the notation above, d = —27m2m2 and 1,a;,a; are a
base for o unless my = tmomod9. In the latter case %(1 +myag + maas)
is also in 0 and d = —3m#m3.

Proof 1If for example p # 3 is a prime factor of m, then (p,a1)® = (p),
so that p ramifies; since p?||A%? we must have p?||d. If 3|m; a similar
calculation shows that (3) = p3 with ps||a1 and p2|jas. Hence if co,cy,c2
are in Q the exact powers of p3 which divide the non-zero summands in
o = ¢y + cia + caap are all different, so that a can only be an integer if
¢o, C1, ¢y are 3-adic integers. It follows that 1, 04, o are a base for o if 3|m,
or similarly if 3|my. If instead 3 fm;m, then d contains an odd power of 3
and therefore 3 ramifies. Theorem 11 allows two possibilities:

(3) = pgpg’z and d = —3mZm2, or (3) =93 and d = —27TmIm2.
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12 Biquadratic fields 63

By Theorem 19 the first case happens if and only if X3 — m = 0 is soluble
in Q3, and by Lemma 19 this happens if and only if m = £1mod9. This
is the same as m; = +mymod9. To find a base for the integers in this
case, let 4 = ¥/m in Qg; then (a; — u)(a? + poy + u?) = 0, so Theorem 19
implies that maag + poy +p? = 0 in k, where p = pj. Since y = m; mod 3
it follows easily that 1 + mjq; + maas = 0mod 3. 0

Now suppose that p/3mimg, so that p is not ramified. Since F; is cyclic
of order p — 1, the equation X3 — 1 = 0 has one root in F,, if p = 2mod 3
and three if p = 1mod 3. Thus if p = 2mod 3 then X3 — 7 = 0 has one
root in F, and that root has multiplicity 1; so it follows from Theorem 19
that (p) = p’p” where Norm p’ = p and Normp” = p?. If p = 1 mod 3 then
73 — M = 0 has three roots in F, or none; and the theoretical criteria for
distinguishing between these two possibilities are more complicated than
direct calculation. In the first case (p) = p’p”p”; in the second case (p) is
a prime ideal in k.

Example m = 12. Now 1,a; = ¥/12,a; = V18 are a base for 0 and
norm (co + c1a + c2a2) = f(co,c1,¢2) = 3 + 1263 + 1863 ~ 18cpcica.

Since \/——dw < 7 we need only look at the factorization of 2, 3 and
5. We have already seen that (2) = p3, (3) = p3 and (5) = pipZ where
Norm p} = 5 and Norm py = 52. But
f(2,1,1) =2 so that (24 a1+ a2) = p2,
f(3,1,1) =3 so that 3+ oy + a2) = p3,
f(5,2,2) =5 sothat (5+ 2a; + 20a2) = pg,
f(0,-1,1) =6 so that (a1 — a2) = paps.

It follows from the first three of these that all ideals of Norm less than 7
are principal; so h = 1. Moreover

(2+o1+ )3 +a1+o2)
Q2 — Qg

=55+ 24a; + 21

is a unit — and actually the fundamental unit.

12 Biquadratic fields
Let K be the biquadratic field Q(/a1, \/a2), where none of a,,a3 and a,a2
are squares, and write az = ajaz/m? where m? is the largest square which

divides a@ja;. Then K is normal over Q with Galois group C; x C,, and
K has three intermediate fields k; = Q(,/@;). Throughout this section
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64 3 Special fields

d, h, R and w will be the values for K, and the values for k; will be denoted
by the subscript i. Neglect for the moment primes which ramify in K/Q;
then e = 1 and the splitting group Z is cyclic of order f. We have two
possibilities:

(i) f =1, so that p splits completely in K and in each k;;
(ii) f =2, so that p splits in one k; and remains prime in the other two.

Thus up to finitely many factors of the form (1 — p~f*)*! arising from the
ramified primes,

(CQ(8))*¢r(5) = oy (8)Cka (8)Cks (5)- (45)

We could check in the same way that the factors from the ramified primes
also cancel, but it is less effort to argue as follows. Let 6(s) be the quotient
of the two sides of (45), which we know to be the product of finitely many
factors of the form (1 — p~7%)*1. Let y(s) be the quotient of the products
of expressions (77) below corresponding to the two sides of (45); then

_Y(l-s) 6(1-5) 1-2s)/2
where the left hand equality follows from the functional equation and the
right hand equality holds because the terms in curly brackets in (77) cancel
in 7. In view of the shape of 8(s), this can only happen if everything
cancels; so 6(s) =1 and up to sign

d = didyds. (46)

It is easy to check that the sign is also correct. Applying (75) to (45) gives
hR = h1h2h3R1R2R3 X (4w/w1w2w3). (47)

The last factor is easy to calculate, for ¥/1 can only lie in K if ¢(n) =1, 2
or 4 where ¢ is Euler’s function, by the Corollary to Theorem 27 below.
The only even values of n satisfying this are those with n < 12; and we can
rule out n = 10 because Gal(Q( '¥/1)/Q) ~ Cy. Now

n=8 < K=Q(V—1,v2) whence 4w/wiwows=2;

in all other cases, including n = 12 for which K = Q(v/—1, v/=3), it is easy
to check that 4w /wywows = 1.

Now let 7 be a unit in K and denote by o; the non-trivial element of
Gal(K/k;). Then 51- oyn is in k; and therefore in o}, the group of units of
k;; and on multiplying these three expressions together we see that

n? = +n’normg/qn = + [ [(n - oin)
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18 Cyclotomic fields 65

is in 0}0303. Denote by W the group of roots of unity in K; then it follows
at once that

1or 2if K is complex,

1,2,4 or 8 if K is real. (48)

€= [D% : Woloj03] = {

Here we can delete W except when K = Q(v—1,v2).
Suppose first that K is complex; choose the notation so that k; is real
and let 7 be a fundamental unit of K. Then wn® is a fundamental unit

for k; where w is a root of unity in K, and hence R; = %GR; taking into
account the anomalous case K = Q(v/—1,v2), (47) gives

h = 1hihahs[D : 0j0303).
If instead K is real, a similar calculation gives
h= %hlhzhﬂg}( : 0‘{0;0;].

I know of no other way to prove such results; and study of particular cases
suggests that there is no corresponding relation between the ideal class
groups.

13 Cyclotomic fields

Let k,, be the field of m-th roots of unity. By a cyclotomic field I
shall mean any subfield of any k,,; but the reader is warned that some
authors restrict the phrase to the k,, themselves. It is in any case natural
to start with the k,, themselves; the properties of their subfields can then
be deduced by means of Theorem 16. The most interesting fact about
a general cyclotomic field is that one can write down explicitly units of
a particular kind (the so-called cyclotomic units) and that usually these
generate a subgroup of finite index in its full group of units. Moreover, this
index is the product of the ideal class number A and factors which are easy
to compute.

In studying the k,, it is convenient to deal with the prime factors of m
one at a time — that is, to deal first with the special case when m is a prime
power and then, writing m = [] p[*, to obtain the field k,, by composition
from the various fields k,- using Lemma 25 and its Corollary.

Theorem 27 Let p be a primitive p"-th root of unity, where p is prime;
then N = [Q(p) : Q] = p"~Y(p — 1) and the conjugates of p over Q are the
distinct p™ with n prime to p. The numbers 1,p,... ,pN =1 form a base for
the integers of Q(p). Write M = p™~Y(pr — r — 1); then the different of
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66 3 Special fields

Q(p) is (1 — p)M and its discriminant is £p™ where the sign is negative
if p = 3mod4 or p" = 4 and positive otherwise. The roots of unity in
Q(p) are just the £p*. The only prime which ramifies is (p) = ((1 - p))V.
There is a natural isomorphism between Gal(Q(p)/Q) and the multiplica-
tive group of residue classes modp™ prime to p, where the automorphism
corresponding to nmod p” is oy, : p— p". If £ is a prime other than p, the

Artin symbol is (gf%/g) = oy.

Proof Certainly p satisfies the equation
Xr -1
UX) = 7 =0

of degree N, whose roots are precisely the p"™ with n prime to p. In partic-
ular

[fa-,"=va)=p (49)

But 1 — p divides 1 — p"; and if n’ is such that nn’ = 1 mod p” then 1 — p"
divides 1 — p™ = 1 — p. Hence each factor in the product (49)is 1 - p
times a unit, and in terms of ideals we have (p) = ((1 — p))". This implies
that [Q(p) : Q] > N; and since consideration of i gives the opposite
inequality it follows that {Q(p) : Q] = N, that ) is irreducible over Q, that
all the p™ with n prime to p are conjugate to p, and that 1 — p is a prime
ideal. Since an element of the Galois group is determined by its action on
p, the Galois group consists of the o, : p — p™ with n prime to p and
Omnp =P = OmOnp.

Except in the special case p” = 2 all embeddings of Q(p) in C are
complex, and therefore ry = 0 and r, = %N ; moreover we know that the
sign of the discriminant is (—1)"2. Since

r_ r—1
[I(e—0p) =4 () =po" /(0" -1)
where the product is taken over all the op other than p itself, and
— :tppr—l

r—1

normqq)/Q(P* — 1) = (normg g7),q(¥1 - 1))?
by (49) in the special case r = 1, we find that
A%(1,p,...,pN"1) = tnorm ¢’ (p) = £pM,

which is the value asserted for the discriminant up to sign. In particular,
the only factor we can take out of this is a power of p. To assert that the
p" for 0 € n < N form a base for the integers is the same as to assert that
the (1 — p)” form one. Thus to prove the assertions about the discriminant
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18 Cyclotomic fields 67

and a base for the integers, it is enough to show that if the a,, are in Q
for 0 < n < N and are such that ) a,(1 — p)" is an integer then the
ay are integers. But all the non-zero terms in this last sum have distinct
(1 - p)-adic additive valuations, so each of them must be an integer. Since
there is only one prime ideal in Q(p) which divides (p), the different is
uniquely determined by the fact that its Norm is the ideal generated by
the discriminant. Now suppose that there is a root of unity € in Q(p) which
is not of the form *p#; raising it to a power if necessary we can assume
it is an £°-th root of unity for some prime £. Here dqldq(,) because
Q(e) C Q(p); and since we have already shown that dgq) is divisible by £
this implies £ = p. Comparing discriminants now gives s < r, contrary to
hypothesis.

Finally, the Artin symbol satisfies (%“%9)5 = ¢¢mod ¢ for every integer
€ in Q(p). Taking £ = p, it is evident that o is the only element of the
Galois group which meets this condition. 0

Corollary Let p be a primitive m-th root of unity for some m > 2;
then [Q(p) : Q] = ¢(m) where ¢ is Euler’s function. If n is prime to
m then p™ is conjugate to p over Q. The roots of unity in Q(p) are just
the £p*. The primes which ramify in Q(p) are just those which divide
m, except that 2 does not ramify if 2|m. Gal(Q(p)/Q) is isomorphic to
the multiplicative group of residue classes modm prime to m, where the
element corresponding to nmodm is g, : p — p". If £ is a prime not
dividing m the Artin symbol is given by (9%%&) = 0y.

Proof Recall that if m = []p]* then the value of Euler’s function is
-1
om) =m T (2=2).
plm

Now everything follows at once from the theorem, together with Lemma 25
and its Corollary. These also give us the value of the different and hence of
the discriminant. The assertion about the roots of unity is proved in the
same way as in the theorem. O

For any prime p, let m = p"m’ where m’ is prime to p. If A,, denotes
the group of residue classes mod m prime to m, there is a canonical iso-
morphism

Gal(kn/Q) = Am = Am x Apr = Gal(kny /Q) % Gal(kyr /Q)
and the primes above p in kp,s are totally ramified in k,,/ky,,. It follows
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68 3 Special fields

that the splitting group of p is C x Ay, where C C A, is the cyclic
group generated by p, and the inertia group of p is Apr. The corresponding
statements for any cyclotomic field now follow from Theorem 16.

The following result will be needed both in §13.2 and in §20.

Lemma 30 Let k = Q(C) where { is a primitive p-th root of unity, and
write 7 = 1~ (. If € is in o and prime to 7, and if £ = of mod#P for
some ag in of, then (w) is unramified in K/k where K = k(/E).

Proof Suppose first that £ = of mod 7P*!. In the notation of Lemma 20
we have m = p — 1, so that we can take r = 2; hence £ = a? for some
a in of,), so that () splits completely in K by Theorem 19. If instead
7P||(€ — af), we can assume that K # k, which indeed follows from the last
assumption. Let 7 = (&€ — ap)/w, so that K = k(n), and let f(X) be the
minimal monic polynomial for 7; then

f(X) = XP + (B 'p/aP~ )X + (af — €) /7P mod 7.

It follows that n is in Dg; hence dk 4 is prime to © by Theorem 20, and
so () is unramified in K/k by Theorem 21. It is not hard to show that in
this case (7) remains prime in K. O

13.1 Class numbers of cyclotomic fields

Let k be any cyclotomic field with [k : Q] = n and let m be such that
k C ky; it is proved in §20 that all fields abelian over Q can be obtained
in this way. Let A,, be the group of residue classes mod m prime to m
and H,, the kernel of the map A,, — Gal(k,/Q) — Gal(k/Q) given
by the Corollary to Theorem 27; we shall meet almost the same notation
again in §17. Let x be any character of A;,/Hy, and let f, be the exact
conductor of x — that is, the least f such that x is defined modf; and
write f, = Normf,. It will follow from Theorem 33 that |di| = [] fy;
alternatively, we can apply to both sides of (50) the functional equations
implicitly described in (79) and (77) below. The key to what follows is the
identity

Ck(s) = HXL(S’ X)v (50)

which follows from the remarks after the proof of the Corollary to Theorem
27. If xo is the principal character, L(s,xo) is just the Riemann zeta
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13 Cyclotomic fields 69

function (71). Multiplying both sides of (50) by s — 1, letting s — 1 and
using (75) we obtain

1-n /2771 . .
hR = { 21" di|Y4IT L(2, x) if k is real,

(2m) " 2w|di |V?[] L(1,x)  if k is not real, (51)

where in each case the product is over all characters of A,,/Hn, except
x0- To justify this, we must show that the L(1, x) are well-defined; and to
make it useful we must obtain a closed formula for the L(1, x), which we
now do. Let z run through a set of representatives of the residue classes
mod f, and let y run through those prime to f,. If ¢ is a primitive f,-th
root, of unity then

L(s,x) = Zyx(y)zzlln“"fx'lzzc(y—n)x

because the innermost sum is fy if n = ymod f, and 0 otherwise. By
rearranging we obtain

L) = i (X xwer {3 ¢} 62)

If z = Omod f, the first expression in curly brackets vanishes. But if
z #Z 0mod f, then at least formally

lim Y0~ = 3¢ n) = —log1- ¢ (53)

g—1

where we choose that branch of the logarithm which has imaginary part
strictly between —xi and wi. This last step can be justified by a standard
theorem of Abel or by the exercise which follows.

Exercise If |z| < 1, show by uniform convergence that

. -8, n __ -1.n __ _
é%1_.11112:11 2" = Zn 2" = —log(1 — 2).
If also |z;] < 1 show that
o0
Bsm) =) n 0 =) {m™ —(m+ 1)} e+ o)

and that, provided |z; — 1| 2 € for some fixed € > 0, the right hand side is
absolutely convergent uniformly in z; and s provided Rs > €. Deduce that
lim,_,y ¢(s, z1) exists and is continuous in z;, and derive (53). a

The Gauss sum, which is the first expression in curly brackets in (52),
satisfies

2(x) = Y x@)XC* = X(z)m1 (x). (54)

For if z is not prime to f let r be the quotient of f by the highest common
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70 3 Special fields

factor of  and f. Replace y by yc where ¢ = 1 mod r; since ¢z = rmod f
we obtain 7-(x) = x(¢)7z(x). Thus 7:(x) = 0 because if x(c) = 1 for all
such ¢, the conductor of x would divide r. If on the other hand z is prime

to f then 7z (x)x(x) = Zy x(zy)¢* = 11(x). Moreover
n)nlx) = Z Z x(@)x (Y)Y = Z Z x(z)¢vE-D
z y Yy z

on writing £ = yz. Summing first over y gives |11(x)|? = f.
It follows from (53) and (54) that

L(1,x) = —f' Y 7(x) log(1 = ¢%) = = f '11(x) D X(®) log(1 — (7).

Since [] fy = |dk|, the contribution of the f5!r1(x) to [T'|L(1, x)| will be
ldx|~1/2 which will cancel with the |di|/2 in (51).

It is now necessary to split cases. We shall say that x is an even char-
acter if x(—1) = 1 and an odd character if x(—1) = —1. Since complex
conjugacy on k is induced by p ~— p~! where p is a primitive m-th root of
unity, it follows from the Corollary to Theorem 27 that all characters are
even if k is real but half of them are odd if & is not real. If k is not real, it
has a totally real subfield ko such that [k : ko] = 2; this is the field fixed by
complex conjugacy, so the characters associated with kg are just the even
characters associated with k. It follows from (51) that if k is real

=] |Z x(z)log(1 — ¢~ , ~ (55)
whereas if k is not real
h = 2ho{2"/2"*wRo/R}2m) ™[] | x(@) log(1 - ¢™)|  (56)

where hg and R, are the values for kg, the product is taken over all odd
characters and the expression in curly brackets is equal to [0} : of |. For
further information on this last expression, see Exercises 1.8 and 3.9.

Suppose first that k is real. Let f be a factor of m; for what follows to be
non-trivial, f must be a multiple of f, for some non-principal x. Let Hy
be the image of H,, in Ay and ¢ a primitive f-th root of unity. Fix some a
prime to f and not in Hy, and let ¢ run through a half-set of representatives
of the classes mod f in Hy, so that the cmod f and the —cmod f together
represent all the classes in Hy. Then

[T ¢et=22(1 - ¢/ (1 ¢} (57)

is a unit in Q(¢) and is fixed by Gal(Q(¢)/k N Q(¢)) = Hy; so it is a unit
in k, and it is not obviously trivial. The units of k composed from —1 and
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18 Cyclotomic fields 71

these units are called the cyclotomic units of k. In general, it follows
from Theorem 11 that there are multiplicative relations among the units
(57) as a and f vary; but no one has sorted out the details. One should
expect that the right hand side of (55) is the regulator of a suitable set
of cyclotomic units; but this again is unproved. Both these are problems
which defeated Hasse, so they will not be easy. All that one knows is the
following.

Let x be a character mod f, but not necessarily with conductor f, let ¢
be an f-th root of unity, and write

S(x,¢) = )_ x(z) log(1 - (%) (58)

where the sum is taken over a set of representatives = of the residue classes
mod f prime to f. For any prime p we can obtain a character x* mod fp
by restricting the argument of x to be prime to p. Let &P = (; then

1-¢F)=1-)A-¢). - (1-g2 D). (59)
If p|f then substituting (59) into (58) gives S(x,¢) = S(x*,&). If however
p[f then we can write = py in (58) and obtain
S(x,¢) =Y x(py)log(1 — £77¥) + S(x*,€) = x(p)S(x, ) + S(x", ).

Thus in either case we have

We can now rewrite (55) as

RR{TITI0-xen} =TT - x @ gt - ¢zo)| - (60)

Here (,,, is a primitive m-th root of unity, the double product on the left is
taken over all primitive characters x induced by characters x* of A,,/Hp,
and over all distinct primes p|m, and the sum on the right is taken over a
complete set of representatives z for the elements of A,,/H,,. Of course,
this formula is only useful if no x(p) is equal to 1.

The right hand side of (60) can be expressed as a regulator by means of
the second part of the following lemma, due to Dirichlet.

Lemma 31 With the notation above, let the B(y) be variables indezed by
the elements of A/H. Then

I1 {ij;“ (yj)B(yj)} = det(B(y:y; ') (61)
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72 8 Special fields

where the x; run through the characters of A/H and y;,y; run through the
elements of A/H; and

IT {3 x:@)Bw)} = det(Bluiw;") - B(w) (62)

where the product on the left excludes the principal character and y;,y; on
the right run through the elements of A/H other than H itself.

Proof If we multiply the i-th row of the determinant in (61) by x*(v:)
and add all the other rows to the first one, the term in the j-th column
becomes x*(y;) Y x*(y)B(y); so the right hand side of (61), considered as
a polynomial in the B(y), is divisible by ¥ x*(y)B(y). Since this holds for
each x*, the right hand side of (61) is divisible by the left hand side. By
considering degrees, the quotient must be a constant; and by looking at
the coefficient of (B(H))™ that constant must be 1.

We can renumber the y; so that y; = H. By the argument in the previous
paragraph, the left hand side of (62) is equal to the determinant obtained
from that in (61) by replacing the first row by (1,1,...,1). Now subtract
the first column from each of the others. O

In each sum on the right of (60) we can write x = cy, where y runs
through representatives of the elements of A/H and ¢ runs through repre-
sentatives of the congruence classes mod f in H. Thus

Y X@ogl -6 =Y XY logll -Gz (63)

Let o ! be the element of Gal(k/Q) corresponding to the class of y; in
Ap/Hp,. Write

n = H; {(1 — ;&%)\ o€ €/ (1 - €c)} = \/Hc{(l - 0;€°)/(1-€°)}

where [’ is taken over a half-set of representatives of the classes modm
in H,, and [] is taken over a full set of representatives. Since \/o;£/¢ is
an integral power of £, the n; are cyclotomic units in k, and 7; = 1 since
oy is the identity. It now follows from (62) and (63) that the right hand
side of (60) is the regulator of n,... ,7y,.

We now turn to (56). Here every x is odd, so that

Y x(@)log(1 - ¢7%) = 3 ) x(x){log(1 - ¢™*) — log(1 - ¢*)}
= —mif 13" ox(2)

where z runs through all the integers prime to f with |z| < 1f. Taken
with (56), this gives a formula for h/hg in which all the terms are rational
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13 Cyclotomic fields 73

and easy to compute. That h/hy is actually integral is an easy consequence
of class field theory; see Exercise 5.3. There are elementary proofs of this
last statement, which are straightforward when k = k;,, but complicated in
general.

13.2 Fermat’s Last Theorem

A major motivation for studying k, was the possibility of applications to
Fermat’s Last Theorem — the assertion that

Xn+Yn=Zn, XYZ#O

has no solution in rational integers when n > 2. Since any integer greater
than 2 is divisible either by 4 or by an odd prime, it is enough to consider
the cases when n is either 4 or an odd prime p. The cases n = 3 and
n = 4 were proved by Fermat; for two versions of the argument when
n = 4, see Exercises 3.5 and 3.6. Although there is no way of knowing, it
seems likely that the argument which convinced Fermat in the general case
was of the same type as that given below, combined with the assumption
of unique factorization. The oldest recorded version of this argument is
due to Kummer in the mid-nineteenth century. He was able to make it
rigorous, but the price was the additional condition that p should be a
so-called ‘regular’ prime — that is to say, that the class number of Q(</1)
is prime to p. Though most small primes (including all p < 37) are regular
it is still not even known whether there are infinitely many regular primes.

It is enough to assume that there are integers z, y, z with highest common
factor 1 such that

P +yP =2P, Yz #0 (64)

and derive a contradiction. Denote by ¢ a primitive p-th root of unity and
write # = 1 — (. We separate cases according as p fzyz or p|zyz.

In the first case we can take p > 5, for if p = 3 each of z?,y?, 2P would
be congruent to £1mod9 and this contradicts the first equation (64). If
p 2 5 we write (64) in the form

(z+y)z+Cy) - (x +¢P7My) = 2P (65)

the factors on the left are coprime in pairs because they can have no com-
mon factor other than (7), and by hypothesis (7) does not divide the right
hand side. Hence each of these factors, viewed as an ideal, must be a p-th
power. But since h is prime to p, an ideal whose p-th power is principal
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74 3 Special fields

must itself be principal. Hence each factor on the left in (65), regarded as
a number, must be the product of a p-th power and a unit. In particular

z+(y=afu (66)

for some integer a prime to m and some unit u. If we use a bar to denote
complex conjugacy, then u/% is a unit all of whose conjugates over Q
have absolute value 1; thus it is a root of unity and must have the form
1 = £(™ for some m with 0 < m < p. Also a = @mod 7 by considering the
expression for o as an element of Z[p], and therefore (a/&)? = 1 mod pr.
Comparing (66) with its complex conjugate, we obtain

2+ Cy — n(z +¢'y) = 0modpr.

Multiplying this congruence by ¢ if m = 0, or by ¢% if m = p — 1, we see
that if m # 1 there is a polynomial f(T) in Z[T] of degree at most p—2, not
divisible by p but such that f({) = 0mod pr. But now g(U) = f(1-U) has
degree at most p — 2 and is not divisible by p, but g(w) = 0 mod pr; and
this is impossible because the terms in g(w) all have distinct valuations.
Thus m = 1 and n = £{. But now y = xmodp. If the lower sign held,
then z + y would be divisible by p, whence p|z contrary to hypothesis; so
T = ymodp.

Applying the same argument to (—z)P + 2P = yP gives —z = zmodp.
Now substituting back into (64) gives p = 3, and this has already been
ruled out. This completes the discussion of the first case.

Nearly all the difficulty in the second case is in the proof of the follow-
ing fundamental lemma. This was another of the precursors of class field
theory. An elementary proof, which goes back to Kummer, is sketched
in the exercise later in this subsection; in the text we derive the result
painlessly from classical class field theory.

Lemma 32 In the notation above, let € be a unit of k = Q(¢) such that
€ = o} mod nP for some o in of. Then either e = £P for some unit € in k
or plh.

Proof Suppose that the first alternative does not happen. The p roots of
X? —¢ form complete sets of conjugates, all sets being of equal size; so they
are all conjugate and K = k({/e) is abelian of degree p over k. But dg/x
divides p, by Theorem 20 applied to a = {/e. Lemma 30 shows that (r) is
unramified in K/k; so K/k is not ramified at any place. In the terminology
of §17 this means that H contains the group of principal ideals, so the ideal
class group has a quotient group isomorphic to Gal(K/k), whence plh. O
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18 Cyclotomic fields 75

For the second case of Fermat’s Last Theorem, again under the condition
that p fh, it is convenient to consider a more general equation. (We shall
use the method of infinite descent, invented by Fermat himself, and for this
it is essential to choose an equation which will descend to itself.) Suppose
that there are non-zero integers x,y, z in k, with = dividing z but not z or
y, which give a solution of

XP+YP =eZP (67)
for some unit € in k. Define n by 7|z, and write (67) in the form
(@ +y)z+Cy)- (T +(Ply) = e (68)

At least one of the factors on the left in (68) must be divisible by 7; so all of
them are, and the highest common factor of any two is 7a where a = (z,y)
is prime to (7). Hence the factors on the left use up the p residue classes
mod 72 divisible by =, so that one of them is divisible by 72; multiplying y
by a power of ¢, we can take this factor to be  +y. Thus «||(z + ("y) if
pfr, and 7P~ D+1||(z 4 y); in particular n > 1.

The product of the ideals associated with the factors on the left of (68)
is a p-th power, and the highest common factor of any two of them is a;
so as ideals

(zx+¢"y) =mab? forr=0,1,...,p—1. (69)

Let ¢ be an integral ideal in the class of by!, divisible by a but not by ().

Thus a~!cP is principal and hence equal to (3) for some 3 in ok, so that
(69) becomes

(Bz + (" By) = m(cby ).

Since h is prime to p and (¢b,)? is a principal ideal, so is ¢b,; if it is equal
to (a;) then

Bz + "By = meral

for some units ¢,. Here 7" !||ap and the other o, are prime to 7. Com-
bining the equations with r = 0,1 and p — 1 gives

e1a] + Ce—10? | = (1 4+ ()eoad.

This implies that (e_16]! = (—a1/@-1)? mod 7P, so (e_ €7} = 5? for some
unit 7 by Lemma 32. Thus

of + (na-1)” = (1 + Q)eoey 'af,

and here (1 + ¢)epey ! is a unit. So we have generated another solution of
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76 3 Special fields

(67), and indeed one with 7"~ 1||ag. If we assume that z,y, z were chosen
to make n as small as possible, we obtain a contradiction. This completes
the discussion of the second case.

By a refinement of this argument, it can be shown that the second case is
impossible under the weaker hypothesis p fho, where hy is the class number
of Q(¢ +¢1), the maximal real subfield of Q(¢). (That this hypothesis
is weaker than p fh is a special case of Exercise 5.3.) Vandiver conjectured
that p never divides hg, and this has been verified by computer for all
p < 4 x 108, But naive probabilistic arguments suggest that counterexam-
ples to Vandiver’s conjecture should be so rare that no feasible amount of
computation is likely to produce one.

Exercise The object of this exercise is to provide an elementary proof of
Lemma 32. The first half consists of the following key result. It can be seen
as a statement that a certain cohomology group is non-trivial — though
this interpretation does not make the proof easier. We continue to denote
the field of p-th roots of unity by k.

Lemma 33 Let K be cyclic of degree p over k and let o be a generator of
Gal(K/k); then there is a unit n of K such that normgxn = 1 but 1 does
not have the form ¢/oe for any unit ¢ of K.

Note that if we did not require € to be a unit, Lemma 4 would allow us to
satisfy 7 = e¢/oe. Write

Uy = O%/ox, U =U;/{torsion part of U;}.
It follows from Theorem 11 that
e U is a free abelian group on %(p — 1)? generators.

Our terminology will reflect the fact that U is multiplicative. In particular,
if f(X) =Y a,X" is in Z[X] we write af(?) = [[(¢¥a)® for any a in K.
Let F(X) =14---4 X?~! and recall that F(X) is irreducible in Z[X] by
Theorem 27; then 6F(°) =1 for every 6 in U. Denote by S(4,,... ,6,) for
any 01,...,0, in U the set of 0”0, for v =0,...,p—2andp=1,...,7.
Write m = 2(p - 1).

e We can find 6y,... ,0,, in U such that the elements of S(8;,...,0,,) are
multiplicatively independent.

Suppose that we have chosen 6;,... ,8, where 0 < r < m, and let 6,4, in

Downloaded from https://www.cambridge.org/core. University of Toronto, on 06 Sep 2020 at 20:54:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB0O9781139173360.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.004
https://www.cambridge.org/core

13 Cyclotomic fields 77

U be multiplicatively independent of S(f,... ,6,). Suppose there were a
relation of the form
r+1
folo) —

szlap 9) =1 (70)
where the f,(X) are polynomials of degree at most p — 2 in Z[X] and
fr+1 # 0. Then we could find ¢g(X),h(X) in Z[X] and N # 0 in Z with
9fr+1 + hF = N. Raising (70) to the g(c)-th power gives

T
gﬁlnlg’{p(a)g(a) =1,

which contradicts the hypothesis on 6,..;. It follows from the last two
results that S(61,... ,0,;) spans a subgroup of finite index in U.

o If 6,,...,0,, are chosen so that the index of S(fy,...,0y) in U is as
small as possible then no 8, has the form 817 with § in U..

Suppose otherwise. It is enough to show that 8 is not in the subgroup
generated by S(6y,...,0m), because then replacing 6, by 6 will replace
this subgroup by a strictly larger one. Let

fX)=@-1)+@-2)X+---+XP?

so that (1 — X)f(X) = p — F(X) and so 67 = 6/°). If 6 were in the
subgroup generated by S(6,, ... ,60,,) we would have a contradiction. Now
note that 65, = (0,{(”))1“’ and deduce that if a is prime to p then 6% # 6'~7.
Applying an integral unimodular transformation, deduce:

e ifay,...,a,, are integers not all divisible by p then [] 85* does not have
the form 61~¢ with 4 in U.

Now let ¢ be a primitive p-th root of unity. In proving the lemma we can
assume ¢ = £179 for some unit £ in K, for otherwise we can take n = (.
Hence £P = normg € is a unit in k, and £ is not in k. Now lift each 6, to
a unit 77, in K and consider the map

¢ : {group generated by the n,} — o /{p—th roots of unity}
induced by normg ;. There are three possibilities:

(i) £€P is a primitive p-th root of unity. Let n* be a primitive element in
the kernel of ¢, and choose 7 to be a product of (n%)® with a prime
to p, a power of £ and +1 such that normg /kn = 1.

(ii) No non-trivial power of £? is in the image of ¢. The kernel of ¢ has
rank at least 2, so that there is a primitive element 5 in the kernel
of ¢ such that normK/kn‘t = +1. Take n = +nt.
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78 3 Special fields

(iii) Neither (i) nor (ii) holds. Now there is an element 7’ in the group
generated by the 7, such that (normK/knb) /€P is a root of unity
for some b > 0. Show that we can assume that 7" is not a p-th
power and proceed as in (ii), using 7° /€% and the kernel of ¢.

This completes the proof of Lemma 33. For the proof of Lemma 32 let
7 be as in Lemma 33. We can assume that ¢ is not a p-th power in k; if we
write K = k({/¢) then K/k is cyclic of degree p. It follows from Lemma
4 that there is an integer 8 in K such that n = 8177, As an ideal, (8) is
invariant under Gal(K/k). By considering the prime factorization of (3)
and using the fact that there is no ramification in K/k by Lemma 30, show
that () = conormg;b for some ideal b in k. For b to be principal would
contradict Lemma 33; on the other hand b? = norm/«(6) is principal. O
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4

Analytic methods

14 Zeta functions and L-series

A fundamental tool in the study of prime numbers is the Riemann zeta
function

) =Y n=JJa-p)", (71)

where the sum is over all integers n > 0 and the product is over all primes
p; that the two are equal is equivalent to unique factorization. The sum
and product are both absolutely convergent in Rs > 1, and ¢(s) ~ (s—1)71
as s — 1 from the right. The first non-trivial property of {(s) is that it can
be analytically continued to the entire s-plane, subject to a simple pole at
s =1, and that it satisfies the functional equation

¢(1 —s) = 21272 (s)¢(s) cos ims;
this equation is equivalent to saying that
Z(s) = L(38)7=*/%((s) (72)

is unchanged by writing 1 — s for s. As we shall see below, the extra
factor in (72) can be regarded as the missing factor in the product (71)
corresponding to the infinite prime. The other fundamental property of
{(s), assuming it is true, is the Riemann hypothesis: that the only zeros of
Z(s) lie on the line Rs = 1.

The problem of the distribution of primes in arithmetic progressions led
to the study of the Dirichlet L-series

L(s,x) = Y x(mn~* = [[(1 - x(w)p~*) ™! (73)

where x(n) is a congruence character mod f for some integer f — that
is to say, x(n) = 0 when n is not prime to f, and if n is prime to f then y is

79
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80 4 Analytic methods

induced by a character on the group of residue classes prime to f. L(s,x)
can also be analytically continued over the whole s-plane, though without
a pole at s = 1 if x is non-trivial, and it satisfies a functional equation of
the form

L(l -85 X) = f(S, X)L(va)

where f(s,x) is a known and comparatively simple function. This equation
cannot easily be put into a symmetric form; in fact f(s,x) involves a Gauss
sum and any symmetry would induce an identity between Gauss sums.
There is also a Riemann hypothesis for L(s, x).

Quite generally, to call a function a (global) zeta function or L-series is
to assert that it is a Dirichlet series )_ a,n~*, and that after normalizing
if necessary by writing s — sq for s it has four key properties:

(1) It can be written as an Euler product [] ¢,(p~*) where each ¢,(X)
is a rational function of X; note that this makes no allowance for
factors corresponding to the infinite prime.

(ii) The series and product converge absolutely in Rs > 1 but no further;
and they can be analytically continued to the entire s-plane subject
to possible poles at s = 0 and/or 1.

(iii) There is a functional equation connecting L(s) with L(1 — 3), where
the latter expression is often obviously the same as L(1 — s).

(iv) The non-trivial zeros of L(s) lie on Rs = 1.

The function may also have zeros at z = —n for certain n > 0; these should
be thought of as the consequence of failing to include a factor corresponding
to the infinite prime in the product required by (i). Fortunately, these four
properties only need to be asserted as conjectures and not as proven facts;
indeed modular forms give rise to examples where even (i) is not trivial,
and there is as yet no case where (iv) has been proved. On the other hand, I
know of no case in which the second part of (ii) has been proved without the
argument simultaneously proving (iii). A function having these properties
is usually called a zeta function if it has a pole at s = 1 and an L-series
otherwise; but this is not a firm rule.

For an arbitrary algebraic number field k, the only possible analogue of
the Riemann zeta function which satisfies (i) above is

Gu(s) = Y (Norma)™ = [J(1 - Normp)=)%,  (74)

where the sum is over all non-zero integral ideals a and the product is over
all prime ideals p. Again, this identity is equivalent to unique factorization.
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14 Zeta functions and L-series 81

To any rational prime p there correspond at most [k : Q] primes p; so the
product is absolutely convergent in R®s > 1 and hence so is the sum.

It is reasonably easy to study the behaviour of {i(s) as s — 1 from the
right. One rewrites the Dirichlet series as

(o o]
Gh(s) = 3 aun~* = 571 / += 1 A(w)ds
0
where A(z) = 3, ¢, an; 50 it is enough to estimate A(z). The calculation
is essentially that in the proof of Theorem 23, and the conclusion is

(s — 1)Ck(s) = 27 (27)™2|d|"?hRw™! as s — 1. (75)

We shall not carry out this process explicitly because the result is contained
in Theorem 28 in the next section. The formula (75) is among other things
the starting point of the proof of the Brauer-Siegel Theorem: that if k is
Galois over Q then

log(hR) ~ 1log|d| as |d| — o0 (76)

for fields of any fixed degree; see [L], Chapter XVI. Empirical evidence
suggests that if r; + r2 > 1 (so that R is non-trivial) then logh is usually
very small compared to log |d|, though this is not so for the families of fields
which one is most likely to write down; but it is very unlikely that there is
anything analogous to (76) for h or R separately.

Analytic continuation and the functional equation for {x(s) are much
more difficult, and were only proved by Hecke in 1918 in a remarkable
paper. With the advantages of hindsight, the basic idea of Hecke’s paper
is fairly natural; but the details are complicated and the proof depends on
what appears at first sight to be a lucky accident. Hecke’s first result was
that

Ce(s){m™*/*T(38)} ™ {(2m)' ~*T(s)} " |di[*/ (77)

is unchanged on writing 1 — s for s. It is now natural to guess that
7~*/2[(1s) and (2r)!~°I(s) are the missing factors in the product formula
for {x(s) corresponding to a real and a complex infinite place respectively,
even though they look totally unlike the factors in (74) coming from the
finite primes. We have already seen that the discriminant d = £Norm?d is
conductor-like, so that the factor |di[*/2 = (Normd)*/? should be thought
of as related to the conductor of the field k.

For L-series, the situation is more complicated. Choose a finite set S of
prime ideals and denote by IS the group of those fractional ideals whose
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82 4 Analytic methods

prime factorizations do not involve any ideal in S. Let x be a character of
IS and write

L(s,x) = ¥ x(@)Norma)~* = [J(1 - x(p)Normp)~*)"*  (78)

where the sum is restricted to integral ideals in I and the product to
prime ideals not in S. To prove analytic continuation and a functional
equation, we need to impose certain conditions on y which constitute the
definition of a Hecke Grossencharakter. However, the appropriate factors
for the infinite places are no longer those that appear in (72) and (77);
we have to replace s by s + s,, where s, depends both on x and on the
particular place we are looking at. Replacing x by x~! reverses the signs
of all the s,. Write

D(s,x) = [] fr= 720 (L (s + s} {(@m)'~*~*T(s + 5.)}

where the first product is taken over the real and the second over the
complex places. Hecke’s second result was that

A(s,x) = L(s, x)T(s, x){Norm(f0)}*/2 (79)

is multiplied by a number of absolute value 1, depending only on x, when
s is replaced by 1 — s and x by x~!. He expressed this last number as a
finite sum, which generalizes the Gauss sum which appears in the classical
case k = Q.

Tate’s thesis, which was written in 1950 but not published until 1967 (as
Chapter XV of [CF]), presented a new proof of analytic continuation and
the functional equation, using the language of adéles and idéles. General
theory now replaces the heavy calculations needed by Hecke, but some at
least of the ideas remain the same. Tate’s proof is given in the next section.

A completely different generalization of the L-series (78) was introduced
by Artin. To explain his motivation, we return to (73). Let K be the field
of f-th roots of unity. By the Corollary to Theorem 27, we can interpret
x as a character on Gal(K/Q); and (73) then becomes

L(s.x) = [T (1 - x((%@)p)

where (%g) is the Artin element and the product is taken over all p
prime to f. If we assume the assertions in §17, we can give an exactly
analogous interpretation of (78) in terms of a certain abelian extension
K/k. What Artin did was to consider extensions K/k which are Galois
but not necessarily abelian. Instead of a character x it is now necessary
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15 The functional equation 83

to use a representation p of Gal(K/k) — that is, a homomorphism p :
Gal(K/k) — GL(W,C) where W is a finite dimensional vector space. If p
is a prime ideal in k unramified in K/k and P is one of the primes of K
above p, then the associated factor in the Artin L-series is

{det{I — p([%fX])(Normp)~*}} 1,

which does not depend on the choice of P or of p within its equivalence
class. We have still to take account of ramified primes. If p is ramified in
K /k then the Frobenius element [%&] is a coset of the inertia group Tip;
so the space it naturally acts on is W7, the subset of W whose elements
are invariant under the action of T via p. Thus the L-series which we are
led to consider is

L(s,p) = Hp {det{I — (Norm p)"p([%’f]) acting on WT}}_1 .

This is the Artin L-series.
For any o in Gal(K/k) the characteristic roots of p(c) have absolute
value 1; so the product is absolutely convergent in R(s) > 1. Clearly

L(s,pr + p2) = L(s, p1)L(s, p2);

and if p is the principal representation (for which dimW = 1 and every
p(o) is the identity) then L(s, p) = Cc(s). It is known that L(s, p) can be
analytically continued to the whole s-plane as a meromorphic function and
that it satisfies a functional equation of the usual type. It is conjectured
that if p is irreducible and non-principal then L(s, p) is everywhere holo-
morphic. The importance of this conjecture is that it would imply that
Ck (8)/Ck(s) is holomorphic for any algebraic number fields K,k with K
Galois over k.

The expression for (x(s) as a product tells us how rational primes p
factorize in K. Suppose for convenience that K is normal over Q and let
L be any field intermediate between Q and K. If we know how p factorizes
in K then Theorem 16 tells us how it factorizes in L. Since there are only
a very limited number of possibilities to consider (especially if we confine
ourselves to unramified primes, as in fact we can), we can reasonably hope
to have product relations between (x(s) and the various ¢z (s) including
¢q(s). All this is more easily understood from the example to be found in
§12. For the general theory, see [FT], Chapter VIIL.7.
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84 4 Analytic methods

15 Analytic continuation and the functional equation

In this section p* will denote the Haar measure on Vj, normalized so that
pt(Vi/k) = 1, and p will be a Haar measure on Ji; we shall defer for
as long as possible introducing the factor which comes from the particular
normalization of g which we chose in §A1.3. We now define a Tate zeta
function; we shall see later how it relates to Hecke’s zeta function. Let x
be a continuous character on Ji which is trivial on k*; we shall call such a
character a Tate character. Let f : Vi, — C be a function so well behaved
that all the formal manipulations which follow are valid. By analogy with
the Fourier transform on J; we define

C(frx8) = /J Fe)x(a) el *dp, (80)

where we require f(a) to die away so rapidly as ||a|| — oo that the integral
converges absolutely in some right hand half-plane Rs > 0. This formula
defines an analytic function of s in this half-plane; our main task is to
continue it to the entire s-plane. For this it is crucial that x is trivial on
k.

We divide Ji into two parts: J> on which ||a|| > 1 and J< on which
|l < 1; we can ignore the part with |ja| = 1 because it has measure
0. The integral over J~ is absolutely convergent and defines an analytic
function for all s, since these properties hold for Rs > oy; it is the integral
over J< which we have to worry about. Let S be a fundamental domain
for the action of k* on J< and write J< = U£S where £ runs through the
elements of k*; then

[ rex@tara = 3 [ sl

£ in k*

=/S Y flek) x(a)llall"’du—f(ﬂ)fx(a)llall”du'

¢in k s

In the first term on the right we apply the corollary to Theorem A6 (the
Poisson Summation Formula); since u* (Vi /k) = 1, we can replace the term
in curly brackets by

el =Y, . Flate).

Write 87! for a and note that in an obvious notation du(3) = du(a) and
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15 The functional equation 85

81 is a fundamental domain for the action of k* on J>. Thus

[{ T #eo) px@lalau= [ § ¥ flate) b xi@lal*du
Sleimk s

§ink

=/s_1 Y f(8E) g x(B MBI dp.

§in k

Defining X by X(8) = x(8~') and interchanging integration and summa-
tion,

| ex@laldu+ 10 [ x(@laldu
J< S

; ) (81)
= [ femene -+ F0 [ s@)el-dn
J> S-1

Let us further assume that f(8) dies away so rapidly as ||| — oo that
¢( f, %, s) also exists for Rs large and positive; then the first integral on the
right exists for all s.

We must now look at the second term on each side of (81). Suppose first
that x is not trivial on J}, and choose v in J} with x(v) # 1. Writing ay
for o, we obtain

[ x@lalds=x) [ x(@)laldu
S S

so this expression must vanish. Hence in this case the second term on the
left in (81) vanishes, and the same is true of the second term on the right.
On the other hand, if x is trivial on J} then the value of x(c) depends
only on ||| and hence x(a) = ||| for some pure imaginary ¢, since these
are the only characters on Ji/J} ~ R*. Here we can set ¢ = 0, which is
equivalent to absorbing ¢ into s. Using the decomposition Jx = J}} x (0, 00)
by which we defined the induced measure on J}, we obtain

1 1/ 71 /1%
/ lleel*dp = (73 /k*) / pdt _ e/R)
S o ¢t s

where p! is the induced measure on J{. The other similar integral is equal
to u!(J}/k*)/(s — 1). Thus we finally obtain

Theorem 28 Assume that if x is trivial on J} then it is normalized so as
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86 4 Analytic methods

to be trivial on J,. Then under suitable conditions on f,

(o) = [ (@@l + feR(@lal=)ds
+ ({@1— - f—“’z) e

where the last term only occurs if x(a) is trivial. The right hand side is
analytic in the entire s-plane except for the possible poles at s = 1 and
8 = 0 arising from the last term on the right. Moreover

C(f, X s) = C(fv ’X\v 1- 8). (83)

The last sentence follows immediately from the main formula, bearing in
mind that we have identified f/; with Vi, so that the transform of f (a)
viewed as a function on Vj is f(—a).

Note that (82) is homogeneous in the Haar measure p on Jj, so that
we have not yet committed ourselves to a particular normalization of u.
Subject to this, the value of p!(J}/k*) can be read off from Theorem 23.
The reader will have noticed that we have not used the fact that y is a
character, but only that it is multiplicative; so we could have taken x to
be any quasi-character Jr — C* trivial on k*. But this apparent extra
generality is spurious. For since J/k* is compact, X induces a character
on J}; and since the kernel of the map a — || is J}, we must have
|x(ex)] = ||||¢ for some real c. Now replacing x by the character & —
lle]l=¢x(cx) is equivalent to replacing s by s — c.

(82)

To make use of these results, we need to evaluate the integrals which
define f and ¢; and in any case we need to ensure that our hypotheses on
f and x can be satisfied. It is natural to choose f and x to be products of
functions defined on the factors k, and k] respectively:

f(€&) = va(ﬁv)’ x(a) = HXv(av)-

The easy way to ensure that these products converge is to require for almost
all v that f, = 1 on 0, and X, = 1 on o}. If we also require f, to vanish
outside o, for almost all v, then

f€)= [ seoteman =TT Feo
k
for the integral over Vj is equal to the product of the integrals over the k,

and c(a) = [] ev(aw)-
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15 The functional equation 87

A similar argument gives the corresponding result
oxs) =TT [ floixslenlanlidun, (84)
v v

where now the measure on Ji is the product of the measures on the &}, as
in Theorem 23. For if v is p and f, vanishes outside o,, the corresponding
factor is

o0

Go(for xpy 8) = Z/

ot fp(ap)XP(ap)”ap”;dﬂn- (85)
n=0"P"\P"

Here the n-th term is the product of (Normp)~"* and a coeflicient inde-
pendent of s. If the formal product of these series is absolutely convergent
and so are the remaining integrals in (84), then the non-zero terms of the
product are precisely the ones we need for an integral over J}. Here we
treat the product over the non-Archimedean valuations as a Dirichlet series
and therefore only retain the corresponding terms in the product; this is
the same convention which we used to expand the Euler product in (71).

We now evaluate the local factors for those primes p for which x, = 1
on o;. We choose

[ 1 for& in oy,
F3 (&) —{ 0 otherwise.

If o, denotes the local different for k/Q at p then as in §A2.2

(86)

s~ ] + _ [ (Normd,)~"Y/2 for n, in 0,2,
Fo(mp) = /o i exp(27rup'ﬁ‘(fp77p))dﬂp = { 0 otherwise,

because the integrand is a character on o, which is trivial if and only if 7,
isin 9, !, By hypothesis xp(ap) depends only on |lap||p, and must therefore
have the form

Xp(ap) = ||Ol|a||f;l

for s, pure imaginary; here s; may depend on p. Using (85), the corre-
sponding local factor of the zeta function {(f, x, s) is then

) (xp(m))*(Norm p™) ~* = (1 — x,()(Norm p)~*) !
0

where 7 satisfies p||7. Similarly, if p”||o, the local factor of (( f.%,8) is
(Norm,)*~!/2x(n")(1 - X3 (m)(Normp)~*)™".

Let S be a finite set of places which includes the Archimedean places and all
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88 4 Analytic methods

the primes p excluded from the discussion above. Write x*(p) = x,(w) for
all p outside S and use multiplicativity to extend the definition of X’ to I,
the group of those fractional ideals in I, whose factorizations do not involve
any prime ideal in S. We shall see in Lemma 34 below that the characters
x” obtained in this way are precisely the Hecke Gréssencharakters, and
L(s,x") below is the Hecke L-series. Thus up to finitely many factors
corresponding to the places in S,

¢(fix8) = [J(1 = X (p)(Norm p)=*)~*,

where by analogy with (78) it is natural to call the right hand side L(s, x°).
It follows from (83) and the expressions above for the local factors that

L—(_]:;_S_L)Elz b~ 1\(N s—1/2 Co(for X0, 8)
L(S,Xb) X(a* )( Ormb*) HSCv(ﬁ”)’(:’l—_s) (87)

where ?, is the product of the 9, for p not in S. In other words, we get a
functional equation for L(s, x*), provided that the local characters x, have
been chosen so that x = []x, is trivial on k*. To satisfy this condition,
we need to see what local characters x, are available.

Suppose first that v comes from a finite prime p. The 1 + p™ are a
decreasing sequence of small subgroups, in the sense explained on page
126; so X, is trivial on those which have m > m,, where we take m, to
be as small as possible. We call p™» the conductor of the restriction of
Xp to o}; that restriction is induced by a character on the finite group
0,/(1+p™¢), and we are free to select any such character as x,. Now fix
an element 7 in k* with p||7 and write ap = 73, where , is in o}; if we
define s, by x,(7) = ||«||p* then the most general x, is given by

xp (%) = xp (Bl 3"

Here s, is really an element of iR mod (27i/log ||7||p) rather than of iR.
Next suppose that v is real. Since the characters on (0,00) are just the
z — x5 for some pure imaginary s,,, there are just two classes of characters:

Xo(Z) = |z|> or xu(z) =|x|*signz. (88)

Finally, suppose that v is complex. Let z = re®; then by considering the
restrictions of x, to § =0 and to r = 1 we obtain

Xo(z) =1 el (89)

for some pure imaginary s, and some integer n,. The effect of increasing
all the s, by the same constant ¢ is to multiply x(a) by |lc||¢, which is
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15 The functional equation 89

equivalent to a translation on s; but in general there is no obviously natural
way of choosing c. Also, replacing x by x~! reverses the signs of all the s,,.

We have still to ensure that x = [] xy is trivial on k*; we achieve this
by forcing x to be trivial successively on roots of unity, on o} modulo
roots of unity, and on k*/o}. First choose the presence or absence of the
factor signz in (88) for each real valuation and the value of n in (89) for
each complex valuation. Choose also a finite set S of non-Archimedean
valuations (which will be the ones for which x;, is non-trivial on o;) and for
each of them choose a character X, on oy, subject only to the condition that
x(w) = 1 if w generates the group of roots of unity in k*. The conductor
of x, denoted by f, will be the product of the local conductors p™» defined
above. We shall show that for each set of such choices there are exactly h
admissible characters x, where h is the class number of k.

The values of s, for the Archimedean valuations are determined up to
the addition of a common constant by the condition that x is trivial on
a base for o; modulo roots of unity; for this imposes r; + ro — 1 linear
conditions on these s, whose determinant (with some abuse of language)
is the regulator. These equations have the form ) a,,s,, = ib, where the
Gy, b, are real; so we can take the s, to be pure imaginary. In view of
the remarks after (89) we can assume a fixed choice of these values. Now
denote by J,tc'i" the group of idéles @ = [] B, such that 8y is in o} for each
p; thus J*V is both the kernel of the map Jy — Ii and the set of idéles for
which the choices above have already determined the value of x. There is
an exact sequence

0— o0} —k* x JFY — Jp — G — 0, (90)

in which the middle map is o x B8 — a~'8 and the one following it is
Jir — I — Ci. Define x on the image of ¢ by x(¢(a x 8)) = x(8) where
¢ is the middle map in (90); x is well-defined because 3 is determined up
to multiplication by an element of o and we have already arranged that
X is trivial on o}. Using Theorem A1, we see that x can be extended to a
character on Ji in just h ways; and it is easy to see that these are precisely
the characters on J;, which extend the restriction of x to J* and are
trivial on k*.

To express the condition which defines a Hecke Grossencharakter ¢ for an
algebraic number field k requires an integral ideal f of k, a pure imaginary
number s, for each infinite place v of k and a rational integer n,, for each
complex place v. Let S be the set of prime ideals which divide § and denote
by IS the set of fractional ideals in k whose prime factorization involves no
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90 4 Analytic methods

ideal in S. A character ¥ on I is called a Hecke Gréssencharakter if

¥((@)) = {[Tlovel™ }{IT (eva/Ioval) ™} (91)

whenever a = 1modf and o,a > 0 for all real embeddings o, : £ — R.
In (91) o, is the embedding ¥ — C, the first product is taken over all
infinite places and the second over all complex infinite places. For given f
we are free to choose the n,, but there are considerable constraints on the
sy arising from the fact that ¥((a)) = 1 whenever a is a unit.

Lemma 34 The characters x* derived from Tate characters x are the Hecke
Gréssencharakters.

Proof Let x be a Tate character with conductor f, and let n,, s, be as in (88)
and (89). If a is as above then xp(a) = 1forpin S, s0 1 = x(a) =[] xu(@)
implies

(@) = Hp ot in sxp(a) = {H Xv(a)}_l

where the right hand product is over all Archimedean v; and this is (91).

Conversely, suppose that v satisfies (91). We shall require x to have
conductor f, so that x; for p not in S is completely specified by the require-
ment xp(7) = ¥(p). Since x* only depends on these X, (), this ensures
that x* = 4 if we can construct x at all. If v is Archimedean then Y, is
specified by (88) and (89) where n,, s, are as in (91), except that we have
still the choice between the two alternatives in (88). By the argument of the
previous paragraph we have ensured that x(a) = 1 for all & = 1 mod f such
that « is positive at all real places. If merely a = 1 mod f then x(a?) = 1;
since

{a =1modf}/{a =1modf and a > 0 at all real places} =~ {£1}",

there is just one way of making the r; choices (88) so that x(a) =1 for all
a = 1mod{. Similarly there is then just one way of choosing x, on oj for
each p in S so that x(a) = 1 for all a which are units at p for each such
p, and finally just one way of choosing the x,(7) for p in S to ensure that
x(a) =1 for all & in k*.

All that is left to do is some tidying up. It follows from (87) that the
quotient

Cv(ﬁn ;(;, 1- 3)/Cv(fv’ Xv» 3)

does not depend on the choice of f,. This can be proved directly, because
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15 The functional equation 91

it is equivalent to

Co(fos X S)Cv(!j;ni;al - 8) = Co(Gvy Xv» S)Cv(ﬁu Xv,1— s)

for any admissible functions f,, g, on k,. The left hand side here is

/ / £o(@)3 (B)xo(@B~ ) 10B S 1Bl disadiss
kx Jkz

i / {/k fole)gulen)lely dua} xo (Y DIV dysy

k3

on writing 8 = a. Since ||a|j,die = Apdul for a constant A, whose value
is unimportant, the expression in curly brackets is

% [ e {[ aBe(a) it} du

where ¢, is the additive character which appears in the Fourier transform.
This last expression is clearly symmetric in f, and g,,.

Nevertheless, we should choose these f, to make everything as simple as
possible. If v is real the best choice for f, is

_ J exp(-mz¥) if  xu(%) = |z]*,
fo(z) = { zexp(—mz2) if  xo(x) = |z|*signz, (92)

where the reader is warned that 7 denotes 3-14159... when discussing
infinite places. Now f,(z) = fy(z) in the first case and f,(z) = if,(z) in
the second. Indeed these are just the identities

{o o}
/ exp(—my? + 2mizy)dy = exp(—7z?), (93)
—00
o0
/ yexp(—my? + 2mizy)dy = iz exp(—7rz?), (94)
- 00

where (93) is standard and (94) is obtained by differentiating with respect
to z. The corresponding factor ¢,(fy, Xv, s) reduces to the standard integral
for the Gamma function; its value is 7~(*+2:)/2'(1(s + s,)) in the first
case and w (st +D/2(1(s + 5, + 1)) in the second. Similarly the value
of ¢, (ﬁ,, Xv,1 — s) is obtained by writing 1 — s for s and reversing the sign
of s,, and also multiplying by i in the second case.

If v is complex then we write z = z + iy and in an obvious notation take

fon = (z —iy)™ exp(=27(z2 + y?)) if n>0,
YT (x +dy)lexp(—2m(z? +42) if n<O0.

Downloaded from https://www.cambridge.org/core. University of Toronto, on 06 Sep 2020 at 20:54:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781139173360.005


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.005
https://www.cambridge.org/core

92 4 Analytic methods

I claim that this gives f/v,\n(z) = i™l f, _(2). The minus sign on the right
ensures that X(re®) = r=2%v¢~9 For n = 0 the assertion is that

o0 o0
/ / exp(—2m(u? + v?) + 4mi(zu — yv))du dv = § exp(-2n(z? + ¢?)),
—~00 J ~00

which is just the product of (93) with itself. The general case is now

. . b 2 n., 8 _ .8 -n
obtained by applying the operator ( 57 + 1 By ifn>0,0r {5 —1 By

if n < 0. The factor {,(fo, Xv, 8) is (2m)1~2~2++nl/2D(s + 5, + L|n|). The
value of Cy(fy, X, 1 — $) is again obtained from this by writing 1 — s for s
and reversing the sign of s,.

The remaining cases are when v is non-Archimedean and p|f. Now we
can no longer define f;, by (86) because (p(fp, Xp, $) would vanish if we did
so; there is no obviously best choice for fy, and we shall take

fola) = c1(z) = exp(27i Try, )q,(z)) for zin b;lfgl,
P 0 otherwise

in the notation of Lemma A6, where f, is the conductor of x, as on page
88. Thus

foly) = /a .

1

+ _ [ (Normd,)/?Normf, if y = 1modfp,
1 c1-y (@) dpg = { 0 otherwise,
by Lemma AS5. If for convenience we define m,r by p™||f,, p"||0p, then

oo

o= 3 I [ e du

n=—m-r

I claim that every term in this sum vanishes except the first.
Suppose first that n > —r, so that ¢;(x) = 1 on p* \ p"*1. Writing
z = 7"y, the integral becomes

/ xXp(x) dptz = xp(n™) / Xp(y)dpy =0
pr\pnitt [

because the restriction of x, to o; is non-trivial.
Now suppose that —m —r < n < —r. We write p™ \ p**" as a union of
sets o + p~" = zo(1 + p~ ™). On such a set ¢1(z) = c1(xo), s0

/ e1(@)xp(@) ditz = 3 €1(20)xp(20) / xo () dity;
ﬁn\p"*’l zo 1+p—n—r

n+1

but 0 < —n — r < m, so X, is a non-trivial character on 1+ p™"~" and
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15 The functional equation 93

each integral on the right vanishes. Thus finally
Co(fpr Xp» )

Cp(j;v Xp:1—8)

where writing z7#~™"" for  in the integral gives

Wo(xs) = (Norm,)!/? ] @™ @) dae. (%)

*
%

= (Norm fy0,)* " 2x5 (1) ™ "Wy (xp),  (95)

If, copying the earlier argument, we write £ = ¢(1+y) where € runs through
a set of representatives for o;/(1 + p™) and y is in p™, then we obtain

Wo(xp) = (Normfp) ™2 ) Jer(en™™ ") xp(e)
which can be described as a generalized local Gauss sum. The canonical
property
We(xp)| =1 (97)
can be proved as in §13.1, or we can argue as follows. On the one hand, the
factor associated with p on gle right of (87) is independent of the choice of
fp. If instead we use gp = f, then g,(z) = fy(—z); so this factor is equal
to
. -1
SO0 Xp:8) _ o py) olferXe, 1~ 8)
=~ = xp(-1) =
Go(for Xpr 1= 3) G (fpr Xp:5)
= xp(—1)(Norm (2,f,))° /x5 (x™*7) /Wy (%)

by (95), where the factor x,(—1) comes from the need to write —z for «
in the integral (96). Now set s = % and write X, instead of x,; comparing
the last result with (95) we obtain

W (xp)Wp (xp) = xp(—1)-
On the other hand, it follows from (96) on writing —z for z that
Wo(xp) = xp (—1)W,(3G) = xp (1) Wy (X)-
These two results together give (97).
We can now finally write down the functional equation in full detail. We

again define A(s, x) by (79), though now I'(s, x) is the product of factors
for each infinite place which are

a~ (#4220 (L(s + 5,)) for the first case in (92),
a8 +D/20(1(s 4 5, + 1)) for the second case in (92),

(@m)~emsHnl/2r(s 4 5, + %In|) if v is complex.
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9 4 Analytic methods

Combining all our previous results now gives

AL—s,%) _ .
5o =" [T Welx)
A x) AL
where ¢ is the number of real places for which x,(z) = |z|**signz. a

16 Density theorems

Euclid proved that there are an infinity of rational primes. Dirichlet proved
that any congruence class modn which is prime to n contains an infinity
of primes; and a much more general theorem of Cebotarev will be found
below. On the other hand, it has not been proved that there are an infinity
of n for which n? + 1 is prime, or for which n and n + 2 are both prime.

Most proofs that there are an infinity of primes having a given property
depend on showing that the set of such primes has positive density. There
are two standard measures of density even for sets of rational primes, and
they both generalize to an arbitrary algebraic number field k. Let S be a
set of prime ideals of k and Sy the set of all prime ideals of k. The most
common definition of the density of S is

limx 00 (N(S, X)/N(So, X)) (98)
provided this limit exists; here N(S, X) is the number of prime ideals p
in S which satisfy Normp < X and similarly for N(So, X). The prime
number theorem for k (which we shall not prove) states that
X
log X
The alternative measure is the Dirichlet density, which is defined as

lim {Z, " S(Normp)"‘/zp o so(Normp)"’} (99)

s—1

N(So, X) = (1 + o(1)).

provided this limit exists. In order not to have to prove analytic con-
tinuation, it is usual to take the limit as s tends to 1 from above. The
denominator in (99) is asymptotic to —log(s — 1), as can easily be seen
from (74) and (75).

Whether we work with (98) or (99), the density of S depends only on
the first degree primes in & — that is, the prime ideals p for which Normp
is a prime in Q; for it is easy to show that the set of all primes in k which
are not first degree has density zero.

If the limit (98) exists so does the limit (99) and they have the same value;
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16 Density theorems 95

see Exercise 4.2. But (99) can exist even when (98) does not, though such
cases are probably pathological. More to the point, (99) is usually much
easier to prove than (98); for the natural line of attack on (98) requires
a knowledge of the behaviour of the numerator of (99) on the whole line
Rs = 1. For applications, what is normally needed is to know that the
density of S is strictly positive; but it does not matter which density one
uses. Each of the three theorems in this section is stated and proved for
Dirichlet density, but remains true if we replace Dirichlet density by density
as defined by (98).

The standard way to prove a density theorem appears in its simplest
form in Dirichlet’s theorem on primes in arithmetic progression.

Theorem 29 Let m > 2 and let ¢ be a fized integer prime to m; then the
rational primes which satisfy p = cmod m have Dirichlet density (¢(m))~!
where ¢ is Euler’s function.

Proof Let k = Q(¥/1) and let x be a character on Gal(k/Q); by the
Corollary to Theorem 27, x induces a character on (Z/mZ)* which we

shall also denote by x. Suppose that x is not principal. In the notation of
(73)

L(s,x) = Z:OSn(n"’ —{n+1)"°) where S, = Z:x(r)

But 7% — (n + 1)~% = O(n~17) where 0 = Rs, and S,,, = 0 for any
integer » by Lemma A5, so that S, is bounded; so L(s,x) is analytic in
Rs > 0 and in particular at s = 1. Again, if p has order f as an element of
(Z/mZ)* then x(p) runs through the f-th roots of unity as x varies, and
x(p) takes each value equally often; so

[ (- xto)p™) = (1 = I2y#e/7.
Using the Corollary to Theorem 27 again, it follows that
G(s) =1, Les:%) (100)

up to finitely many factors corresponding to the primes dividing m. Here
¢k (s) has a simple pole at s = 1 and so has L(s, xo) where xo is the principal
character; for L(s, xo) is {(q(s) up to finitely many factors. All the other
factors on the right in (100) are analytic at s = 1, so (100) implies

L(1,x) #0 for x # xo.
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96 4 Analytic methods
Since log(1 — x(p)p~%) = —x(p)p~? + O(p~?°) where o = Rs, we obtain

log L(s,x) = »_ x(p)p™* + O(1)
in s > 1. Thus

B o = 22,2 XOXEP?
= ZX;(’c“)log L(s,x) + O(1).
A similar argument gives
log L(s,x0) = log a(s) + O(1) = Y p™* +0(1).
Combining these two equations with (100) gives the theorem. O

The same ideas work for an arbitrary algebraic number field k, but we
have to appeal to much more sophisticated results. We now use the notation
of §17. A weaker version of the following result will reappear as Theorem
35.

Theorem 30 Let k be an algebraic number field and A/H a congruence
divisor class group in k. Let C be a coset of H in A. Then the Dirichlet
density of the prime ideals in C is N~!, where N = card(A/H).

Proof Let K be the abelian extension of k which is the class field for A/H
in the sense of Theorem 32, and let x run through the characters of A/H.
If xo is the principal character then L(s, xo) is equal to (x(s) up to finitely
many factors; so L(s, xo) has a simple pole at s = 1. Any other character
x satisfies x((a)) = 1 whenever & = 1 mod f and o,a > 0 for all real places;
so by Lemma 34 it comes from a Tate character which is clearly non-trivial.
Hence L(s, x) is analytic at s = 1, and using Theorem 37 instead of (100)
we again obtain L(1,x) # 0. The rest of the proof follows that of the
previous theorem. O

The isomorphism between A/H and Gal(K/k) given by the Artin symbol
implies that we can identify the set of prime ideals in C with the set of
prime ideals p for which the Artin symbol (EP&) takes a given value. But
this is only a special case of a more general result, the Cebotarev Density
Theorem, for which we only need to assume that K/k is Galois and not
necessarily that it is abelian.

Theorem 31 (Cebotarev) Let K,k be algebraic number fields such that
K s Galois over k, let o be an element of Gal(K/k) and denote by (o)
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16 Density theorems 97

the conjugacy class of 6. Let S be the set of prime ideals p of k such that
for every P above p the Frobenius element [—If‘p&] lies in (o). Then S has
Dirichlet density card((o))/card(Gal(K/k)).

Proof Let f be the order of o and L the fixed field of o, so that L is
the splitting field of P whenever {%—’2] = 0. The Dirichlet density of the
primes q in L with (Eq&) = o is f~1, by the remarks after the proof of
Theorem 30. If p is in S its prime factors are the distinct 7P with 7 in
Gal(K/k); 7 fixes B if and only if 7 is in the cyclic group generated by o,
and [%] = [Em&] if and only if 7 is in Z(c), the centralizer of 0. Hence
the number of distinct 8 above p with [—I%E] = ¢ is f~!card(Z(c)); and
the Dirichlet density of S is

ft 1 card({o))

f~lcard(Z (o)) = card(Z(0)) = card(Gal(K/k))

because there is a one-one correspondence between the P with [%J&] =0
and the q with (Kq&) = o, and Norm q = Norm p. O
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5

Class Field Theory

17 The classical theory

Let k£ be an algebraic number field and K a finite abelian extension of k.
The objective of classical class field theory, which was largely achieved, was
to describe the properties of K in terms of objects in k. The theory was
first formulated in the 1890s, partly by Weber (following Kronecker) and
partly by Hilbert (following Kummer); but one crucial component was only
provided by Artin in 1927. The first proofs were given by Takagi in the
1920s; he used complicated group-theoretic arguments which we now know
to belong to group cohomology — a subject which at that time had not
been invented.

Let k be an algebraic number field with class number A > 1. It is
straightforward to show that there are algebraic number fields K D k such
that every ideal in k£ becomes principal in K. Is there a canonical way of
choosing K, and what additional properties will the extension K/k have?
Hilbert conjectured that there is just one such field K with the following
additional properties:

(i) 9x/x = (1), so that the extension is unramified at all finite places;
(ii) the extension is also unramified at all infinite places, so that the places
of K above a real infinite place of k are all real;

(iii) K is abelian over k with Galois group isomorphic to the ideal class
group Iy of k.

He called such a field the absolute class field of k, and proved its existence
in certain cases, for example when h = 2. This conjecture was reinforced
by one of the key tools in Kummer’s work on Fermat’s Last Theorem: if k
is an algebraic number field of class number h and K an abelian extension

98
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17 The classical theory 99

of k with 9x/, =1 and Gal(K/k) ~ Z/(p) where p is prime, then p|h and
there are just p ideal classes in k whose members become principal in K.

It had been shown by Kummer that the cyclotomic fields (the subfields of
Q(e) where € is a root of unity) were abelian over Q and that how a prime
p factorized in such a field depended only on congruence properties of p.
Kronecker conjectured the converse of this: that every abelian extension
of Q is a cyclotomic field. A nearly complete proof was given by Weber,
though it took a further generation before all the gaps in his argument were
filled in. The result is however an easy consequence of the general theory,
as well as being a major inspiration for its formulation.

The examples obtained in these ways led Weber to the general ideas of
a congruence divisor class group and of a class field. To define the
former, let m be the formal product of an integral ideal in k and possibly
some real infinite places in k; thus we can formally write m = [ p,* where
some of the p, may be infinite real places. Denote by Ap the subgroup of
I consisting of the fractional ideals whose prime factorizations involve no
prime ideal dividing m; here we only take account of the finite primes p,, in
m. Let H be the subgroup of Ay, consisting of those principal ideals which
can be written as (@) where @ = 1 modm — that is, a = 1mod py* in kp,
for each finite p, and oa > 0 if p, is a real infinite place and 0: k = R
is the corresponding map. In this way there corresponds to any m the
quotient group Am/HY, which is easily seen to be finite. In what follows,
we shall denote by H,, any subgroup of A, which contains HZ.

Suppose that m|n in the obvious sense; then Ay, D A, and H2 D HO.
Moreover, H, = Hy N Ay, D H? for any Hy,; and since each coset of HS in
Am meets A, there is a canonical isomorphism

Ay/Hy =~ A /Hn.

Let m;, my be two such formal divisors with associated groups Hy,,, Hu,-
We shall say that these two groups are equivalent if for some common
multiple m of m;, m (and thus for any common multiple)

Am N Hy, = Ap N Ha,.

It is easy to show that this is an equivalence relation Hy, ~ Hy, and that
the quotient group Ay /Hy does not depend on the choice of m. We call
the equivalence class of such quotient groups a congruence divisor class
group A/H, and we call the least modulus m for which it can be realized
the conductor f of A/H.

A finite algebraic extension K of k is called a class field for A/H if the
prime ideals p in k& which split completely in K (that is, those which have
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100 5 Class Field Theory

ek/k = fx/x = 1 for each prime P of K above p) are precisely those which
belong to H. For the real infinite places in f this needs an elucidation: we
require that the extensions to K of a real infinite place in & are all complex
if it is in f and all real otherwise. We can now state the key results of the
classical theory.

Theorem 32 Every abelian extension K/k is a class field for some A/H.
Conversely, there corresponds to each congruence divisor class group A/H
in k a unique class field K/k, and K is abelian over k.

In stating the next two theorems we shall denote by K the class field
corresponding to A/H in k.

Theorem 33 The places in k which ramify in the extension K/k are pre-
cisely those which divide . Moreover, if x runs through the characters of
A/H and fy is the conductor of X, then the finite part of [, fx is just
normp /kk/k, where Dy is the different of the extension.

To define the conductor of x we form H*¥, the union of those cosets of H
on which x = 1; the conductor of  is just the conductor of A/H?.

Theorem 34 The Galois group of K/k is isomorphic to A/H. This iso-

morphism is canonically realized by means of the Artin symbol (Kc{ k) ; the

map a — (%&) is an epimorphism A — Gal(K/k) with kernel H.

The second sentence is the Artin Reciprocity Law. It was only dis-
covered a generation later than the rest of classical class field theory was
formulated (and some five years after the rest was proved); but as soon as
it was discovered it was recognized as the central result of the theory. It
contains all previously known reciprocity laws.

Corollary Let p be a prime ideal in k not dividing f. Then p is a product
of g prime factors B in K, each with normg /P = pf where fg = (K/k)
and f is the order in A/H of the ideal class containing p.

These theorems enable one to describe the factorization in K of primes in
k in terms of objects in k. To do this, we need to find the H associated with
a given abelian extension K/k. Since we know the conductor of H (or, more
easily, the primes which divide it) by Theorem 33, there are only a small
number of possibilities for H; and all but one of these can be eliminated by
considering the factorization of a few small unramified primes. (Compare
Exercise 5.1.) Implicit in Theorem 34 is the generalization of Dirichlet’s
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17 The classical theory 101

theorem on primes in arithmetic progression; the deduction of this from
Theorem 34 can be found in §16.

Theorem 35 Each coset of H in A contains an infinity of prime ideals.

As the theory developed, it became clear that Hilbert’s original question
was somewhat peripheral. But the theory does provide an answer to it, as
follows.

Theorem 36 Let H be the group of principal ideals in A. Then §{ = (1)
and the class field for A/H is the absolute class field in the sense of Hilbert.

These theorems do not however tell one anything about the group of units
in K or the class number of K; and broadly speaking it is only when one
can construct class fields explicitly that one can obtain any information
about these. For arbitrary k, the construction of K from H is the one
major unsolved problem in the theory; but it should be remembered that
in mathematics not all problems have solutions. The simplest examples of
what is known are as follows.

According to the Kronecker-Weber Theorem, the abelian extensions of Q
are just the cyclotomic fields — that is, the subfields of some Q(¢), where
€ is a root of unity. Analytically ¢ = exp(2mim/n) for some m,n in Z, so
that € can be regarded as the value of the periodic function exp(z) at a
division point — that is, at a value of z which is a rational submultiple of
its period 2mi. In the 1890s elliptic modular functions were a major growth
industry (as they have now become again); and the work of Kronecker and
Weber, and of their students, strongly suggested that all abelian extensions
K of complex quadratic fields k could be generated by values of certain of
these functions at distinguished points, and that if p is a prime ideal in a
complex quadratic field k then the factorization of p in K depends only on
congruence properties of p in k; but a complete proof of these assertions
had to await the work of Takagi. These results have been generalized to
other (but still rather limited) types of algebraic number field k¥ by Shimura
and others, using the theory of complex multiplication of Abelian varieties

Some of the results above can be put into analytic form, in terms of
L-series and zeta functions. (There was a period when strenuous attempts
were made to rid class field theory of all taint of analysis, but the pen-
dulum has now swung back and the importance of the analytic aspect is
recognized.) Let s be a complex variable, and take ®s > 1 so that all
problems of convergence are trivial. Let x be any character on A/H with
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102 5 Class Field Theory

conductor f,. We can lift x back to a congruence character mod f,, that
is, a homomorphism

x : A — {complex numbers of absolute value 1}

whose kernel contains H? . Set x(a) = O for all integral ideals a not in A
and write

B x(8) x®) \7
L) =) Tormay ‘H(I"W)

where the sum is over all integral ideals a in k and the product is over all
prime ideals p in k. This is the classical (Dirichlet) L-series; the equality
of sum and product is just the Unique Factorization Theorem. In the
particular case when x is the principal character, so that f, = (1), we
obtain the Dedekind zeta function

Ck(s) = Z(Norm a) = H(l — (Normp)~?)~!

where the sum is taken over all integral non-zero ideals a and the product
over all prime ideals p. In this language we can restate Theorem 33 and
the Corollary to Theorem 34 together in the following form.

Theorem 37 (i (s) = [] L(s, x) where the product is over all characters
of A/H.

Theorems 32 to 34 are the main theorems of classical class field theory;
it was essentially a global theory, since the importance of local class field
theory did not become apparent till later. Closely linked to the development
of classical class field theory was the study, largely inspired by Hasse, of
local-to-global questions. These can appear in two ways, though they are
not essentially different:

(i) If a condition is satisfied (for example, if an equation is soluble) in
every k,, does that imply that it is satisfied in k7

(ii) Suppose we have a set of objects O defined with respect to k, such
that the completion map k — k, sends O to an object O, defined
with respect to k,. Given a collection of O, for v in S, where §
is some subset of the set of all valuations, is there an O of which
they are all images?

In each case, if the answer is negative, can we describe the obstruction?
The simplest example of a positive theorem which answers a question of
this kind is the Hasse Norm Theorem:
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18 Chevalley’s reformulation 103

Theorem 38 Suppose that K/k is cyclic and a in k is everywhere locally
a norm for K/k — that is, a is in the image of the map K Qx k, — k,
induced for each v by completion from the norm map K — k — then a is
the norm of an element of K.

If K/k is merely abelian then this result need not be true; for example,
if we take k = Q, K = Q(+/13,/17) then —1 is a norm everywhere locally
but it is not a global norm.

18 Chevalley’s reformulation

It still remains true that for many applications the classical language is the
most convenient. But there were several unsatisfactory features about the
original formulation of class field theory. That it only gives information
about abelian extensions is probably a fact of life; though there is now a
subject called non-abelian class field theory, it does not provide answers to
the most obvious questions — perhaps because there are no good answers to
them. But sometimes (as with Theorem 38) the classical theory only gave
information about a restricted class of abelian extensions. There were also
aesthetic objections: to the substantial role which analysis played in the
original proofs, to the ugly definition of the congruence divisor class group
A/H and to the complications of the group-theoretic arguments involved
in the original proofs.

These were the reasons for a reformulation in terms of homological alge-
bra. This produced some new theorems which could be stated in classical
language — for example it provided a description of the group

{everywhere local norms}/{actual norms}

which is the obstruction to the obvious generalisation of Theorem 38. (In-
deed, one now instinctively assumes that all obstructions are best described
in term of cohomology groups.) In this language the classical theorems be-
came statements about certain cohomology groups, which remained valid
for normal extensions which were not necessarily abelian; however, it was
only in the abelian case that these cohomology groups could be described in
down-to-earth terms. At the same time Chevalley introduced the concept
of idéles. In the language of idéles A/H can be replaced as follows. Let
H be any open subgroup of Ji containing k*; by definition H has finite
index in J. Chevalley showed that there is a natural one-one correspon-
dence between pairs A, H and subgroups H , and that this enables one to
reformulate most of the main theorems of classical class field theory.
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104 5 Class Field Theory

This led to a more radical reformulation, which also takes into account
infinite abelian extensions. Let S be a finite set of valuations which con-
tains all Archimedean valuations; S is related to, but is not necessarily the
same as, the set of places which occur in m in Weber’s definitions. De-
note by I° the group of those fractional ideals which do not involve any
prime ideal in S in their factorization, and by JS the group of those idéles
whose components are 1 at each place in S. These are subgroups of I, Ji
respectively, and J® is closed in J;. The natural map J, — Ii already
introduced on page 50 induces a continuous map JS — IS, which we write
in the form & — (£)S. It is also convenient to write Fx sk for the Artin
map a — (5#), which is a homomorphism I° — Gal(K/k) provided S
contains all ramified primes. Theorem 34 can now be rewritten in the fol-
lowing apparently weaker form, in which we fix an abelian extension K/k
and S is assumed to contain all the primes which ramify in K/k.

Theorem 39 There exists € > 0 such that Fy/i((§)) is the identity for all
€ in k* for which || — 1||, < € for each v in S.

For suitable ¢ these conditions imply £ = 1modm, so that Theorem
39 does follow from Theorem 34. The converse, that Theorem 39 implies
Theorem 34, is less easy. The key fact is that Fi/, is trivial for all £
which are norms for K/k, and hence (after Theorem 39) for all £ which are
locally norms for every v in S. Now Theorem 34 follows from local class
field theory, which is much easier than the global theory.

At this stage Hecke’s Grossencharakters enter the picture. These were
originally introduced as the most general homomorphisms

x : I® — {complex numbers of absolute value 1}

for which Hecke’s proof of the functional equation for the associated L-
series is valid. One form of the condition on x is (91), as was shown in
Chapter 4; this is equivalent to the apparently weaker condition that for
any neighbourhood N of 1 there exists an ¢ > 0 such that the inverse
image of NV contains all principal ideals (£) with ¢ satisfying || — 1||, < €
for each v in S. (See Exercise 4.3.) This led to the idea of an admissible
map. Let G be any commutative topological group; then a homomorphism
¢ : I° = G is called admissible if to any neighbourhood A of the identity
in G there corresponds an ¢ > 0 such that ¢((£)) is in NV for any £ in k
with || — 1|, < € for each v in S. Theorem 39 can now be rewritten in the
form
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18 Chevalley’s reformulation 105
Theorem 40 The Artin map Fy i : IS — Gal(K/k) is admissible.

So far, we have been considering a single abelian extension K/k. If
instead we consider all finite extensions of k and the corresponding Artin
maps, it becomes evident that the natural language to use is the language
of ideles. The detailed translation depends on

Lemma 35 Suppose that G is topologically complete, and that the homo-
morphism ¢ : IS — G is admissible. Then there is a unique continuous
homomorphism i : J — G such that

(1) ¥(€) =1 for each & in k*,

(ii) ¥(€) = ¢((€)®) for each & in JS.

Conversely, let 1 be any continuous homomorphism J, — G which is trivial
on k*, and suppose that there is a neighbourhood of the identity in G which
contains no non-trivial subgroup; then ¢ comes from some set S and some
associated admissible map ¢ : I — G.

Such a 9 induces a continuous homomorphism C, = Ji/k* — G where
Ci is called the idéle class group; we call this map ¢ too. In particular,
Theorem 40 is equivalent to the existence of a ¥ which also satisfies

Y(€) = Fr/e((€)) forall & in J%;

such a 9, which is unique by the lemma, is called the Artin map ¥ /.
Now the main theorems of class field theory take the following form.

Theorem 41 To every finite abelian extension K/k corresponds an Artin
map ¢ : Ji — Gal(K/k). This is an epimorphism whose kernel is precisely
the open subgroup k*(Normg /x(Jk)); and it induces an isomorphism

Cr/Normg/(Cx) ~ Gal(K/k).

If L D K D k with L abelian over k, then there is a commutative diagram

e Y Gal(L/k)
Yk /k
Cx. — Gal(K/k)
where the right hand arrow is restriction to K. Conversely, if N D k* is

an open subgroup of Ji, then there is a unique abelian extension K/k such
that N is k*(Normgi(Jk)), the kernel of the Artin map Vg .
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106 5 Class Field Theory

The commutative diagram above enables us to take the inverse limit
as K runs through all abelian extensions of k. In this way we obtain a
continuous homomorphism

Pi : Crp — Gal(k*®/k)

where k2® is the maximal abelian extension of k and the Galois group has
the topology proper to an inverse limit — that is to say, a base for the open
neighbourhoods of the identity is given by the subgroups of finite index.
The map 9, is onto, and its kernel is just the connected component of Cg.
Unfortunately, for general k very little is known about this kernel.

19 Reciprocity theorems

It is natural to ask whether the Quadratic Reciprocity Law (Theorem 25)
can be generalized to arbitrary algebraic number fields k& and to higher pow-
ers. This is possible, subject to one important restriction on k. Throughout
this section, m > 1 will be a fixed integer and we shall require k to con-
tain the m-th roots of unity. Denote by S the set consisting of the infinite
places of k and those primes of k which divide m; and note that if p is
not in S then X™ — 1 splits completely in k and therefore in o, /p, whence
Normp = 1 modm.

For « in k* let K = k(e) where €™ = ¢; denote by S(a) the union of
S and the set of primes at which « is not a unit, and define the power

residue symbol (3) by
()~ 3)
p p

for any prime p of k which is not in S{a). If we extend this definition by
multiplicativity to () for all b in I S(@) then (%) is an m-th root of unity
which is unaltered by replacing ¢ by another m-th root of a. We call (%)
a power residue symbol because (%) =1 is equivalent to eN"™P = emod p,
hence to emod p lying in 0, /p and so by Hensel’s Lemma to a being an
m-th power in k.

Now suppose that o is also in k and that K’ = k(¢') with (¢')™ = &/,
and write L = KK’. By Theorem 16 (EP&) is the restriction of (%E) to
K and so on; and therefore

(§)-()e-(4)e
AEIEDY-06)-
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19 Reciprocity theorems 107
where Lo = k(e€’). It follows that

-0 -

provided the right hand side is defined. Again (Ep&)e = eNormP modp
implies

(%) = oNormp=1/m mod p. (102)
This determines (%) uniquely as an m-th root of unity; moreover it gives
an alternative proof of (101), and it shows that if b is integral then ()
only depends on amodb.

Now let A/H be the congruence divisor class group corresponding to
K/k. It follows from Theorem 33 that the only finite primes which can
appear in f, the conductor of A/H, are those in S(a). Let v be in k*; then
v is in H if v is in (k})™ for each v in S(c), and it follows from Theorem

(%)-6)

The theory can be given a more symmetric form in terms of the Hilbert
norm residue symbol. This was introduced by Hilbert in the case m = 2,
by means of the much simpler definition (105) below, and by Hasse in
general. The first step is to define the local Artin map corresponding to
the abelian extension k(€)/k; because it costs nothing, we shall do this for
an arbitrary abelian extension K/k. Let G = A/H be a congruence divisor
class group in k, with conductor f, and let S be the set of prime ideals
which divide f. Denote by IS = A the group of those fractional ideals
whose prime factorizations involve no ideal in S, and by J° the group of
ideéles whose components are 1 at each place in S.

Lemma 36 In the notation above, for each place v of k there is a unique

homomorphism f, : ki — G such that

(i) if p is a prime ideal not in S then f, is trivial on oy,

(i) f =TI fv is well-defined and continuous on J,

(i) if € is in JS then f((£)) is the image of (€) in G, where (&) is as on
page 50,

(iv) f(B) =1 for each 8 in k*.

Proof If p is not in S we must take f,(a,) to be the image of p™ in G where
p"||op; this ensures (i) and (iii), and also (ii) provided the f, for v in &
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108 5 Class Field Theory

are continuous. Let N > 0 annihilate G and temporarily let the f, with v
in § be any homomorphisms k;, — G. Then f(0) is the identity provided
that B is in k* and in (k)N for each v in S, for then Theorem 17 implies
that we can write 3 = B 3 with 3; in Ji, B2 in k* and B2 = 1 mod f — so
that (82) is in H. The natural map k* — [], ;. s(k2/(k%)") is onto, using
Theorem 17 again, and it follows that there is just one choice of the f, with
v in S for which (iv) holds. Moreover these f, are continuous because the
k:/(k2)N are finite. O

The local Artin map ¥, : k* — A/H — Gal(K/k) is obtained by com-
posing f, with the isomorphism of Theorem 34. It also follows from the
corollary to that theorem that if « is a norm for K/k and v is not is S then
fo(a) is the identity. Using Theorem 17 yet again, the construction in the
proof of the lemma implies that this holds also if v is in S.

The Hilbert symbol (a, 3), for o, 3 in k* is now defined by

"/’v(ﬂ)e = (aa ,B)v €

we shall shortly prove that it extends to a continuous function on k;. The
value of (e, 8}, is again an m-th root of unity, and is unaltered by replacing
¢ by another m-th root of a. It is trivial that

(a1 IB,B,)v = (a7 IB)v (aa ﬁl)'v
and an argument like that which was used to prove (101) gives

(aa’, ﬂ)v = (a7 ,3)1; (Cl,, ﬂ)v

Lemma 37 Each of the symbols (a, —a), and (a,1 — @), is equal to 1
whenever it is defined.

Proof Write d = m/[K : k], so that the conjugates of € over k are the ("¢
with d|u where ( is a primitive m-th root of unity. For any v in k,

Y — = H::ol(,y —CHe) = NOrMy /i {H::(’Y - C"e)} ;

50 ¥y (Y™ — ) is the identity and (a,Y™ — a), =1. Now set y=0,1. O

Corollary For any o, in k* we have (o, B)y (8,0), = 1.
Proof By bilinearity
(0B, —af)y = (@, =)y (B, —B)v (, B)v (B, @)
and all but the last two terms are equal to 1. O
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19 Reciprocity theorems 109
It follows that the Hilbert symbol induces a skew-symmetric bilinear map
k3 /(k;)™ x k3 /(k3)™ — {m — th roots of unity}. (103)

For by the definition of ¥, we can take the second argument to be in &},
and even in k},/(k;)™ because the Hilbert symbol is killed by m. But

k*[(k* 0 (k™) — oy / (Ry)™

is onto, so corresponding to any f in k] we can find $; in k* such that
(a,B)y = (a, B1)y for all a in k*. Thus we can use the corollary to extend
the range of o from k* to k.

The other key property of the Hilbert symbol is

I (:8), =1, (104)

which follows from (iv) of Lemma 36. The product is well-defined because
(o, B)y = 1 whenever a, 8 are both in o} and v is not in S.

Theorem 42 The Hilbert symbol, regarded as a bilinear form (103), is
non-degenerate.

This is a key result in local class field theory. For v in S we cannot prove
it in this book, essentially because of the rather indirect construction of f,
in the proof of Lemma 36. But if v = p is not in S the result is trivial.
For suppose « is in o7 and pl|m; then by construction (a, ), = 1 if and
only if p splits completely in k(€)/k, which by Theorem 19 is the same as
saying that a is in (o;)™. If p™|la@ with m|n but « is not in (k;)™ then
{a,m)p # 1; if m fn and r is the highest common factor of m and n, then
(a,B)p # 1if B is in oj and not an (m/r)-th power.

Theorem 43 Let L be abelian over k,,; then the group of norms from L to
k, has index [L : k)] in k.

This result again belongs to local class field theory, though elementary
proofs exist. We quote it because the special case [L : ky] = 2 implies the
important formula (105) below; but even in this case the elementary proof
is no more than a tedious and unilluminating verification.

It is reasonably easy to evaluate the Hilbert symbol when v is not in
S. If v is Archimedean the fact that k contains the m-th roots of unity
implies that (a, 3), = 1 except perhaps when m = 2, v is real and a, 8 are
both negative; in this exceptional case (105) shows that (, 3), = —1. The
non-Archimedean cases are covered by the following lemma. One relatively
simple case for which v is in S is given in (105), and another can be found
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110 5 Class Field Theory

in the exercise later in this section. For any particular k the Hilbert symbol
is given by a table which can easily be constructed with the help of (104).
For an illustration of this, see Exercise 5.5.

Lemma 38 Suppose that p is a finite prime of k not in S; then
(a, ﬂ)p -— (%) whelre ry = (_1)v(a)v(ﬂ)au(ﬁ)ﬁ_v(a)_
Here v is a unit at p, so that the value of (%) is given by (102).

Proof 1t follows from the construction of , that (@, 8), = 1 for @, 8 in o;
and if p||7 then (m, —7), = 1 by Lemma 37, and (a, 7), = (£) by definition
if ais in 0p. Write a = n¥@qy, 8 = 7¥B)4,. Using the results of the first
sentence and the bilinearity of the Hilbert symbol

(a,B)p = (m, ﬂo):(a)(ao, W):(ﬁ)(—l, ﬂ_):(a)v(ﬁ)
and the result now follows from the Corollary to Lemma 37. 0

For any o, in k* denote by (8)5(® the ideal obtained from (8) by
deleting any prime factors which lie in S(«), and write

(5) = (@=)

note that despite (101) it is not always true that (5% ) = (5)(5). Then
we have the general power reciprocity law:

Lemma 39 If o, are in k* then

()" -Too

where the product is taken over all v in S(a) N S(B).

Proof Using the Corollary to Lemma 37 we have

(5 ) = el T e o)

= H (aa IB)P

p not in S(a)NS(B)

because the terms which occur in both products are each equal to 1 as in
the proof of Lemma 38. Now use (104). O

Now suppose that m = 2, but place no restriction on k. The case m =2
is particularly favourable, because in order to give a formula for (o, 8), it
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19 Reciprocity theorems 111

is enough to give a necessary and sufficient condition for (a, 3), = 1. Such
a condition is as follows:

1 if aX?4 BY? =1 is soluble in k,,
(@,8)y = { —1 otherwise.

This follows easily from Theorems 42 and 43. For we can assume that o
is not in (k)2 and write L = k,(v/a). The proof of Lemma 37 shows that
(o, B)y = 1 if B is a norm for L/k,, which is equivalent to the solubility of
aX? + BY? = 1; and Theorem 43 shows that for fixed a the 3 for which
this holds form a subgroup of index 2 in k}. It now follows from Theorem
42 that (@, 8), = —1 if § is not a norm.

What underlies this result is the much more general fact that central
simple algebras over k can be classified by means of the Hilbert symbol;
see [Weil], Chapters IX to XI or [CF], pages 137-8. Denote by A the
quaternion algebra with norm form

(105)

X2 - aX? - X2 +afX3; (106)

then each of the two following conditions is necessary and sufficient for
A ® ky to be isomorphic to the algebra of 2 X 2 matrices with elements in
ky:

(i) the quadratic form (106) has a non-trivial zero in k,;
(ii) (o, B8)y =1.

It is easy to see that (i) is equivalent to the solubility of aX? + fY?% = 1
in k,.

Exercise Let m = p be an odd prime and let k¥ = Q(¢) where { is a
primitive p-th root of unity; thus the only finite place in S is p = ()
where 7 = 1 — {. The object of this exercise is to provide as Lemma 40 a
straightforward way of computing the Hilbert symbol (o, 8),.

Write 5, =1 — 7" for r = 1,2,... , let U, be the group of elements ¢ in
kg satisfying e = 1mod 7" and let Up = o;. Show that

(i) the image of m generates k; /o,

(if) o} = (03)?Un,

(iii) for each r the image of 7, generates U, /U,41,
(iv) every element of Upy, is in UT. [Use Lemma 20.]

Deduce that = and 7y, ... ,n, generate k;/(k;)P. This means that we need
only evaluate (a, ), when each of a, 8 is 7 or one of 7;,... ,7p; and this
can be done by induction from the following lemma.
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112 5 Class Field Theory
Lemma 40 Ifu> 1, v 2 1 then

(ﬂ;n ﬂu)p = ("hu 7);4+V)p (77#+va M )p (m, 77u+v); (M ”); (107)
and in particular (n,,n,)p =1 if p+v > p. Moreover (m,m), =1 and

1 ifl<u<p,
mme={ ¢ §u5h

Because p is odd, (o, )y = 1 for all o in kj by Lemma 37. For (107)
apply Lemma 37 to 8 = 1, /1,4, noting that 1 — 8 = 7¥n, /7,4, and
use bilinearity. If u 4 v > p then 7,4, is in (k;)? and so all symbols
involving it are equal to 1. If 1 < u < p it follows from Lemma 37 that
(M ™)p = (N, 7*)p = 1; so the only difficulty comes with the very last
assertion. Taking v = 1, p = p — 1 in (107) gives ({,Np-1)p = (T, 7p)p
because each of the other factors is 1. If & = { in (102) the congruence
must actually be an equality because it cannot be satisfied otherwise; now
use (104) and Lemma 38 to show that

¢, B)p = H Cv(B)(Norm 9-1)/p
q

for any 3 in o, where qv(®)|| 8 and the product is taken over all prime ideals
q of k other than p. Finally, prove that under the same conditions

qu(ﬂ)(Normq —1) = Norm (8) — 1 mod p?

and Norm (1p—;) = Norm (1 — 72~ !)) =1 -Tra? ! =1—-pmodp?. O

20 The Kronecker-Weber Theorem

It follows from the Corollary to Theorem 27 that every cyclotomic field is
a class field; conversely, Theorem 16 and Theorem 27 enable us to com-
pute the Artin symbol for any cyclotomic field, and it follows that to each
congruence divisor class group there corresponds a unique cyclotomic field
which is a class field for it. In particular, the field of m-th roots of unity
corresponds to Hy,.. But this is not enough to prove that these are the
only class fields over Q. This assertion is the Kronecker-Weber Theorem
(Theorem 44). Its proof is elementary but complicated; it exploits many
of the ideas in Chapters 1 and 2, as well as Theorem 27 and its Corollary.
The fact that every extension of Q is ramified at some prime (Corollary to
Theorem 21) plays a crucial role.

In this section we shall denote by C(n) any cyclic group of order n. Let
K be a cyclic extension of Q with G = Gal(K/Q) =~ C(p") where p is
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20 The Kronecker- Weber Theorem 113

prime, let G; be the unique subgroup of G of index p and k the fixed field
of Gy, so that k is cyclic over Q with Gal(k/Q) = G/G1 = C(p). Let
¢ (which may be equal to p) be a prime which ramifies in k. The inertia
group of £ for k is the entire Galois group G/G; since any proper subgroup
of G is in Gy, it follows from Theorem 16 that the inertia group of £ for
K/Q is the entire Galois group G. Hence £ is totally ramified in K —
that is, e = p" and f = g = 1. Such primes are the key to the following
arguments.

Lemma 41 Let K/Q be cyclic with G = Gal(K/Q) =~ C(p"). Then there
are a cyclotomic field L and a field K' with Gal(K'/Q) = C(p®) and s < r
such that LK = LK' and the only prime totally ramified in K'/Q is p
itself.

Proof Suppose that £ # p is totally ramified in K; if there is no such £ we
can take K’ = K. In the notation of §5, V is trivial because [K : Q] is
prime to ¢; hence T' = G is cyclic of order dividing £ — 1 by Theorem 15, so
that £ = 1modp”. Now let L be Q(+/1); then KL is abelian over Q and
its Galois group is a subgroup of C(p") x C(£ — 1). Let K; be the inertia
field of £ for KL/Q. As before, the corresponding ramification group is
trivial, so Gal(KL/Kj3) is cyclic; its order must be a multiple of £ — 1 by
Theorem 27 applied to KL D L D Q. So Gal(KL/K;) = C(£ — 1) since
Gal(KL/Q) contains no larger cyclic subgroup than C(¢ — 1). A prime
other than £ which ramifies in K; must ramify in KL and therefore in K,
for only ¢ ramifies in L. No prime ramifies in Ky NL; so K1NL = Q,
and now K;L = KL by a comparison of degrees. But Gal(KL/Q) has
Gal(L/Q) = C(£ - 1) as a quotient, so it has the form C(p*) x C(£ — 1) for
some s < r; and hence Gal(K,/Q) = C(p*) by Lemma 25.

If K; does not have the properties required of K’, then we can repeat
the process again on K;. This process must eventually end, because one
fewer prime is ramified (not necessarily totally) in K; than in K. O

Lemma 42 (i) Let p be an odd prime and let K be a field cyclic over Q
with Gal(K/Q) = C(p). If p is the only prime which ramifies in K then
K is a subfield of the field of p?-th roots of unity.

(ii) If [K : Q] = 2 and 2 is the only prime which ramifies in K, then K
is Q(v2), Q(v=1) or Q(v/=2), all of which are subfields of Q(¥/1).

Proof After the results in §10, (ii) is trivial; so we need only consider (i).
Let L = Q({/1); then Gal(KL/L) ~ C(p) since K and L have coprime
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114 5 Class Field Theory

degrees over Q. By a standard result in Galois theory, KL = L(a) where
of = 3 is in L. Choose a generator o of Gal(KL/Q) ~ C(p(p — 1)); then
K is the fixed field of o and L is the fixed field of o?~1. Thus o~ 13 = j3
and hence 6 la = (a where (? = 1; but ¢ # 1 because we can assume
that o is not in L. As in §13, we write 1 = 1 — (. Since ¢ induces a
generator of Gal(L/Q) there is a primitive root n mod p such that o¢ = ("
and hence 6P~ 1(0a) = o(0P"la) = ("(sa); in other words, (da)/a™ is
invariant under o?~! and is therefore in L, and hence (03)/8" is a p-th
power in L.

It follows that (ca)/a is not in L and therefore generates KL over L.
The prime ideal (7) in L is invariant under o, so (¢)/8 is a n-adic unit.
Replacing o by (oa)/a and 8 by (63)/8, we can assume that 3 is a w-adic
unit, and by further replacing @ by a!~? = a/f we can also assume that
B = 1 mod 7; this means that 3 = (*y where v = 1 mod 7% and therefore

=1+ crt™mod 7™ +1

for some m > 1 and some ¢ in Z prime to p. For § in the local field L.,
Lemma 19 shows that § = 1mod is a p-th power in L, if and only if
d = 1mod#P. Since (0)/y" = (¢8)/6™ is a p-th power in L and so also
in L,

oy =¥ mod nP.

But o7 =1 — (™ = n(1 — ¢) mod 7% and therefore

oy =1+ cen™r™ mod #™*!.
The last three displayed equations together imply that either m > p or
cn™ = enmod p, and the latter also requires m > psincem >landnisa
primitive root mod p. It follows that v = 1 mod #n?.

To prove the lemma, it is enough to show that v is a p-th power in
L. Since K, = L(¢7) is in K( ”VT), no prime other than p ramifies in
K:1/Q and K;/Q is abelian. But by Lemma 30 and the result above, ()
does not ramify in K;/L. Let k be the inertia field of p for K;/Q); then
[K1 : k] = p—1 and k = Q because no prime ramifies in k¥/Q. Thus
[K1:Q)=p—1and v is a p-th power in L. O

Theorem 44 Every abelian extension of Q is cyclotomic.

Proof We prove this by induction on the degree of the extension. Let K be
abelian over Q with Gal(K/Q) = G. If G is a non-trivial direct product
G1 X G, then K is the least field containing the fixed fields of G; and of Go,
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20 The Kronecker-Weber Theorem 115

which are abelian extensions of Q of degrees lower than that of K. Hence
we may assume that G = C(p") where p is prime. In view of Lemma 41
we can assume that p is the only prime which is totally ramified in K, and
in view of Lemma 42 we can further assume that r > 1.

Consider first the case when p is odd; let K; be the unique subfield of
K with [K; : Q] = p and let L be the field of p™t!-th roots of unity. Since
KnL>D K, by Lemma 42 and Gal(L/Q) = C(p"(p — 1)),

H =Gal(KL/Q) = C(p"(p — 1)) x C(p" ) for some r' < T (108)

because H is a proper subgroup of C(p"(p — 1)) x C(p") which admits a
C(p"(p — 1)) as a quotient group. Let H; = Gal(KL/L); then

H/H, = Gal(L/Q) = C(p"(p—1));

by (108) H; is a direct factor of H. If H = Hy x Hj then the fixed field
of Hj has degree p™’ < p” over Q, and KL is the compositum of it and L.
Hence by the induction hypothesis K is cyclotomic.

When p = 2 this argument needs some modification. The Galois group
over Q of the field of 27+2-th roots of unity is C(2) x C(2"), and hence this
field has a subfield L with Gal(L/Q) ~ C(2"). Now the argument used for
p odd will still work, provided we show that the unique quadratic subfieid
of K is Q(v/2); for since L satisfies all the conditions imposed on K, this
will hold for L also. If K is real this is trivial. If K is complex it admits
complex conjugacy as a non-trivial automorphism of order 2; all its proper
subfields are fixed under this and hence are totally real. O
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Appendix

Al Prerequisites

In this section we prove the standard results about finitely generated abelian
groups and lattices, and about norms and traces in field extensions of fi-
nite degree, for the benefit of those readers who do not know them already.
They are prerequisites for everything in this book. We also give a brief ac-
count, without proofs, of the definition and key properties of Haar measure.
Logically, this is not essential for the arguments in most of the book, but
it underpins the point of view adopted. For a really single-minded reliance
on Haar measure, see [Weil].

Al.l1 Finitely generated abelian groups and lattices

In this subsection, all abelian groups will be written additively.

Lemma A1l Let G be a finitely generated torsion-free abelian group such
that

(i) G 1is generated by z,,... ,Z,,
(ii) G cannot be generated by less than n elements.

Then there is no non-trivial relation a1z, + -+ + apxy, = 0 with the a, in
Z.

Proof Assume that there is such a relation, and among all sets of n gen-
erators and all non-trivial relations as above choose that one for which
A =a1]+ -+ |an| is least. We have two cases, either of which will give
a contradiction.

(a) At least two of the a, are non-zero. By permuting subscripts and
changing signs we can assume that a, > as > 0. Now consider the

117
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118 Appendiz

base 11,T; + Z9,2Z3,... for G. In terms of this base our relation
becomes (a1 — az)z1 +a2(z1 +z2) +- - - = 0, and this has a smaller
value of A.

(b) Only one a, is non-zero. We can take this to be a1, so that the relation
is ayz; = 0. Since G is torsion-free, 2; = 0; so G is generated by
the n — 1 elements x3,... ,Zy.

These contradictions prove the lemma. O

We call a base having the properties in Lemma Al a minimal base.
Every finitely generated torsion-free abelian group has a minimal base, for
we need only choose a base consisting of as few elements as possible.

Lemma A2 Let G be a finitely generated torsion-free abelian group, and
let H be a subgroup of G. Then there exist a minimal base x1,... ,2n, of G
and integers my,... ,m, for some r < n such that

(i) the m, are positive and my|lmpyy for p=1,...,r -1,
(ii) mizy,... ,m,z, are a minimal base for H.

If H has finite indez in G then r = n.

Proof The proof is really by induction on n, but because of the form of the
induction hypothesis it is better not to state it in that way. We can assume
that H is non-trivial. Let yi,...,y, be any minimal base for G and let
h = a1y + - - + anyn be any non-zero element of H. Making an integral
unimodular transformation on the y,, cannot decrease the highest common
factor of the a, and is an action which can be reversed; so it leaves the
highest common factor unchanged. Now choose h to be a non-zero element
of H for which this highest common factor is as small as possible, and then
choose that minimal base y3,... ,y, for G for which A = |a;]+ --- + |ay|
is as small as possible for this particular h. If two or more of the a, were
non-zero, we could decrease A just as in the proof of Lemma Al; hence
after permuting subscripts we can assume that a; = m; > 0 and all other
a, vanish. Let z = byy; + - -+ + by be any element of H; then

e my|by since if 0 < by — emy < my for some ¢ in Z then z — ch would give
rise to a smaller highest common factor than h,

® boya + - +bpyn = 2z — (bi/mu)hisin H,

e m;y|b, for each v, for otherwise miy + bayz + - - - + bpyn would give rise
to a smaller highest common factor than h.
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A1 Prerequisites 119

Now let G; be generated by ys, ... ,¥yn, let H; = GiNH and write z; = ;.
We have shown that

G= {xl} &G, H= {mlxl} & H,.

If we repeat the process on G; and H;, we shall have m;|my by the last
bullet point. We stop when H is exhausted. If r < n then all the mz,
would generate distinct cosets of H, and H would not have finite index in
G. O

Theorem Al Let G be a finitely generated abelian group. There exist

elements xy,... ,Z, of G and integers my,... ,m, for some r < n such

that

(i) mpzp, =0 forp=1,...,r,

(ii) eachm,>1 and mylmpyy forp=1,...,r -1,

(iii) each element of G can be written uniquely as a1zy + - - - + anz, where
the a, are integers and 0 < a, <m, forp=1,...,r.

Moreover G uniquely determines n and the m,.

Proof To prove existence, let yq,... ,yn be any generators of G, and let
G* be the free abelian group on the N generators Y;,...,Yy. There is
a natural epimorphism G* — G obtained by mapping each Y, into the
corresponding y,; let H* be its kernel. Since G* is torsion-free, we can
apply Lemma A2 to G* and H*, obtaining a base X;,... , Xy for G* and
integers My, ... , Mg; let x,, be the image of X,, in G. The z, generate G,
and b1z; +--- + byzn = 0 if and only if M,|b, for each p < r and b, =0
for each p > r. Thus we have achieved all our claims except the statement
that M; > 1. But if some M, = 1 the corresponding z, = 0, so that z,
can be deleted from the base for G which we have just constructed.

To prove uniqueness, suppose that we have a second such representation,
given by dashed letters. We first prove that n = n’. For if not, let n > n’
and let p be a prime dividing m;. Using the undashed representation we
have an obvious epimorphism from G to the n-dimensional vector space
over Fy,; hence this space must be generated by the images of the z/,. This
is absurd because the set which they generate contains at most p* < p"
elements.

Now for any m > 0 consider the group mG consisting of all mz with z
in G. This has the representation in the theorem if we replace the z, by
mz, and the m, by m,/(m,,m), where the mz, for which m,|m must
be deleted. Hence m, is invariantly defined by the property that m,, is
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120 Appendiz

the least m for which a canonical representation of mG uses at most n ~ p
generators. a

Corollary Any subgroup of a finitely generated abelian group G is finitely
generated.

Proof As in the proof of the theorem, construct a finitely generated torsion-
free group G* and an epimorphism G* — G. If H is a subgroup of G, let
H* be the inverse image of H. Then H* is finitely generated, by Lemma
A2, and the images of the generators of H* generate H. O

Now let V be Q™ or R™ with the standard topology, and write £k = Q
or R respectively. A lattice A in V is a Z-module which satisfies any two
of the following three conditions.

(i) A spans V as a k-vector space.
(ii) A is discrete in the topological space V.
(iii) A is a free Z-module on n generators.

Lemma A3 Any two of these three properties imply the third.

Proof Suppose first that any n elements of A are linearly dependent over
k. If S is a maximal set of linearly independent elements of A containing
r < n elements, then the k-vector space generated by S contains A; but
since it has dimension r it is not the whole of V, so (i} does not hold.

We now use the pigeonhole principle. Let zi,...,%, be elements of A
linearly independent over k, so that the z, span V; and let Ag be the Z-
module spanned by the z,. Suppose that A is discrete in V; thus there
is an integer M > 0 such that the only element ) A,z, of V with each
[A,| < M~! which lies in A is the origin. The M™ boxes of the form
my,/M < A, < (m, +1)/M, where the m, are integers with 0 < m, < M,
cover the cube C defined by 0 < A, < 1 for each v. Let y;,...,yn be
representatives of distinct cosets of A/Ag; by translation we can assume
that they all lie in the cube C. Hence N < M™, for otherwise y,,y, would
lie in the same box and y, — y, would be an element of A lying in the
forbidden neighbourhood of the origin. Hence A is finitely generated (by
the z,, and y;), and A is a free Z-module on n generators by the last sentence
of Lemma A2 with G = A and H = Ag. We have therefore shown that (i)
and (ii) imply (iii).

If (i) and (iii) hold, let {zy,...,z,} be a base for A; then z,,...,z,
span V and any point of V can be written as Y A\, z, with A, in k. The
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A1 Prerequisites 121

neighbourhood of the origin given by |A,| < 1 for each v contains no point
of A other than the origin, so A is discrete in V.

Finally, if (ii) and (iii) hold but (i) does not, let W be the k-vector space
spanned by A. Then (i) and (ii) hold with W in place of V; so (iii) holds
with dim W in place of n, which is a contradiction. O

A1l.2 Norms and Traces

Let K, k be fields with K D k and [K : k] = n finite, and let zy,... ,z, be
a base for K as a k-vector space. For any y in K the endomorphism of the
k-vector space K given by = — yz has a characteristic polynomial F(Y').
Explicitly, there exist a;; in k such that

yTi = Y a4y (A1)

and the characteristic polynomial of y is F(Y') = det(Y I — A) where A
is the matrix of the a;;. A change of base takes A into T~1AT and hence
does not affect F; and F(y) = 0 follows by regarding (A1) as equations for
the z;. We are particularly interested in the second and last coefficients of
det(Y'I + A), which define the trace and norm of y:

Trg/i(y) = trace(A), normg/k(y) = det(A).
If Ay, Ay correspond to y1,ys respectively then A; + Ay corresponds to
y1 £ y2 and A; Ay to y1y2; s0 we obtain

Tr(y1 £ y2) = Trys £ Trys, norm(yi1y2) = (normy;)(normyq). (A2)

Lemma A4 Let K D k with [K : k| finite, let y be an element of K and let
F, f be the characteristic polynomials of y for K/k and for k(y)/k. Then
F = f™ where m = [K : k(y)]-

Proof Let z1,...,zm be a base for K over k(y). If [k(y) : k] = r then
1,y,...,y" ! are a base for k(y) over k, and therefore the z,y* form a base
for K over k. But if A, B are the matrices whose characteristic polynomials
are F, f respectively, then A consists of m copies of B down the main
diagonal, with zeros everywhere else. g

Corollary Let yi,...,yn in the algebraic closure k of k be the distinct
conjugates of y over k. Then [K : k| = ns for some integer s, and

normg/ky = (Y1°--¥n)*, Trr/ey =s(yr+--- + ¥n)- (A3)
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Ifoy,... 0N are the distinct embeddings of K into k which fix k element-
wise, then [K : k| = NS for some integer S, and

nOrMy /Y = H(Guy)s, TfK/ky = SZ("V?J)-

If k(y) is separable over k then s = [K : k(y)]; if K is separable over k
then S =1.

Proof The equations (A3) follow from the fact that the roots of f are the
Y, possibly repeated, and they have equal multiplicity; if k(y) is separable
over k then this multiplicity is 1 and n = [k(y) : k]. For each y, there
is a homomorphism k(y) — k given by y — y,, and each of these can be
extended to K in the same number of ways. O

We could have defined norm and Trace by the formulae in this corollary
— and this is what we had to do when we defined the norm of an ideal in
84. The crucial formulae (A2) follow at once and we do not need to mention
the characteristic polynomial. But we would instead have to prove that the
results lie in k — though this is trivial in the separable case, which is all
that concerns us in this book.

Theorem A2 Let K O L D k be a tower of extensions, with [K : k| finite,
and let y be an element of K. Then

normy /x(normg,py) = normgyxy, Trp/e(Trx/ry) = Ty

Proof We use the notation of the last corollary. In the first equation, each
side is the product of the ¥, each taken the same number of times; and this
number is determined by the fact that each side is the product of [K : k]
conjugates of y. For the second equation we need only replace ‘product’ by
‘sum’. ]

A1.3 Haar measure

A topological group is a group which, as a set, is equipped with a topol-
ogy such that the group operations (multiplication and inversion) are con-
tinuous. There is one major theorem about topological groups; and every
serious mathematician needs to know the statement of it though not the
proof.

Theorem A3 Let G be a locally compact topological group. There exists
on G a measure u, unique up to multiplication by a constant, such that
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every compact subset of G is measurable and

1(g0S) = u(S)

for any go in G and any measurable subset S of G. There is a corresponding
integral [ f(g)dp with the property

/G f(gog)dp = /g OGf(g)du.

These are called the left Haar measure and left Haar integral re-
spectively. There is a similar theorem for the right Haar measure and right
Haar integral. Left and right Haar measure are frequently the same (for
example if G is either commutative or compact); but this is not always so.

The proof of this theorem is difficult; but one really uses it only as
motivation. In the cases which occur in practice one usually needs to know
the Haar measure explicitly and it is usually obvious what it is; but one
hardly ever needs the uniqueness assertion.

It is sometimes obvious how one should normalise the Haar measure; for
example, if G is compact or has a particularly important compact subgroup
Gy then it is natural to choose p so that u(Gy) = 1. Again, the natural
normalisation of 4 on R is the one which induces u(R/Z) = 1; but there
is no obviously best normalisation of the Haar measure on C.

Now let K be a locally compact topological field. Associated with K
there are two topological groups — K with the addition law and K* with
the multiplication law — and the corresponding Haar measures p* and p*
are different. These are respectively the additive and the multiplicative
Haar measures on K. Let o be any non-zero element of K. The map

S ut(as)

is an additive Haar measure on K, so it has the form S — c,u*(S) for some
¢o by the uniqueness of Haar measure. One frequently writes ¢, = ||a|,
thus defining a function from K* to the positive reals; note that ||a|| does
not depend on the choice of u*. (By convention we write ||0|| = 0.) Clearly

lerez|l = lleall - fleezll;

and though ||.|| need not induce a metric on K, under modest extra con-
ditions it induces a topology on K which is just the one we began with.
Moreover

/ F(@)dp* = / £(@) 2l ~du* (Ad)

if we adjust the constants in p*, ut suitably.
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The simplest cases of Haar measure are given by (i) to (iii) below; (iv)
and (v) are crucial for applications to algebraic number theory.

(i) If G is a finite group, or more generally if G has the discrete topology,
u(S) is just the number of elements in S. If K is a finite field then

[lall = 1 for a # 0.

(ii) R is a field and the Haar measure on R is the standard one. Thus
lz|| = |z| and the Haar measure on R* which is given by (A4) is
S [slz|™dz.

(iii) C is also a field. One possible Haar measure on C is given by area in
the complex plane, but it is customary to double this, giving the
measure associated with dz A dz. In either case ||z|| = |z|?; this
does not give a metric, but ||z||'/? does. Again the Haar measure
on C* is given by (A4).

(iv) Let k be an algebraic number field and p a prime ideal of k; then k,
is a locally compact field. We have ||a||, = (Normp)~™ if a is in
k* and p™|a. Every residue class modp™ for fixed m > 0 has
measure pu*(0,)(Normp)~™. It might appear natural to normalise
the additive Haar measure so that ut(o,) = 1, and this is what
some writers do; but following Tate we shall normalize it so that
ut(op) = (Normd,)~1/2 where 9, is the local different introduced
in §8. The benefits of this will become clear in §A2.2 and in the
Corollary to Lemma 26. The measure on Vj, will be the product of
the measures on the k.

(v) There are also several plausible ways to normalize the measure on kj.
We choose to require p*(o;) = 1, and to take the measure on
Ji to be the product of the measures on the k. However, some
writers prefer to take u*(o5) = (Normp — 1)/(Norm p); if so, the
set consisting of the units congruent to S mod p™ for any fixed unit
B and any m > 0 has measure (Normp)~™. For those who also
take pu*(0p) = 1, the relation (A4) is preserved.

A2 Additional topics

This section falls into two parts. The first two subsections outline the
theory of Fourier transforms on locally compact abelian groups, which is
an essential foundation for §15. The third one is not used anywhere in this
book, except for a passing reference at the end of §18; but I hope that the
reader who pursues the advanced theory will find it useful.
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A2.1 Characters and duality

Denote by T the circle group |z| = 1 with the usual topology, and let G
be any locally compact abelian group; then a character of G is defined to
be a continuous homomorphism ¢ : G — T. The following trivial remark
will be used repeatedly.

Lemma A5 Let x be a character on a compact group G; then

_f wG) if x is trivial on G,
/GX(:E) s = { 0  otherwise.

Proof We need only prove the second statement. Choose zp in G with
x(xo) # 1 and write zzg for = in the integral; then

[ xt@du = [ xtazo)du = x(ao) [ x(z)dn
G G G
from which the statement follows. O

The characters of G form a multiplicative group, normally denoted by
@; to write them additively, we use the identification T ~ R/Z. We can
topologize G as follows. Fix a character cg of G; then a base for the open
neighbourhoods of ¢y in G is given by the set of characters ¢ on G such
that

le(g) —co(g)l <eforgin S

where ¢ > 0 and S is any compact subset of G. It is easy to check that
with this topology G becomes a locally compact topological group and each
element of G induces a character on G. But much more is true:

Theorem A4 (Pontryagin duallty) We can identify the character group
of G with G. If G is compact then G is discrete; if G is discrete then Gis
compact. If H is a closed subgroup of G and H* consists of those elements
of G which are trivial on H , theﬁil ¥ is closed in G and there are canonical
isomorphisms H ~ G/H" and G/H ~ H!.

Corollary Any character on a closed subgroup of G can be extended (non-
uniquely) to the whole of G.

Note that if the G; are subgroups of G such that any neighbourhood of
the identity in G contains some G; then for any character ¢ on G we can
find some G; on which c is trivial. For let N be the neighbourhood of 1 in
T given by Rz > %; then ¢c~1N is a neighbourhood of the identity in G and
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therefore contains some G;. But ¢(G;) is a subgroup of T contained in N,
and must therefore be trivial because N contains no non-trivial subgroups.
A set of such G; is called a set of small subgroups.

We now find the character groups of some of the topological groups
we shall encounter. All these calculations can be done in an elementary
fashion, so that logically we shall not need Theorem A4.

Consider first Z: now we can choose ¢(1) arbitrarily and define ¢ by
¢(n) = ¢(1)*, and any such c is continuous. Hence Z = T and by duality
T = Z; it is easy to check directly that any character on T has the form
z — 2™ for some n in Z by considering its kernel, which must be either the
whole of T or a finite subgroup. Since oy =~ Z", its dual is 03 ~ T".

Let k be an algebraic number field. In view of Lemma 26 we expect to
give Q or k the discrete topology; and in fact there are no other sensible
topologies which make these groups locally compact. We are not interested
in all their characters, but only in those that extend to some completion;
and these are best obtained by finding directly the characters on the possi-
ble completions. Let k, be any completion of k and let Q,, be the closure
of Q within k,, so that w is the valuation on Q which is the restriction
of v. Q. must be either R or Qp. In either case there are natural maps
tw : Qu — R/Z, being given for Q, = Qp, by Qp — Qp/Z, — R/Z be-
cause the elements of Q,/Z, can be identified with those elements of Q/Z
whose denominators are powers of p. Using ¢, we can define the function
z — exp(2rwiz) for any x in Q,. In the following lemma the signs have
been chosen so as to simplify the corresponding statement in the adélic
case.

Lemma A6 We can identify k, with ky, the character c, corresponding
to a in k, being given by

ca(B) = exp(£27i Try, /q,, (@B)),

where the sign is chosen to be minus for Archimedean and plus for non-
Archimedean places.

Proof Most of this assertion is easy. With the definition above, ¢, is a
character; for it is a homomorphism, and it is continuous because Trace
is so. The ¢, form a group algebraically isomorphic to k, under a — cq,
for ¢, trivial implies that Tr(a8) is in Z for all 3, which is only possible
if = 0. Moreover the group of ¢, is homeomorphic to k, under this
correspondence. For let Sps be the compact set {|8]l, < M where M is
fixed; then ||¢||, small implies Tr(ca/3) small uniformly in 8 and hence c,
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is close to the identity character. Thus o — ¢, is continuous. Conversely,
suppose that ¢, is close to the identity character. If w is Archimedean this
means that |Tr(a3) — ng| < € for each § in Sy and some ng in Z, where
we require € < %. If ng is ever non-zero then by replacing 8 by Sz where
|z} < 1 and zng is not close to an integer, we obtain a contradiction. So
|Tr(aB)| < € for all B in Spr, and this implies that o is small with e. If
instead w corresponds to p then |Tr(afB) — ng| < € where this time ng is
in Z, and we shall require € < ‘%p; if Tr(ap) is ever not in Z, then by
replacing 8 by p™@ for suitably chosen m we obtain a contradiction. Now
take M large; if ¢, is close enough to the identity character, a8 must be
in 971 for all B with ||3|l, < M, where 0 is the different, and this implies
that ||af|, is small.

It remains to show that we have found all the characters of k,. But the
characters which we have found certainly form a closed subgroup H* in the
notation of Theorem A4; and if this is not the whole of k, then there is a
non-trivial subgroup H C k, on which H* is trivial. Choosing Gy # 0 in H
we obtain a contradiction. O

Consider next V; Let S be any finite set of places, including all the
Archimedean places, and let Gs be the subgroup of Vi consisting of those
adeles [ a, for which oy, = 0 for v in § and @, is in o,, for all v. The G are
a set of small subgroups in the sense of the remarks below the Corollary to
Theorem A4, so any character c on Vj is trivial on some Gs, say Gs,. Let
¢y denote the character induced on k, by the natural embedding &, — Vi;
thus ¢, is trivial on o, for almost all v. Since any 3 in Vj is the sum of an
element in G, and a finite set of elements of various k,,

(8) = [[ (80,

where almost all the factors on the right are 1. Conversely, if we have any
set of characters ¢, on the k, such that ¢, is trivial on o, for almost all
v, this formlll\a defines a character on Vi. This determines the algebraic
structure of Vi. As for its topology, any compact set in Vi is contained in
[ Sy where each S, is compact and almost every S, is 0,; hence a base
for the open neighbourhoods of the trivial character is given by the sets
[1C,, where each C, is an open neighbourhood of the trivial character in k,
and almost every C,, consists of all characters which are trivial on o,. If v
corresponds to a finite unramified prime p, such a character corresponds to
an element of o, under the identification in Lemma A6. We have therefore
proved
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Lemma A7 There is a natural identification V; = V.

Explicitly, the character co corresponding to @ = [] a in Vi is given by

ca ([18) =exp (21 Y (ruTre jqu(oofh)))  (A5)

where as before w is the valuation of Q which is the restriction of v, and ¢y,
maps Q,, to R/Z. As in Lemma A6 the sign is plus for non-Archimedean
and minus for Archimedean places. One useful consequence is that if o, 8
are both in Vi, then

ca(B) = c1(ap). (A6)

Corollary The character co is trivial on k if and only if o is in k.

Proof Suppose first that a, 3 are both in k. By (39),
too D Tk, /Qu(@B) =Y 15y Ty, /q,(aB)

p plp
where the sum on the left is taken over all Archimedean places; for each
side is equal to the image of Tri/q(afB) in Q/Z. Thus the sum on the
right of (A5) is 0. (It was for this reason that we introduced the unnatural
looking sign convention in Lemma A6.) Now let G be the additive group
of all adéles @ = [] a,, such that ¢, is trivial on k. We have shown that
G D k, and G is a k-vector space; thus G/k is a k-vector space which is
a subspace of V;./k. But the latter is compact, by Lemma 26, so G/k is
trivial. d

We shall not need to know j; in what follows; and this is just as well
because in general no satisfactory description of it is known. But we shall
need some information about its quasi-characters — that is to say, its
continuous homomorphisms into C*. In particular if x is a quasi-character
so is & — ||a|*x (), where the function |.|| is that defined after the proof
of Lemma 27.

A2.2 Fourier transforms

Let f(g) be a complex-valued function on a locally compact additive group
G, and let u be a Haar measure on G. Suppose that f is continuous and
integrable on G. The Fourier transform of f is the function on G given

by
f(o) = /G f(a)ea)d.
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The complex conjugacy sign appears here for historical reasons; however,
complex conjugacy is bound to appear somewhere in the theory. The im-
portance of this definition comes from the duality relation:

Theorem A5 There is a Haar measure i on G such that

f(g) = f(~g) = /G fle)e(g)dp
provided that the integral exists.

Since G only determines the Haar measure on it up to multiplication, to
find the correct fi for any particular G we need to verify the result for one
particular function f. If we can identify G with G then we can normalize
w; for if we multiply u by a constant we have to divide 4 by the same
constant, and there is a unique positive- multiplier for which j is equal to
p. We shall show below that if G is R, C or k, then the measure y which
was chosen in §A1.3 is the one which achieves this. It will then follow that
the same statement holds for V..

The modern theory of Fourier transforms recognizably includes the classi-
cal analytic theory — though the classical results were proved under weaker
conditions on f. There are three important special cases in classical pure
mathematics: Fourier series, Fourier integrals, and Mellin transforms. The
first two are straightforward. Since Z=T=~ R/Z, Theorem A5 gives

oo 1
f(.'L‘) - chemrim: = ¢, = / f(:z:)e‘2"""’°dz.
= 0

Next consider R =~ R; then

~ w . o0 ~ .

foy= [ s@emmis s f@= [ foemmay (4

-0 ~00

Thus in this case y = [i. The easiest way to check that the multiplicative
constant is correct is to note that f(z) = e~™=" implies f (y) = e ™",

Classically, the Fourier duality formula for C was not important enough
to warrant a name. It asserts that if

flw) = / F(z) exp(2riR(zw)) dz A dZ

then (at least up to a constant factor)

f(z) = / f(w) exp(—2miR(z)) dw A dib.
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To check that the factor here is correct, take f(z) = g1(zv/2)g2(yv/2) where
z = +iy; if w = u+ i then f(w) = §i(uv2)G(—vv2) where i, are
given by (A7).

To check that fi = u for kp take

1@ ={

1 for z in op,
0 otherwise;

then by Lemma A5
fw) = / exp(—2mi Try, /q, (2y)) dpd
op
_ (Normd,)~Y/% for y in 0!,
0 otherwise ,

because the integrand in the middle expression is a character on op. Simi-
larly we obtain

| fw)exp(2miTry, jq, (=) disy = f(z)
P
since ut(d;!) = (Normd,)ut(0p). Thus i = p.

The Mellin transform formula is derived from (A7) exactly as in the clas-
sical theory. For let g(z) = Y7 an exp(2mwinz) where the a, are complex
numbers such that a, = O(n°~17¢) for some real ¢ and some ¢ > 0; this
series is absolutely convergent in the upper half-plane Rz > 0, and g(2) is
periodic with period 1. If L(s) = }_ apn™° where s = o + i7 then

F(s)(21r)"3L(s) = Zan /‘0°° e—21rnyys—1dy _ /Ooo g(iy)y’_ldy.

But this simply says that the left hand side, considered as a function of
7, is the Fourier integral transform of 27e?*? g(ie?**). After some tidying
up, the dual formula becomes

o(it) = 5z [ PE)2m)Ls)ds

where the integral is taken along the vertical line Rs = o.

Theorem A6 (Poisson Summation Formula) Let H be a discrete sub-
group of G such that G/H is compact, and let H consist of the elements
of G which are trivial on H, so that H' = G/H. Then

WGIH)Y  f(h) =Y f(h*) (A8)
H H!Y
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provided that f is integrable on G, Y f(g + h) is absolutely convergent
uniformly in g and Y f(h¥) is absolutely convergent.

Proof H* is discrete and G /HY is compact, by Theorem A4. Define the
function ¢(z) on G/H by ¢(z) = >y f(z + h); then

| ewiu= [ rau dw)= [ i@ (49)
G/H G G/H
Now Theorem A5 gives
$(@)W(G/H) =) hi(z)d(h")
Ht

up to a constant factor. To see that the constant is correct, set ¢(z) = 1;
then ¢(1) = u(G/H) and ¢(h*) = 0 otherwise, the latter result coming
from writing £z for x in the second equation (A9) where h¥(zo) # 1. Also

d(hd) = /G PTG = /G F(@)RF@du = F(AY),

the change in the order of summation and integration being justified by
the hypotheses on f. Hence

$(@)(G/H) =Y W (z)f(hY),
and writing x = 0, ¢(0) = )_ f(h) gives the theorem. O

If we multiply u by a constant, we multiply both sides of (A8) by the
same constant; so the theorem is true for any choice of p. The special case
which will be needed in §15 is as follows.

Corollary Let f(€) be a function on Vi which is integrable and for which
Y s in k J(a(z + £)) is absolutely convergent for all adéles € and idéles a,
uniformly in € for each a. Suppose also that Y, . f (ax) converges for
each o, where we have identified f/; with Vi,. Then

p(Vi/Bllell > flaz)= Y fla™'z).
T in k z in k
Proof Write g(§) = f(a€); then
itn) = [ o(€en@du = [ floe)ertEnrd

= lla /v (&)o@ TEmdu = ol = f(atn),
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where to go from the first line to the second we have written a~1€ for &.
Now apply the theorem to g(¢€) with G = Vi and H = k, and use the fact
that H* = k by the Corollary to Lemma A7. O

If we identify Vi with V., the symmetry property of the Fourier transform
becomes

fm) = /V fOa@Emdn < f&)= /V fmerEmdn  (A10)

where u is normalized by the condition u(Vi/k) = 1. For we know from
Theorem A5 and (A6) that f(€) = A [, f(m)er(€n)dp for some constant A
depending on u. Applying Theorem A6 to both f and f and remembering
that c1 (&) = c1(—€n) we obtain A(u(Vi/k))? = 1; s0 A = 1 is equivalent
to p(Vi/k) = 1.

A2.3 Galois theory for infinite extensions

Let K be a separable normal extension of a field &k, with Galois group G.
If [K : k| is finite, the fundamental theorem of Galois theory states that
there is a one-one correspondence between fields L with K D L D k and
groups H C G, given by the relations

L consists of those elements of K which are fixed under H,

H consists of those elements of G which fix L elementwise.

The usual proofs of this depend on the finiteness of [K : k], because they
use counting arguments; so they collapse when [K : k| is infinite. It is
natural to ask how much the conclusion needs to be changed in that case.

Lemma A8 Let K, L be fields such that K D L D k and K is Galois over
k. If H is the Galois group of K over L, then the fixed field of H is L.

Proof This follows directly from the finite case. For let £ be any element of
K not in L and let & with K D & D L be the splitting field of the minimal
polynomial of £ over L. There is an L-automorphism of & which does not
leave £ fixed, and this can be extended to an L-automorphism o of K with
the help of Zorn’s Lemma. Since o is an element of H, the fixed field of H
cannot be larger than L. O

There are in general too many subgroups H of G for them all to be Galois
groups of K/L for some intermediate field L; so how do we identify those
H which have this property? To answer this, we introduce a topology on
G.
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Let K; run through those subfields of K which are normal over k£ and
for which [Kj : k] is finite, and let

GDG;= Gal(K/K,), S; = G/G,; = Gal(Kz/k)

If K; O K; there is a natural homomorphism ¢;; : S; — S;. The S; form
an inverse system of groups with connecting homomorphisms ¢;;, whose
inverse limit is G with the obvious maps ¢; : G — S; = G/G;. For let o
be any element of G. Each £ in K is in some K;; and the actions of ¢ and
¢;0 on & are the same. Hence o is uniquely determined by a knowledge of
all the ¢;0.

The S; are finite groups, so we give each of them the discrete topology;
and we give G the topology induced on it as an inverse limit — that is,
the finest topology such that each ¢; is continuous. A base for the open
subsets of G is given by the cosets of the G;, and any such set is also
closed because it is the complement of the union of the other cosets of the
same G;. The topology obtained in this way is Hausdorff, and with it G is
compact. However, it is not known, even when G = Gal(Q/Q), whether
every subgroup of finite index in G is open; this is one of a number of
related unsolved questions, all of which appear to be very difficult.

Lemma A9 Let H be a subgroup of G. Then H is the Galois group of K
over some field L with K D L D k if and only if H is topologically closed.

Proof Suppose first that H = Gal(K/L). If o is in the closure of H and
¢ is any element of L, we have to prove that o = £. Let Ky C K be the
splitting field for the minimal polynomial of £ over k; then Ky is Galois
over k and [Kj : k] is finite. Let Go, So and ¢p be as above. Now ¢oH C S
is closed because Sy is discrete, and it leaves € fixed; hence o belongs to
the closed set ¢g '¢oH and leaves ¢ fixed.

Conversely, if H is closed let L be its fixed field. If ¢ is not in H, we
have to show that there are elements of L which are not fixed by . There
is a basic neighbourhood A of & which does not meet H — that is, there
is a K finite and Galois over k with ¢, : G — S1 = Gal(K;/k) such that
¢1H does not contain ¢10. Let & C K, be the fixed field of ¢; H C S;.
Then K1 C L because K is fixed elementwise by H; but £; is not fixed
under o. O

Putting the last two lemmas together, we obtain the Fundamental The-
orem of Galois Theory for arbitrary extensions (which contains the corre-
sponding one for finite extensions):
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Theorem A7 In the notation above, there is a one-one correspondence
between fields L with K D L D k and closed subgroups H of G.

There is one case in which we know how to describe G explicitly: that is
when k is a finite field F, and K = k is its algebraic closure. Now there is
just one extension of k of each finite degree n, which we call K™, Since
S™) = Gal(K™ /k) is cyclic of order n and is generated by the Frobenius
endomorphism ¢ : z +— 9, we can identify S with Z/(n) by identifying
0¥ with v mod n. Here K™ 5 K™ if and only if njm, and the map @, »
is then identified with the map Z/(m) — Z/(n) which sends » mod m into
v modn.

If m, n are coprime, the degree of the compositum K™ K™ must be a
multiple of both m and n, whence K(™) K(®) = K(mn)  The natural map
S(mn) _, §(m) x §(n) of Galois groups is one-one and can be identified with
the natural map of residue groups; and it is an isomorphism. In forming
G, the inverse limit of the S, we can therefore treat the different prime
factors of the n separately; thus G is naturally isomorphic to the product
of the inverse limits of the S®") ~ Z/(p*). These inverse limits are just
the Z,.
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Exercises

Chapter 1

1.1 For the ring R = C|z,y|, which has unique factorization, prove that

(i) apart from (0) and R itself, there are two kinds of prime ideals, one
kind being maximal and the other not,

(ii) any non-zero ideal can be written in at most one way as a product of
prime ideals,

(iii) there are ideals which cannot be written as a product of prime ideals,

(iv) division by ideals, even when possible, is not always unique.

[Think geometrically. The two kinds of prime ideals correspond to points
and irreducible curves.]

1.2 Show that neither of Z[/—6] and Z[V/5] is a unique factorization
domain.

[Consider the factorization into irreducible elements of 6 in the first case
and 4 in the second.

1.3 Find a unit in Q(v/6) and show that this field has class number
h=1.

1.4 Find a unit in Q(+v/22) and show that this field has class number
h = 3. Deduce that X3 + 22Y3 + 323 = 0 has no rational solutions.

[If z,y,z is a solution with z,y coprime integers, show that ps is not
principal, where p3|3, but that (x +y+v/22) = paa®. The equation is in fact
soluble in every Q,, but to prove this requires ideas not in this book; see
for example [Ca).]

1.5 Suppose that the extension K/Q is normal and has a Galois group
which is simple but not cyclic. Show that there is no rational prime p such
that (p) remains prime in K.

135
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136 Ezercises

1.6 Show that the ring of all algebraic integers is not Noetherian, and
deduce that Q is a Noetherian ring not all of whose subrings are Noetherian.

[Fix a prime p and let M, be the ideal generated by pt/™; show that the
M,, form a strictly increasing sequence.]

1.7 Suppose that k contains {, a primitive p-th root of unity where
p is prime, and that K is Galois over k with [K : k] = p; and write
G = Gal(K/k) =~ Cp. Show that K = k({/a) for some « in k.

[Let o be a generator of G. Take a = 3*1 ¢v-o¥B for B in K; and
show that one can choose f so that a # 0.]

1.8 Let K, k be algebraic number fields with K totally complex, k totally
real and [K : k] = 2. If ux denotes the group of roots of unity in K, show
that [O% : opux|=1or 2.

[The non-trivial automorphism of K/k is complex conjugacy. Show that
n — n/7 induces a homomorphism D% — pk/p% the kernel of which
contains ojuk. Conversely, show that if « is in the kernel then a/a =
¢? = ¢/( for some ( in pk; so a/( is in of.]

1.9 Show that the only integral solutions of X® = Y2 + 13 are given by
X =17,Y = £70.

[Factorize the equation in Q(y/—13), which has class number 2. Show
that if z,y is an integer solution then (y + v/—13) must be the cube of an
ideal and hence y + v/—13 = (a + by/—13)3; thus 1 = b(3a® — 13b?) ]

1.10 Let k be an algebraic number field. Show that there is a finite
set of prime ideals py,... ,p, with the following property: if R is the ring
consisting of those elements of k which are integers except perhaps at the
pi, then R is a principal ideal domain.

1.11 Let ¢ = 1 and assume that a = (} .-, (™)/m is an algebraic
integer. Show that either oo = (™ for each 7 or oo = 0.

1.12 Let X be an indeterminate. Show that the ring Z[X] is Noetherian
and integrally closed in its field of fractions, but is not a Dedekind domain.

1.13 Let &k be an algebraic number field. Show that o4 is a principal
ideal domain if and only if it satisfies the following condition: for every o
in k but not in o, there exist 8,~ in ox such that

0 < |normy/q(af ~ )| < L.
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Chapter 2

2.1 If K, k are algebraic number fields with K O k prove that the relative
discriminant of K/k is normg/xdx/k-

2.2 Show that X? — 82Y2 = £2 has solutions in every Z, but not in Z.
What conclusion can you draw about Q(+/82)?

2.3 Give an example of finite extensions K, K> over Q such that
[K1K2 : Kl] # [Kg (KN Kz]
[Thus without the Galois condition, nothing is left of Lemma 25.]

2.4 Show that the class of the relative discriminant for K/k in the ideal
class group Ci is a square.
[Argue locally, using the fact that Ox ®, o is a free o,-module.]

2.5 Let K D k, let P be a prime ideal in K and let p be the prime ideal
of k divisible by . Show that 9 is wildly ramified if and only if Trg,, /x,
is in p, for every o in Ogp.

2.6 Let ¢ be a prime and let f(X) = X% — aX — b be an irreducible
polynomial in Z[X] for which (£ — 1)a and ¢b are coprime. Let K be the
splitting field of f{X) over Q. Show that

(i) if p ramifies in K/Q then e, = 2,

(ii) G = Gal(K/Q) is S¢, the symmetric group on ¢ elements,

(iii) if k is the fixed field of the alternating group Ay, then K/k is unram-
ified.

[Since X f'(X) — £f(X) is linear and not divisible by any prime, any re-
peated factor of f(X) must be linear and have multiplicity 2. Now Theorem
19 implies (i) and shows that the non-trivial element of the ramification
group of p is a transposition. Since G contains an element of order £ and
a transposition, this gives (ii); and (iii) follows by applying Theorem 16 to
the ramification group of p.]

2.7 Prove that if p is unramified in K;/k and in K, /k, then it is unram-
ified in K1 K>/k; and that if p splits completely in K;/k and K3/k then
it splits completely in K;K,/k. Show however that if p remains prime in
K 1Ky /k then [K1K> : K] is the least common multiple of [K; : k] and
[K2 . k]

Give an example where p is ramified in K;K>/Q but not in K;/Q or
K»/Q.
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138 Ezercises

[For the last part, take p = 3 and K3, K, to be conjugate fields Q(/m).]

2.8 Let K = Q(v/7,V13). Show that for any integer a in K, the dis-
criminant of 1,a,a2,03 is divisible by 3; and deduce that 1, a,a?,a® can
never be a base for the integers of K.

[Use the fact that (3) splits completely in K, and therefore 3|(a3 — a).]

2.9 Show that z* + 1 is reducible in Q,, for every p > 2.

Chapter 3

3.1 Let p = (, + ¢! where (, is a primitive n-th root of unity. What
additional condition on n is needed for the ring of integers of Q(p) to be
Z{p)?

3.2 Let p be a prime and m an integer such that p|(m* — 1) for v =n
but not for any smaller ¥ > 0. Show that p has at least one prime factor

with e = f = 1 in Q({/1) and deduce that p = 1 modn. Hence show that
for any n there are infinitely many primes p = 1 mod n.

3.3 Let K = Q(¥/1) with n = p; - - - py, where the py are distinct odd
primes, and let K, be the field of (n/p,)-th roots of unity. Let o, be a
generator of the cyclic group Gal(K/K,), write 0 = 01---0m and let L
be the fixed field of 0. Show that K/L is unramified at each finite place.
What additional condition is needed to ensure that it is also unramified at
the infinite places?

3.4 (i) Let G be a finite abelian group. Show that there are fields K, L
with K = Q(¥/1) and L C K such that Gal(K/L) ~ G and no (finite
or infinite) place ramifies in K/L. [Use the results of the two previous
exercises.|

(ii) Using Theorem 37, show that the ideal class group of L contains a

subgroup isomorphic to G.

The following two exercises illustrate the method of infinite descent, and
show the importance of choosing the right equation to apply the method
to.

3.5 Show that X? + Y* = Z2 has no non-trivial solutions in Z.
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Ezercises 139

If there are solutions, let x,y, z be the one with |z| minimal. Without
loss of generality, assume y odd; then z2 = 2uv, y? = u? — v? with u,v
coprime. Thus u = A%, v = 2B? and y? = A* — 4B%. Hence show that
A% = 2 + m2, B? = ¢m with {,m coprime and therefore both squares.
Now |A| < |2| gives a contradiction.]

3.6 Show that eX* + Y* = Z2 has no non-trivial solutions in Z[y/~1]
where ¢! = 1.

[Let # = 14+ /—1. Show by m-adic arguments that it is enough to
consider the case when 7 divides X but not Y or Z, and that then 7%|X.
Deduce that we can take Z — Y2 = n2¢;u?, Z + Y2 = 7 2¢5v? where €1, €2
are roots of unity; and hence Y? = n%e3v* + ¢4u* where w%|v. Writing
Y +/—1 for Y if necessary, show that ¢4 = 1. Verify that the same power of
7 divides v and X, and derive a contradiction.]

3.7 Repeat the investigation at the end of §14 for the case when K is
the splitting field of an irreducible non-normal cubic equation over Q.

3.8 Verify equation (46) by elementary means.

[The only substantial calculation concerns the powers of 2; here it pays
to split cases, using the properties both of the different and of a base for
Ok .|

3.9 Let k = k,, be the field of m-th roots of unity and kg its maximal
totally real subfield; and let u; be the group of roots of unity in k.

(i) If m is a prime power or twice a prime power, show that o} = o} pux.
(ii) If not, show that [0} : of ux] = 2.

[Use the result of Example 1.8. For (i) let m = p” or 2p". If the result
is false and p > 2, there exists # in of with 7% in ko but # not in ko;
then k = ko(,/7) would not be totally ramified at p. If p = 2 and 7 in
of is not in of ux then ¢ = /7 is a primitive m-th root of unity; then
normy ¢ = ++/~1 but normy,L7 is a power of /=1 where L = Q(v/-1).
For (ii), show that = 1 — ( is a unit, where ( is a primitive m-th root of
unity and deduce that the homomorphism of Exercise 1.8 is onto.|
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140 Ezxercises

Chapter 4

4.1 If the Dirichlet series ) a,n™* converges at s = sg, show that it
converges whenever Rs > Rsy and that it converges absolutely whenever
Rs > Rsg + 1.

[For the first assertion, use summation by parts.]

4.2 If the limit (98) exists, show that the limit (99) exists and has the
same value.
[Use summation by parts.]

4.3 Let S be a finite set of places and let x be a character on IS such
that for any neighbourhood N of 1 there exists € > 0 such that the inverse
image of N contains all principal ideals (£) with ||¢ — 1||, < € for each v in
S. Show that x satisfies (91).

[Choose the n,, s, so that (91) holds for all units with ||€ — 1|, < ¢; then
proceed as in the proof of Lemma 34.]

4.4 Let x be a non-trivial character of conductor m; show that

Z:;lx(n)

for all integers N. Deduce that if p is prime and ¥ is a non-trivial character
mod p then x(n) # 1 for some n < p'/2(1 + log p).
[If 72(x) is the Gauss sum as defined in (54), show that

< m3(1 + logm)

N

N
S xm) = (n) Y. 3 X(b)exp(2ribn/m)
1

n=1bmodm
— (i (T exp{2mib(N +1)/m} -1
= (r(X)) 1 b gm exp{27rib/m} m)

In each term of the last sum, the numerator is absolutely bounded by 2
and the absolute value of the denominator is |2sin(wb/m)|. Hence

| Z x(n)| < 2m=1/2 Z cosec(wb/m)

where we can take the sum to run over 0 < b < %m]
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Ezercises 141

Chapter 5

5.1 Write i = /=1 and let K = Q(4, ¥/2), k1 = Q(4) and k; = Q(V2).
Show that K is abelian over each of k; and ks, with Gal(K/k;) = C4 and
Gal(K/kz) ~ Cg X 02.

(i) If H is the congruence divisor class associated with K/k;, show that
its conductor divides (1 + ¢)” and that H contains i and 5, and
that these facts specify it completely.

(ii) If H is the congruence divisor class associated with K/ks, show sim-
ilarly that the finite part of its conductor divides (v/2)® and that
H contains 3, and that these facts specify it completely.

[In (i), every @ = 1mod (1+4)7 is a (1 +%)-adic fourth power and (1 + )
is the only prime which ramifies in K/k;; these give the assertion about the
conductor. Since the units represent all the odd residue classes mod (144)3,
we need only identify the residue classes mod (1 + 4)” in H which are
congruent to 1mod (1 + i)3. This appears to give six candidates for H,
but four can be rejected because they are not invariant under complex
conjugacy. One of the remaining two contains 5 and the other contains
1 4 4i; but the second must be rejected because (1 + 4¢) does not split
completely in K/k; .|

5.2 Let X;,..., X4 be integers not all divisible by any p = 7mod 8, such
that

X{4+4X3 = (X? - 2X1 X, + 2X2) (X2 4+ 2X1 X + 2X3) = X2 - 2X3.

Show that |X3| # 5 or 7mod8.

[Assume that X3 is odd and show that 4|X;. Using the notation and
results of the previous exercise, show successively that the ideal (X?+2iX3)
is in the kernel of the Artin reciprocity map for K/ky, that the first degree
primes in this kernel are those whose Norms split completely in K, and that
therefore the ideal (X3 + X4v/2) is in the kernel of the Artin reciprocity
map for K/ks. Hence deduce that X, is even and [X3| =1 or 3mod8.]

5.3 Let k be totally complex and kg totally real with [k : ko] = 2. If
h, ho are the class numbers of k, ko respectively, show that hglh.

[Let L be the Hilbert class field of kg. Show that L Nk = ko whence
[kL : k] = [L : ko] = ho, and that kL/k is unramified and abelian.]

5.4 Let () denote the quadratic residue symbol in Z, where m,n are
coprime and n is odd and positive. Using the general properties of the
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power residue symbol, show that (7!) and (2) only depend on nmods8,
and hence deduce the auxiliary laws

() =(DED2, - (2) = (),

It is possible to derive Theorem 25 in the same way, but this involves
an unnatural case-by-case calculation; a somewhat less ugly version of the
same calculation can be found in the next exercise.

5.5 (i) Let m = 2 and k = Q in the machinery of §19. Show that the
Hilbert symbol (a,b)2 depends only on a and b mod (Q})?, and construct
a table of its values. [Choose particular representatives for the classes of a
and b and use (104) and Lemma 38.]

(ii) Check the results of (i) by means of (105).
(iii) Deduce the law of quadratic reciprocity for Q.

5.6 Take p = 3 in the notation of the exercise on page 111. Show that
any « in k* can be written in essentially one way in the form a = (##n"aq
with ag = £1mod 3. Prove that

)-)

if each of ag, By is congruent to +1mod 3 and S(ag) N 8(B) = S. Prove

also that
C __ p—T—8 1 (7
<a_o) =< (00) =¢

if ap = (1 + 3(r + s¢)).
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Suggested further reading

There are a substantial number of texts which cover more or less the same
material as Chapters 1 and 2. The most thorough and careful is

[FT] A. Frohlich and M.J. Taylor, Algebraic Number Theory, Cambridge
University Press, 1991.

The texts which I have found most inspiring are

[Weyl] H. Weyl, Algebraic Theory of Numbers, Princeton University Press,
1940,

[Ca] J.W.S. Cassels, Local Fields, Cambridge University Press, 1986. This
goes far wider than its title suggests, with a particularly strong emphasis
on applications to Diophantine equations.

A more comprehensive account of the local theory, both elementary and
advanced, is

[Se] J.-P. Serre, Local Fields, Springer-Verlag, 1979. (The original French
version was Corps Locaur, Hermann, 1968.) This can fairly be described
as a masterpiece.

The best reference for class field theory (covering both local and global
fields) is still

[CF] J.W.S. Cassels and A. Frohlich (editors), Algebraic Number Theory,
Academic Press, 1967.

Alternative accounts can be found in

[N] J. Neukirch, Class Field Theory, Springer-Verlag, 1986;

[L] S. Lang, Algebraic Number Theory, Springer-Verlag, 1986. This was
originally written in 1970; it also covers the elementary theory and a sub-
stantial amount of analytic material.

An interesting and recommendable illustration of how much can be achieved
without overt Galois cohomology is the second half of

[Weil] A. Weil, Basic Number Theory, Springer-Verlag, 1973. The first half

143
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144 Suggested further reading

of this book is an account of the elementary theory, dominated by the use
of Haar measure; this is an interesting approach, but Weil’s style does not
help the reader.

The best account of Iwasawa theory is to be found in

[Wa] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag,
1980.

Books on the computational aspects of the subject become out of date as
new packages are developed. Subject to this, the definitive account is
[Co] H. Cohen, A Course in Computational Algebraic Number Theory,
Springer-Verlag, 1995.

A good introduction to these aspects can be found in

[Sm] N.P. Smart, The Algorithmic Resolution of Diophantine Equations,
Cambridge University Press, 1998.
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dg, 4 conductor, 43, 68, 99, 100
h, 15 congruence divisor class group, 99
Jk, 15, 50 conorm, 23

kp, 34 cyclotomic, 65

R, 23

1,72, 3 Dedekind domain, 9

Vi, 49 density, 94

w, 53 Dirichlet, 94

T, 125 diagonal map, 49, 51
0,90,1 different, 43, 44

A2 4 local, 44

Cg, 15 discriminant

Sk, 16 absolute, 4

relative, 26
absolute norm, 13

absolute value, 31 Exercise, 17, 19, 40, 43, 62, 69, 76, 111
adéle, 48

principal, 49 Fermat’s Last Theorem, vii, 73
algebraic number field, vii first degree primes, 94
approximation Frobenius element, 29, 134

strong, 40

weak, 39 Gauss sum, 69
Archimedean, 32
Artin element, symbol, 29 Haar measure, integral, 123
Artin map, 100 Hasse Norm Theorem, 102

local, 108 height, 16
Artin Reciprocity Law, 100 Hensel’s Lemma, 35
ascending chain condition, 6 Hilbert Basis Theorem, 8

Hilbert symbol, 107, 108

Cebotarev Density Theorem, 96 Hilbert’s Theorem 90, 4
character, 125

congruence, 79 ideal

Hecke Grossencharakter, 82, 90, 104 fractional, 10

Tate, 84 integral, 10
characteristic polynomial, 121 ideal class group, 15
Chinese Remainder Theorem, 12 idéle, 48, 50
circle group, 125 principal, 51
class field, 99 ideéle class group, 105
class field theory, viii inertia group, field, 28
class number, 15 integer, algebraic, 1
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integral at p, 14
integral closure, 3

Kronecker-Weber Theorem, viii, 112

L-series, Dirichlet, 79
lattice, 120
local field, 35

minimal base, 118

Noetherian, 6
norm, 121

order, 3

pigeonhole principle, 16, 120
place, 31

finite, 34

infinite, 33
Pontryagin duality, 125
power residue symbol, 106
Product Formula, 35, 50

Quadratic Reciprocity Law, 61
quasi-character, 128

ramification, 41

tame, 41

wild, 41
ramification group, 28
ramified primes, 15
reduced form, 57
regulator, 23
Riemann hypothesis, 79

splitting group, field, 27
Stickelberger, 5

trace, 121

transform
Fourier, 128
Mellin, 130

ultrametric, 34

unit, 15
cyclotomic, 71
fundamental, 58

valuation
additive, 35
multiplicative, 31

zeta function
Riemann, 79
Tate, 84
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